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We report on measurements of dissipation and frequency noise at millikelvin temperatures of nanomechanical
devices covered with aluminum. A clear excess damping is observed after switching the metallic layer from
superconducting to the normal state with a magnetic field. Beyond the standard model of internal tunneling
systems coupled to the phonon bath, here we consider the relaxation to the conduction electrons together with
the nature of the mechanical dispersion laws for stressed/unstressed devices. With these key ingredients, a model
describing the relaxation of two-level systems inside the structure due to interactions with electrons and phonons
with well-separated timescales captures the data. In addition, we measure an excess 1/ f -type frequency noise in
the normal state, which further emphasizes the impact of conduction electrons.

DOI: 10.1103/PhysRevB.107.064104

I. INTRODUCTION

Nanoelectromechanical systems (NEMS) [1] are now com-
mon tools used for ultra-sensitive detection [2] while being
ubiquitous model systems for the study of quantum founda-
tions involving mechanical degrees of freedom [3,4]. Both
endeavours require resonators with high quality factors Q [5],
so as to resolve either small frequency changes due to,
e.g., masses added [2], or to preserve quantum coherence
over long-enough times [6]. Yet mechanisms limiting the
intrinsic Q factor of nanomechanical systems mostly re-
main a puzzle despite intensive efforts [7–9], especially
at low temperature where quantum effects are expected
to manifest themselves. Commonly proposed mechanisms
include clamping losses [10] and higher-order phonon pro-
cesses [11], e.g., thermoelastic damping [12] and Akhiezer
damping [13]. While clamping losses are vanishingly small
for thin beam structures [10], phonon-phonon interactions
are switched off at low temperatures. In most cases, the
surviving mechanism is thought to be the coupling be-
tween the mechanical strain arising from the resonator’s
motion and low-energy excitations in the constitutive mate-
rial [7,9,14,15]. The excitations are either defects or (groups
of) atoms that tunnel quantum mechanically between two
nearly equivalent positions in the atomic lattice, hence form-
ing two-level systems (TLS). These TLS cause damping of
the mechanical motion through their interaction with the
induced strain field and their own energy relaxation. The
initial microscopic description of such a mechanism, the so-
called standard tunneling model (STM), was introduced in
the early 1970s [16,17] to explain low-temperature properties
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of amorphous materials and is still widely used nowa-
days, its importance being renewed by, e.g., superconducting
circuits [18–21] or nanomechanics studies [9,14,15,22]. How-
ever, in the latter case, the model was unsuccessful in
describing nanosystems which integrate resistive metallic
elements [7,14,23].

In this article, we report the measurements from 10 K down
to 30 mK of the damping rate and frequency shift of a high
Q, high stress silicon nitride NEMS beam, covered with a
thin aluminum layer (Fig. 1). Using different magnetic fields
we can tune the metallic layer state from superconducting
to normal below 1 K, revealing the unambiguous contribu-
tion to nanomechanical damping of the normal-state electrons
reported for low-stress nanocantilevers [23]. To explain this
contribution, we quantitatively include a mechanism of TLS
relaxation due to the conduction electron bath [24] in parallel
with phonon-assisted relaxation for a given fraction of the
TLS distribution. The reasoning is formally equivalent to the
one proposed in Ref. [8] where the authors introduced ad hoc
a retarded (imaginary in frequency domain) Young’s modulus
whose microscopic origin is addressed in our work. The data
are fit in all regimes, with a minimal set of free parameters.
For comparison, the model also successfully reproduces the
nanocantilever data of Ref. [23]. Details on the calculations
and additional data can be found in the Supplementary Mate-
rial (see Ref. [25] and references [26–28] therein). In addition,
we measure the frequency noise as a function of temperature
in both the normal and superconducting states. The magnitude
is found to differ substantially between the two states, pointing
again towards an electron-assisted mechanism. The results
together with the model provide an answer to the issue of
nanoelectromechanical damping in (hybrid) metallic systems
at low temperatures, consistent with all the related results
reported in the literature so far.
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FIG. 1. Top: Scanning electron micrograph of the device (side
gate electrode not used). Bottom: Schematic side view of NEMS
(left) and TLS-strain coupling (right) under a macroscopic applied
force. Right panel: Schematic potential energy of a single TLS at
equilibrium (dashed) and under strain (full line). The two minima
(separated by an energy gap �) are coupled through a tunneling ele-
ment �0 ∝ e−d

√
2maV0/h̄, where V0 is the barrier height, d the interwell

distance, and ma the tunneling entity effective mass.

