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We present a data-driven methodology to achieve identification of coherent structures dynamics and system order
reduction of an experimental turbulent boundary layer (TBL) flow. The flow is characterized using time-resolved
Optical Flow Particle Image Velocimetry, leading to dense velocity fields that can be used both to monitor the overall
dynamics of the flow and to define as many local visual sensors as needed. A Proper Orthogonal Decomposition (POD)
is first applied to define a reduced-order system. A non-linear mapping between the local upstream sensors (inputs-
sensors) and the full-field dynamics (POD coefficients) as outputs is sought using an optimal Focused Time-Delay
(FTD) Artificial Neural Network (ANN). The choices of sensors, ANN architecture and training parameters are shown
to play a critical role. It is verified that a shallow ANN, with the proper sensor memory size, can lead to a satisfying
full-field dynamics identification, coherent structure reconstruction, and system order reduction of this turbulent flow.

I. INTRODUCTION

Current experimental methods such as Particle Image Ve-
locimetry (PIV) or numerical methods such as Large Eddy
Simulations (LES), used to characterize 3D non-stationary
flows, produce a large amount of data leading to high-order
systems. It is generally necessary to use an order reduc-
tion to derive some information that could be handled either
to model or control the targeted flow. Data-driven methods
are nowadays becoming more and more efficient and reli-
able even for fluid mechanics research9,17. Among success-
ful applications, one can cite statistical learning16 or ma-
chine learning14,35 algorithms. More recently Artificial Neu-
ral Networks (ANNs) have been used extensively for fluid me-
chanics, because of their architecture flexibility, needed for
reduced-order modelling29, as well as for field reconstruction
of complex non-linear flows22. A short review on different ap-
plications of Deep Learning to Fluid Dynamics can be found
in27. Nevertheless, applying identification or modelling al-
gorithms to experimental fluid mechanics is still challenging
because of various noises leading to non physical errors as
well as a limited number of sensors and the complexity of the
experimental setup. Large datasets with both good spatial and
temporal resolutions are needed for successful applications of
these data-hungry methods to experiments.

In an inverted flag flow experiment, Deng et al.9 applied an
ANN identification method to reconstruct time-resolved ve-
locity fields from a handful of velocity sensors. It was also
proven recently that ANNs can be used to predict the dynam-
ics and reconstruct the time-resolved fields of an experimental
Backward-Facing Step (BFS) flow15. We apply in this study
a similar methodology to an experimental TBL flow, with the
objective to identify correctly the dynamics, reconstruct the
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FIG. 1. Control scheme for minimizing perturbation kinetic energy
using a neural-network identifier

velocity field and predict the total Perturbation Kinetic Energy
(PKE) of the full velocity field. The ANN algorithm will be
used first to identify the global dynamics from upstream local
sensors and second to reduce drastically the order of the sys-
tem to a handful of easily measurable quantities. Such an al-
gorithm would be an ideal part of a model-free control loops14

aiming at reducing the PKE field, as shown in the Fig. 1.

A. Artificial Neural Networks

Artificial Neural Networks (ANNs) can provide a non-
linear mapping between one set of inputs-signals (that are eas-
ily measurable) and some corresponding output signals (that
may be hard to measure in a final application, but still valuable
for monitoring or control purposes). Great progresses have
been made lately due to the ability to handle very large data-
sets, the advancements of Graphics Processing Units (GPU)
parallel programming, and the increasing availability of mul-
tiple optimized toolboxes. A short review of applications of
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deep ANN to fluid mechanics can be found in Nathan Kutz 27 .
ANNs can be divided into Feed-Back (or recurrent) and Feed-
Forward. They can also be discriminated according to their
depth, either shallow or deep, depending on the number of
hidden layers (one or more). Finally, they can be divided into
static or dynamic, if the output of the current step depends on
the previous steps as well, giving it a notion of memory.

