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This paper focuses on the application of the partial least squares (PLS) regression to the uncertainty quantification of the responses of complex stochastic systems. It considers the development of a surrogate model using a limited set of training samples in order to estimate statistical quantities of the system output with relatively low computational cost compared to the standard brute force Monte Carlo (MC) simulation. The performance and the strength of the proposed modeling scheme is investigated for an integrated voltage regulator (IVR) with 8 random variables. The results highlight the ability of the PLS regression to deals with complex nonlinear problems with very few principal components, also providing important insights about the input variables.

I. INTRODUCTION

Uncertainties associated with fabrication process, tolerances and unknown parameters in complex electronic systems may generated large and uncontrolled variations of the system outputs, which can lead to a potential failure of the system. In advanced electronic systems, the number of parameters impacting the variability of output signals is so large that the brute force Monte Carlo (MC) approach turns out to be inefficient.

For the above reason, in the last decades, various surrogate modeling techniques such as Polynomial Chaos (PC) expansion and its variant [START_REF] Stievano | Stochastic Analysis of Multiconductor Cables and Interconnects[END_REF]- [START_REF] Larbi | Variability Impact of Many Design Parameters: The Case of a Realistic Electronic Link[END_REF] and Machine Learning-based regressions [START_REF] Trinchero | Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large Number of Parameters[END_REF]- [START_REF] Houret | Controlled Stratification Based on Kriging Surrogate Model: An Algorithm for Determining Extreme Quantiles in Electromagnetic Compatibility Risk Analysis[END_REF] have been successfully proposed as viable and efficient alternatives to the plain MC simulation.

This paper investigate the accuracy and the strength of an alternative technique for the uncertainty quantification, namely the partial least squares (PLS) regression [START_REF] Frank | A statistical view of some chemometrics regression tools[END_REF]. Such technique allows building a compact surrogate model of the output of a generic stochastic system as a function of its uncertain parameters. Similarly to the principal component analysis (PCA) [START_REF] Wold | Principal component analysis[END_REF], PLS allows to reduce the problem dimensionality using a limited number of components while mapping the relationship between input and output variables. This feature allows to capture the most prominent input variables of the systems. Moreover, the surrogate model can then be used to compute statistical moments and the probability density function (PDF) of the output of interest. In Sec. III, the proposed PLS regression is adopted to predict the efficiency of an integrated voltage regulator (IVR) as a function of 8 stochastic parameters.

II. PARTIAL LEAST SQUARES (PLS)

Given a limited set of L training samples {(x i , y i )} L i=1 , with x i ⊆ R D and y i ⊆ R generated by the full-computational model M (i.e., y i = M(x i )), the PLS regression allows defining a reduced set of the input variables, called principal components, which better explain the behavior of the system response y as a function of the input x [START_REF] Frank | A statistical view of some chemometrics regression tools[END_REF].

First, the input matrix X = [x 1 , . . . , x L ] t of size (L × D) and the response vector y = [y 1 , . . . , y L ] t are centered and reduced in order to avoid a bias of the input variables having large values and strong variations. Then, the first principal component t (1) is computed by searching the best direction u (1) maximizing the squared covariance between t (1) = Xu (1) and y as:

u (1) = arg max u t u=1
u t X t yy t Xu.

(

) 1 
The above optimization problem (1) is maximized when u (1) is the eigenvector of the matrix X t yy t X associated with the eigenvalue with the largest absolute value. The vector u (1) , called loading vector, corresponds to the X weights of the first component. Then, the residual matrix of X (0) = X and y (0) = y, which are denoted by X (1) and y (1) , are computed as:

X (1) = X (0) -t (1) b (1) ,

y (1) = y (0) -w 1 t (1) , (2) 
where b (1) represents a vector of size (1 × D) including the regression coefficients of the local regression of X onto the first principal component t (1) of dimension (L × 1), and w 1 is the regression coefficient of the local regression of y related the first principal component t (1) . The equation (2) corresponds to the local regression of X and y onto the first principal component. The second principal component, which is orthogonal to t (1) , is computed via the PLS again by solving the problem w1 t (1) w2 t (2) y (1) y w 1 t (1) + w 2 t (2) Fig. 1. Top left represents the construction of two principal components in the initial X space. Top right and Bottom left illustrate the prediction of y (0) and y (1) , respectively. Bottom right shows the final prediction of the output y.

in [START_REF] Stievano | Stochastic Analysis of Multiconductor Cables and Interconnects[END_REF] where X and y are replaced by X (1) and y (1) , respectively. The same iterative scheme can be used to compute the rest of the components. A graphical interpretation in a three-dimensional example with two principal components is depicted in Fig. 1.

