
HAL Id: hal-03007096
https://hal.science/hal-03007096

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Parameter Variability in Integrated Devices
by Partial Least Squares Regression

Mourad Larbi, Riccardo Trinchero, Flavio G Canavero, Philippe Besnier,
Madhavan Swaminathan

To cite this version:
Mourad Larbi, Riccardo Trinchero, Flavio G Canavero, Philippe Besnier, Madhavan Swaminathan.
Analysis of Parameter Variability in Integrated Devices by Partial Least Squares Regression. IEEE
24th Workshop on Signal and Power Integrity (SPI), May 2020, Köln, Germany. �hal-03007096�

https://hal.science/hal-03007096
https://hal.archives-ouvertes.fr


Analysis of Parameter Variability in Integrated
Devices by Partial Least Squares Regression

Mourad Larbi∗, Riccardo Trinchero†, Flavio G. Canavero†, Philippe Besnier‡ and Madhavan Swaminathan∗
∗ School of Electrical and Computer Engineering, Georgia Institute of Technology,

Atlanta, GA 30332, USA
† EMC Group, Department of Electronics and Telecommunications, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
‡ IETR, UMR CNRS 6164: Institut d’Electronique et de Télécommunications de Rennes, INSA de Rennes,
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Abstract—This paper focuses on the application of the partial
least squares (PLS) regression to the uncertainty quantification
of the responses of complex stochastic systems. It considers
the development of a surrogate model using a limited set of
training samples in order to estimate statistical quantities of the
system output with relatively low computational cost compared
to the standard brute force Monte Carlo (MC) simulation. The
performance and the strength of the proposed modeling scheme
is investigated for an integrated voltage regulator (IVR) with
8 random variables. The results highlight the ability of the
PLS regression to deals with complex nonlinear problems with
very few principal components, also providing important insights
about the input variables.

Index Terms—Machine learning, uncertainty quantification,
surrogate model, PLS regression, sensitivity analysis, integrated
voltage regulator (IVR).

I. INTRODUCTION

Uncertainties associated with fabrication process, tolerances
and unknown parameters in complex electronic systems may
generated large and uncontrolled variations of the system
outputs, which can lead to a potential failure of the system.
In advanced electronic systems, the number of parameters
impacting the variability of output signals is so large that
the brute force Monte Carlo (MC) approach turns out to be
inefficient.

For the above reason, in the last decades, various surro-
gate modeling techniques such as Polynomial Chaos (PC)
expansion and its variant [1]–[3] and Machine Learning-based
regressions [4]–[7] have been successfully proposed as viable
and efficient alternatives to the plain MC simulation.

This paper investigate the accuracy and the strength of an
alternative technique for the uncertainty quantification, namely
the partial least squares (PLS) regression [8]. Such technique
allows building a compact surrogate model of the output of
a generic stochastic system as a function of its uncertain
parameters. Similarly to the principal component analysis
(PCA) [9], PLS allows to reduce the problem dimensionality
using a limited number of components while mapping the
relationship between input and output variables. This feature
allows to capture the most prominent input variables of the
systems. Moreover, the surrogate model can then be used
to compute statistical moments and the probability density

function (PDF) of the output of interest. In Sec. III, the
proposed PLS regression is adopted to predict the efficiency
of an integrated voltage regulator (IVR) as a function of 8
stochastic parameters.

II. PARTIAL LEAST SQUARES (PLS)

Given a limited set of L training samples {(xi, yi)}Li=1, with
xi ⊆ RD and yi ⊆ R generated by the full-computational
model M (i.e., yi = M(xi)), the PLS regression allows
defining a reduced set of the input variables, called principal
components, which better explain the behavior of the system
response y as a function of the input x [8].

First, the input matrix X = [x1, . . . ,xL]t of size (L ×D)
and the response vector y = [y1, . . . , yL]t are centered
and reduced in order to avoid a bias of the input variables
having large values and strong variations. Then, the first
principal component t(1) is computed by searching the best
direction u(1) maximizing the squared covariance between
t(1) = Xu(1) and y as:

u(1) = arg max
utu=1

utXtyytXu. (1)

The above optimization problem (1) is maximized when
u(1) is the eigenvector of the matrix XtyytX associated with
the eigenvalue with the largest absolute value. The vector u(1),
called loading vector, corresponds to the X weights of the
first component. Then, the residual matrix of X(0) = X and
y(0) = y, which are denoted by X(1) and y(1), are computed
as:

X(1) = X(0) − t(1)b(1),

y(1) = y(0) − w1t
(1),

(2)

where b(1) represents a vector of size (1 × D) including
the regression coefficients of the local regression of X onto
the first principal component t(1) of dimension (L × 1), and
w1 is the regression coefficient of the local regression of y
related the first principal component t(1). The equation (2)
corresponds to the local regression of X and y onto the first
principal component.

