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Constructive exact control of semilinear 1D wave equations by a

least-squares approach

ARNAUD MUNCH* EMMANUEL TRELAT!

Abstract

It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave
equation 0wy — Oz2y + g(y) = fluo, with Dirichlet boundary conditions, is exactly controllable in
H§(0,1) N L*(0,1) with controls f € L?*((0,1) x (0,T)), for any T > 0 and any nonempty open
subset w of (0,1), assuming that g € C*(R) does not grow faster than §|z|In? |z| at infinity for some
B > 0 small enough. The proof, based on the Leray-Schauder fixed point theorem, is however not
constructive. In this article, we design a constructive proof and algorithm for the exact controllability
of semilinear 1D wave equations. Assuming that ¢’ does not grow faster than 81n? || at infinity for
some 3 > 0 small enough and that ¢’ is uniformly Hélder continuous on R with exponent s € [0, 1],
we design a least-squares algorithm yielding an explicit sequence converging to a controlled solution
for the semilinear equation, at least with order 1 + s after a finite number of iterations.

AMS Classifications: 35Q30, 93E24.
Keywords: Semilinear wave equation, exact controllability, least-squares approach.
1 Introduction

Let Q := (0,1), let w = ({1,03) with 0 < £; < f5 < 1 and let T > 0. We set Qr = Q x (0,7,
gr :=w % (0,T) and Xp := 9Q x (0,T). We consider the semilinear 1D wave equation

atty - 8ma:y + g(y) = flw in QTa
y=0 on X, (1)

(y(’o)vaty(,o)) = (u07u1) in Qa

where (ug,u1) € V := H(Q) x L*() is the initial state of y and f € L?(gr) is a control function. Here
and throughout the paper, g : R — R is a function of class C! such that |g(x)| < C(1 + |z|) In*(2 + |z|)
for every « € R, for some C' > 0. Then, has a unique global (weak) solution in C°([0, T]; H{ (2)) N
CH([0, T): 12(52)) (see ).

We say that (1)) is exactly controllable in time T if, for any (ug,u1) € V and (29, 21) € V, there exists
a control function f € L?(gr) such that the solution of satisfies (y(-,T),0wy(-,T)) = (20,21). The
exact controllability problem for has been addressed in [18].

Theorem 1. [18] Assume that T > 2max(f1,1 — £3). There exists 3 > 0 (only depending on Q and T)
such that, if
lim sup 7|g(:v)| <p

ja|—-+oo [2] In? ||
then is exactly controllable in time T.

(2)
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Moreover, it is proved in [I8] that, if g behaves like —sIn®(|s|) with p > 2 as |s| — 400, then the
system is not exactly controllable in any time 7" > 0, due to an uncontrollable blow-up phenomenon.
Theorem [1| has been improved in [I], weakening the condition into

-2
lim sup ‘/ dr |x\ Hln[k (ex + )) < +00

|| —+o0

where Inl*l denotes the k™ iterate of In and e > 0 is such that In(e;) = 1. This growth condition is
essentially optimal since the solution of may blow up whenever g grows faster at infinity and has the
bad sign. The multi-dimensional case in which € is a bounded domain of R?, d > 1, with a C*! boundary
has been addressed in [II]. Assuming that the support w of the control function is a neighborhood
of 90 and that T > diam(Q\w), the exact controllability of (1)) is proved under the growth condition
lim sup ;4 00 ‘Il‘ (z)lm|

73— < +oo. For control domains w satlsfymg the classical multiplier assumption (see
[12]), exact controllability has been proved in [I5] assuming that g is globally Lipschitz continuous. We

In
also mention [5] where a positive boundary controllability result is proved for steady-state initial and
final data and for T large enough by a quasi-static deformation approach.

The proof given in [18] is based on a Leray Schauder fixed point argument introduced in [16] [I7] that
reduces the exact controllability problem to obtaining suitable a prior: estimates for a linearized wave
equation with a potential. More precisely, it is shown that the operator K : L>®(Qr) — L*°(Qr), where
ye = K (§) is a controlled solution with the control function f¢ of the linear boundary value problem

OrtYe — Ozale +Ye 9(§) = —g(0) + felo,  in Qr, ) g(z) — g(0) if2 40
ye =0 on X, g(z) := T (3)
(e (- 0), Buye (-, 0)) = (ug, ua) in Q, g'(0) ifz=0

satisfying (ye(-,T),0wye (-, T)) = (20,21) has a fixed point. The control f¢ in [I8] is the one of minimal
L?(gr) norm. The existence of a fixed point for the operator K is proved by applying the Leray-Schauder
degree theorem: it is shown that if 3 is small enough, then there exists M = M (|| (uo, u1)||v, [|(20, 21)||v) >
0 such that K maps the ball B (0, M) to itself.

The objective of this article is to design an algorithm providing an explicit sequence (fx)ren that
converges strongly to an exact control for . A first idea that comes to mind is to consider the Picard
iterations (yi)ren associated with the operator K defined by yry+1 = K(yx), k = 0 initialized with any
element yo € L=(Qr). The resulting sequence of controls (fx)ren is then so that fy.1 € L?(qr) is the
control of minimal L?(qr) norm for y;41 solution of

OutYk+1 — Oza¥Yr1 + Yur1 9(yk) = —9(0) + frraly, in Qr,
Ye+1 =0 on X, (4)
(Ur+1(+,0), Opyr41(+,0)) = (uo, u1) in Q.

Such a strategy usually fails since the operator K is in general not contracting, even if g is globally
Lipschitz. We refer to [7] for numerical simulations providing evidence of the lack of convergence in
parabolic cases (see also Remark [11|in Appendix [A]).

A second idea is to use a Newton type method in order to find a zero of the C! mapping F:Y W
defined by

F(y, 1) == (0uy — 0wy + 9(y) = flu,y(-,0) — w0, 0yy(-,0) — ur, y(-, T) — 20, 0py(- . T) = 21)  (5)
for some appropriate Hilbert spaces Y and W (see further): given (yo, fo) in Y, the sequence (yx, fr)ren
is defined iteratively by (Yk+1, fk+1) = (Yk, fx) — (Y, Fi) where F}, is a control for Y}, solution of

OuYr — 0paYi + 9" (Yr) Y = Frlw + Ok — Ozai + 9(Ur) — frlw, in Qr,
Y, =0, on X, (6)
Yi(+,0) = uo — yk(+,0), 9;Yk(+,0) = u1 — 9gyi(-,0) in €,



such that Y, (-,T) = —yi(-,T) and 0, Yx(-,T) = —0wy(-,T) in Q. This linearization makes appear an
operator K such that yr11 = Kn(yx) involving the first derivative of g. However, as it is well known,
such a sequence may fail to converge if the initial guess (yo, fo) is not close enough to a zero of F' (see [1]
where divergence of the sequence is shown for large data).

