Damping of elementary excitations in one-dimensional dipolar Bose gases
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Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France (Dated: March 13, 2020) In the presence of dipolar interactions the excitation spectrum of a Bose gas can acquire a local minimum. The corresponding quasiparticles are known as rotons. They are gaped and do not decay at zero temperature.

Here we study the decay of rotons in one-dimensional Bose gases at low temperatures. It predominantly occurs due to the backscattering of thermal phonons on rotons. The resulting rate scales with the third power of temperature and is inversely proportional to the sixth power of the roton gap near the solidification phase transition. The hydrodynamic approach used here enables us to find the decay rate for quasiparticles at practically any momenta, with minimal assumptions on the exact form of the interparticle interactions. Our results are an essential prerequisite for the description of all the dissipative phenomena in dipolar gases and have direct experimental relevance.

Introduction.-At low pressures and temperatures, helium-4 is a remarkable quantum liquid that is superfluid. Landau characterized the latter state by a dissipationless flow of macroscopic objects at small velocities [START_REF] Lifshitz | Statistical physics[END_REF]. Another particular feature of the superfluid helium is seen in its spectrum of elementary excitations. While at lowest momenta it is linear, the spectrum possesses a local minimum. The corresponding quasiparticles are known as rotons and have the wavelengths that practically coincide with the mean interparticle distance. Since the interaction between helium atoms is strong, the roton can be visualized as yet undeveloped Goldstone mode due to an instability toward the crystallization [START_REF] Nozières | Is the Roton in Superfluid 4He the Ghost of a Bragg Spot?[END_REF]. However, such so-called supersolid state that unifies superfluidity with crystalline order has not been so far observed in helium, despite some controversies [START_REF] Kim | Probable observation of a supersolid helium phase[END_REF][START_REF] Day | Low-temperature shear modulus changes in solid 4 He and connection to supersolidity[END_REF][START_REF] Kim | Absence of Supersolidity in Solid Helium in Porous Vycor Glass[END_REF].

Another system that shows some similarities with superfluid helium are dipolar Bose gases. They can be realized with atoms possessing large dipolar moments, such as chromium, dysprosium, and erbium. Bose-Einstein condensates of those atoms are realized [START_REF] Griesmaier | Bose-Einstein Condensation of Chromium[END_REF][START_REF] Beaufils | Alloptical production of chromium Bose-Einstein condensates[END_REF][START_REF] Lu | Strongly Dipolar Bose-Einstein Condensate of Dysprosium[END_REF][START_REF] Aikawa | Bose-Einstein Condensation of Erbium[END_REF], which opened new avenues for studying various phenomena that originate from the dipolar interaction [START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF][START_REF] Baranov | Condensed Matter Theory of Dipolar Quantum Gases[END_REF]. Some of them are the striped states [START_REF] Wenzel | Striped states in a many-body system of tilted dipoles[END_REF], the quantum droplets [START_REF] Ferrier-Barbut | Observation of Quantum Droplets in a Strongly Dipolar Bose Gas[END_REF][START_REF] Chomaz | Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid[END_REF], and the elusive supersolid state [START_REF] Böttcher | Transient Supersolid Properties in an Array of Dipolar Quantum Droplets[END_REF][START_REF] Chomaz | Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases[END_REF][START_REF] Tanzi | Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties[END_REF][START_REF] Natale | Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence[END_REF][START_REF] Guo | The low-energy Goldstone mode in a trapped dipolar supersolid[END_REF][START_REF] Tanzi | Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas[END_REF].

Trapped dipolar Bose gases can exhibit a quasiparticle spectrum with a roton minimum [START_REF] O'dell | Rotons in Gaseous Bose-Einstein Condensates Irradiated by a Laser[END_REF][START_REF] Santos | Roton-Maxon Spectrum and Stability of Trapped Dipolar Bose-Einstein Condensates[END_REF]. This occurs because the dipolar interaction cannot be described only by a shortrange pseudopotential, but it must also include an anisotropic long-range part, in order to correctly describe the low-energy scattering between bosons [START_REF] Baranov | Condensed Matter Theory of Dipolar Quantum Gases[END_REF]. The quasiparticle spectrum in weakly-interacting Bose gases is determined by the Bogoliubov theory [START_REF] Bogolubov | On the theory of superfluidity[END_REF] and depends on the Fourier transform of the pseudopotential. Since it is described by the two parameters, one for the short-range and the other the long-range part, when they are properly tuned, the local minimum can develop in the spectrum. A recent experiment [START_REF] Chomaz | Observation of roton mode population in a dipolar quantum gas[END_REF] have confirmed the presence of rotons in the dipolar Bose gas.

