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Abstract

The full field dynamics of a separated, noise-amplifier flow, the Backward-Facing
Step at Reh = 1385, have been identified by probe-like, upstream measure-
ments using an artificial Neural Network. Local visual sensors, coming from
time-resolved Particle Image Velocimetry, were used as inputs and the dynamic
Proper Orthogonal Decomposition coefficients were defined as goals-outputs for
this non-linear mapping. The coefficients time-series were predicted and the
instantaneous velocity fields were reconstructed with satisfying accuracy. The
choices of inputs-sensors, training data-set size, hidden layer neurons and train-
ing hyperparameters are discussed for this experimental fluid system.

Keywords: Backward-facing step flow, Neural Networks, Particle Image
Velocimetry, Machine learning, System Identification

1. Introduction

Noise-amplifier flows are fluid systems which are globally stable, but which
selectively amplify the upstream perturbations coming from random environ-
ment noise by convective instability mechanisms [1, 2]. Typical examples are
the flat plate Boundary Layer (BL) and Backward-Facing Step (BFS) flows
[3, 4]. Noise-amplifier flows play an important role in many industrial flows, like
separated flows around airfoils [5] and the complex 3D wakes of ground vehicles
[6, 7]. Understanding and controlling these flows will be crucial for the drag
minimisation and reduction of green-house gas emissions, which have to be de-
creased in the European Union of at least 40 % by 2030, compared to the levels
of 1990 [8]. A large portion of these emissions are due to ground vehicles, and a
large portion of the ground vehicle emissions is due to aerodynamic drag [6, 9].
Controlling the shear layers to reduce the wake of a bluff-body or a ground
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vehicle has been proved to be an efficient strategy to reduce the aerodynamic
drag of ground vehicles [10, 11, 12, 13, 14].

In modern experimental and testing / measuring techniques, data-driven
methods are becoming of great interest, since they don’t require a priori knowl-
edge of a model and since the data-sets available are becoming larger and larger.
This is especially true when studying thoroughly non-stationary flows for differ-
ent Reynolds numbers with various sensors such as Particle Image Velocimetry
(PIV) or multiple Pitot / multiple hot-wire probes. The increasingly powerful
algorithms and computers let us handle and process quickly a large amount of
data. Methods like statistical /regression and machine learning algorithms, su-
pervised or unsupervised, are becoming efficient and reliable for both academics
or industrial applications. Neural networks particularly, are nowadays in the
center of attention in this machine learning revolution we experience.

For complex flows, the number of degrees of freedom obtained from a 2D-2C
(2-Components in a 2D velocity field) optical-flow Particle Image Velocimetry
(PIV) measurement of a few millions pixels image is millions. Such a large
system is impossible to control; a reduced-order model has to be identified. A
dynamic observer can identify such a model based only on input-output mea-
surements from measurable system quantities. As proposed firstly by [15] and
verified experimentally for PIV data by [16, 17] it is possible to predict the full
dynamics of a transitional flat-plate BL flow, in the form of Proper Orthogo-
nal Decomposition (POD) coefficients, from local upstream measurements. The
first step in their method was to create a successful reduced-order system using
POD. The second step was to identify an optimal state-space model using a
statistical learning process (the so-called N4SID algorithm), in order to predict
at any moment all the POD coefficients (output) by measuring one or two local
variables upstream (sensors or inputs) in the flow. A similar approach was also
presented in a paper from Beneddine et al. [18], where the full frequency spec-
trum was obtained from local frequency information of the flow. Time-resolved
field reconstruction was also successfully obtained for time-resolved PIV data of
a round jet flow using a point sensor and the mean field from [19].

In the present study, we explore means of performing this step of local-to-
global dynamics system identification (SI) using a Neural Network (NN) archi-
tecture. In this machine-learning data-driven identification process, we use a
given data-set to learn the relation between local sensors and the global fluc-
tuation dynamics of the system (in the form of POD coefficients) and a new
data-set to validate the learning-training step. The identified NN coefficients
will then allow the reconstruction of the full flow field, which would help design
controllers targeting the kinetic energy of the full perturbation field. We will
show the importance of the various choices (from sensors, to NN parameters)
in a successful SI of an experimental time-resolved separated flow.

The paper is organised as follows. First, we present the various artificial
NNs that can be found in the literature, and a brief review on their use in fluid
mechanics problems. Then we present the experimental setup used to study the
BFS flow. The choice of the NN architecture is then be discussed, together with
the choice of the sensors characteristics and the training data size. The efficiency
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of the chosen shallow NN architecture for such a SI is then demonstrated through
the time-resolved velocity field reconstruction before turning to the conclusions.

2. Artificial Neural Networks

2.1. Definitions

Artificial Neural Networks (NN) are a subset of supervised Machine Learn-
ing. They can provide a non-linear mapping between one set of inputs and a
set of corresponding outputs. Great progresses have been made lately because
of the availability of large data-sets, the increasing availability of multiple op-
timised toolboxes and also the progress in Graphics Processing Units (GPU)
parallel programming, which improves the computational speed. This is the
reason why NNs are becoming more and more popular nowadays.

The fundamental part of a NN is the neuron or ”perceptron”. In general,
one defines a weight wi associated to each ith neuron of the previous layer. To
obtain the output of a perceptron from a set on N neurons, one computes the
sum of the N inputs multiplied by their corresponding weight and adds a given
bias bi. An activation function f is then used to compute the output. A classic
activation function is a step-function, but more refined functions are usually
needed. To improve the efficiency of classic NNs, it is possible to add one or
many ”hidden layers” between the inputs and the outputs. Each hidden layer
represents a non-linear function of linear combinations of its inputs, using a
weight and a bias for each input. The inputs are then coming from the previous
hidden layer. It is theoretically proven that any continuous function can be
approximated with a single hidden layer [20, 21].

The simplest shallow, fully-connected NN architecture consists of the input
layer (with n neurons), a single hidden layer (with an arbitrary number of n1
neurons) and a linear layer (with n2 = m neurons) connected to the output,
as shown in Fig. 1. A standard rule for the linear layer is to have the same
number of neurons as the output layer. Regarding the choice of the number of
neurons in the hidden layer, it can be as high as needed to increase accuracy, but
without over-fitting. For a NN with a non-linear activation function f1 in the
hidden layer and a linear activation function f2 in the linear layer, the equation
giving the kth neuron output of a single hidden layer network connected to the
jth neuron of the previous layer is:

yk = f1

 n2∑
j=0

w
(2)
kj f2(

n1∑
i=0

(w
(1)
kj xi + bi) + bj

 (1)

where n1 is the number of neurons in the first (hidden) non-linear layer and
n2 the number of neurons in the second (linear) layer. Regarding the choice
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Figure 1: An example of a shallow NN non-linear mapping to monitor m outputs Y using the
n sensors X in a FTDNN architecture with k steps of delay and n1 neurons in the hidden
layer.

of the non-linear activation function f1, usually the popular tan-sigmoid or
hyperbolic tangent function is used:

f1(x) =
e2x − 1

e2x + 1
(2)

The correct training process of the network (i.e. finding the optimal weights
and biases connecting the neurons of different layers) consists of dividing the
data-set into a training data-set and a validation data-set. Starting with the
training data-set, the first set of weights connecting the layers is randomly ini-
tialised for this first iteration. The error of the real vs the model-generated
output is computed and the weights and biases are updated according to dif-
ferent back-propagation schemes, in our case the Scaled Conjugate Gradient
(SCG) method. In this case, the step size is adjusted at each iteration in order
to minimise the performance function. The above process is called an ”epoch”.
We continue the process for as many epochs as needed until a satisfactory fit
error is achieved (Fig. 2). The second data-set, is the ”validation” data-set and
is used to evaluate the performance of the network on new data and verify the
achieved error, hence avoiding over-fitting.