II. EXPERIMENTAL RESULTS

The main sample is a 15-µm-long silicon nitride beam
covered with 30-nm aluminum, having transverse dimensions
e × w = 130 nm × 300 nm (see Fig. 1) and mounted on a
cold finger thermally anchored to the mixing chamber stage
of a dilution refrigerator in cryogenic vacuum. The motion
of the fundamental out-of-plane flexural mode of the beam
at a frequency ω = 2π × 17.5 MHz is actuated and detected
with the magnetomotive scheme [29], the electromotive signal

being detected by a lock-in amplifier [see Fig. 2(a)]. The
Al layer (whose critical temperature at zero magnetic field
is measured to be T ≈ 1.4 K) is quenched at all tempera-
tures for in-plane magnetic fields larger than 320 mT, and
all the data in the normal state are obtained for fields larger
than 600 mT. Damping and frequency shift due to remaining
magnetomotive losses [29] or to intermediate superconducting
properties [23] are carefully characterized and subtracted to
reveal the intrinsic mechanical damping. For each measure-
ment point in the normal state, we used low excitation currents
to minimize Joule heating. The measurements were repeated
over several thermal cycles and found reproducible.

We observe a logarithmic dependence of the frequency
shift δω0/ω0 = C ln(T/T0) [with respect to an arbitrary ref-
erence ω0, see Fig. 2(b)] below 1 K, which we interpret as
evidence for TLS-driven behavior [17], in particular since
C = 2.1 × 10−5 agrees with the commonly reported values
for similar structures [7,9,14]. This behavior arises from
the resonant interaction of applied phonons through mag-
netomotive driving and TLSs [17] (while the relaxational
interaction, which we address further in this work to inter-
pret the damping measurements, yields a T 6 dependence at
low temperature [30], which is negligible compared to the
resonant contribution to the frequency shift). The frequency
shift above 1 K follows a T 3 law which we attribute to
thermal expansion mismatch between the two layers [31].
Meanwhile, the measured damping rate represented in Fig. 3
is divided into two regimes in temperature: above 1 to 2 K it
essentially reaches a nearly constant plateau around 1.2 kHz.
Below 600 mK at low magnetic field (metallic layer in the
superconducting state), it decreases linearly with temperature.
Below typically 70 mK, the damping rate and frequency shift
measurements were rendered complicated by both frequency
noise (which is no longer negligible compared to the typical
damping rate) and by the low signals measured as a result of a
low (<100 mT) magnetic field application. This explains why
the dispersion on the data and the error bars are significant at
30 mK.
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FIG. 2. (a) NEMS in-phase response to a small magnetomotive excitation at T = 275 mK in superconducting (red dots) and normal (blue
dots) states of the metallic layer, normalized to their peak height for better comparison. Solid lines are Lorentzian fits. The resonance frequency
difference is due to the magnetomotive contribution and the magnetomotive damping contribution accounts for 5% of the line width in the
normal state. (b) Relative frequency shift δω0/ω0 as a function of refrigerator’s base temperature. The line is a logarithmic fit, while the
dashed blue curve is a T 3 empirical law (see text). The dotted line indicates that, by using the frequency shift as a thermometer, the electron
temperature could be about 100 mK when the cryostat’s base temperature is 50 mK (see text).
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FIG. 3. NEMS damping rate as a function of refrigerator’s base
temperature in normal (blue) and superconducting (red) states,
with the magnetomotive contribution subtracted. Inset: Data from
Ref. [23]. Solid curves (main and inset) are fits using Eq. (2) with
relaxation rates due to phonons [Eq. (3)] and electrons [Eq. (4)]
to electrons. Dashed red and black lines correspond to low- and
high-temperature asymptotic behaviors, respectively. The blue dotted
line indicates a possible saturation above 100 mK due to thermal
decoupling (see text).