In the case of a feed-forward ANNs, the output of any layer
only modifies the next layer, not the previous ones. On the
other hand, in a recurrent ANN the system output is calculated
from its previous past time-steps along with the input at the
current time-step (eq. 1), hence introducing a notion of output
memory in the network.

yt = fw,b(yt−1,xt) (1)

One category of recurrent ANNs are the Long-Short Term
Memory (LSTM) networks. They are gradient-based recur-
rent NNs used for supervised learning both in classification
and prediction problems33. They were first developed by
Hochreiter and Schmidhuber 18 to solve the vanishing or ex-
ploding gradient problem of the back-propagated error. In an
LSTM architecture, the network is left to learn alone the size
of the memory of each neuron during the training process.
They do so using a sophisticated gate-neuron that determines
if the input is important enough or if it should be forgotten and
when it should output its value.

B. Focused time-delay Artificial Neural Networks

The neural network used in the present System Identifica-
tion (SI) study is a fully-connected FTD ANN, which was first
introduced for speech recognition34. It is basically a standard
feed-forward architecture along with a tapped constant time-
delay (of time-step size k) in the input (see Fig. 2). The term
“focused" comes from the fact that the notion of memory is in-
troduced only in the input (sensors), and not in the output like
in LSTM ANNs. They are used to model long-range temporal
dependencies by keeping a number of k past measurements
of the input at each time step xt . This leads to the following
expression for the output of the system :

yt = fw,b(xt ,xt−1, ...,xt−k) (2)

where w and b are weight and bias parameters. They
have been used for rainfall prediction6 as well as for effective
acoustic modelling19, in deeper architectures.

For the above network with a non-linear activation function
f1 in the hidden layer and a linear activation function f2 in
the linear layer, the equation giving the kth neuron output of a
single hidden layer network connected to the jth neuron of the
previous layer is:

yk = f1

(
N2

∑
j=0

w(2)
k j f2(

N1

∑
i=0

(w(1)
k j xi +bi))+b j

)
(3)

FIG. 2. An example of a FTD ANN to perform a non-linear mapping
from N inputs to M outputs.

FIG. 3. Flat plate geometry dimensions, perturbation slot and PIV
window position.

where N1 is the number of neurons in the first (hidden) non-
linear layer and N2 the number of neurons in the second (lin-
ear) layer. Regarding the choice of the non-linear activation
function f1, the tan-sigmoid or hyperbolic tangent function is
used:

tanh(x) =
e2x−1
e2x +1

(4)

The correct training process of the ANN (meaning finding
the optimum weights and biases connecting the neurons of
different layers) consists in dividing the data-set between a
training data-set and a validation data-set. For the training
data-set we chose one set of weights (randomly initialized in
the first iteration) connecting the layers and we use the same
weights for each time step to calculate the output of the model.
The error of the real vs the model-generated output signal is
computed and the weights and biases are updated according
to different back-propagation schemes (in our case the Scaled
Conjugate Gradient method). The above process is called one
“epoch". We continue the process for as many epochs as
needed until a satisfactory fit error is achieved. The second
data-set is used to test the performance of the network on new
data and verify the achieved error, hence avoiding overfitting.

In the following, we first present the experimental setup as
well the main characteristics of our Turbulent Boundary Layer
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FIG. 4. Instantaneous streamwise velocity fluctuation field of the TBL experiment. Vertical field for z∗ = 0 (top) and horizontal field for plane
y = 2 d∗0 (bottom). Streamwise velocity streaks can be clearly observed.

(TBL) flow. The choice of the sensors of the ANN is then
discussed and parametric studies of different training parame-
ters are presented. The efficiency of the ANN for the dynam-
ics identification and velocity field reconstruction is illustrated
before turning to the discussion and conclusion.

II. EXPERIMENTAL SETUP

A. Hydrodynamic channel

Experiments were carried out in an hydrodynamic channel
in which the flow is driven by gravity. The flow is stabilized by
divergent and convergent sections separated by honeycombs
leading to a turbulence intensity of 0.6 %. A NACA 0020
profile is used to smoothly start the boundary layer. The test
section is 80 cm long with a rectangular cross-section 15 cm
wide and 8.5 cm high as shown in Fig. 3.