The controllability of nonlinear partial differential equations has attracted a large number of works
in the last decades (see [d] and references therein). However, as far as we know, few are concerned with
the approximation of exact controls for nonlinear partial differential equations, and the construction of
convergent control approximations for controllable nonlinear equations remains a challenge.

In this article, given any initial data (ug,u;) € V, we design an algorithm providing a sequence
(fr)ken converging to a controlled solution for , under assumptions on ¢ that are slightly stronger
than the one done in Theorem [I| Moreover, after a finite number of iterations, the convergence is super-
linear. This is done by introducing a quadratic functional measuring how much a pair (y, f) € Y is close
to a controlled solution for and then by determining a particular minimizing sequence enjoying the
announced property. A natural example of an error (or least-squares) functional is given by E(y, f) =
%Hﬁ (y, )|} to be minimized over Y. Exact controllability for (1)) is reflected by the fact that the global
minimum of the nonnegative functional E is zero, over all pairs (y, f) € Y solutions of . In the line of
recent works on the Navier-Stokes system (see [10]), we determine, using an appropriate descent direction,
a minimizing sequence (yYx, fx)k>0 converging to a zero of the quadratic functional.

The paper is organized as follows. In Section [2| we define the (nonconvex) least-squares functional F
and the corresponding (nonconvex) optimization problem . We show that F is Gateaux-differentiable
on A and that any critical point (y, f) for E such that ¢'(y) € L*°(Qr) is also a zero of E. This is done
by introducing an adequate descent direction (Y1, F') for E at any (y, f) for which E'(y, f)- (Y, F') is
proportional to v/ E(y, f). This instrumental fact compensates the failure of convexity of E and is at the
base of the global convergence properties of our least-squares algorithm. The design of this algorithm
is done by determining a minimizing sequence based on (Y'!, F'!), which is proved to converge to a
controlled pair for the semilinear wave equation , in our main result (Theorem , under appropriate
assumptions on g. Moreover, we prove that, after a finite number of iterations, the convergence is super-
linear. Theorem [2]is proved in Section [3] We show in Section [ that our least-squares approach coincides
with the classical damped Newton method applied to a mapping similar to f‘, and we give a number
of other comments. In Appendix [A] we state some a priori estimates for the linearized wave equation
with potential in L>°(Qr) and source term in L?(Qr) and we show that the operator K is contracting if
16"l o= () is small enough.

As far as we know, the method introduced and analyzed in this work is the first one providing an
explicit, algorithmic construction of exact controls for semilinear wave equations.

Notations. Throughout, we denote by || - ||oc the usual norm in L*°(R), by (-, ) x the scalar product of
X (if X is a Hilbert space) and by (-, -)x,y the duality product between X and Y. The notation || - ||2,4,
stands for || - ||z2(g,) and || - ||, for || - || zr (@), mainly for p = 2 and p = +o0.

Given any s € (0,1], we denote by C**(R) the set of all functions g € C*(R) such that ¢’ is uniformly
Holder continous with exponent s, meaning that

i sup 1@ =9 D)

a,beER |a/ - b|6
a#b

< Ho0.

For s = 0, by extension, we set [¢']o := 2||¢[|cc. In particular, g € C1(R) if and only if g € C}(R) and
g’ € L(R), and g € CH1(R) if and only if ¢’ is Lipschitz continuous (in this case, ¢’ is almost everywhere
differentiable and ¢” € L*°(R), and we have [¢']; < ||¢"]|~)-



2 Least-squares algorithm and main result

2.1 Least-squares functional and minimization problem

Least-squares functional. We consider the Hilbert space

H = {(y,f) e L*(Qr) x L*(qr) | 0uy — 8pey € L*(Q1), y = 0 on Ty,

(¥(,0),09(-0)) € V, (y(T),0y(,T)) € V' }
endowed with the scalar product

((yla fl)v (yQa f2))7'l = (yh y2)2 + ((yl('a 0)7 atyl('? 0))7 (yQ('a 0)7 8ty2('a 0)))V
+ (Onyr — Onay1, Oz — 3my2)2 + (f1, f2)2,4r

and the norm [|(y, f)ll% == (¥, f), (, /)2
In what follows, we fix some arbitrary (ug,u1) € V and (zg,21) € V. The subspaces of H defined by

A= {(yaf) S | (y(70)78ty(70)) = (u07u1)7 (y('7T)ﬂaty('vT)) = (20’21) in Q}’
Ao = {(u.f) €M | (y(-,0),0y(-,0)) = (0,0), (y(-,T), oy (-, T)) = (0,0) in Q},

Note that A = (7, f) + Ao for any (7, f) € A.
Given any (y, f) € A, it follows from the a priori estimate for the linear 1D wave equation that there
exists C' > 0, only depending on €2 and 7', such that
10 0) B0y < C (103 — BratlFaiqry + o u) )
1Ylloe < Cll(y, )l

in particular y € L>(Qr). Since g is of class C!, we have g(y) € L?(Qr) and ¢'(y) € L>(Q1). We define
the least-squares functional £ : A — R by

(7)

1
E(y, f) = §H8tty — Opay + g(y) - fl“"HiQ(QT)

for every (y, f) € A.

Least-squares minimization problem. For any fixed (7, f) € A, we consider the (nonconvex) mini-
mization problem

inf E@+y,f+f 8
ot @+y f+f) (8)

In the framework of Theorem [I] the infimum of the functional of E is zero and is reached by at least
one pair (y, f) € A, solution of and satisfying (y(-,T), 0wy (-,T)) = (20,21). Conversely, any pair
(y, f) € Asuch that E(y, f) = 0 is a solution of . In this sense, the functional F is an error functional
which measures the deviation of (y, f) from being a solution of the underlying nonlinear equation.

A classical algorithmic way for computing the minimum consists in following descent directions, along
the gradient of the functional. In descent algorithms, local minima are a usual issue to face with, unless
the functional E is convex. Since is nonlinear, here F fails to be convex in general. In spite of that,
we are going to construct a minimizing sequence which always converges to a zero of E.



Definition 2.1. Let T > 2max ({1, 1—{s) be arbitrary. Given any (y, f) € A, over all pairs (Y, F1) € A
solutions (the next result shows that there do exist some solutions) of

Y = 0ueY' +g'(y) V' = F'lu + (Ouy — 0wy + 9(y) — flo)  in Qr,
yl_o on X, 9)
(Y1(-,0),0,Y(-,0)) = (0,0) in €,

we select the (unique) pair (Y1, F1) € Ay such that the control F*, which is a null control for Y, has a

minimal L*(qr) norm. In what follows, it is called the solution (Y1, F') € Ag of (9) of minimal control
norm.

In the result hereafter, given any (y, f) € A, we establish some properties of the pair ((y, f), (Y1, F!)) €
A x Ay, where (Y1, F') is the solution of () of minimal control norm, which are at the base of the least-
squares algorithm that we propose in Section and are useful in view of proving its convergence (see
Theorem .