2.2. Neural Network types

NNs can be divided into Feedback (or recurrent) and Feed-Forward. They
can be discriminated according to their depth, either shallow or deep, depending
on the number of hidden layers (one or more). Finally, they can also be divided
into static or dynamic, if the output of the current step depends on the previous
steps as well, giving it a notion of memory.
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Figure 2: Block diagram of the NN System Identification training step.

In the case of a feed-forward NNs the output of any layer only modifies the
next layer. System identification using feed-forward NNs have been a common
practice since the 90s [22, 23]. Recently, deeper feed-forward NNs have also
been implemented in complex SI cases [24].

The network used in the present SI study is a fully-connected Focused Time-
Delay Neural Network (FTDNN) and is basically a standard feed-forward archi-
tecture along with a tapped time-delay (of time-step size k) in the input. The
term ”focused” comes from the fact that the notion of memory is introduced
only in the input and not in the output. They were first introduced for speech
recognition [25]. They are used to model long-range temporal dependencies by
keeping a number of past measurements of the input at each k previous time
steps xt−k leading to the following expression for the output of the system [26]:

yt = fw,b(xt, xt−1, ..., xt−k) (3)

where w and b are weight and bias parameters. On the other hand, in a
recurrent NN, the system output is calculated from its previous past time-steps
along with the input at the current time-step like in equation 4:

yt = fw,b(yt−1, xt) (4)

Recurrent NNs also introduce a notion of memory in the output of the sys-
tem. One specific family of recurrent NN is the Non-linear Auto-Regressive
eXogenous (NARX) models. They are autoregressive because the outputs of
the current time step depends on the output of a number of previous steps.
They are exogenous because the output depends also on a number of inputs.
The NARX models were first introduced by [27] and used with NN with signifi-
cant success by [28] for multiple non-linear SI cases. It is a natural extension of
the Autoregressive Exogenous model (ARX), which has been extensively used
in linear black-box SI. Another category of recurrent NNs are the Long-Short
Term Memory (LSTM) networks. They are gradient-based recurrent NNs used
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for supervised learning both in classification and prediction problems[29]. They
were first developed by [30] to solve the vanishing or exploding gradient prob-
lem of the back-propagated error. The difference with the FTDNNs, which
also introduce an arbitrary long-term time dependence of the input to its pre-
vious moments, is that the network is left to learn alone the size of the memory
of each neuron during the training process. They do so using a sophisticated
gate-neuron, that determines if the input is important enough or if it should be
forgotten and when it should output its value. They are more computationally
expensive to train than the FTDNNs.

2.3. Neural Networks in Fluid Mechanics

In fluid systems, feed-forward artificial NNs have been used for data-driven
reduced-order modelling [31, 32, 33, 34, 35] with many results showing better
field reconstruction than traditional POD methods [36, 37]. They were also
used by [38] for experimental flow regime identification in multiphase flows. We
mention that it has also been proved by [39], that a linear NN can be equivalent
to a POD basis structure. Convolutional NNs have also been used for the
efficient real-time 2D and 3D inviscid simulations [40] or along with pressure
measurements for the velocity field prediction around a cylinder [41].

Furthermore, if there are hints or deeper understanding of the underlying
physics, simple shallow NNs can provide very good results in SI [15, 42] as
well as for control laws creation [43, 44, 45]. Their potential has been demon-
strated early for modelling surface pressure and aerodynamic coefficients of 3-
dimensional unsteady cases of aircrafts flows [46]. Finally, deep NNs are in-
creasingly more important in the fluid mechanics community, especially for the
modelling of complex turbulent flows. Srinivasan et al. [47] compared deep
feed-forward and recurrent LSTM networks for turbulent shear flows predic-
tion. Recently Deng et al. [48], used LSTM networks to reconstruct the POD
coefficient time series using sub-sampled distributed velocity sensors in an in-
verted flag flow PIV experiment. A short review of applications of deep NN to
fluid mechanics can be found in [49].

3. Experimental setup

3.1. Hydrodynamic channel

Experiments have been carried out in a hydrodynamic channel in which the
flow is driven by gravity, with a maximum free-stream velocity U∞ = 22 cm.s−1.
The flow is stabilised by divergent and convergent sections separated by hon-
eycombs leading to a turbulence intensity of 0.8 %. A NACA 0020 profile is
used to smoothly start the boundary layer. The test section is 80 cm long with
a rectangular cross-section w = 15 cm wide and H = 10 cm high (Fig. 3).
The step height is h = 1.5 cm. The maximum Reynolds numbers based on
the step height is Reh,max = U∞h/ν ≈ 3000. The vertical expansion ratio is
Ay = H/(h+H) = 0.82 and the spanwise aspect ratio is Az = w/(h+H) = 1.76.
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Figure 3: Sketch of the BFS geometry and main flow features (shear layer and recirculation
bubble). The PIV window is shown in grey and the visual sensor location shown as a red dot.

3.2. Lucas-Kanade Optical Flow PIV measurements

The flow is seeded with 20 µm neutrally buoyant polyamide particles, which
are illuminated by a laser sheet created by a 2 W continuous laser (MX-6185,
Coherent, USA) operating at 532 nm. A thin layer of fluorescent paint (FP
Rhodamine 6G, Dantec) was applied to the illuminated surface to absorb the
laser wavelength and avoid reflections and to allow correct near-wall measure-
ments. The Camera used was a 4 Mp PCO DIMAX-cs with an acquisition
frequency fac = 150 Hz. An narrow-band optical filter was mounted on the
camera to visualize only the laser light reflected by the particles. The length of
the PIV window 11.2 h and its height is 3.7 h.