Switching the metallic layer to the normal state with
the magnetic field leads to a strikingly different dissipation
rate (see Fig. 3, blue dots) below 700–800 mK, while it
does not contribute further to the resonance frequency shift
within our experimental accuracy [see Fig. 2(b)] down to
roughly 200 mK. Below this temperature, the frequency shift
in the normal state slightly deviates from the logarithmic
trend. Those observations complement previous results [23]
obtained with a low-stress goalpost-shaped silicon nanores-
onator (see Fig. 3, inset), with very similar features. This
suggests that the mechanism at stake in the normal state is
independent of geometry or mechanical properties. Between
roughly 150 mK and 1 K the damping in the normal state
shows a sublinear power-law-like behavior and reaches a sat-
uration threshold for lower temperatures, consistently with
previous measurements in similar conditions [7,14,32] where
T α, α = 0.3–0.7 dependences were reported. Note that the
saturation temperature range roughly coincides with the range
where the frequency shift deviates from the logarithmic trend.
We ascertain that the extra damping in the normal state, down
to 50 mK, is not caused by a mechanical nonlinearity: the
damping rate remains unaffected by the displacement ampli-
tude within our experimental accuracy [25]. Additionally, it
does not depend on the current levels injected [25] in our ex-
perimental range (up to ∼ 70 nA), consistently with Ref. [23].
This rules out Joule dissipation due to the driving scheme as
a mechanism of damping saturation as well as a significant
cause of thermal decoupling.

III. INTERPRETATION IN THE SUPERCONDUCTING
STATE

The temperature dependence in the superconducting state
can be explained using the canonical STM appended with

NEMS constraints such as low-dimensionality [15,33]. In
addition, the high tensile stress is shown to quantitatively
affect the magnitude of TLS-induced damping [25,34] (but
not the NEMS elastic constants). Let us consider a TLS
inside the structure with asymmetry � and tunneling am-
plitude �0 between the two potential wells (see Fig. 1).
Considering only the local ground state of each well (the
first excited state of energy comparable with Debye energy,
is irrelevant at low temperatures), the bare Hamiltonian of a
single TLS is analogous to that of a 1/2 spin. It writes in
the TLS position basis corresponding to left and right well
locations: H0 = 1/2(�0σ̂x + �σ̂z ), where σ̂x,z are Pauli ma-
trices. The TLS eigenstates energies are then easily obtained
ε± = ±1/2

√
�2 + �2

0, with corresponding wave functions
that are delocalized over the two wells. Following the usual
STM framework, the NEMS is put into an oscillating motion
at angular frequency ω and the structure undergoes an axial
oscillating strain E . The strain field changes the local potential
energy landscape that defines the TLS, leading to a modula-
tion of its energy splitting ε =

√
�2 + �2

0, formalized by the
coupling Hamiltonian in the TLS position basis Ĥint = γ E σ̂z,
with γ = 1

2∂�/∂E the TLS-strain coupling strength and σ̂z

the TLS diagonal Pauli matrix. Subsequently, the TLS returns
to equilibrium by exchanging energy with the phonon bath
(the thermal strain field) following the same coupling Hamil-
tonian over a characteristic time τ . This causes a lagging
stress response, leading to mechanical energy dissipation. The
power dissipated per unit volume V is written as

PV = P0ω(γ E0)2

2

∫ ∞

0
du

∫ 1

0
dv

v2

1 − v2
sech2

(u

2

)

× ωτ (u, v, T )

1 + ω2τ 2(u, v, T )
, (1)

with E0 the strain oscillation amplitude and P0 the TLS
density of states per unit volume. For a string undergoing
flexure [11], the macroscopic-imposed strain field oscillates
with an amplitude E0 ∝ ∂2�(z)

∂z2 x0, where x0 is the NEMS os-
cillation amplitude at mid abscissa and �(z) is the excited
mode shape. For a high-stress doubly clamped beam, the
fundamental flexural mode shape writes: �(z) = cos(πz/l )
with z = 0 at midabscissa of the beam. The total power P
is first obtained through integration of PV in Eq. (1) over the
NEMS dimensions [25]. It is then independently obtained by
macroscopic arguments, using the mode dynamics equation:
P = 1