Proposition 1. Assume that T > 2max({1,1 — ¢3). There exists a positive constant C, only depending
on Q and T, such that, given any (y, f) € A:

(i) There exist solutions of (). Moreover, the solution (Y, F') € Aq of (9) of minimal control norm
is unique and satisfies

IV, 0Y )| o.15v) + 1F 2,00 < CeOVITW /By, f) (10)
and
[(YY, )|l < CeOVIe Wl (/B (y, £). (11)

In particular, ||[Y| o (@) < Ce©V lo' Wl /E(y, f).
(ii) The derivative of E at (y, f) € A along the direction (Y1, F1) satisfies

E(y.f)- (Y, F) = lim ;

A#£0

— 28(y, f). (12)

(ii) Noting that the derivative E'(y, f) does not depend on (Y, F') and defining the norm ||E'(y, f)||.a; =
vmesnfoy Y F)|ln
1
v2max (1, [lg’ (y) )

(iv) Assume that g € C1*(R) for some s € [0,1]. Then

, where Aj, is the topological dual of Ay, we have

1E (y, /)4y < VE@, f) < %Oecv 1l || E (y, f)ll 4. (13)

B((w.1) - YY) < (L A+ A K@)B, )F) Bw.f) WAk (4

where
14s

K(y) = Clg)s(CeVITWI) (15)

Proof. Let us establish The first estimate is a consequence of Lemma [1|in Appendix using the
equality [|0wy — Ay + g(y) — floll2 = /2E(y, f). The second one follows from
IO FD) ot < 10 Y = 0a0Y Mz + 1V l2 + 1F 2,0 + [Y(50),0Y (-, 0) v
S @A+ @)Y 2 + 20 F l2,q7 + /By, f)
SO+ g W)ls0)eVITWl= /By, )
< CeHOWVIT Wl /E(y, )



using that (14 s) < €2V for every s = 0.
To prove we first check that, for every (Y, F') € Ay, the functional F is differentiable at (y, f) € A
along the direction (Y, F) € Ay. For any A € R, simple computations lead to

E(y+ XY, f+AF) = E(y, ) + AE'(y, f) - (Y, F) + h((y, ), A(Y, F))

with
El(y> f) . (Y> F) = (8tty - a:rmy + g(y) - flwa atty - a:vzy + g/(y)y - Flw)2 (16)

and

/\2
h((y, ), AY, F)) = 3(@&/ —0paY +9' (Y)Y — Fly, 04Y — 0:0Y +¢'(y)Y — Fly,),

+ A(@ttY — O0pzY + 9 ()Y — Fl, (y, )\Y))2
1
where
Uy, AY) := g(y + AY) — g(y) — Mg (y)Y- (17)
The mapping (Y, F) — E'(y, f) - (Y, F) is linear continuous from Ag to R since
[E'(y, £) - (Y, F) < 100y — Oway + 9(y) = floll200Y — 0uaY + ¢'(y)Y — Flo|l2

<V2E(y, f) (1006 = 0s2Y)ll2 + 9" W) llo 1Y ll2 + [ Fll2.7 ) (18)
< V2EB(y, f) max (L, [lg' () lloo) | (Y, F) 2.
Similarly, for every A € R\ {0},
Al
2

1

+ (A9uY = 0¥ + g/ W)Y = Flulla + V2E(@, ) + 5116y, A1)

Tl A F))| <

A ||attY_aa:my'i_gl(y)y_Fle%

1
By 1€(y, AY) |2

Since ¢’ € LS (R) and y € L*(Qr), we have

loc

ey v)| = [LEFAIZIG) v < (sup g+ 0+ g/ W)])IY
0€(0,1)

a.e. in Qr, and |+£(y, \Y)| = |w —¢'(y)Y| = 0as A — 0 ae. in Qr. By the Lebesgue domi-
nated convergence theorem, it follows that |1 [[[¢(y, AY)[2 — 0 as A — 0 and then that |h((y, f), A(Y, F))| =
o(A). We deduce that the functional E is differentiable at the point (y, f) € A along the direction
(Y, F) € Ag. Finally, follows from the definition of (Y!, F!) given in @

Let us establish Note that, by (L6), the derivative E’(y, f) does not depend on (Y, F). Now,
gives E(y, f) = 2E'(y, f) - (Y!, F!) where (Y, F') € Ay is solution of @ and, using (11,

By, ) < 51E @ Dl 107 FY)lLay < 5CVITO By, )]y, VBT ).

Besides, for all (Y, F) € Ay, the inequality |E'(y, f) - (Y, F)| < +/2E(y, f) max(1, ||¢' () lc)|(Y, F)||n
coming from leads to the left inequality in .

Let us finally establish We start by observing that, since g(y — A\Y'!) = £(y, —=A\Y'!) + g(y) —
Mg (y)Y?!, and since (Y', F') € Ay is solution of (9, we have

E((y7 f) - )‘(Ylv Fl))
= %H Oy — Buay + 9(y) — F1o) = A(BuY"' = 80Y' + ¢/ (9)Y' — FU1,) + €(y, —AYY)|[2 (19)

= %H(l - )\) (atty - azzy + g(y) - flw) + g(ya *)‘Yl)H;



Now, for any (u,v) € R? and any A > 0, writing g(u + A\v) =0 fo (u + &v) d€, we have

A
9+ M) — g(w) — A (w)o] < / [ollg/ (u+ €0) — g'(u)] dE < [g']a [0+ ATF*.

It follows that
[0y, =AY D) = |g(y = AY") — g(y) + Ag' () Y| < [¢]s Ao Y1 F

and thus, using ,

1eCr, =AY D), <[00 N NIV oo,y < 191 MTVRCIY I o,
<[] V20 (O ”9’<y>”°°)1+sE(y,f>T (20)
for some positive constant C' only depending on © and T. Hence, using (L9), we get
V2E((9. £) = AV FD) < [[(1 =) @0y — Duay +9(y) — F1) |, + . -2V,
<= AV2E(y, f) + [g'ls AF° H|Y1|1+SHL2(O,T;L2(Q))
and, using (20), the estimate follows. O

Consequence. An important consequence of Proposition |I{and in particular of is that any critical
point (y, f) € A of E (i.e., E'(y, f) = 0) is a zero of E, and thus is a pair solution of the controllability
problem. Moreover:

given any sequence (Y, fir)ren in A such that | E' (yk, fr)ll 4, k_}—+>Oo 0 and such that ||g' (yx)| oo

is uniformly bounded, we have E(yk, fr) k—+> 0.
— 400

This is thanks to this instrumental property that a minimizing sequence for E cannot be stuck in a local
minimum, and this, even though F fails to be convex (it has multiple zeros). Our least-squares algorithm,
designed in the next section, and our main result, Theorem [2, are based on that property.