The time-resolved velocity fields are calculated from the acquisition of suc-
cessive snapshots in the vertical symmetry plane at z = w /2, using a home-
made Lucas-Kanade Optical Flow (LKOF) algorithm. The first version of the
code has been developed at ONERA [50] and later modified, optimised and
adapted to the constraints of real-time measurements by Gautier & Aider [51].
Among the advantages of the LKOF algorithm compared to a standard FFT-
PIV algorithm is the calculation of a dense velocity field with one vector per
pixel. It also allows for high computational speed when implemented on a GPU
with CUDA functions [52]. The high spatial resolution is important for near-
wall measurements while the high computation speed is important for real-time
measurements that can be used as inputs in closed-loop flow control experi-
ments [53]. The code has been used many times both for time-resolved PIV
measurements with a high spatial resolution [54], as well as for closed-loop flow
control experiments [51, 55]. The PIV calculations in the present study were
performed on a NVIDIA TESLA K80 GPU.
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4. Backward-Facing Step flow

4.1. Characterisation of the BFS flow

The objective of this study is to evaluate the potential of a NN SI method on
experimental data of a shear-layer flow. We focus on a BFS flow which is a typ-
ical case of noise-amplifiers. Upstream perturbations are amplified in the shear
layer leading to significant downstream disturbances. Separation is imposed by
a sharp edge creating a strong shear layer where Kelvin-Helmholtz instability
leads to vortex shedding (Fig. 3). Another important feature is the creation of
a large separation bubble, which is usually associated to pressure drag [56]. Its
reduction is then a common objective to most flow control experiments targeting
drag reduction. It is also considered as a benchmark case for the study of sep-
arated flows. For this reason it has been extensively studied both numerically
and experimentally [3, 57, 58]. The Reynolds number in the present experiment
is Reh = 1385, corresponding to a free-stream velocity u∞ = 11 cm.s−1. The
incoming boundary layer, downstream from the leading edge, is laminar and
follows a Blasius profile. The boundary layer thickness just upstream the step
edge is δ0 = 7mm = 0.5 h corresponding to a shape factor H = 2.3, typical of
a laminar boundary layer. The vortex shedding frequency is fshed = 1.13Hz,
which corresponds to a Strouhal number Sth = fshedh

U∞
= 0.15.

As we are interested in the growth and dynamics of coherent structures,
one can also choose to monitor the vorticity field. Since vortical structures are
embedded into the shear layer, it is better to use more refined criteria, like the
Q criterium or the λCi criterium, which are well adapted to the identification of
vortical structures inside a shear layer. The λCi criterium was first introduced

by Chong et al. [59], who analysed the velocity gradient tensor D =
−→
∇−→u

and proposed that the vortex core could be defined as a region where ∇u has
complex conjugate eigenvalues. It was subsequently improved by Zhou et al.
[60] and by Chakraborty et al. [61]. It was also successfully applied by [62], to
visualise the 3D vortices created by a Jet in Cross-Flow measured by Volumetric
Velocimetry, and by Gautier et al. [63] in a closed-loop flow control experiment
using a similar visual sensor. For 2D data, λCi can be computed quickly and
efficiently using equation (5), when such a quantity is real (else λCi = 0):

λCi =
1

2

√
4 det(∇u)− tr(∇u)2 (5)

4.2. Proper Orthogonal Decomposition

Decomposing a dynamical system in modes of decreasing importance can
help reducing the order of the variables of the system. N = 4197 consec-
utive velocity fields {U(n) = (u∗x, u

∗
y)}n=1...N were computed from consecu-

tive flow snapshots ,with a sampling frequency of fac = 150 Hz. The size of
each snapshot-velocity field is 346 × 1010 pixels, with a spatial resolution of
0.166 mm/pixel . By calculating the mean field [Ux, Uy] we were able obtain
the velocity fluctuations u′x(t) = u∗x(t) − Ux and u′y(t) = u∗y(t) − Uy, which
contained all the dynamics and were used to create the reduced-order system.
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Figure 4: Averaged streamwise velocity field (a), example of an instantaneous streamwise
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of the tested visual sensors. The flow is going from left to right. Movie online.
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Figure 5: Energy of each POD modes and cumulative total energy of the POD modes up to
80 % of the total energy.First two POD modes correspond to the vortex shedding due to the
Kelvin-Helmholtz instability.

The fluctuation matrices organised in columns for each time-step were used to
form the so-called ”snapshot matrix” to be decomposed. The reduced-order sys-
tem is obtained using POD, which has been used extensively in fluid mechanics
[64, 65]. It allows us to build a ranked and orthonormal basis containing N
modes [66, 67]. The first K modes {Φk}k=1...K with K ≤ N containing a suffi-
cient percentage of the total energy is then chosen to compute the approximated
velocity field Ũ(n):

Ũ(n) =

K∑
k=1

〈Φk,U(n)〉Φk =

K∑
k=1

ak(n)Φk (6)

where the scalar product 〈·, ·〉 is the energy-based inner product. The system
output to be identified is obtained through the reduced state vector containing
the K POD coefficients ak(n):

Y (n) = [a1(n) a2(n) ... aK(n)]T (7)

The full-field dynamics are now contained in their POD coefficients ak(t).
The balance between the order and accuracy of the POD reduced-order system
is crucial, because it was seen that for a large number of POD modes the SI
methods are much more likely to fail.

The energy of the individual POD modes as well as their cumulative energy
are shown in Fig. 5. One can see that 50 % of the energy is contained in the
three first modes. The system size containing at least 80 % of the total energy
was used; that corresponding to K = 10 modes Φk and 10 POD coefficients
ak. The evolution of the 1st, 3rd and 5th POD coefficients are shown in Fig. 6.
The characteristic frequency of the 1st POD mode corresponds to the Kelvin-
Helmholtz frequency, i.e. the shedding of the vortices in the shear layer.
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5. System Identification steps

In the present study we explore the potential of Artificial NNs for local-to-
global dynamics SI applied to a shear layer flow. A full scheme of the identifica-
tion process is summarised in Fig. 7. First, in the full data-set of time-resolved
PIV experiment is decomposed to identify the dynamics in the form of POD
coefficients. Then, in this data-driven identification process, we just rely on
the input (sensors) - output offline measurements for a period of time from the
operation of the plant. Once the machine (in our case an artificial NN) has mon-
itored a sufficient number of realisations (training data-set), it will identify the
relationship between the given input-sensor and the goal-output. If the method
is successful, then monitoring the sensor will allow us to predict successfully
the full global dynamics (in the form of POD coefficients) of the system in a
new, unknown to the machine, data-set (validation), with no further need for a
time consuming field decomposition analysis. Then the time-resolved field can
be reconstructed from the identified NN-generated POD coefficients, using only
the local sensor measurements.

In the following sections we discuss the influence of the main parameters
on the SI process. We will especially show the importance of the choice of the
physical parameters (nature, number and location of the sensors) in the ability
of the SI learning process to find the proper NN weights and biases for each
neuron. We will also show how the choice of the NN parameters (number of
neurons in the hidden layer, time-delay) plays a crucial role in the efficiency of
the SI process.
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Figure 7: Sketch summarising the main steps of the identification procedure: from the time
resolved PIV experiment to a convincing reconstruction of the velocity fields using local up-
stream sensors.

6. Validation Criterion

To evaluate the efficiency of the identification, one has to define a quan-
titative criterium to compare the POD coefficient time-series results obtained
with the different NN architectures to the ones obtained experimentally. In the
following, we compute the mean-squared error (MSE) at each time-step n for
each POD coefficient ak(t):

MSEi =
1

N

N∑
n=1

(aexp,i(n)− aNN,i(n))
2

(8)

Then the averaged MSE for all the coefficients (m = 10) time-series gives
the final evaluation error for the specific NN architecture:

MSE =
1

m

m∑
k=1

ak (9)

7. Influence of the sensors definition

7.1. Choice of the sensor(s)

First, it is necessary to choose the physical quantities measured by the sen-
sor(s). As the visual sensors are the inputs in the identification process, their
choice is a critical step. The sensor(s) are necessarily based on the measurements
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of the two components of the instantaneous 2D velocity fields at each time-step.
Our challenge is to identify the birth and growth of vortical structures in the
reciptivity process of the noise amplifier; in our case inside the shear layer right
after separation. For this reason, possible sensors can be one or the two com-
ponents of the fluctuation velocity field, the velocity magnitude or other vortex
identification criteria, like the the λci criterion.