B. Time-resolved Particle Image Velocimetry measurements

The flow is seeded with 20 µm neutrally buoyant
polyamide particles, illuminated by a laser sheet created by a
10 W continuous laser (MX-6185, Coherent, USA) operating
at 532 nm. A thin layer of fluorescent paint (FP Rhodamine
6G, Dantec) was applied to the illuminated surface, absorb-
ing the laser wavelength to avoid reflections and to allow cor-

rect near-wall measurements. The camera used was a PCO
DIMAX-cs with a sampling frequency of 150 Hz. An narrow-
band optical filter centered around 532 nm was mounted on
the camera to avoid any optical noise.

The velocity field is calculated from the acquisition of suc-
cessive snapshots of the vertical laser sheet in the middle of
the test section using a home-made optical-flow algorithm.
The first version of the code has been developed at ONERA5

and later modified, optimized and adapted to the constraints
of real-time measurements13. The advantage of this algorithm
compared to a standard FFT-PIV algorithm is its high com-
putational speed when implemented on GPUs with CUDA
functions8. The code has been used many times both for time-
resolved PIV measurements with a high spatial resolution31 as
well as for closed-loop flow control experiments10–12,32.

The vertical (x, y) PIV plane was chosen for the present
identification because a larger experimental dataset was avail-
able. Indeed, only the boundary layer region contains relevant
information for the identification algorithm so that only the
lower part of the snapshots are used, which allows a signifi-
cant reduction of computational time. Also, the distribution
of streaks in the spanwise direction was found homogeneous
for the specific forcing. The extension of the method in the
horizontal plane and for different boundary layer forcing sce-
narios could also be investigated.

The parameters of the PIV experiments used in the follow-
ing are summarized in table I. One should keep in mind that
the optical flow algorithm leads to dense vector fields with one
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PIV length(cm) 23.39
Snapshot size 162x1978

Spatial resolution 0.116 mm/pixel
# Snapshots 6400

Acquisition time(s) 41.3

TABLE I. PIV experiment parameters.

vector per pixel.

III. FLOW CHARACTERISATION

In the present study we focus on a specific transition sce-
nario of the zero pressure gradient flat plate boundary layer
flow. This flow can experience various mechanisms for its
transition to turbulence. In one scenario, when the incom-
ing turbulence intensity is lower than 1% initial environment
disturbances are amplified via a receptivity process20 and are
carried downstream by the flow with increasing amplitude. A
breakdown of the laminar flow occurs due to a selective am-
plification of a narrow band of frequencies which creates the
so-called Tollmien-Schlichting waves. The amplitude of the
waves increases up to the point where unstable 3D peaks and
valleys occur until they breakdown into hairpin eddies and tur-
bulent spots. These wave-like structures are periodic in space
and time. The critical Reynolds number based on the local
displacement thickness is defined as:

Re
δ
∗
0
=

δ
∗
0 (x)U∞

ν
(5)

where U∞ is the free-stream velocity, ν is the kinematic vis-
cosity, x the streamwise coordinate (y and z being respectively
the vertical and spanwise axis) and

δ
∗
0 =

∫
∞

0
(1− u

U∞

)dy (6)

is the local displacement thickness at the inlet of the PIV
window, at x0 = 37 cm from the leading edge. The critical
Reynolds number is Recrit

δ ∗ = 520.
A different transition scenario may occur if the turbulence

intensity of the incoming flow is order of 1%26 or higher: the
bypass transitions. Groups of streaks are usually observed,
which are streamwise structures periodically distributed along
the spanwise direction1,24, for Reynolds numbers as low as
Reδ ∗(x) = 300. It is called bypass, because it can bypass the
TS instability mechanism altogether.

The dynamics identification and coherent structure recon-
struction of a subcritical bypass transition is investigated in the
present experiment. The transition is triggered using a finite
amplitude pulsating jet (described in the following section).
Groups of wavy streaks are observed as shown on Fig. 4.
The shape factor H of the forced boundary layer is H = 1.31,
which is typical of a turbulent flow. The coherent structure
advection velocity uadv has been estimated around 0.75 U∞

(based on a space-time diagram of a horizontal profile of the
streamwise velocity perturbation inside the boundary layer).

FIG. 5. Block diagram showing the different steps used for the ex-
perimental perturbation energy identification through POD and train-
ing/validation steps.