The second principal component, which is orthogonal to
t(1), is computed via the PLS again by solving the problem
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Fig. 1. Top left represents the construction of two principal components in
the initial X space. Top right and Bottom left illustrate the prediction of y(0)
and y(1), respectively. Bottom right shows the final prediction of the output
y.

in (1) where X and y are replaced by X(1) and y(1), re-
spectively. The same iterative scheme can be used to compute
the rest of the components. A graphical interpretation in a
three-dimensional example with two principal components is
depicted in Fig. 1.

Usually, the number of principal components q are selected
by retaining the one minimizing the root mean square error
(RMSE) computed between the model predictions and the
training samples used to build the model. The principal
components, accounted for within the PLS regression, define a
new coordinate system which corresponds to a rotation of the
initial system in the parameter x = [x1, . . . , xD]t. The r-th
component of the new coordinate system, denoted t(r) with
r = 1, . . . , q, is given by:

t(r) = X(r−1)u(r) = Xu
(r)
∗ . (3)

The relationship between the vectors u(r) and u
(r)
∗ are

defined through the matrices U =
[
u(1), . . . ,u(q)

]
and U∗ =[

u
(1)
∗ , . . . ,u

(q)
∗

]
as follows:

U∗ = U
(
BtU

)−1
, (4)

where B =
[
b(1)t , . . . ,b(q)t

]
.

The PLS regression can be suitably adopted to identify
the importance of each input parameter via a variable se-
lection method such as the variables importance projections
(VIP) [10]. The VIP score for the input variable j is defined
as:

V IPj =

√
D ·
(∑q

r=1R
2(y, t(r)) · (u(rj)/

∥∥u(rj)
∥∥)2
)∑q

r=1R
2(y, t(r))

(5)

Fig. 2. Illustration of the two-chip SiP IVR architecture [11].

TABLE I
UNCERTAIN GEOMETRICAL PARAMETERS OF THE SOLENOIDAL

INDUCTOR USED FOR THE IVR.

Uniform random variables Unit U [Min;Max]

Gap between windings g mil U [4; 6]

Size of via sv µm U [80; 120]

Copper Trace Width wv mil U [9; 11]

Copper Thickness Bottom tc,b µm U [64; 96]

Copper Thickness Top tc,t µm U [64; 96]

Dielectric Thickness td µm U [180; 220]

Dielectric Width wd mil U [59.4; 60.6]

Magnetic Core Width offset ∆wm mil U [9; 11]

where u(rj) is the weight of the jth variable in component
r and R2(y, t(r)) is the percentage of y explained by the
component r.

The VIP value is a weighted sum of squares of the
PLS weights (u(rj)), which takes into account the explained
variance of each PLS dimension. The input variable with a
VIP score greater than one is generally considered to have a
significant impact on the response y [10].

III. APPLICATION EXAMPLES

The integrated voltage regulator shown in Fig. 2 is con-
sidered with the objective of estimating its power conversion
efficiency. The architecture consists of a system-in-package
solution with an integrated inductor on an organic package
with a solenoid structure with a Nickel-Zinc ferrite magnetic
core [11].

The goal of this study is to evaluate the impact of 8 stochas-
tic geometrical parameters of the integrated inductor (see
Table I) on the IVR efficiency for 5V:1V conversion ratio at the
frequency of 100 MHz [4], [6]. The efficiency is calculated via
an extensive model that accounts for switching and conduction
losses of power switches, DC, power delivery network (PDN)
and AC losses of inductor and output capacitance by relaying
on the results of the full-wave solver of Ansys HFSS [11],
[12].

We now analyze the effect of uncertain input parameters
on the IVR efficiency Eff . In order to do that, we construct



TABLE II
EVALUATION OF THE ACCURACY OF THE PLS REGRESSION

MODEL W.R.T THE NUMBER OF PRINCIPAL COMPONENTS.

Method Number of RMSE µ̂ σ̂ tmodel
* tcostComponents

MC − − 67.01 0.31 − 7 days

PLS

1 0.162 67.01 0.28 <1s <1s
2 0.158 67.01 0.28 <1s <1s
3 0.158 67.01 0.28 <1s <1s
4 0.158 67.01 0.28 <1s <1s
5 0.158 67.01 0.28 <1s <1s

* In addition to 200 LHS simulations which took 3 h 27 min.

a PLS regression model with [13] using 200 realizations
from Latin Hypercube sampling (LHS) and a number of
principal components varying from 1 to 5. An evaluation of the
performance of each PLS model is performed by comparison
with the brute force MC simulation. Table II shows, from
10000 realizations, a comparison of various PLS models with
an increasing number of components and MC simulation, by
computing the RMSE, the mean value µ̂ and the standard
deviation σ̂. We see that the PLS model with one principal
component provides a RMSE equal to 0.162, while the PLS
models with 2 to 5 principal components provide a RMSE
of 0.158. As the PLS surrogate model with 2 components
achieves the lowest RMSE, i.e. 0.158, the minimum number
of components is retained. It is worth noting that the accuracy
of this PLS model is very close to LS-SVM surrogate model
with a RBF kernel, i.e. with a RMSE of 0.155, and better
than the sparse PC which has a RMSE of 0.170 as presented
in [4]. This result points out to the ability of the PLS surrogate
model to estimate the main variability of a complex output
while reducing the dimensionality of the problem, i.e. from
8 original variables to 2 principal components. This feature
of the method is very interesting and will be exploited in the
following to hierarchize the effect of the uncertain parameters
on the IVR efficiency.