The current understanding of the properties and the dynam-ics of dipolar gases is limited due to the lack of dissipative mechanisms in most theoretical descriptions. Without dissipation, one can neither describe the post-quench relaxation observed in Ref. [START_REF] Chomaz | Observation of roton mode population in a dipolar quantum gas[END_REF], nor predict the thermodynamic quantities related to ergodicity, such as the gas viscosity [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF][START_REF] Enss | Viscosity and scale invariance in the unitary Fermi gas[END_REF] and loss of phase coherence [START_REF] Ilzhöfer | Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms[END_REF][START_REF] Kurkjian | Brouillage thermique d'un gaz cohérent de fermions[END_REF]. In a well-isolated gas, dissipation arises primarily from the interactions between the quasiparticles, which allow the system to reach equilibrium. A prerequisite to understand the dissipative dynamics is thus to compute the quasiparticle lifetime, which is the purpose of this work.

At zero temperature, rotons and all quasiparticle excitations at lower momenta in a dipolar Bose gas are stable. Being slower than the sound velocity, those quasiparticles cannot emit phonons due to the conservation laws of momentum and energy. Such scenario resembles to the absence of Cherenkov radiation at small velocities. However, the quasiparticles do decay at finite temperature. The dominant process for the damping of a subsonic quasiparticle involves its scattering with another thermally excited quasiparticle, where two new quasiparticles become created [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF][START_REF] Gangardt | Quantum Decay of Dark Solitons[END_REF][START_REF] Matveev | Scattering of hole excitations in a one-dimensional spinless quantum liquid[END_REF][START_REF] Kurkjian | Landau-Khalatnikov phonon damping in strongly interacting Fermi gases[END_REF][START_REF] Castin | Landau Phonon-Roton Theory Revisited for Superfluid 4 He and Fermi Gases[END_REF][START_REF] Nicolis | Mutual interactions of phonons, rotons, and gravity[END_REF]. The resulting rate typically scales as a power-law of temperature.

In this paper we study the damping of energetic quasiparticles (including rotons) in a one-dimensional dipolar Bose gas. This process is controlled by the backscattering of thermal phonons. We find the low-temperature rate that scales as the third power of temperature, T 3 . The hydrodynamic approach employed here to describe the interaction between phonons and energetic quasiparticles is not limited to the weak-coupling regime, and does not require a specific form of the interaction potential. However, in order to describe roton damping, we must require specific interactions that lead to the formation of a roton minimum. Near the solidification phase transition, when the roton gap ∆ is much smaller than the other relevant energy scales (except temperature), we find a rate diverging as 1/∆ 6 . Our results pave the way to a description of the post-quench relaxation dynamics of a dipolar Bose gas [START_REF] Van Regemortel | Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp[END_REF]. arXiv:2003.05919v1 [cond-mat.quant-gas] 12 Mar 2020
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Resonance of single-phonon emission process q q q q Figure 1. Rotonic excitation spectrum of a one-dimensional dipolar Bose gas obtained from the Bogoliubov theory [START_REF] Sinha | Cold Dipolar Gases in Quasi-One-Dimensional Geometries[END_REF]. The damping of energetic excitations of the energy k T , i.e., hard phonons, maxons, and rotons is controlled by the backscattering off thermal phonons. Our theory is valid until quasiparticles become supersonic with velocities v k > c (right vertical red line).