7.2. Sensor position

The location of the sensor is critical. It should allow the detection of the
perturbations during the initial phase of the reciptivity-amplification process of
the shear layer [17, 15]. So in such a noise-amplifier flow the sensor was placed as
upstream in the velocity field as possible, right after the separation in the high-
shear region, as shown in Fig. 4. The proximity to the wall also is important
for the method to be realistically applicable if other measuring devices, like
hot-wires, were to be tested in the future. The exact sensor location was finally
chosen to be kept slightly away from the wall (x = 0.25 h), in order to avoid
possible noisy near-wall measurements. We mention that the flow field may be
difficult to measure experimentally because of the large velocity gradients in
the sensor region. Nonetheless, the good spatial resolution of the LKOF PIV
measurements allows for the computation of gradient-based quantities like the
vorticity or the swirling strength criterion.

7.3. Number and size of sensors

Reducing the number of sensors, as well as reducing the number of outputs,
generally should make the training of the network simpler (lower order multiple
input-multiple output regression). On the other hand, using less sensors may
lead to a loss of valuable information about the flow, so a compromise has
to be found. Single sensor configurations have been tested, i.e. either only
vertical fluctuation velocity uy or λci, as well as combinations of two or three
sensors. The velocity component sensor s1 is computed as an average in a five
neighbouring pixels window. The swirling strength vortex identification sensor
s2 is defined as the sum of λCi computed over all the pixels in a dx = 15
pixels-wide window:

s2 =

∫ y2

y1

∫ x2

x1

λCidxdy (10)

The height of the swirling strength window dy has to be close to the thickness
of the shear, so that the vortex activity can be properly monitored. A good
compromise has been obtained with dy = 0.5 h. The width of the swirling
strength window also influences the quality of identification results. If it is
too large, it creates an unnecessary smooth result, while if too small it can be
too noisy, especially for gradient variables computed from experimental data.
Finally, a window width of dx = 0.15 h was used.
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n1 MSE Validation Sensor choice
50 0.065 [ λci , v ]
90 0.085 v
105 0.3787 λci

Table 1: Comparison of the validation data-set fit error obtained with a single velocity sensor,
a single swirling strength sensor and their combination. Using both sensors minimises the
MSE and the number of neurons.

7.4. Choice of the sensor

The SI error obtained using the different sensors separately or combined can
be found in Table 1. One can see that the choice of the sensor(s) is indeed
critical. Using a single swirling strength sensor leads to a large MSE (37.87%)
together with a large number of neurons (105). Using a single velocity sensor
reduces the MSE (8.5%) but still needs a large number of neurons (90). Finally,
the best results are obtained with the combination of the two sensors: the MSE
is minimum (6.5%) and the number of neurons is strongly reduced (50).

This result can be explained. Indeed, both sensors being placed inside the
shear layer just after separation, they contain a lot of information. This region
is rich in frequencies coming from the the initial receptivity and amplification
process together with the shear layer instability. This is also a region where
measurement noise coming from the PIV measurement will be maximum. Using
both sensors helps the identification from the NN to be successful in separating
the physical from the unwanted frequencies, leading to a strong improvement of
the MSE fit (6.5%).

8. Results and discussion

8.1. Optimal NN identification procedure

The goal of the NN identification method is to predict at each time step t
the POD coefficients ak(t) of the full field using local upstream sensors sj(t).
The POD coefficients time-series have been calculated based on the PIV velocity
fields. The sensors sj(t) were also monitored at the same time steps. The pairs
[ak(n), sj(n)] (n = 1 : 4197) is our identification data-set.

A FTDNN algorithm has been chosen. Our objective was then to identify
the optimal sensors sj , the time delay k and the number of neurons in the hidden
layer n1. A basic scheme of the network is shown in Fig. 1. An anti-causal zero
phase low-pass moving average (over four time-steps) filter has been applied to
each pixel time-series, to reduce slightly the measurement noise. We mention
that the cut-off frequency of the filter is more than 10 times the vortex shedding
frequency. For all the NN calculations (training and validation) the MATLAB
Deep Learning Toolbox was used [68].

A NN should be as efficient as possible (according to the chosen criteria) and
at the same time as simple as possible to easily check robustness and reduce
computational time. Simplicity means minimising the number of layers and the
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Network layer structure 2-50-10-10
Activation function Hyperbolic Tangent

Loss function MSE
Training method Scaled Conjugate Gradient
Time-delay (s) 2.66

Table 2: Final choice for the optimal NN architecture and its training hyperparameters.

Figure 8: Structure of the optimal FTDNN non-linear mapping, with 2 inputs-sensors (velocity
and λCi), k = 400 steps of time-delay in the input, 1 hidden layer with n1 = 50 neurons and
m = 10 POD coefficients as outputs.

number of neurons in each layer. The FTDNN networks tested used a tan-
sigmoid transfer function and had a single hidden layer. In this case the NN is
considered as ”shallow”.

The computational time for the training process, using a scaled conjugate
gradient back-propagation algorithm, was of the order of O(1) minute using a
Intel Xeon E5-2630 CPU running at 2.2 GHz. The low computational time
allowed a full parametric test to find the optimal time delay k for the input and
number of neurons n1 for the hidden layer.

For each NN architecture, the full data-set [ak(t), sj(t)] (n = 1 : 4197) has
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Figure 9: Training and validation MSE for each epoch of the training process.
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Figure 10: Evolution of the MSE as a function of the time-delay k in the sensor. Convergence
is achieved for k higher than 300 time-steps.

been divided into training (85% of snapshots), validation (10% of snapshots)
and over-fitting check data-set (5% of snapshots). The third data-set is used
to monitor if high over-fitting is observed during training. In this case the
process is stopped immediately. As a common practice, the data-set is shuffled
randomly before the beginning of the training process. It avoids bad models if
the data are initially classified. It also makes fitting faster because neighbouring
points are not similar. Block consecutive data-set division failed to give good
fit results. We also mention, that a data standardisation was applied before
the training process to help handling different inputs or outputs with different
scales. Lastly, the weights and biases of the network are initialised randomly
for the first epoch. No early stopping criterion has been used.

The number of neurons of the hidden layer n1 was always changed iteratively,
in order to find the optimal number leading to a minimization of the mean-
squared error (MSE).

The same parametric study was carried out for the time-delay k, leading to
a double loop parametric study from which the optimal combination of [k, n1]
was found. The optimal number of neurons for the hidden layer was found to
be n1 = 50 and the best sensor time-delay corresponded to k = 400 time steps
(2.66 s). A more detailed discussion about the time-delay parameter can be
found below.