Note that the left inequality in indicates the functional F is flat around its zero set. As a
consequence, gradient-based minimizing sequences may have a low speed of convergence (see [10, [I3] for
such issues for the Navier-Stokes equation).

2.2 Least-squares algorithm

Assume that T > 2max(¢1,1 — £3). By (12) in Proposition 1] l the vector — (Y1, F'!), solution of minimal
control norm of @ is a descent direction for FE. This leads us to define, for any fixed m > 1, the sequence
(Yk, fx)ken in A defined by

(yOa fO) € A
Wt ferr) = (e fo) = (Y, Fy)  VkeN (21)
A, = argmin E((yx, fr) — MY}, F}))

A€[0,m]

where (Y}!, F}}) € Ay is the solution of minimal control norm of

0Vt — 0 Vit + ' (yi) - Y3 = Ftly + Oy — Owaie + 9(yx) — frle) in Qr,
Y, =0 on X, (22)
(Y3 (-,0),8, Y, (-,0)) = (0,0) in Q.

The real number m > 1 is arbitrarily fixed. It is used in the proof of convergence to bound the sequence
of optimal descent steps A.



2.3 Main result

Given any s € [0,1], we set

82

0(e) .
F6) = Grms 1
where C' > 0, only depending on €2 and T, is given by Proposition |1} Note that (2 + %)C\/ﬂo(s) =1.

(23)

Theorem 2. We assume that T > 2max({1,1 — f5), that g € CH*(R) for some s € [0,1], and that there
ezist « > 0 and B € [0,8%(s)) (with the agreement that 8 =0 if s =0), such that

lg'(z)] < a+ BIn*(1 + |z|) Vz € R. (24)

In the case where s =0 (i.e., ¢ € L®(R)) but g’ ¢ C**(R) for any s € (0, 1], we assume moreover that
2¢' 1o C2eCVI = < 1. Then:

e The sequence (Y, fr)ken in A defined by , initialized at any (yo, fo) € A, converges to (7, f) €
A, where (3, f) is a solution of such that (y(-,T),0y(-,T)) = (20, #1)-

e The sequence (Ag)gen consists of positive real numbers and converges to 1.
e The decreasing sequence (E(yk, fi))ken converges to 0.

Moreover, the convergence of all these sequences is at least linear, and is at least of order 1 + s after a
finite number of itemtionsEI

Remark 1. The limit (7, f) € A of the sequence (yx, fx)ren, given by

(57?) y07f0 ZA]C Yk’Fk

depends on the choice of the initialization (yo, fo) € A (see also Remark [10| further). It also depends on
the selection criterion that we have chosen: in , Fk1 is the control of minimal norm.

Remark 2. In this remark, we assume that g’ € L°°(R). When ¢’ is not uniformly Holder continuous, a
smallness condition on ||¢’|| o is required in order to obtain the convergence. This condition is not required
anymore as soon as g’ € C*(R) for some s € (0,1]: indeed, then, ¢’ satisfies the growth condition
with a = ||¢'||ec and 8 = 0, and Theorem [2f can be applied.

Remark 3. In Theorem [2] we have assumed that the nonnegative coefficient 8 appearing in the growth
condition is lower than (%(s), i.e.,

g’ (2)] 52
lim su <
|$\_>+£ In?|z| (25 +1)2C?

(with the agreement that lim supj, lli 2(|Tw)|| =0 if s = 0), which, of course, implies that

2
ey L@ G
el tow 2] I || © 25+ 1)°C

The threshold 5°(s) is maximal when s = 1, i.e., when ¢’ is Lipschitz continuous, and we have 3°(1) = 55z.

In comparison, the threshold 3 in Theorem 1) satisfies 8 < 1/(1 4+ C)? where C is another constant
(only depending on © and T'), appearing in the a priori estimate (45)) of Lemma [l in Appendix

1We recall that a sequence (uy)ren of real numbers converges to 0 with order a > 1 if there exists M > 0 such that
|ug+1] < Mug|® for every k € N. A sequence (vg)ren of real numbers converges to 0 at least with order o > 1 if there
exists a sequence (ug)ken of nonnegative real numbers converging to 0 with order a > 1 such that |vg| < ug for every k € N.



There exist cases covered by Theorem [1] (or, by the extension established in [I]), in which exact
controllability of is true, but that are not covered by Theorem Note however that the example
g(z) =a+bx+ ﬁxlrﬁ(l + |z|) for any € > 0 and any a,b € R (which is somehow the limit case in
Theorem [1) satisfies g € C1!(R) as well as (24).

While Theorem [1| was established in [I§] by a nonconstructive Leray-Schauder fixed point argument,
we obtain here, in turn, a new proof of the exact controllability of semilinear 1D wave equations, which
is moreover constructive, with an algorithm that converges unconditionally, at least with order 1 + s.

Remark 4. The convergence in Theorem [2] is unconditional. Anyway, a natural example of an initial-
ization (yo, fo) € A is to take (yo, fo) = (v*, f*), the unique solution of minimal control norm of with
g =0 (i.e., in the linear case).

Remark 5. As stated in Theorem [2] the convergence is at least of order 1 + s after a number ko of
iterations. In this remark, we give the precise expression for kg in function of the various parameters.
Given any s € [0,1], any a > 0, any 3 € [0,3°(s)) and any M > 0, we set

ci=[g'], CFreFIOVa(] 4 pp)HaCVE (25)
with the agreement that, when s = 0, we take o = ||¢’[|oc and B = 0, so that ¢ = 2||g’[|ccC?eCV llg"lle
(because, by convention, [¢']o := 2||¢||oc), Which is the quantity required to be less than 1 in Theorem

when s = 0. With this convention, ¢ is a continuous function of s on [0, 1].
If (1 + s)cE(yo, fo)? < 1 (this includes the case s = 0) then ky = 0, and otherwise,

ko = {(Hz)l*l <c§\/E>0—1>J +1, (26)
where |-| is the integer part, and where M > 0 is the minimal possible real positive number such that
1< (1+ 8)[gl]sCQ+se(1+s)C\/E(1 _|_M)(1+s)C\/BEO§’
Cllyo, folllr+ 21+ 8)' 2 [g/)i €742 B+ DOVAQ 4 a)EDNVIEy < 0,
The real number M is defined in an implicit way. More details are given in Section |3} at Step [7] of the
proof, where we give in particular an explicit expression for M when s ~ 0.
Remark 6. As a continuation to Remark [2] it is interesting to note that, assuming that ¢’ € L (R):

e As stated in Theorem [2| if ¢’ ¢ C1*(R) for any s € (0, 1], to obtain convergence it is required to

assume that 2[|¢/[|sC?eCVI9'lle < 1, ie., that ¢js=0 < 1 with the notations of Remark and we
have kg = 0.