In the following all the spatial variables are non-
dimensionalized using the displacement thickness at the be-
ginning of the PIV window δ

∗
0 (at x0 = 37 cm), for the unper-

turbed flow and noted (x∗,y∗,z∗). The velocity components
are non-dimensionalized with the freestream velocity U∞ and
noted (u∗,v∗,w∗). Consequently, we refer to the dimension-
less time t

∗
= tU∞/δ ∗0 .

A. Transition forcing mechanism

The unperturbed flow is a laminar boundary layer. The
Reynolds number measured at the inlet of the PIV window
is Reδ ∗ = 409 for a freestream velocity U∞ = 0.188 m.s−1.
No natural instability was observed without forcing. The dis-
placement thickness at x0 = 37 cm is δ

∗
0 = 2.5 mm leading to

a shape factor H0 = 2.34, typical of a laminar boundary layer.
In order to evaluate the potential of ANN on a non-linear

flow, the transition to turbulence of the boundary layer is
forced using a finite amplitude pulsating jet perturbation. The
perturbation is induced by a spanwise slotted inclined (45◦)
jet as shown on Fig. 3. The injection system is optimized
to obtain an homogeneous velocity along the spanwise di-
rection. It is located at x = 5 cm downstream the leading
edge, as shown in Fig. 3. The jet outlet has a rectangular
cross-section which is 0.4 cm long (streamwise direction) and
9 cm wide (spanwise direction). The jet is supplied by a pres-
surized water tank, monitored by a SMC ITV 1010 electro-
pneumatic regulator to control the jet frequency f f orcing and
amplitude U f orcing. The frequency of the perturbation was
random (0 < f f orcing < 5Hz), for a constant maximum am-
plitude. The experiments were repeated multiple times show-



5

FIG. 6. Location of the double visual sensors shown over the time-averaged unperturbed streamwise velocity field u.

ing the same Proper Orthogonal Decomposition (POD) mode
structures.

B. Proper Orthogonal Decomposition

Decomposing a dynamical system in modes of decreas-
ing importance can help reducing the order of the variables
of the system. N consecutive instantaneous velocity fields
{U(n) = (u∗,v∗)}n=1...N were computed from consecutive
flow snapshots with an acquisition frequency fac = 150 Hz.
By calculating the mean field [u,v] we were able to obtain the
velocity fluctuations u′(t) = u∗(t)− u and v′(t) = v∗(t)− v,
which contained all the dynamics and were used to create the
reduced-order system. The fluctuation matrices organised in
columns for each time-step were used to form the so-called
“snapshot matrix" to be decomposed. The reduced-order sys-
tem is obtained using POD, which has been used extensively
in fluid mechanics2,25. It allows us to build a ranked and or-
thonormal basis containing N modes23,30. The first M modes
{Φm}m=1...M with M ≤ N containing a sufficient percentage
of the total energy is then chosen to compute the approximated
velocity field Ũ(n):

Ũ(n) =
M

∑
m=1
〈Φm,U(n)〉Φm =

M

∑
m=1

am(n)Φm (7)

where the scalar product 〈·, ·〉 is the energy-based inner
product. The system output to be identified is obtained
through the reduced state vector containing the M POD co-
efficients am(n):

Y (n) = [a1(n) a2(n) ... aM(n)]T (8)

The full-field dynamics are now contained in their POD
coefficients am(t). The balance between the order and accu-
racy of the POD reduced-order system is crucial, because for
a large number of POD modes the SI methods are much more
likely to fail.
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FIG. 7. Energy of each POD modes together with the cumulative
total energy of the POD modes up to 80 % of the total energy.

C. Overview of the method

In the present SI method we first apply a POD to the time-
resolved PIV snapshot matrix, to perform a first system or-
der compression. Then we proceed to train a FTD ANN for
the non-linear mapping between local upstream sensors and
the dynamic POD coefficients. All the dynamics information
is then included in a 2 easily measurable quantities. More
specifically, the available time-resolved PIV dataset is divided
into the learning or training part and the validation part. Dur-
ing the training step, the parameters of the model (weight,
bias) are updated accordingly using an appropriate learning
algorithm which takes into account the error between the ex-
pected output and the model-generated output via a back-
propagation learning algorithm, in our case the scaled con-
jugate gradient. After each weight and bias update, an epoch
has passed. As many epochs as needed are used to obtain
a satisfying fit error. Then, during the validation step, the
model generated outputs are compared with the new data, this
time expecting equivalent fit results as during the training step.
Larger validation fit errors yield over-fitting and make the net-
work useless. The correctly trained network will allow the
accurate prediction of the PKE at any moment using just a
few local PIV sensors. The different steps of the overall iden-
tification process are summarized on the diagram shown in
Fig. 5.