For the purpose of illustration, we compare in Fig. 3 the
predictions of the PLS regression model with 2 principal
components with 10000 MC realizations. As the scatter plot
is very well aligned along the dashed line, we then deduce
that there is a good agreement between the PLS model and
MC simulation. As far as the variability of the IVR efficiency
is concerned, a representation of the PDFs estimated by the
PLS surrogate model and by MC simulation with 10000
realizations is given in Fig. 4. It can be observed that the
PLS surrogate model reproduces well the central tendency
of the output estimated by MC simulation, although some
discrepancy exists for the left tails of the PDFs. In terms
of computational cost, 10000 MC simulations took about
7 days while the PLS surrogate model required less than 1 s to
carry out the predictions. It is important to mention that this
comparison does not include the computational cost related to
the generation of the training data set (200 simulations), which
needed about 3 h 27 min as shown in Table II.

In addition to the variability of the output, the PLS model
provides a sensitivity analysis of the model response. The

Fig. 3. Scatter plot of the IVR efficiency computed by the PLS surrogate
model and by the real numerical model with 10000 MC realizations. The
dashed-line illustrates a good correlation between the models.

Fig. 4. PDFs of the IVR efficiency estimated by the PLS surrogate model
(solid curve) and by MC simulation (histogram) from 10000 MC realizations.

histogram in Fig. 5 illustrates the VIP scores calculated via
the proposed PLS-based surrogate. The VIP scores indicate the
impact of the input random variables on the efficiency Eff . We
see that the main variability of Eff is related to 3 variables,
i.e., the copper thickness bottom tc,b, the copper thickness
top tc,t and the copper trace width wv of the inductors, as
their VIP scores are greater than or equal to the threshold of
1, as suggested by [10]. Other variables, such as the size of
via sv and the dielectric thickness td, have less impact while
the dielectric width wd, the gap between windings g and the
magnetic core width offset ∆wm of the inductors have an
insignificant effect on the variability of the response Eff .

Furthermore, at 100 MHz, total losses of the IVR system
are dominated by switching and conduction losses of power
switches and the resistive loss due to the PDN [11]. Since
the DC resistance of the inductor impacts the finite resistance
of the PDN, its AC losses become less important. Hence,



Fig. 5. Variable Importance in Projection (VIP) scores of the IVR efficiency
Eff . Input variables having a VIP score greater than or equal to 1 have an
important impact on the variability of the IVR efficiency Eff .

the parameters of the inductor directly influencing its DC
resistance become more important and have more effect on
the IVR efficiency. This confirms that the sensitivity analysis
illustrated in Fig. 5 is coherent since it presents a more
significant impact of the parameters that directly affect the DC
resistance than the other parameters related to the magnetic
material.

Based on the projection provided by the PLS surrogate
model, we can also display the variables on the 2 compo-
nents. Figure 6 shows the correlation circle to highlight the
correlation between the input variables and the output. This
graph is obtained by computing the correlation between the
principal components (i.e., the 2 axes of the graph) and the
original variables (input variables and output). We can see that
the distance between the output Eff and the input variables
such as the copper thickness bottom tc,b, the copper thickness
top tc,t and the copper trace width wv of the inductors is very
short. This means that they are highly positively correlated. In
other words, large values of those input variables will lead to
an increase of the IVR efficiency Eff . Concerning the other
variables, the size of vias sv is positively correlated with the
output Eff but with less impact, while other variables seem
to have a negligible effect.

IV. CONCLUSIONS

This paper presents a PLS surrogate model, with a very
low computational cost compared to MC simulation, for the
uncertainty quantification in high-dimensional space. This PLS
surrogate model allowed to efficiently estimate the efficiency
of an IVR characterized by 8 uncertain input variables.

Additionally to a good estimation of the first two statistical
moments, the PLS surrogate model also provides a sensitivity
analysis of the model response at a negligible computational
cost. Using this sensitivity analysis, the designer may identify
the uncertain input variables affecting the most the variability
of the output of the system. Also, the designer may determine

Fig. 6. Correlation circle representing the projection of the input variables
and the output variable (IVR efficiency Eff ). The variables are represented
through their projections onto the plane defined by the first two PLS
components. A positive correlation is highlighted between the input variables
sv , wv , tc,t, tc,b and the output variable Eff as they are projected in the
same direction and at a large distance from the origin.

the configurations of input variables allowing to improve the
performance of the system during the design stage.
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