2 mω2x2
0, where m = ρew

∫
�2(z)dz = ρewl/2 is the

effective mass of the NEMS in its fundamental out-of-plane
flexural mode, with ρ being its mass density. By equating
the two expressions, we thus obtain the generic expression of
the TLS ensemble contribution to the NEMS damping rate
resulting from the strain modulation [25]

[τ ] = Cω

∫∫
dεd�P(ε,�)

(
�

ε

)2

sech2

(
ε

2kBT

)

× ωτ (ε,�)

1 + ω2τ 2(ε,�)
. (2)

Here we introduce the commonly assumed [17] TLS distribu-
tion P(ε,�) = ε/(ε2 − �2) and C = P0γ

2π2e2/12σ0l2, with
σ0 = 1.1 ± 0.1 GPa the in-built axial stress. Note that C is the-
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oretically identical to the logarithmic slope of the frequency
shift [35], but its expression differs from the one commonly
derived [35] due to the influence of high tensile stress on the
excited flexural mode [25]. For high-enough temperatures, the
damping reaches a plateau πωC/2, regardless of microscopic
TLS scattering mechanisms. From the measured plateau we
extract C = 4.3 × 10−5, in qualitative agreement but differing
by a factor of 2 from the value given by the frequency shift
measurement. Similar discrepancies were reported [7,9,14,23]
and may be due to our simplified model that neglects, e.g., the
bilayer structure or inhomogeneities in the TLS distribution.

Below 600 mK, the measured linear dependence is con-
sistent with previous reports for similar beams [9,36], but
is in contradiction with the usual T 3 dependence. However,
at subkelvin temperatures, the dominant phonon wavelength
λ = hc/2.82kBT (∼100 nm at 1 K) becomes bigger than the
transverse dimensions of the resonator. As a result TLS relax
to equilibrium by exchanging energy only with longitudinal
phonon modes [25], which are not confined and thus lie at
lower energies. They realize a quasi-one-dimensional phonon
bath with constant density of states l/πcl and linear dispersion
relation, as proposed, e.g., in Refs. [9,36] and more exten-
sively studied in Refs. [15,33,34]. At first nonvanishing order
in the thermal strain field perturbation, Fermi’s Golden Rule
yields the relaxation rate of a single TLS due to its interaction
with the phonon bath [15,25]

τ−1
ph = γ 2

h̄2ρewc3
l

�2
0

ε
coth

(
ε

2kBT

)
, (3)

where cl ∼ 6000 m/s and ρ = 2.9 × 103 kg/m3 are the
longitudinal sound speed and mass density for SiN, re-
spectively. Combining this relaxation rate with the damping
expression (2), we capture both the damping data in the
low-temperature range when the field is low enough to
maintain superconductivity in the metallic layer and the high-
temperature limit. To consistently fit both the low ([τph] ∝
γ 2CT , dashed red line in Fig. 3) and high ([τph] ∝ C)
temperature regimes we use γ = 9.8 eV and P0 = 2.2 ×
1044 J−1 m−3. The fitted interaction energy is rather high (one
would expect it more around 1 eV), but may likely reflect
a nonuniform distribution of the TLS inside the beam [22],
which is out of the scope of this study. Note that our expres-
sion does not fit the data in the superconducting state between
600 mK and 1 K, which we attribute to the substantial
density of quasiparticle excitations in this range, that should
contribute to an excess damping through the same mechanism
as electrons in the normal state [37]: in fact, above 800 mK
the data in both states are identical within experimental ac-
curacy, as observed previously [23]. This shall be addressed
elsewhere.