6

20 40 60 80

7
5
3
1

-0.5

0

0.5

20 40 60 80

7
5
3
1

-0.5

0

0.5

FIG. 8. 3rd (a) and 13th (b) POD mode structures.

IV. VALIDATION CRITERION

To evaluate the efficiency of the identification, one has to
define a relevant quantitative criterion to compare the POD co-
efficient time-series results obtained with the different ANN
architectures to the ones obtained experimentally. In the
present study, we compute the mean-squared error (MSE) at
each time-step n for each POD coefficient am(n):

MSEm =
1
N

N

∑
n=1

(aexp,m(n)−aNN,m(n))
2 (9)

Then the averaged MSE for all the coefficients (M = 17)
time-series gives the final evaluation error for the specific
ANN architecture:

MSE =
1
M

M

∑
m=1

MSEm (10)

V. RESULTS

First, we obtained the full dataset of N = 6400 consecutive
snapshots, acquired with a sampling frequency of 150 Hz. A
POD was applied using the snapshot method. 17 POD modes
were needed to obtain satisfying results with at least 80 %
the total energy. The energy of the individual POD modes
as well as their cumulative energy are shown in Fig. 7. The
spatial structure of the third and 13th POD modes can be found
in Fig. 8 while their time evolution is shown in Fig. 9. We
clearly see the similarity of the 3rd POD mode with the large-
scale coherent structures visualized in the instantaneous field
of Fig. 4a).
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FIG. 9. Evolution of 3rd (a) and 13th (b) dynamic POD coefficient.

VI. SENSORS DEFINITION

A. Choice of the sensor

The visual sensors will be the inputs in the identification
process. The choice of the sensor(s) is then a critical step.
There are many possible type of sensors as well as many pos-
sible size and locations.

The first step is to choose the physical nature of the sensor
which should be based on the two components of the instanta-
neous 2D velocity field measured at each time-step. It can be
simply one of, or the two components of the velocity field, or
the velocity magnitude measured in a given window defined
in the PIV field. Because of their simplicity, they are the first
sensors we will test.

As we are interested in the dynamics of coherent structures
advected into the boundary layer, one can also choose to com-
pute the vorticity field. As the vortical structures are embed-
ded into the boundary layer, it is better to use more refined de-
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FIG. 10. Time-series and power spectrum of velocity (s1) and
swirling strength (s2) sensor.

tection criteria, like the Q criterion or the λCi criterion, which
are well adapted to the identification of vortical structures in-
side a shear layer.

In the following, we will use the swirling strength λCi cri-
terion, which was first introduced by7 who analyzed the ve-
locity gradient tensor D =

−→
∇
−→u and proposed that the vortex

core could be defined as a region where ∇u has complex con-
jugate eigenvalues. It was subsequently improved by36 and
by4. It was also successfully applied by3 to visualize the 3D
vortices created by a Jet in Cross-Flow measured by Volumet-
ric Velocimetry or by12 in a closed-loop flow control experi-
ment using a similar visual sensor. For 2D data, λCi can be
computed quickly and efficiently using eq. (11) when such a
quantity is real (else λCi = 0):

λCi =
1
2

√
4det(∇u)− tr(∇u)2 (11)

B. Number of sensors

On one hand, reducing the number of sensors leads to a re-
duction of the number of inputs (and outputs) which generally
would make the training of the system simpler. On the other
hand we may loose valuable dynamics information, helpful
for the identification process. A compromise has to be found.
A combination of two inputs has been tested: first, the wall-
normal velocity measured at one point (averaged over the five
neighbouring pixels) and second, the swirling strength vortex
identification criterion λCi (as a sum of all the pixels in a 15
pixels-wide window). The combination of the 2 inputs was
found to give better results compared to the velocity sensors
alone or the swirling strength alone or the local vorticity and
velocity combination. The main MSE results can be found in
table.