The results of the training performance as a function of the increasing epochs
of the optimal architecture are shown in Fig. 9. 900 epochs were proved sufficient
for a validation MSE error lower than 10 % for all POD coefficients. The
optimal architecture and training parameters are summarised in the Table 2.
This simple shallow FTDNN architecture (see Fig. 8) avoids the complexity of
deeper architectures which increases the computational time for the training
process and the need for a large amounts of training data [69], which are often
difficult to obtain experimentally. This result verifies that shallow architectures
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Figure 11: Network validation data-set performance as a function of the number of snapshots
used for the training and the number of hidden layer neurons (n1) used.

Figure 12: Training and validation MSE for each POD coefficient time series.

can still provide satisfying results in many fluid mechanics applications [47, 37,
70].

8.2. Influence of the Time-Delay

The time-delay k in a FTDNN gives a notion of constant size memory in
the sensors-inputs. It is crucial for the identification of downstream dynamics,
while our sensors contain only information about the upstream dynamics (in the
Kelvin-Helmholtz instability region). A sensitivity parametric study regarding
the optimal time-delay in the inputs can be found by looking at the plot of
the MSE of the validation data-set, as seen in Fig. 10. Keeping a time delay
of k = 400 steps or 2.66 s, we can achieve a validation fit error less than 7%.
k = 400 time-steps correspond in roughly 3 oscillations of the 1st mode ( which
contains the highest amount of energy and corresponds to the Kelvin-Helmoltz
vortex shedding).
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This notion of ”memory” of these three events is crucial for the success
of the algorithm. It explains why FTDNN with less memory or a standard
feed-forward NN with zero time delay (k = 0) failed to identify the dynamics
(MSE > 90%). An intermediate transitional region with k = 170 up to k = 300
might actually give good identification results, but it strongly depends on the
random weight-bias initialisation and random shuffling of data. Convergence is
achieved only for k > 300 time-steps.

8.3. Influence of the size of the training data-set

As expected for any data-driven method, the more informations are given
to the machine the better. It will figure out more easily the optimal weights
and biases for the mapping we ask it to perform. In Fig. 11 we can see that
decreasing the number of snapshots used for the training of the network leads
to an increase of the number of neurons in the hidden layer for an equivalent
validation error (keeping a constant time-delay of k = 400 time steps). Above a
given number of snapshots, increasing the number of neurons does not help, it
just introduces over-fitting hence increasing the validation error. The BFS flow
PIV experiment for Reh = 1385 is dominated by the vortex shedding frequency
(more than 40% of energy in the first two POD modes). Comparing the number
of events (or oscillations) with the accuracy of the identification shows that to
obtain a MSE lower than 10% we need to record at least 20 events.

8.4. Reconstruction of the instantaneous velocity fields

In Fig. 12 we present the results obtained for the ten first POD coefficients
with the optimal double sensor and optimal time-delay configuration. We can
see that the MSE for each POD coefficient is equivalent for all the coefficients at
both training and validation, which proves we avoided over-fitting. In Fig. 13,
we also present the time-series of three POD coefficients calculated from the
experiment compared with the time-series obtained in the training step (a) and
in the validation step (b) using the optimal NN architecture. Both training
and validation data are in very good agreement with the experimental data and
training and validation fit errors are very similar.

Projecting the NN-predicted POD coefficients ai to the POD modes Φi al-
lows the reconstruction of the fluctuation velocity fields of all time steps of the
validation data-set. It is then possible to compare the predicted velocity field
with the real experimental fields. The instantaneous experimental velocity field
is compared to the one reconstructed with the optimal double visual sensor
information as shown in Fig. 14 and corresponding video. In general, all the
main features from the vortex shedding are apparent with correct amplitudes
throughout the velocity field. Some smaller structures in the shear layer have
reduced amplitude, due to the 80% energy cut during the time-resolved field
decomposition, as well as the NN identification process error itself.
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Figure 14: Comparison between experimental instantaneous streamwise fluctuation velocity
field (a) and NN-reconstructed fields (b) using the double visual sensor and optimal NN
architecture with n1 = 70 neurons in the hidden layer and N = 2728 training snapshots.
Movie online.

9. Conclusions

A successful application of a NN System Identification method to a time-
resolved PIV experiment of a typical noise-amplifier flow has been presented.
We were able to predict with satisfying precision the global dynamics of the
flow (in the form of POD coefficients), using only two upstream visual sensors
coming from local velocity measurements. A shallow FTDNN architecture was
sufficient to recover the overall dynamics of the flow. There was no need for
sophisticated LSTM gates or more than one hidden layers, which would increase
the training complexity and the computational time.

It demonstrates the feasibility to reduce the order of such fluid systems from
O(106) (for typical LKOF PIV measurements) to only a handful of useful vari-
ables, which is crucial for control purposes. The final NN architecture allows
us to predict the dynamics of the flow using local, upstream visual probes,
without the need for time-consuming full- field decomposition analysis or in-
trusive measuring devices like hot-wires or Pitot tubes. It was demonstrated
that the combination of the swirling strength and local velocity sensors lead to
a satisfying training and validation fit in the predicted POD coefficient time-
series, even though these sensors were located in a high-gradient and difficult to
measure region of the flow (early in the receptivity-amplification process of the
noise-amplifier). The accuracy of the method was also illustrated in the instan-
taneous velocity field reconstruction. The NN training process was found to be
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very fast on a standard desktop computer (O(1) minutes). The double sensor
approach is simple and fast to calculate and is ideal for a model-free closed-loop
control scheme, like in [55, 71], with the objective to reduce the turbulent kinetic
energy of the flow.

We also mention that, in a future implementation, the Reh number could
also be integrated as an input, while the output could include POD coefficients
from the different Reh numbers, making it even more useful for flow control
purposes [36]. Distributed sensors, upstream and/or downstream, could also
help achieve this complicated task. A larger number of POD modes could be
included for more precise representation of the initial experimental data-set as
well. Finally, the same methods can be also applied to other noise-amplifier
flows, like the transitional flat plate boundary layer flow under the Tolmien-
Schlichting instability.

Acknowledgements

The authors would also like to thank M. Aris Kanellopoulos from Georgia
Institute of Technology for his valuable comments and discussions.

References

[1] P. Huerre, P. Monkewitz, Local and global instabilities in spatially devel-
oping flows, Annual Review of Fluid Mechanics 22 (1) (1990) 473–537.
doi:10.1146/annurev.fl.22.010190.002353.

[2] J. M. Chomaz, Global instabilities in spatially developing flows: non-
normality and nonlinearity, Annu. Rev. Fluid Mech. 37 (2005) 357–392.

[3] J.-F. Beaudoin, O. Cadot, J.-L. Aider, J. E. Wesfreid, Three-dimensional
stationary flow over a backwards-facing step, Eur. J. Mech. 38 (2004) 147–
155.

[4] G. Dergham, D. Sipp, J. C. Robinet, Stochastic dynamics and model re-
duction of amplifier flows: the backward facing step flow, J. Fluid Mech.
719 (2013) 406–430.