IV. INTERPRETATION IN THE NORMAL STATE

In the normal state, it is natural to consider the conduc-
tion electrons as an additional relaxation channel for TLS in
parallel with the phonon bath: when a TLS entity tunnels, the
Coulomb potential that scatters conduction electrons is mod-
ified, which translates as an effective electron-TLS coupling.
The effective Hamiltonian writes Hel = ∑

Vk,k′ ĉ†
k′ ĉk σ̂z, where

σ̂z is the TLS diagonal Pauli matrix, ĉ(†)
k the electron creation

(annihilation) operator at wave vector k and Vk,k′ the coupling
matrix elements. We further make the assumption that the
interaction is uniform near the surface of the Fermi sea, which
enables the simplification Vk,k′ ≈ V . This is reasonable inso-
far as electronic excitations are scattered within a bandwidth
kBT very small compared to the Fermi energy. The corre-
sponding relaxation rate is again obtained by Fermi’s Golden
Rule [25]

τ−1
el = 4πK

h̄

�2
0

ε
coth

(
ε

2kBT

)
, (4)

where K = (n0V �)2 is a normalized electron-TLS coupling
strength, n0 = 1.07 × 1047 J−1m−3 being the electronic den-
sity of states at the Fermi level for aluminum, V an averaged
coupling constant, and � the effective interaction volume,
which should vanish beyond the metallic screening length
(�1 nm). The energy dependence is the same as in the case
of phonon-assisted relaxation, which led previous studies to
invoke additional effects [7]. However, the averaging over
the full TLS distribution leads to a weakened dependence in
temperature of the damping rate in the normal state. Indeed,
it is certain that not all TLS interact with electrons due not
only to the fact that conduction electrons are located solely
in the metallic layer, but also because of the very nature of
the TLS-electron interaction: depending on the microscopic
nature of the TLS, the interaction may be very weak, as in
the case of a mere dislocation in the Al layer [9]. Therefore,
electrically “neutral” TLS interact with phonons, but not with
electrons, which leads to separate averages over charged and
neutral TLS.

For “neutral” TLS and TLS within the SiN layer, which
relax only due to interactions with phonons, the crossover
temperature T ∗

ph between the plateau and the power-law
regime is defined by the condition ωτph ∼ 1 that they must
all satisfy. Meanwhile, for charged TLS, the crossover tem-
perature T ∗

el is shifted down by electron-assisted relaxation
because for these TLS the condition ωτ ∼ 1, where now
τ−1 = τ−1

ph + τ−1
el , is modified. Thus, for T ∗

el < T < T ∗
ph, an

intermediate regime emerges. At ultra-low temperatures, the
∝ T relaxation regime should be recovered when all TLS in
the structure satisfy ωτ 	 1. We fit the data in the normal
state using a balanced expression of the damping rate N =
(1 − x)[τph] + x[(τ−1

ph + τ−1
el )−1] using for the two contri-

butions the generic form of Eq. (2), by assuming a fraction
x = 0.17 of TLS interacting with electrons with a coupling
constant K = 0.07 well below 1, which allows us to neglect
Kondo-type strong coupling corrections [38,39], yielding an
electron-TLS coupling energy V in the 0.1-eV range. Based
on this set of parameters, we evaluate crossover temperatures
T ∗

ph ≈ 1 K (as visible in Fig. 3) and T ∗
el ≈ 0.9 mK [25], the

latter being unreachable with standard dilution refrigeration.
For comparison, we have also fit the data obtained on another
sample, namely, the goalpost-shaped silicon nanocantilever
(with dimensions comparable to the SiN beam, 100-nm thick
× 250-nm wide, two 3-µm long feet linked by a 7-µm long
paddle), covered with a 50-nm aluminum layer similar to that
of the high-stress SiN sample, measured in Ref. [23]. The
dissipation in the superconducting state features a T 3/2
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FIG. 4. (a) Frequency noise spectrum at T = 100 mK in the superconducting (red) and normal (blue) state of the metallic layer. Solid
lines are 1/ f μ type functions, with μ = 0.8 ± 0.2 here. (b) Allan deviation

√〈δ f 2〉 of frequency noise (δ f is the jump between two
successive frequency measurements), extracted from the standard deviation of Gaussian fits to the jumps histograms. Dashed lines (constant
for the superconducting state, ∝ 1/

√
T for the normal state) are guides to the eye. Inset: Comparison of frequency jumps histograms in the

superconducting and normal state at T = 100 mK. Solid lines are Gaussian fits with mean 〈δ f 〉 = 0 and standard deviation thus directly
reflecting the Allan deviation measured over ∼104 s.