The swirling strength window allows a good detection of
every vortices passing into the boundary layer. The spectra

n1 MSE Sensor choice
75 0.05 [ λci , v

′
]

110 0.11 v
′

90 0.32 λci

TABLE II. Comparison of the validation data-set fit error obtained
with a single velocity input, a single swirling strength input and their
combination. Using the combination of the inputs minimises the
MSE and the number of neurons.
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FIG. 11. Cross-correlation of the velocity (s1) and swirling strength
(s2) sensors with 3rd (a,b) and 13th (c,d) POD coefficient.

of the two sensors (Fig. 10) show that the velocity sensor de-
tects the large structures passing in the neighbourhood with a
frequency close to 1 Hz, while the swirling strength criterion
gives us more information about the high frequency dynamics
up to 4.8 Hz. Some frequencies can be found in both spectra,
like a clear 2.32 Hz peak.

The efficiency of the combination of the two sensors can be
explained through the cross-correlation of the sensor signals
with the time-series signals of the POD coefficients, as illus-
trated in Fig. 11. One can clearly see that the 3rd POD coef-
ficient is weakly correlated with the swirling strength sensor,
while it is strongly correlated to the velocity sensor. On the
opposite the 13th POD coefficient, which contains higher fre-
quencies (see Fig. 9), is strongly correlated with the swirling
strength sensor. This could be one of the reasons why the
training using these two sensors is much more accurate than
using a single sensor.

C. Position and size of the visual sensor(s)

The width of the swirling strength window also plays an
important role to obtain good SI results. If it is too large it
creates an unnecessary smooth event, while if too small it can
be too noisy, especially for gradient variables computed from
experimental data. A good compromise was found for 0.7 y∗.
The height of the was chosen large (5 y∗), so that it contains
entirely the advected structures in the wall-normal direction,
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FIG. 12. Structure of the FTD ANN used for this study, with 2 inputs-
sensors (v′ and λCi), a k time-delay, 1 hidden layer with 75 neurons
and M outputs (in our case M = 17 POD modes).

as observed in the POD modes.
The choice of the position of the sensors is also crucial. In

general, the sensors should be located as upstream as possible
in order to measure and predict early the downstream dynam-
ics. The final position of the chosen sensors is shown in Fig. 6.

VII. PARAMETER SENSITIVITY STUDIES

The architecture and parameters of the ANN can be
changed to avoid overfitting and improve the training process,
mainly by choosing the appropriate number of neurons in the
hidden layer. The depth of the network (meaning number of
hidden layers) can also be increased if needed. Generally a
deeper network (using the same number of total neurons) will
allow the identification of more complex features and infor-
mation. The drawback is that the successful training can be-
come very tricky, especially since it increases significantly the
computational time for the training as well as the complex-
ity of the network. This makes training parameter sensitivity
analysis almost impossible.

In the FTD ANNs used in the present study the input time-
delay (meaning the size of the sensor memory) can also be
chosen accordingly to improve training and validation fit. It
was found critical for the success of the training. The training
process had a very low computational time: it was of the order
of O(1) minute using a Intel Xeon E5-2630 CPU running at
2.2 GHz. This allowed for a full parametric study to find the
optimal time delay k for the inputs and the minimum number
of neurons for the hidden layer.

For all the ANN calculations (training, validation) the
MATLAB Deep Learning Toolbox was used. A basic scheme
of the final FTD ANN can be shown in Fig. 12. An anti-causal
zero phase low-pass moving average (over four time-steps) fil-
ter has been applied to each pixel time-series. The maximum
frequency of the forced BL dynamics was 5 Hz, so seven times
lower than the low-pass filter cutoff frequency.

We mention that training with LSTM recurrent architec-
tures was found inefficient in our case, with a strong increase
of the computational time. A simple shallow Time-Delay
ANN scheme with 75 neurons gave the best results. This is in
contradiction with the result of Ogunmolu et al. 28 who have
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FIG. 13. Training and validation mean-squared error for each epoch
of the training process.
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FIG. 14. Training and validation MSE for each POD coefficient time
series.

found out that deep architectures are more efficient than single
hidden layer models for noisy data sets. In our case a single
hidden layer model was sufficient.