Usually, the number of principal components q are selected by retaining the one minimizing the root mean square error (RMSE) computed between the model predictions and the training samples used to build the model. The principal components, accounted for within the PLS regression, define a new coordinate system which corresponds to a rotation of the initial system in the parameter x = [x 1 , . . . , x D ] t . The r-th component of the new coordinate system, denoted t (r) with r = 1, . . . , q, is given by:

t (r) = X (r-1) u (r) = Xu (r) * . (3) 
The relationship between the vectors u (r) and u (r) * are defined through the matrices U = u (1) , . . . , u (q) and U * = u

(1) * , . . . , u (q) * as follows:

U * = U B t U -1 , (4) 
where B = b (1) t , . . . , b (q) t . The PLS regression can be suitably adopted to identify the importance of each input parameter via a variable selection method such as the variables importance projections (VIP) [START_REF] Chong | Performance of some variable selection methods when multicollinearity is present[END_REF]. The VIP score for the input variable j is defined as: where u (rj) is the weight of the j th variable in component r and R 2 (y, t (r) ) is the percentage of y explained by the component r.

V IP j = D • q r=1 R 2 (y, t (r) ) • (u (rj) / u (rj) ) 2 q r=1 R 2 (y, t (r) ) (5) 
The VIP value is a weighted sum of squares of the PLS weights (u (rj) ), which takes into account the explained variance of each PLS dimension. The input variable with a VIP score greater than one is generally considered to have a significant impact on the response y [START_REF] Chong | Performance of some variable selection methods when multicollinearity is present[END_REF].

III. APPLICATION EXAMPLES

The integrated voltage regulator shown in Fig. 2 is considered with the objective of estimating its power conversion efficiency. The architecture consists of a system-in-package solution with an integrated inductor on an organic package with a solenoid structure with a Nickel-Zinc ferrite magnetic core [START_REF] Mueller | Design of high efficiency integrated voltage regulators with embedded magnetic core inductors[END_REF].

The goal of this study is to evaluate the impact of 8 stochastic geometrical parameters of the integrated inductor (see Table I) on the IVR efficiency for 5V:1V conversion ratio at the frequency of 100 MHz [START_REF] Trinchero | Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large Number of Parameters[END_REF], [START_REF] Trinchero | Statistical Analysis of the Efficiency of an Integrated Voltage Regulator by means of a Machine Learning Model Coupled with Kriging Regression[END_REF]. The efficiency is calculated via an extensive model that accounts for switching and conduction losses of power switches, DC, power delivery network (PDN) and AC losses of inductor and output capacitance by relaying on the results of the full-wave solver of Ansys HFSS [START_REF] Mueller | Design of high efficiency integrated voltage regulators with embedded magnetic core inductors[END_REF], [START_REF]Ansys HFSS ver[END_REF].

We now analyze the effect of uncertain input parameters on the IVR efficiency E f f . In order to do that, we construct a PLS regression model with [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] using 200 realizations from Latin Hypercube sampling (LHS) and a number of principal components varying from 1 to 5. An evaluation of the performance of each PLS model is performed by comparison with the brute force MC simulation. Table II shows, from 10000 realizations, a comparison of various PLS models with an increasing number of components and MC simulation, by computing the RMSE, the mean value μ and the standard deviation σ. We see that the PLS model with one principal component provides a RMSE equal to 0.162, while the PLS models with 2 to 5 principal components provide a RMSE of 0.158. As the PLS surrogate model with 2 components achieves the lowest RMSE, i.e. 0.158, the minimum number of components is retained. It is worth noting that the accuracy of this PLS model is very close to LS-SVM surrogate model with a RBF kernel, i.e. with a RMSE of 0.155, and better than the sparse PC which has a RMSE of 0.170 as presented in [START_REF] Trinchero | Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large Number of Parameters[END_REF]. This result points out to the ability of the PLS surrogate model to estimate the main variability of a complex output while reducing the dimensionality of the problem, i.e. from 8 original variables to 2 principal components. This feature of the method is very interesting and will be exploited in the following to hierarchize the effect of the uncertain parameters on the IVR efficiency.

For the purpose of illustration, we compare in Fig. 3 the predictions of the PLS regression model with 2 principal components with 10000 MC realizations. As the scatter plot is very well aligned along the dashed line, we then deduce that there is a good agreement between the PLS model and MC simulation. As far as the variability of the IVR efficiency is concerned, a representation of the PDFs estimated by the PLS surrogate model and by MC simulation with 10000 realizations is given in Fig. 4. It can be observed that the PLS surrogate model reproduces well the central tendency of the output estimated by MC simulation, although some discrepancy exists for the left tails of the PDFs. In terms of computational cost, 10000 MC simulations took about 7 days while the PLS surrogate model required less than 1 s to carry out the predictions. It is important to mention that this comparison does not include the computational cost related to the generation of the training data set (200 simulations), which needed about 3 h 27 min as shown in Table II.