o If 2||¢/ || C?eC VI > 1 and if ¢ € C5(R) for some s € (0,1], then Theorem [2] applies and
ko is given by . Moreover, kg is larger as s > 0 is smaller: more precisely, we have kg ~

£ (2o C?eVIT=) as s -0,
Remark 7. Using (24)), we have, for every (yo, fo) € A,

E(yo, fo) < 10ty0 — Ozayoll2 + || folwllz + lg(yo)ll2

/

<o, fo)llz + T1g(0)] + T(a + B1n* (L + [lyolloe))lyolloc (27)
< (o, fo)lla + T1g(0)] + T(a + Bn*(1 + [[(yo, fo) l2)) (yos fo) |-

Remark 8. If s=0orif 3=0in then ¢’ € L°°(R). In this case the proof of Theorem [2]is simpler.
When s > 0 and 8 > 0, as alluded at the end of Section[2.1] in the proof of Theorem [2] the main difficulty
is to prove that the sequence (||y||oo)ren (defined in (21))) remains uniformly bounded, in particular in
order to keep a uniform bound on the sequence of observability constants Ce® llg” (yr)lloo appearing in
the estimates of Proposition [I] In the proof, done in Section [3] this difficulty is handled by an a priori
assumption, which we prove to be satisfied a posteriori thanks to fine estimates.



3 Proof of Theorem [2

This section is devoted to proving Theorem [2} We assume that g € C1*(R) for some s € [0, 1].

Preliminary remark. Let (yo, fo) € A be arbitrarily fixed. In the sequel, we denote by
Ey = E(y, fr)  VkeN.

By the minimization property in the definition of the algorithm, we have Fp,1 = E((yk,fk) —
MY ED) < E((yk, fr) = MY, FL)) for every A € [0,m]. Applying the estimate of Proposition
Ttem |(iv)} to (yk, fr), we infer that

e 2
< i — 1+s 2
Echrl B )\g[l(}}}n] (|1 )\| + A K(yk)Ek) Ek vk € N (28)
where we recall that
K(yi) = [¢']; C*F* 090V )l

The estimate is instrumental in the proof of Theorem

Having in mind Remark [§] we fix a constant M > 0, large enough, to be chosen later. In what follows,
we make the a priori assumption
lrlloo <M VEEN. (29)

We are going to see a posteriori that, if M is adequately chosen large enough, then is indeed satisfied.
The proof goes in several steps.

Step 1. There exists kg € N (given by ) such that the sequence (Ex)i>k, decays to 0 with order
greater than or equal to 1+ s.

Using the growth condition and using the a priori assumption , we have
19 (Wi)loo < @+ BIn*(1+ M)  VkeN.

Here and in the sequel, we adopt the convention that, when s = 0, we take o = ||¢'||co and 8 = 0. Using
the inequality va + b < v/a + Vb for all a,b > 0, we get

CeCVIT oo ¢ 0eCVatBI(HM) ¢ 0o CVa(1 4 p1)CVE (30)

and thus K (yx) < ¢ where K (yy) is defined by and c is defined by (including the case s = 0).
By , we have

VEea € min ex(WNVE:  with  ex()) = 1= A+ AT ES. (31)

[0,m]

Let A, € [0,m] be the minimizer of e;()\) over [0,m] (not to be confused with Aj, defined in 21)).

Let us first treat the case where s € (0, 1]. Assuming that Ej > 0 (otherwise there is nothing to do),
we have

e =1 and  ex(Ag) = cE? if (14s8)5csvVEy, <1,
N 1 N s 11 (32)
AMp=————— and ex(\g)=1-— if (14+s)scsvER>1,
g (14 s)rcVEy ¢(A) (14 )5 eiVEy ( ) g
and therefore, by ,
1 1+s 11
L (c5VEx it (1+s):ciyV/Ey <1,
cstk+1<{ VB~ o i ()i VE > (33)



e As a first case, let us assume that 0 < (1 + s)%c%\/ET) < 1. Then c%\/ET) < 1 and, using , by
iteration, ¢+ v/Ej, < 1 for every k € N and the sequence (c5 /By )en is decreasing. Hence, for every
k € N, we have (1+s)+c:y/Ey < 1, i.e., we remain in this first case, and since Ejy1 < B, ¢, the
sequence (Ej)ren is decreasing and converges to 0 with order greater than or equal to 1 + s.

e As a second case, let us assume that (1 —|— s)tcivEp > 1. Tt follows from (31) that, as long as

(1+ 5)%0% VEr > 1, we have cé\/Ek < csvEy — kﬁ Hence there exists kg € N such that
+s s

1+ s)%c%\/Ek < 1 for every k > ko. This means that, after a finite number of iterations, we turn
back to the first case. The minimal number of iterations is given by the formula .

Finally, let us treat the case where s = 0. The function ex(\) is piecewise linear, and is increasing

whenever ¢ > 1: this is why we need the smallness condition ¢ = 2||¢/||ooC?eCVI9'l=¢ < 1. Thanks to
this assumption, the minimizer of e, (A) is Ay = 1 and thus e (A) = ¢. Hence Egy1 < cEj, (which is also
what we obtain by taking the limit s — 07 in the first case of . and thus (Ej)ren is decreasing and
converges to 0 at least linearly. In this case we have ky = 0.

Remark 9. For every k > ko, we have (assuming that Ejy > 0)

Ei 1

< PE:.
E, Tk

Since E — 0 at least with order 1 + s, it follows that EE—T — 0 as k — 400, at least with order 1 + s.
Note also that Ay > 0 for every k € N because the sequence (E})ren is decreasing.

Step 2. The sequence (\g)k>k, defined in converges to 1 as k — +o0o at least with order 1 + s.

Applying ([19) to (v, f) = (yk, fr), Y1, FY) = (Y}, F}) and A = X\;, we have, since A\, < m (and
assuming that Ej > 0),

(1- 22 = Egy1 (1) (Oetyi — Baatgis + 9(yk) — filoos €y, —NeYi)), 10y, =M Y13
E; Ey 2E}
(8ttyk - aa:wyk: + g(yk:) - fklwa E(yka _)‘kYkl))Q
Ey

< B _ (1= X)

Ej1 1€(y, A Y302
1+ my/2 IR 2h K V112
2 VEr

1+s 1+s
By (20), we have [[¢(yk, AeY) |2 < M V2K (yi)E, 2 < m!**V2¢E,* |, and thus

E -
(1— )2 < g“ +o2m*t cEF VkeN.
k

Since Ej, — 0 at least with order 1 4+ s by Step |1 and ng — 0 at least with order 1+ s by Remark @
it follows that A\, — 1 at least with order 1 + s.

Step 3. We have eg(Xo) < 1, and the sequence (ex(Mx))ren decays to 0.
Indeed, since e(0) = 1 and e} (0) < 0, we have e(Ag) = minyejo,m) €o(A) < 1 (also in the case where

s = 0 thanks to the smallness condition). The rest of the statement follows from .