The ANN used contained a tan-sigmoid transfer function.
As a standard time-delay neural network it also contained
an output layer with a linear transfer function to the output.
The training time using a scaled conjugate gradient back-
propagation algorithm was around 1 minute for a shallow net-
work using a Intel Xeon E5-2630 CPU running at 2.2 GHz.It
allowed a full parametric study to find the optimal time-delay
for the inputs and the appropriate number of neurons in the
hidden layer.

A. Training parameters

The full data-set is divided into training (85% of the snap-
shots), validation (10% of the snapshots) and over-fitting
check data-set (5% of the snapshots) as summarized in Ta-
ble IV. The third data-set is used as an early stopping criterion
to test if a rising error is observed during the training process.
As a common practice the data are shuffled randomly before
the beginning of the training process. It avoids bad models if
the data are initially classified. It also makes fitting faster be-
cause neighbouring points are not similar. Block consecutive
data-set division failed to give good fit results. We also men-
tion that a data standardization was applied before the training
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FIG. 15. Comparison of the 1st to 6th POD coefficients time-series obtained from experimental data with the ones obtained with the ANN for
training(a) and validation (b) datasets. The network zero signal due to time-delay is evident in the training set.

# Inputs 2
# Outputs 17

# Training Snapshots 5440 (85%)
# Validation Snapshots 640 (10%)

# Overfitting check snapshots 320 (5%)

TABLE III. Neural network training parameters configuration

process which also helps when different inputs or outputs have
different scales. Lastly, we mention that the weights and bi-
ases of the network are initialized randomly for the first epoch.

The optimum number of neurons for the hidden layer was
found to be 75 and the best sensor time-delay corresponded to
k = 300.8× t? snapshots (or around 4 s).

The evolution of MSE with the epoch number is shown in
Fig. 13 for both training and validation. The MSE decreases
sharply for the first epochs and more smoothly for increasing
epochs. The optimum architecture and training parameters are
summarized in the table IV.

Network layer structure 2-75-17-17
Activation function Hyperbolic Tangent

Loss function MSE
Training method Scaled Conjugate Gradient

Time-delay(s) 4

TABLE IV. Final choice for the neural network parameters.

In Fig. 14 we can see hat the MSE for each POD coeffi-
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FIG. 16. Network validation performance as a function of the time-
delay in the sensors. Increasing the size of the sensor memory de-
creases the error in a linear way, after approximately 150 time units.

cient is around 5 % for most of the coefficients and for both
training and validation, which is very satisfactory. In Fig. 15
we compare the time-series of the six first POD modes with
the time-series obtained in the training step (a) and in the val-
idation step (b). Both training and validation data are in very
good agreement with the experimental data.

B. Influence of the sensor memory

The influence of the time-delay in the inputs, is illustrated
on the plot of the evolution of the MSE as a function of the
time-delay shown in Fig. 16. We observe that the sensor mem-
ory is critical for the correct dynamics identification: a mini-
mum of k = 150× t? time units is required to obtain for the
first time a correct identification with an MSE lower than 50%.
A sensor memory of 300.8× t? breaks the error limit of 5%.
The interpretation of the physical meaning of an optimal neu-
ral network is often useful, but not frequently studied. In our
case we observe that an abrupt error drop occurs in the region
of the sensor memory size of t∗ = 150× t? ; using the struc-
ture advection velocity we obtain a characteristic length scale
of 112.2 x∗, which is 1.22 times the size of our PIV domain
(92 x∗). This shows that the optimal memory size is actually a
function of the sensor position, the structure advection veloc-
ity and the size of the domain of which we are identifying the
dynamics.

C. Influence of the number of neurons in the hidden layer

Keeping an optimal constant time delay of 600 time-steps
or 300.8 t*, we can study the sensitivity of the validation er-
rors as a function of the number of neurons in the hidden layer,
as shown in Fig. 17. A minimum of 70 neurons is needed to
achieve an error of the order of 10 %. We also should keep
in mind that increasing the number of neurons in the hidden
layer increases drastically the number of parameters and the
complexity of this fully connected architecture, even if the
network is shallow.
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FIG. 17. Network validation performance as a function of the num-
ber of neurons in the hidden layer.
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FIG. 18. Network validation performance as a function of the num-
ber of snapshots used for the training.