[5] A. Darabi, I. Wygnanski, Active management of naturally separated flow
over a solid surface. part 2. the separation process, Journal of Fluid Me-
chanics 510 (2004) 105–129.

[6] J.-L. Aider, L. Dubuc, G. Hulin, L. Elena, Experimental and numerical
investigation of the flow around a simplified vehicle model, in: Proc. Third
MIRA International Vehicle Aerodynamics Conference, Rugby, England,
2001.

[7] J. F. Beaudoin, O. Cadot, J. L. Aider, K. Gosse, P. Paranthoen, B. Hamelin,
M. Tissier, D. Allano, I. Mutabazi, M. Gonzales, J. E. Wesfreid, Cavitation
as a complementary tool for automotive aerodynamics, EIF 37 (5) (2004)
763–768.

21

http://dx.doi.org/10.1146/annurev.fl.22.010190.002353


[8] E. EU-Council, European council, european council of 23 and 24 october
2014 conclusions.

[9] M. Grandemange, D. Ricot, C. Vartanian, T. Ruiz, O. Cadot, Charac-
terisation of the flow past real road vehicles with blunt afterbodies, In-
ternational Journal of Aerodynamics 4 (1-2) (2014) 24–42, pMID: 57797.
doi:10.1504/IJAD.2014.057797.

[10] J. L. Aider, J. F. Beaudoin, J. E. Wesfreid, Drag and lift reduction
of a 3D bluff-body using active vortex generators, Exp.in Fluids (DOI
10.1007/s00348-009-0770-y) (2009) 491–501.

[11] J. L. Aider, P. Joseph, T. Ruiz, P. Gilotte, Y. Eulalie, C. Edouard,
X. Amandolese, Active flow control using pulsed micro-jets on a full-scale
production car, Int. J. of Flow Control 6 (1) (2014) 1–20.

[12] Y. Eulalie, E. Fournier, P. Gilotte, D. Holst, S. Johnson, C. Nayeri,
T. Schutz, D. Wieser, Active flow control analysis at the rear of an suv,
International Journal of Numerical Methods for Heat ‘&’ Fluid Flow 28
(2018) 00–00. doi:10.1108/HFF-06-2017-0230.

[13] R. Li, D. Barros, J. Borée, O. Cadot, B. R. Noack, L. Cordier, Feedback
control of bimodal wake dynamics, Experiments in Fluids 57 (10) (2016)
158. doi:10.1007/s00348-016-2245-2.
URL https://doi.org/10.1007/s00348-016-2245-2

[14] M. Grandemange, D. Ricot, C. Vartanian, T. Ruiz, O. Cadot, Characteriza-
tion of the flow past real road vehicles with blunt afterbodies, International
Journal of Aerodynamics 24 (1/2) (2014) 24–42.
URL https://hal-ensta.archives-ouvertes.fr/hal-01164775

[15] I. n. J. Guzmán, D. Sipp, P. J. Schmid, A dynamic observer to capture and
control perturbation energy in noise amplifiers, Journal of Fluid Mechanics
758 (2014) 728–753.

[16] E. Varon, J. Guzman, D. Sipp, P. Schmid, J.-L. Aider, Experimental ap-
plication of a dynamic observer to capture and predict the dynamics of
a flat-plate boundary layer, in: Proc. of the 15th European Turbulence
Conference (ETC15), Delft, The Netherlands, 2015.

[17] E. Varon, Closed-loop control of separated flows using real-time piv, Ph.D.
thesis, ESPCI PARIS (2017).

[18] S. Beneddine, D. Sipp, A. Arnault, J. Dandois, L. Lesshafft, Conditions for
validity of mean flow stability analysis, J.Fluid Mech. 798 (2016) 485–504.
doi:10.1017/jfm.2016.331.

[19] S. Beneddine, R. Yegavian, D. Sipp, B. Leclaire, Unsteady flow dynamics
reconstruction from mean flow and point sensors: an experimental study,
Journal of Fluid Mechanics 824 (2017) 174201. doi:10.1017/jfm.2017.

333.

22

http://dx.doi.org/10.1504/IJAD.2014.057797
http://dx.doi.org/10.1108/HFF-06-2017-0230
https://doi.org/10.1007/s00348-016-2245-2
https://doi.org/10.1007/s00348-016-2245-2
http://dx.doi.org/10.1007/s00348-016-2245-2
https://doi.org/10.1007/s00348-016-2245-2
https://hal-ensta.archives-ouvertes.fr/hal-01164775
https://hal-ensta.archives-ouvertes.fr/hal-01164775
https://hal-ensta.archives-ouvertes.fr/hal-01164775
http://dx.doi.org/10.1017/jfm.2016.331
http://dx.doi.org/10.1017/jfm.2017.333
http://dx.doi.org/10.1017/jfm.2017.333


[20] G. Cybenko, Approximation by superpositions of a sigmoidal function,
Mathematics of Control, Signals and Systems 2 (4) (1989) 303–314.

[21] K.-I. Funahashi, On the approximate realization of continuous mappings
by neural networks, Neural Networks 2 (3) (1989) 183–192. doi:10.1016/
0893-6080(89)90003-8.

[22] K. S. Narendra, K. Parthasarathy, Identification and control of dynamical
systems using neural networks, IEEE Transactions on Neural Networks
1 (1) (1990) 4–27. doi:10.1109/72.80202.

[23] S. Reynold Chu, R. Shoureshi, M. Tenorio, Neural networks for system
identification, IEEE Control Systems Magazine 10 (3) (1990) 31–35.

[24] O. Olekan, G. Xuejun, J. Steve, N. Gans, Nonlinear systems identification
using deep dynamic neural networks, CS.

[25] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K. J. Lang, Phoneme
recognition using time-delay neural networks, IEEE Transactions on Acous-
tics, Speech, and Signal Processing 37 (3) (1989) 328–339. doi:10.1109/

29.21701.

[26] N. Charaniya, S. Dudul, Focused time delay neural network model for
rainfall prediction using indian ocean dipole index, 2012, pp. 851–855. doi:
10.1109/CICN.2012.116.

[27] I. J. Leontaritis, S. A. Billings, Input-output parametric models for non-
linear systems part i: deterministic non-linear systems, International Jour-
nal of Control 41 (2) (1985) 303–328. doi:10.1080/0020718508961129.

[28] S. Chen, S. Billings, P. Grant, Non-linear system identification using neural
networks, Neural Networks 51 (6). doi:10.1080/00207179008934126.

[29] P. Vlachas, W. Byeon, Z. Yi Wan, T. P. Sapsis, P. Koumoutsakos, Data-
driven forecasting of high-dimensional chaotic systems with long-short term
memory networks, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science 474. doi:10.1098/rspa.2017.0844.

[30] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Compu-
tation (1997) 1735–1780.

[31] S. Müller, M. Milano, P. Koumoutsakos, Application of machine learn-
ing algorithms to flow modeling and optimization, Annual Research Briefs
(1999) 169–178.

[32] O. San, R. Maulik, Neural network closures for nonlinear model order re-
duction, physics.flu-dyndoi:705.08532v1.