Step 4. The series Zk>0 v E}, converges, and Z vV E, < \/ » for every p € N.

760

The fact that the series ) k>0 V Bk converges already follows from Remark|§|smce Egrl — 0. We will

however use the rough estimate stated here. To prove it, we observe that, since the sequence (ex(A))ren
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is decreasing, we have ej(Ay) < ep(xp) < eg(ho) < 1 for all k,p € N such that k > p, and we infer from
that N
VEL < (e0(X0)* PVE, VkpeN, k>=p

and the result follows.
Step 5. The series Z,@O Me(YiL, EY) converges in Ao, and
q

Z)‘k(yklaFkl)

k=p

1
< mCeCVe(1+ M)CVP

———VE Vp,q €N, ¢ =p.
H 1 —ep(Xo) !

Since A < m, it follows from in Proposition (1| and from that
Ml (VY EN |l < mCeCVe(1 + M)CVP\/E,  VkeN
and the result follows, using Step [4

Step 6. The sequence (yx, fx)ken defined by converges to the element (7, f) € A given by

+o0o

@) = (o, fo) = >_ M(Yi' FiY)

k=0

and the convergence is at least of order 1+ s after kg iterations (where kg is given by Step . Moreover,
(7, f) is a solution of such that (y(-,T),0y(-,T)) = (20, 21)-

Indeeda by a we have (ynafn) = (yOafO) - Z;é Ak(YklaFkl)v hence (yka fk) converges to (ya ?)
defined above. Let us prove that f is a null control for § solution of . Using that (Y}, Fl) € Ag
converges to zero as k — +00, passing to the limit in , we infer that (7, f) € A solves

Ouy — 0xy+9(H) = flu  in Qr,
7=0 on X, (34)
(y(vo)7aty(70)) = (y07y1) in €.

Since (7, f) € A, we have (7(-,T),8,7(-,T)) = (20, 21) in €, i.e., f is a control for § solution of (I)). Now,
for every k € N, we have

+o00
1.7~ G Flllag = | oML B, < eV 1 M)OPVE, (39)
k—=n H 1-— 6()()\())

The convergence to 0 with order greater than or equal to 1 + s after a finite number of iterations follows
from Lemma [l

Remark 10. The estimate is a kind of coercivity property for the functional E. We emphasize,
in view of the non-uniqueness of the zeros of F, that an estimate (similar to (35)) of the form ||(7, f) —
(y, Nl < Cy/E(y, f) does not hold for every (y, f) € A. We also insist on the fact that the sequence
(Y, fx)ren and its limit (7, f) are uniquely determined by the initialization (yo, fo) and by our selection
criterion for the control F!.

Step 7. If (2+ 1)CV/B < 1 whenever s € (0,1], and if 2||g'||cC?eCVII9'le < 1 whenever s = 0, then
there exists M > 0 sufficiently large (depending on the initialization (yo, fo), on « and on B) such that
the a priori assumption 1s indeed satisfied.

12



Let us summarize what we have done, under the growth condition and under the a priori as-

sumption . By , we have (yg, fx) = (Yo, fo) — Z;:é )\j(le, Fjl)7 and then, using @ and Step
we get the a posteriori estimate

VEy

yrlloe < Cll(yr, fi)llae < Cll(yos fo)lla +mC2eCVE(1+ M)EVF Y0
1—eg(No)

(36)

with the agreement that o = ||¢'||coc and 8 = 0 if s = 0. Hence, to prove that the a priori assumption
(29) is satisfied, it suffices to choose M > 0 large enough so that the right-hand side of is less than
or equal to M.

Recalling that ¢ = [¢/], C2t5e(H9)CVa(1 4 M)AH9CVE for s € (0,1] and ¢ = 2||g/||oo C2eC V19"l for
s =0, we infer from the proof of Step [l (in particular, from ) that:

e For any s € [0,1], if
(1+s)cEE <1 (37)

then eg(Xo) = cEZ and thus, by (36),

_s m 1 \/E
[Yklloo < Cll(yo, fo)lln + CTF ———cT+ — (38)
gl 1B

These estimates include the case s = 0 (with [¢']o = 2||¢|]lc0), in which is exactly the smallness
condition 2||g’||eC?eC VIl < 1.
Here, we choose the minimal real number M > 0 such that

_s m 1
Cliyo, fo)lla + CTF ———cT5 = <M. (39)

This is possible by assuming that Ej is sufficiently small, because then, there exist real numbers M
(which cannot be arbitrarily large) satisfying both and . This observation follows by inspecting
both inequalities, either with M large, or with Ey small.

The above choice of M is implicit and unfortunately cannot be made explicit for any s. We can however
give explicit expressions when s — 0, as follows. For s = 0, is written as ¢ = 2||¢||C2eC VIl < 1
(smallness condition) and gives

m C2 CVT9 T
1= g/l C2eCVIT

Now, when s — 0, s > 0, we must have § — 0, and then, taking equivalents, gives

/.

M\s:O = OH(y07 fO)”H =+

[g].C2eCVeE? < 1
while gives

mC? eCvVe
Mo = C||(yo, ———m o =VE
s~0 l(vos fo)ll# + 1— [91]80260\/5 0

which is in accordance with the case s = 0.
With this choice, gives a smallness condition on the initialization when s > 0.

e For any s € (0,1], if

(1+s)cE; >1 (40)
1 1
(now s = 0 is excluded) then 1—e§(X0) = (1+521+S cs+/Ey and thus, by (36]),
. 1 45 g0
Il < Clltwo, o)l + 75 PEETT ot )
Sl 1E"
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Here, we choose M > 0 large enough such that

om(l4s)ME asee

Cl(yo, fo)lln + CT+5 # cs0F9) Fig < M. (42)
slg']s™

This is possible because there exist (large) real numbers M satisfying . Indeed, taking M large, (42])

is of the kind

Cst MPHIOVEE, < M

which has solutions because, by assumption, (2 + %)C’\/B < 1. More precisely, here, we choose the
minimal real number M > 0 such that

1< (14 8)[g']s C2FoeH9ICVa(L 4 M) A+ICVPEE,
Cll (o, fo)llae + 22 (14 )1 )3 CP4E GHDOVEQL 4 M)EHDOVE By < M.
s
As before, the above choice of M is implicit. We can anyway give explicit formulas when s — 0. Indeed,
when s >~ 0, s > 0, we have then 5 — 0, CT\/B < 1, and gives

[g']SCQeC‘/&MC‘/BEO% >1
while (42)) gives

C 1

VB me P
? >C||(y07f0)|"}-[+?[g/]5’0s esCfEO

M-

and therefore

1

M|s~o = max

)S/(st\/B)
(lo.ceveEy)

me. ;L2 io/a
Te7m (Ol fo)lla+ =-lg): OF VR

4 Conclusion and further comments

Exact controllability of has been established in [I8], under a growth condition on g, by means
of a Leray-Schauder fixed point argument that is not constructive. In this paper, under a slightly
stronger growth condition and under the additional assumption that ¢’ is uniformly Holder continuous
with exponent s € [0, 1], we have designed an explicit algorithm and proved its convergence of a controlled
solution of . Moreover, the convergence is super-linear of order greater than or equal to 1 + s after
a finite number of iterations. In turn, our approach gives a new and constructive proof of the exact

controllability of .