D. Influence of the size of the training data-set

In Fig. 18 we show that decreasing the number of snapshots
used for the training of the network leads to an increase of the
number of neurons in the hidden layer needed for an equiv-
alent validation error (keeping a constant time-delay of 301
time units t∗). Above a given number of snapshots, increasing
the number of neurons does not help: it introduces overfitting
hence increasing the validation error.

VIII. OPTIMAL PARAMETER RESULTS

Using the optimal time delay, the right number of neurons
in the hidden layer and the proper combination of double up-
stream sensors, we can check the efficiency of the network in
the POD coefficient signal prediction and the time-resolved
instantaneous fields reconstruction. The dynamic coefficient
signals are accurately predicted. In Fig. 15 it is clear that the
fit error is similar for both training (left) and validation (right)
datasets, which ensures we avoided overfitting. In Fig. 19
we see that the main large coherent structures are well recon-
structed.

Finally, the kinetic energy of these perturbations (PKE)
computed for each pixel in the PIV window is defined as:

PKE(t) =
1
2

∥∥∥(u
′
(t),v

′
(t)
)∥∥∥2

(12)



11

20 40 60 80

7
5
3
1 -0.1

0

0.1

20 40 60 80

7
5
3
1

-0.1

0

0.1

FIG. 19. Instantaneous horizontal fluctuation velocity field comparison between experiment (a) and ANN-reconstructed field (b). Movie
online. Time-steps are not consecutive due to the dataset shuffling process during the training-validation division.
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FIG. 20. Comparison of the sum of PKE computed in the PIV win-
dow between decomposed experimental field and ANN-identified re-
constructed field. Zero network signal is due to sensor time-delay.

The sum of this quantity for each pixel is an interesting con-
trol quantity for the future model-free control scheme, since it
is an indication of the total advected turbulent fluctuations in-
tensity. So it is calculated and a compared, between ANN gen-
erated results and experiment. For the validation data-set, the
optimal ANN architecture gives us a MSE of 10.46 %. The
model and experimental time-series are in very good agree-
ment as shown in Fig. 20.

IX. CONCLUSION

A successful application of an ANN SI framework was
presented for the case of an experimental Turbulent Bound-
ary Layer flow. FTD ANNs were proven flexible enough
to achieve sufficient prediction precision, even for a high-
order multiple-input multiple-output non-linear system. A
non-linear mapping between upstream sensors and the global
dynamics of the flow (in the form of POD coefficients) was
presented. The cross correlation between sensors and coeffi-
cient signals was proven a useful tool for the choice of the op-
timal sensors. Different sensors correlate well with different

coefficient signals. It was revealed why the collaboration of a
swirling strength sensor and a local velocity sensor resulted in
an accurate network training. The dynamics were identified,
the turbulent coherent structures (wavy streaks) were recon-
structed, and the system order was reduced to two easily mea-
surable signals. A physical interpretation was given for the
optimal sensor memory size in the final ANN architecture.

The difficultly in the estimation of the coherent structures in
this TBL flow arises due to streak wavyness and weak three-
dimensionality. Still the ANN was proven efficient if the sen-
sor memory size and number of neurons are properly chosen.
The achieved fit accuracy is around 5%. The present study
is the first step in identifying an efficient model-free control
law like in Gautier et al. 14 , Li et al. 21 , that comes from deep
knowledge and precise prediction of the dynamics of each
point in the velocity field. It will target the minimization of the
PKE, since this quantity can be tracked in real-time. We also
mention that the Reynolds number could also be integrated as
an input, while the output could include POD coefficients for
the different Reynolds numbers, hence going towards a sys-
tem of variable velocity in the style of San et al. 29 .

The presented methodology could also be applied to the
same turbulent flow but based on the horizontal (spanwise-
streamwise) PIV plane (Fig. 4). Spanwise-distributed sensors
and deeper networks are possibly needed for this complicated
task but it clearly is now feasible. Different transition
scenarios in the boundary layer flow can also be investigated.
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