[33] Z. Wang, D. Xiao, F. Fang, R. Govindan, C. Pain, Y. Guo, Model identi-
fication of reduced order fluid dynamics systems using deep learning, Int J
Numer Meth Fluids 86 (2018) 255–268. doi:10.1002/fld.4416.

23

http://dx.doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1109/72.80202
http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1109/CICN.2012.116
http://dx.doi.org/10.1109/CICN.2012.116
http://dx.doi.org/10.1080/0020718508961129
http://dx.doi.org/10.1080/00207179008934126
http://dx.doi.org/10.1098/rspa.2017.0844
http://dx.doi.org/705.08532v1
http://dx.doi.org/10.1002/fld.4416


[34] A. Mohan, D. V. Gaitonde, A deep learning based approcah to reduced
order modeling for turbulent flow control using lstm neural networks.

[35] S. Pan, K. Duraisamy, Long-time predictive modeling of nonlinear dy-
namical systems using neural networks, Complexity 2018 (2018) 1–26.
doi:10.1155/2018/4801012.

[36] O. San, R. Maulik, M. Ahmed, An artificial neural network framework for
reduced order modeling of transient flows, Communications in Nonlinear
Science and Numerical Simulation 77. doi:10.1016/j.cnsns.2019.04.

025.

[37] N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton, M. W. Mahoney, J. N.
Kutz, Shallow learning for fluid flow reconstruction with limited sensors
and limited data, arXiv.

[38] Y. Mi, M. Ishii, L. Tsoukalas, Vertical two-phase flow identification using
advanced instrumentation and neural networks, Nuclear Engineering and
Design 184 (1998) 409–420.

[39] P. Baldi, K. Hornik, Neural networks and principal component analysis:
Learning from examples without local minima, Neural Networks 2 (1)
(1989) 53 – 58. doi:https://doi.org/10.1016/0893-6080(89)90014-2.
URL http://www.sciencedirect.com/science/article/pii/

0893608089900142

[40] J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating eulerian
fluid simulation with convolutional networks, in: Proceedings of the 34th
International Conference on Machine Learning, 2016.

[41] X. Jin, P. Cheng, W.-L. Chen, H. Li, Prediction model of velocity field
around circular cylinder over various reynolds numbers by fusion convolu-
tional neural networks based on pressure on the cylinder, Physics of Fluids
30 (4) (2018) 047105. doi:10.1063/1.5024595.
URL https://doi.org/10.1063/1.5024595

[42] S.-C. Huang, J. Kim, Control and system identification of a separated flow,
Physics of Fluids 20.

[43] C. Lee, J. Kim, D. Babcock, R. Goodman, Application of neural networks
to turbulence control for drag reduction, Phys. Fluids 9 (1997) 1740–1747.
doi:1070-6631.

[44] T. Herbert, X. Fan, J. Haritonidis, Laminar flow control with neural net-
works 242 (1996) 87–91.

[45] J.Rabault, M. Kuchta, A. Jensen, U. Reglade, N. Cerardi, Artificial neu-
ral networks trained through deep reinforcement learning discover control
strategies for active flow control, physics.flu-dyndoi:arXiv:1808.07664v5.

24

http://dx.doi.org/10.1155/2018/4801012
http://dx.doi.org/10.1016/j.cnsns.2019.04.025
http://dx.doi.org/10.1016/j.cnsns.2019.04.025
http://www.sciencedirect.com/science/article/pii/0893608089900142
http://www.sciencedirect.com/science/article/pii/0893608089900142
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90014-2
http://www.sciencedirect.com/science/article/pii/0893608089900142
http://www.sciencedirect.com/science/article/pii/0893608089900142
https://doi.org/10.1063/1.5024595
https://doi.org/10.1063/1.5024595
https://doi.org/10.1063/1.5024595
http://dx.doi.org/10.1063/1.5024595
https://doi.org/10.1063/1.5024595
http://dx.doi.org/1070-6631
http://dx.doi.org/arXiv:1808.07664v5


[46] W. E. Faller, S. J. Schreck, Neural networks: Applications and oppor-
tunities in aeronautics, Prog. Aerospace Sci. 32 (1996) 433–456. doi:

0396-0421(95)00011-9.

[47] P. A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, R. Vinuesa, Pre-
dictions of turbulent shear flows using deep neural networks, Phys. Rev.
Fluids 4 (2019) 054603. doi:10.1103/PhysRevFluids.4.054603.
URL https://link.aps.org/doi/10.1103/PhysRevFluids.4.054603

[48] Z. Deng, Y. Chen, Y. Liu, K. C. Kim, Time-resolved turbulent velocity
field reconstruction using a long short-term memory (lstm)-based artificial
intelligence framework, Physics of Fluids 31 (7) (2019) 075108. arXiv:

https://doi.org/10.1063/1.5111558, doi:10.1063/1.5111558.
URL https://doi.org/10.1063/1.5111558

[49] J. Nathan Kutz, Deep learning in fluid dynamics, Journal of Fluid Mechan-
ics 814 (2017) 1–4. doi:10.1017/jfm.2016.803.

[50] F. Champagnat, A. Plyer, G. Le Besnerais, B. Leclaire, S. Davoust, Y. Le
Saint, Fast and accurate PIV computation using highly parallel iterative
correlation maximization, Experiments in Fluids 50 (2011) 1169–1182. doi:
10.1007/s00348-011-1054-x.

[51] N. Gautier, J.-L. Aider, Control of the separated flow downstream of a
backward-facing step using visual feedback, Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 469 (2160) (2013)
20130404. doi:10.1098/rspa.2013.0404.

[52] C.Pan, X.Dong, X.Yang, W.Jinjun, W.Runjie, Evaluating the accuracy
performance of lucas-kanade algorithm in the circumstance of piv applica-
tion, Sci China-Phys Mech Astron 58. doi:10.1007/s11433-015-5719-y.

[53] N. Gautier, J.-L. Aider, Real-time planar flow velocity measurements using
an optical flow algorithm implemented on gpu, Journal of Visualization
18 (2) (2015) 277–286. doi:10.1007/s12650-014-0222-5.

[54] E. Varon, Y. Eulalie, S. Edwige, P. Gilotte, J.-L. Aider, Chaotic dynamics
of large-scale structures in a turbulent wake, Phys. Rev. Fluids 2 (2017)
034604. doi:10.1103/PhysRevFluids.2.034604.
URL https://link.aps.org/doi/10.1103/PhysRevFluids.2.034604

[55] N. Gautier, J.-L. Aider, T. Duriez, B. Noack, M.Segond, M.Agel, Closed-
loop separation control using machine learning, J.Fluid.Mech 770 (2015)
442–457.

[56] J. A. Dahan, A. S. Morgans, S. Lardeau, Feedback control for form-drag
reduction on a bluff body with a blunt trailing edge, Journal of Fluid
Mechanics 704 (2012) 360–387. doi:10.1017/jfm.2012.246.