Several comments are in order.

Minimization functional. Among all possible admissible controlled pair (y,v) € Ay, we have selected
the solution (Y1, F1) of (9) that minimizes the functional J(v) = ||v3,,. This choice has led to the
estimate which is one of the key points of the convergence analysis. The analysis remains true when
one considers the quadratic functional J(y,v) = |lwv]3,,. + [lwayl|3 for some positive weight functions
wy and we (see for instance [3]).

Newton method. Defining F : A — L%(Q7) by F(y,f) = (Ouy — 0wy + g(y) — f1.,), we have
E(y, f) = 3| F(y, f)|\2L2(QT) and we observe that, for A, = 1, the algorithm (21)-(22)) coincides with the
Newton algorithm applied to F' (see @ This explains the super-linear convergence property obtained in
Theorem [2] in particular the quadratic convergence when s = 1. Optimizing the parameter A\ gives a
global convergence property of the algorithm and leads to the so-called damped Newton method applied
to F. For this method, global convergence is usually achieved with linear order under general assumptions
(see [6l Theorem 8.7]). As far as we know, damped type Newton methods have been little applied to
partial differential equations in the literature. We mention [9} 4] in the context of fluid mechanics.
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Another variant. To simplify, let us take A\, = 1, as in the standard Newton method. Then, for
each k € N, the optimal pair (Y;!, F{!) € Ap is such that the element (yg1, fr+1) minimizes over A
the functional (z,v) — J(z — yk,v — fx) with J(z,v) := ||v]j2,4y (control of minimal L?(qr) norm).
Alternatively, we may select the pair (Y;!, F}!) so that the element (yx+1, fx+1) minimizes the functional
(z,v) = J(z,v). This leads to the sequence (yi, fx)ren defined by

Y1 = OaYir + 9 (Yr)Yrt1 = fre1lo + ¢ (Yr)ye — 9(yk)  in Qr,
yr =0, on Y, (43)
(Uk+1(+50), Oryr41(+ 0)) = (uo,u1) in Q.
In this case, for every k € N, (yg, fr) is a controlled pair for a linearized wave equation, while, in the case
of the algorithm —, (YK, fx) is a sum of controlled pairs (le, Fjl) for 0 < j < k. This formulation

used in [7] is different and the convergence analysis (at least in the least-squares setting) does not seem
to be straightforward because the term ¢'(yr)yr — g(yx) is not easily bounded in terms of \/E(yg, fx)-

Local controllability when removing the growth condition . Let us remove the growth
condition on g’. We have the following convergence result, under the assumption that E(yo, fo) is
small enough.

Proposition 2. Assume that g € CY*(R) for some s € (0,1]. There exists C([g']s) > 0 such that,

if E(yo,fo) < C([¢']s), then the sequence (yg, fx)ren in A defined in converges to (7, f) € A,
where f is a null control for § solution of . Moreover, there exists kg € N such that the sequence
(1@, F) = (Wis fr)ll2) k>, is decreasing and converges to O at least with order 1 + s.

The proof is a variant of the arguments given in this paper. We do not provide any details. In the case
g(0) = 0, the smallness assumption on E(yo, fo) is satisfied as soon as ||(ug, u1)||v is small. Therefore,
the convergence result stated in Proposition [2|is equivalent to the local controllability property for .
Proposition [2] can actually be seen as a consequence of the usual convergence of the Newton method:
when E(yo, fo) is small enough, i.e., when the initialization is close enough to the solution, then Ay =1
for every k € N and we recover the standard Newton method.

Multi-dimensional case. Let Q is a bounded subset of R%, 1 < d < 3, and let w be a nonempty open
subset of Q. Assume that the triple (2, w,T) satisfies the multiplier condition introduced in [12]. Then,
we conjecture that Theorem [2| remains true in this context, strengthening the growth condition on ¢ into
g/ ()] < a+ BIn'/?(1 + |z|), for every 2 € R and some 8 > 0 small enough. Establishing the result
should require to use estimates of [IT] [I5] (see also [§] for the case of a semilinear heat equations).

Boundary control. In this paper we have taken internal controls. Our approach may also be extended,
with few modifications, to boundary controls considered in particular in [I7]. We leave this issue open.

A Appendix: controllability results for the linearized wave equa-
tion

We recall in this appendix some a priori estimates for the linearized wave equation with potential in

L*(Qr) and source term in L*(Qr).

Lemma 1. Let A € L=(Qr), let B € L*(Q1) and let (29,21) € V. Assume that T > 2max({1,1 — {3).
There exists u € L?(qr) such that the solution of

Oz — Oppz + Az =ul, + B in Qr,
z=0 on X, (44)
(2(+,0),0:2(+,0)) = (20, 21) in Q,
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satisfies (2(-,T),0:2(-,T)) = (0,0) in Q. Moreover, the unique control u minimizing the L*(qr) norm
and its corresponding solution z satisfy

llz.qr + 1z Bu2)ll 753y < C(11Bll2 €A FOVIAT= 4 20, 2]y ) VI~ (45)

for some constant C > 0 only depending on Q and T.

Proof. The proof is based on estimates obtained in [18]. The control of minimal L?(gr) norm is given by
u = pl,, where ¢ solves the adjoint equation

04 — Ogzp + Ap =0 in Qr,
=0 on X, (46)
(@(',O),at(p(',())) = (80074)01) in Q’

where (¢, 1) € H := L?(Q) x H~(Q) is the unique minimizer of

J (0, 1) // @ +//TBso {(20,21), (po, ¥1)) v,

with ((z0,21), (g0, 01))v,H = <ZO,¢1)H6(Q)7H71(Q) — (21,%0)12(Q),L2(0)- In particular, the control v
satisfies the optimality condition

// <p<p+/Q Bp — (20, 21), (B B))v.r =0 W@, 7)€ H

from which we deduce that ||ul|3 .. < ||Bll2ll¢llz + (20, 21) v || (¢0, ¥1) || - From [I8, Lemma 2], we get

4T

1, 0e) 170 0,721y < Bull (w0, 1) [ 7 (1 + [ A3 )eP2VI4lI=

for some constants By, By > 0, and it follows that ||¢||3 < TBi||(¢o, 01)|1%(1 + || A]|2,)eP2VI4ll= More-

over, from [I8, Theorem 4], there exists C' > 0 such that ||(¢o, ¢1)||2; < Ce€V HA”°<’||go||§qT. Combining
these inequalities, we get