In addition to the variability of the output, the PLS model provides a sensitivity analysis of the model response. The histogram in Fig. 5 illustrates the VIP scores calculated via the proposed PLS-based surrogate. The VIP scores indicate the impact of the input random variables on the efficiency E f f . We see that the main variability of E f f is related to 3 variables, i.e., the copper thickness bottom t c,b , the copper thickness top t c,t and the copper trace width w v of the inductors, as their VIP scores are greater than or equal to the threshold of 1, as suggested by [START_REF] Chong | Performance of some variable selection methods when multicollinearity is present[END_REF]. Other variables, such as the size of via s v and the dielectric thickness t d , have less impact while the dielectric width w d , the gap between windings g and the magnetic core width offset ∆w m of the inductors have an insignificant effect on the variability of the response E f f . Furthermore, at 100 MHz, total losses of the IVR system are dominated by switching and conduction losses of power switches and the resistive loss due to the PDN [START_REF] Mueller | Design of high efficiency integrated voltage regulators with embedded magnetic core inductors[END_REF]. Since the DC resistance of the inductor impacts the finite resistance of the PDN, its AC losses become less important. Hence, the parameters of the inductor directly influencing its DC resistance become more important and have more effect on the IVR efficiency. This confirms that the sensitivity analysis illustrated in Fig. 5 is coherent since it presents a more significant impact of the parameters that directly affect the DC resistance than the other parameters related to the magnetic material.

Based on the projection provided by the PLS surrogate model, we can also display the variables on the 2 components. Figure 6 shows the correlation circle to highlight the correlation between the input variables and the output. This graph is obtained by computing the correlation between the principal components (i.e., the 2 axes of the graph) and the original variables (input variables and output). We can see that the distance between the output E f f and the input variables such as the copper thickness bottom t c,b , the copper thickness top t c,t and the copper trace width w v of the inductors is very short. This means that they are highly positively correlated. In other words, large values of those input variables will lead to an increase of the IVR efficiency E f f . Concerning the other variables, the size of vias s v is positively correlated with the output E f f but with less impact, while other variables seem to have a negligible effect.

IV. CONCLUSIONS

This paper presents a PLS surrogate model, with a very low computational cost compared to MC simulation, for the uncertainty quantification in high-dimensional space. This PLS surrogate model allowed to efficiently estimate the efficiency of an IVR characterized by 8 uncertain input variables.

Additionally to a good estimation of the first two statistical moments, the PLS surrogate model also provides a sensitivity analysis of the model response at a negligible computational cost. Using this sensitivity analysis, the designer may identify the uncertain input variables affecting the most the variability of the output of the system. Also, the designer may determine the configurations of input variables allowing to improve the performance of the system during the design stage.
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 2 Fig. 2. Illustration of the two-chip SiP IVR architecture [11].
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 3 Fig. 3. Scatter plot of the IVR efficiency computed by the PLS surrogate model and by the real numerical model with 10000 MC realizations. The dashed-line illustrates a good correlation between the models.
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 4 Fig. 4. PDFs of the IVR efficiency estimated by the PLS surrogate model (solid curve) and by MC simulation (histogram) from 10000 MC realizations.
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 5 Fig. 5. Variable Importance in Projection (VIP) scores of the IVR efficiency E f f . Input variables having a VIP score greater than or equal to 1 have an important impact on the variability of the IVR efficiency E f f .
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 6 Fig.6. Correlation circle representing the projection of the input variables and the output variable (IVR efficiency E f f ). The variables are represented through their projections onto the plane defined by the first two PLS components. A positive correlation is highlighted between the input variables sv, wv, tc,t, t c,b and the output variable E f f as they are projected in the same direction and at a large distance from the origin.

TABLE I UNCERTAIN

 I GEOMETRICAL PARAMETERS OF THE SOLENOIDAL INDUCTOR USED FOR THE IVR.

	Uniform random variables		Unit U [M in; M ax]
	Gap between windings	g	mil	U [4; 6]
	Size of via	sv	µm	U [80; 120]
	Copper Trace Width	wv	mil	U [9; 11]
	Copper Thickness Bottom	t c,b	µm	U [64; 96]
	Copper Thickness Top	tc,t	µm	U [64; 96]
	Dielectric Thickness	t d	µm	U [180; 220]
	Dielectric Width	w d	mil	U [59.4; 60.6]
	Magnetic Core Width offset ∆wm	mil	U [9; 11]

TABLE II EVALUATION

 II OF THE ACCURACY OF THE PLS REGRESSION MODEL W.R.T THE NUMBER OF PRINCIPAL COMPONENTS.

	Method	Number of RMSE Components	μ	σ	t model	*	tcost
	MC	-	-	67.01 0.31	-	7 days
		1	0.162 67.01 0.28 <1s		<1s
		2	0.158 67.01 0.28 <1s		<1s
	PLS	3	0.158 67.01 0.28 <1s		<1s
		4	0.158 67.01 0.28 <1s		<1s
		5	0.158 67.01 0.28 <1s		<1s
	* In addition to 200 LHS simulations which took 3 h 27 min.