25

http://dx.doi.org/0396-0421(95)00011-9
http://dx.doi.org/0396-0421(95)00011-9
https://link.aps.org/doi/10.1103/PhysRevFluids.4.054603
https://link.aps.org/doi/10.1103/PhysRevFluids.4.054603
http://dx.doi.org/10.1103/PhysRevFluids.4.054603
https://link.aps.org/doi/10.1103/PhysRevFluids.4.054603
https://doi.org/10.1063/1.5111558
https://doi.org/10.1063/1.5111558
https://doi.org/10.1063/1.5111558
http://arxiv.org/abs/https://doi.org/10.1063/1.5111558
http://arxiv.org/abs/https://doi.org/10.1063/1.5111558
http://dx.doi.org/10.1063/1.5111558
https://doi.org/10.1063/1.5111558
http://dx.doi.org/10.1017/jfm.2016.803
http://dx.doi.org/10.1007/s00348-011-1054-x
http://dx.doi.org/10.1007/s00348-011-1054-x
http://dx.doi.org/10.1098/rspa.2013.0404
http://dx.doi.org/10.1007/s11433-015-5719-y
http://dx.doi.org/10.1007/s12650-014-0222-5
https://link.aps.org/doi/10.1103/PhysRevFluids.2.034604
https://link.aps.org/doi/10.1103/PhysRevFluids.2.034604
http://dx.doi.org/10.1103/PhysRevFluids.2.034604
https://link.aps.org/doi/10.1103/PhysRevFluids.2.034604
http://dx.doi.org/10.1017/jfm.2012.246


[57] L. Hung, M. Parviz, K. John, Direct numerical simulation of turbulent flow
over a backward-facing step, J. Fluid Mech. 330 (1997) 349–374.

[58] B. F. Armaly, F. Durst, J. C. F. Pereira, S. B., Experimental and theoretical
investigation of backward-facing step flow, J. Fluid Mech. 127 (1983) 473–
496.

[59] M. Chong, A. Perry, B. Cantwell, A general classification of 3-dimensional
flow fields, Physics of Fluids 2 (1990) 765–777.

[60] J. Zhou, R. Adrian, S. Balachandar, T. Kendall, Mechanisms for generating
coherent packets of hairpin vortices, J Fluid Mech 387 (1999) 535–396.

[61] P. Chakraborty, S. Balachandar, R. J. Adrian, On the relationships between
local vortex identification schemes, Journal of Fluid Mechanics 535 (2005)
189–214. doi:10.1017/S0022112005004726.

[62] T. Cambonie, J.-L. Aider, Transition scenario of the round jet in crossflow
topology at low velocity ratios, Physics of Fluids 26 (8) (2014) 084101.
arXiv:https://doi.org/10.1063/1.4891850, doi:10.1063/1.4891850.
URL https://doi.org/10.1063/1.4891850

[63] N. Gautier, J.-L. Aider, Frequency-lock reactive control of a separated flow
enabled by visual sensors, Experiments in Fluids 56 (1) (2015) 16. doi:

10.1007/s00348-014-1869-3.
URL https://doi.org/10.1007/s00348-014-1869-3

[64] J. Borée, J., Extended proper orthogonal decomposition: a tool to analyse
correlated events in turbulent flows, Experiments in Fluids 35 (2) (2003)
188–192. doi:10.1007/s00348-003-0656-3.

[65] M. Mendez, M. Raiola, A. Masullo, S. Discetti, A. Ianiro, R. Theunis-
sen, J.-M. Buchlin, Pod-based background removal for particle image
velocimetry, Experimental Thermal and Fluid Science 80 (2017) 181 –
192. doi:https://doi.org/10.1016/j.expthermflusci.2016.08.021.
URL http://www.sciencedirect.com/science/article/pii/

S0894177716302266

[66] J. L. Lumley, The structure of inhomogeneous turbulent flows, in: A. M.
Yaglom, V. I. Tatarski (Eds.), Atmospheric turbulence and radio propaga-
tion, Nauka, Moscow, 1967, pp. 166–178.

[67] L. Sirovich, Turbulence and the dynamics of coherent structures, Quarterly
of Applied Mathematics 45 (1987) 561–571.

[68] M. H. Beale, M. T. Hagan, H. B. Demut, Deep learning toolbox user’s
guide.

[69] A. Canziani, A. Paszke, E. Culurciello, An analysis of deep neural network
models for practical applications.

26

http://dx.doi.org/10.1017/S0022112005004726
https://doi.org/10.1063/1.4891850
https://doi.org/10.1063/1.4891850
http://arxiv.org/abs/https://doi.org/10.1063/1.4891850
http://dx.doi.org/10.1063/1.4891850
https://doi.org/10.1063/1.4891850
https://doi.org/10.1007/s00348-014-1869-3
https://doi.org/10.1007/s00348-014-1869-3
http://dx.doi.org/10.1007/s00348-014-1869-3
http://dx.doi.org/10.1007/s00348-014-1869-3
https://doi.org/10.1007/s00348-014-1869-3
http://dx.doi.org/10.1007/s00348-003-0656-3
http://www.sciencedirect.com/science/article/pii/S0894177716302266
http://www.sciencedirect.com/science/article/pii/S0894177716302266
http://dx.doi.org/https://doi.org/10.1016/j.expthermflusci.2016.08.021
http://www.sciencedirect.com/science/article/pii/S0894177716302266
http://www.sciencedirect.com/science/article/pii/S0894177716302266


[70] B. D. Tracey, K. Duraisamy, J. J. Alonso, A Machine Learning Strategy to
Assist Turbulence Model Development, 2017. arXiv:https://arc.aiaa.

org/doi/pdf/10.2514/6.2015-1287, doi:10.2514/6.2015-1287.
URL https://arc.aiaa.org/doi/abs/10.2514/6.2015-1287

[71] R. Li, B. R. Noack, L. Cordier, J. Borée, F. Harambat, Drag reduction of
a car model by linear genetic programming control, Experiments in Fluids
58 (8) (2017) 103. doi:10.1007/s00348-017-2382-2.
URL https://doi.org/10.1007/s00348-017-2382-2

27

https://arc.aiaa.org/doi/abs/10.2514/6.2015-1287
https://arc.aiaa.org/doi/abs/10.2514/6.2015-1287
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2015-1287
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2015-1287
http://dx.doi.org/10.2514/6.2015-1287
https://arc.aiaa.org/doi/abs/10.2514/6.2015-1287
https://doi.org/10.1007/s00348-017-2382-2
https://doi.org/10.1007/s00348-017-2382-2
http://dx.doi.org/10.1007/s00348-017-2382-2
https://doi.org/10.1007/s00348-017-2382-2

	Introduction
	Artificial Neural Networks
	Definitions
	Neural Network types
	Neural Networks in Fluid Mechanics

	Experimental setup
	Hydrodynamic channel
	Lucas-Kanade Optical Flow PIV measurements

	Backward-Facing Step flow
	Characterisation of the BFS flow
	Proper Orthogonal Decomposition

	System Identification steps
	Validation Criterion
	Influence of the sensors definition
	Choice of the sensor(s)
	Sensor position
	Number and size of sensors
	Choice of the sensor

	Results and discussion
	Optimal NN identification procedure
	Influence of the Time-Delay
	Influence of the size of the training data-set
	Reconstruction of the instantaneous velocity fields 

	Conclusions