B
lellz2ary < (IBIVTVBL (1L + [ AI2)Y 2 % VIAT 4 (20, 21) |y ) Ve s VI,

1/2

Using the inequality (14 s%)'/2 < eV® for every s > 0, we get the result. Then, from [I8, Lemma 1], w

have
1 02w 0.2y < D1 (1200 20) (1 + [[Allo) + s + B ) P2V TAT

for some constants Dy, Dy > 0, and we infer that
12202 oizevry < D (110, 20302 + 1 Allo) + 21BIZ (14 TBy (1 + A% ) BV TS ) ) 2oV TAT

Using that (1 +5)'/2 < eV® and (1 + s%) < e?V® for every s > 0, we get the estimate. O

We next discuss some properties of the operator K : L>(Qr) — L*>(Qr) defined by K(§) = ye, a
null controlled solution of the linear boundary value problem with the control f¢ of minimal L?(gr)
norm. Lemma [I] with B = —g(0) gives

1(ves Deye)ll Lo 0.1iv) < C(HumulHV +[lg(0)| |+ VTN ) VIFEN =, (47)

As in [I8], the growth condition implies that there exists d > 0 such that ||§(y)||ec < d + 81In*(1 +
|yllse) for every y € L®(Qr), and it follows that eCVI9(©le < eCVI(1 4 ||¢],0)CVE. Using @7, we
infer that

Iwelloe < € (lluo, wrllv + llg(0)12) e H2OMVAL 4 ) +2IVE.
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Taking 3 small enough so that (1+2C)\/B < 1, we conclude that there exists M > 0 such that [|€|lcc < M
implies || K (€)|lcc < M. This is the argument of [18]. Note that, in contrast to 3, M depends on ||ug, u1||v
(and increases with |lug, u1]|v)-

The following result gives an estimate of the difference of two controlled solutions.

Lemma 2. Let a, A € L=(Qr) and let B € L*(Qr). Let u and v be the null controls of minimal L?(qr)
norm for y and z respectively solutions of
atty - azxy + Ay = U]-w +B in QT;
y=0 on X, (48)
(y(ao)vaty(70)) = (u07u’1) in Qa

and
Opz — Opwz + (A+a)z=vl,+ B inQr,
z2=0 on X, (49)
(2(+,0), 0¢2(+,0)) = (uo, u1) in Q.

Then,

ly = 2ll o (@r) < C*|allooeCVIATalle ¢(2H3C) VT4l (||B||2e(1+c>\/nAnm n ||uo,u1||v)

for some constant C > 0 only depending on Q and T.

Proof. The controls of minimal L? norm for y and z are given by u = ¢l and v = @,1,,, where ¢ and
(o respectively solve the adjoint equations

att@ - aﬂvw(p + ASD =0 in QT7 8tt<pa - 819:906& + (A + a)(Pa =0 in QT7
s0:0 OHET7 80:0 OHET,
((-,0),0p(+,0)) = (po,p1)  in, ((-,0),0:0(+0)) = (Pa,0,fa1)  inf,

for some appropriate (g, 1), (Pa,05a,1) € H. Hence Z := z — y solves

OnZ — 0z Z + (A4+a)Z =P1l, —ay in Qr,

Z=0 on Sr, (50)
(Z(-,0),0¢2(:,0)) = (0,0) in €,
and @ := (p, — ) solves
Ou® — 0:0P+ (A+a)® = —ap in Qr,
®=0 on X,

(®(-,0),0:2(-,0)) = (Ya,0 — P0; Pa,1 — 1)  in

We decompose ® = ¥ + ¢) where ¥ and v solve respectively

OV — 0y V+ (A+a)¥ =0 in Qr, Oty — Opath + (A+ a) = —ap in Qr,
U=0 on X, P =0 on X,
(\11(70)7 atlp('a 0)) = (Spa,O — Yo, Soa,l - 301) in Q7 w<70)a at’(/}('a O)) = (07 0) in Q7

and we deduce that U1, is the control of minimal L? norm for Z solution of

OnZ — OpuZ + (A+a)Z = W1, + (mw — ay) in Q.
Z=0 on Y,
(Z(-,0),8,Z(-,0)) = (0,0) in Q.
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Lemma [I] implies that

1124 + 1(Z, 8:2)l| = 0,m5v) < CllLe — ay|lzet 2OVl

Moreover, energy estimates applied to ¢ give |1l z2(4r) < Cllallsoll¢ll2e® lA+alle and

2
liell2 < Cligo, o1 llrre+OVIAT= < (CettOVIA= )

using that ||@o, p1]|a < CeCVIAll<|ly|ly . so that

91|22 (gz) < Cllaf|oceCVI4Talloe (Ce(Hc)\/m)zHqu,qT
from which we deduce that
1Z]l Lo (@r) < C(||¢1w|| + Ha'||L°°(QT)||y||2>e(1+2c)\/m
< Olalloo (VTR (GO OVIATY 2 gy + Iy
< Cllalloo (eC TA+allo (Ce(1+C)\/m>2 N 1)
+ C(HBHQG(HC)\/m + [[uo, u1||V)ec\/m

leading to the result. O
This result allows to establish the following property for the operator K.

Lemma 3. Under the assumptions done in Theorem[d], let M = M(||ug, u1||v, 3) be such that K maps
Boo(0, M) into itself and assume that §¢' € L>(0,M). For any & € Boo(0,M), i = 1,2, there exists
¢(M) > 0 such that

15 (€%) = K (€)oo < (MGl (0,00 1€% = €' lloo-

Proof. For any &' € Boo(0, M), i = 1,2, let Ygi = K (€¢%) be the null controlled solution of
Ouyer — Ozayer + Yes §(€') = —g(0) + feil,  in Qr,
yé =0 on Y,
(y§’(70)7aty£l(ao)) = (u07u1) in Qa

with the control fei1,, of minimal L?(gr) norm. We observe that ye: is solution of

Ouyer — Oualier + ye2 G(E) + ye2 (G(€%) — G(€")) = —g(0) + fe2ls, in Qr,

Yez =0 on X,
(ye2(+,0), rye2 (-, 0)) = (o, u1) in Q.
It follows from Lemma [2] applied with B = —g(0), A = §(¢'), a = §(£2) — §(¢'), that
1Ye2 — Y lloo < A(EY,€2)11G(6%) — G(E)lloo (51)

where the positive constant

g = 2
A, €)= CQ(eC Hg(&zmw(cemm ng<sl>um))
(||g(0)||26(1+0) "g(él)"m+lluo,u1||v)ec T3E) =

is bounded by some c¢(M) > 0 for every &' € Bo (0, M). The result follows from (51)). O

18



Remark 11. By Lemma if |g"|| Lo (0,ar) < 1/c(M) then the operator K is contracting. Note however
that the bound depends on the norm |Jug,u1||v of the initial data to be controlled.
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