power law at low temperatures which might owe to a non-
linear dispersion relation of flexural mechanical modes in
the device [40]. The data are reproduced using a semi-
phenomenological expression for the TLS-phonon relaxation
rate [25]. The normal state data were fit with parameters
x = 0.12 and K = 0.11, comparable with the ones used for the
high stress SiN sample. This is consistent with a mechanism
independent from the mechanical properties of the resonator,
as the interaction lengthscale is much smaller than any me-
chanical dimension.

The model captures the data in the 0.15 to 1 K range,
as seen in Fig. 3. In particular, it reproduces the sublin-
ear power-law-like behavior consistently reported in previous
works [7,14,23] in similar experimental conditions. Although
our model captures to a large extent the saturation observed
below 150 mK and reported in nearly every nanomechanical
damping study for the lowest operation temperatures, it is
likely that a hot electron effect also causes overheating of the
structure [41]. This saturation can be estimated through the
frequency shift measured in the normal state: it provides a
thermometer by using the deviation from the logarithmic shift
at the lowest temperatures. This could mean that the electron
temperature does not go lower than 100 mK at the lowest
refrigerator temperature (50 mK) in the normal state [see
Fig. 2(b), blue dots]. This is consistent, within experimental
accuracy, with the observed damping saturation slightly above
the theoretical fit below 100 mK (see Fig. 3, blue dotted line).
We could attribute these two features to thermal decoupling
caused by parasitic radiation in the 10 pW range, which heats
up the aluminum layer, i.e., the electron bath to which the TLS
ensemble (and ultimately, then, the mechanical mode) ther-
malize [25]. Ultimately, we see evidence, supported by our
analysis, that both thermal decoupling and the TLS-induced
damping contribute to the damping saturation in the normal
state at the lowest operation temperatures, but more work is
needed to separate the two contributions.

The proposed modeling is fairly generic and makes min-
imal assumptions on the microscopic nature and location of
TLS. An educated guess based on our results would locate
those TLS which interact with electrons at the interfaces,

between the SiN and Al layer, and between the Al layer
and its native oxide at the NEMS surface: indeed, tunneling
atoms are less likely to exist within the metallic layer due
to long-range order, leaving kinks on dislocations, which are
only weakly interacting with electrons, as most probable can-
didates for TLS in polycrystalline aluminum, as proposed in
Refs. [9,30].

Note that a recent study with similar methods [42] but bare
aluminum resonators reports very little difference between
damping in the normal and superconducting state, with a
much smaller interaction constant V ∼ 10−4 eV. This may be
seen as further evidence that aluminum does not itself possess
defects that would act as strongly interacting TLS and also
points towards a location of interacting TLS at the Al-SiN
interface rather than in the Al native oxide.

As an opening for further investigations, we measured
the resonant frequency noise of our device using the dy-
namical bifurcation properties of the NEMS in the Duffing
regime [43,44]. The observed spectrum is that of a 1/ f -
type noise typical of a collection of switching two-level
systems [45]. Notably, a visible increase of its magnitude is
observed below 1 K when the metallic layer is switched to
the normal state, as seen in Fig. 4. Since at these temperatures
the switching, which is due to tunneling, is mainly induced
by TLS-electrons interactions, it is reasonable to expect that
electron-TLS interactions cause the excess frequency noise:
the tunneling events occurring during TLS relaxation cause
local rearrangement of atoms and may thus lead to stress (i.e.,
frequency) fluctuations.

In conclusion, our results support the idea that electron-
driven TLS relaxation in metallic nanomechanical structures
is the dominant mechanism of damping, through timescale
decoupling between phonon- and electron-induced TLS re-
laxation. This may bring an answer to several issues raised
over the last two decades by nanomechanical damping mea-
surements at low temperatures. In addition, we expect that
measurements of frequency noise may shed further light on
microscopic mechanisms at work, possibly highlighting inter-
actions between TLS [46], through, e.g., a careful extraction
of the exponent of frequency noise [47].
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