Damping of energetic quasiparticles.-We consider a gas of bosons with a dipolar interaction between particles in a (quasi-)one-dimensional geometry (studied theoretically in Ref. [START_REF] Sinha | Cold Dipolar Gases in Quasi-One-Dimensional Geometries[END_REF] and recently realized experimentally [START_REF] Chomaz | Observation of roton mode population in a dipolar quantum gas[END_REF]). We assume that the gas is prepared at low temperature, T ∆, mc 2 , where mc 2 denotes the characteristic energy scale for phonons. By m is denoted the mass of particles, c is the sound velocity, while the Boltzmann constant is set to unity. Subsonic quasiparticles with the dispersion k are characterized by the velocity v k = d k /hdk that is smaller than c. They can decay only due to scattering off thermally excited quasiparticles. At very high momenta, the quasiparticles become supersonic, see Fig. 1. In this case they can decay already at T = 0 by emitting phonons, which is not precluded by the conservation laws [START_REF] Tan | Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas[END_REF][START_REF] Ristivojevic | Decay of Bogoliubov excitations in one-dimensional Bose gases[END_REF].

The collisionless damping rate [39] associated to a subsonic quasiparticle of the energy k T (see Fig. 1) can be computed using the Fermi golden rule:

Γ k = 2π h q,q ,k |A if | 2 L 2 δ( k + hω q -k -hω q )n q (1 + n q ). (1) 
Here ω q = c|q| is the phonon frequency, L is the system size, while n q = 1/[exp(hω q /T ) -1] denotes the Bose occupation factor [START_REF]The thermal population of energetic quasiparticle modes is negligible in the studied low-temperature case[END_REF]. In Eq. ( 1), A if is the transition amplitude from the initial state,

|i = γ † k b † q |0 with an excitation present in the mode k, to the final state |f = γ † k b † q |0
. By b † and γ † are denoted the bosonic creation operators for the phonon and the energetic quasiparticle, respectively. The delta function in Eq. ( 1) accounts for the energy conservation.

The transition amplitude A if can be computed with minimal assumptions, in particular not assuming that the gas is weakly interacting, using quantum hydrodynamics [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF][START_REF] Matveev | Scattering of hole excitations in a one-dimensional spinless quantum liquid[END_REF][START_REF] Castin | Landau Phonon-Roton Theory Revisited for Superfluid 4 He and Fermi Gases[END_REF][START_REF] Nicolis | Mutual interactions of phonons, rotons, and gravity[END_REF]. Within this theory, it is sufficient to consider the cubic residual interaction among phonons given by the Hamiltonian

Ĥph = q hω q b † q bq + q,q A 3 (q, q ) √ L b † q+q bq bq + H.c. . (2) 
The matrix elements A 3 follows from the hydrodynamic equations of motion [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF][START_REF] Kurkjian | Three-Phonon and Four-Phonon Interaction Processes in a Pair-Condensed Fermi Gas[END_REF] and have the form

A 3 (q, q ) = mc 2 √ 32ρ qq (q + q ) q 3 0 ρ 2 c 2 d dρ c 2 ρ + sgn(qq )
+ sgn(q(q + q )) + sgn(q (q + q )) ,

where ρ is the (mean) fluid density and q 0 = mc/h. The hydrodynamics describes the energetic quasiparticles perturbed by the phonon field within a local density approximation as

Ĥqp = 1 2 [ (p, ρ + δ ρ(r)) + pv(r) + H.c.] . (4) 
Here (p, ρ) is the Hamiltonian of the unperturbed quasiparticle in first quantization, where r is its position and p its momentum operator. By δ ρ and v are denoted, respectively, the density and the superfluid velocity perturbations caused by the phonons. Expanded to a quadratic order at small δ ρ ρ and expressed in second quantization, Eq. ( 4) becomes

Ĥqp = k k γ † k γk + k,q A 1 (k, q) √ L γ † k+q γk bq + H.c. + k,q,q A 2 (k, q, q ) L γ † k+q-q b † q γk bq . ( 5 
)
The phonons and the energetic quasiparticle are coupled by

A 1 (k, q) = ρ|q| 2q 0 ∂ ρ k + ∂ ρ k+q 2 + hc 2mρ|q| q k + q 2 , A 2 (k, q, q ) = ρ |qq | 2q 0 ∂ 2 ρ k + ∂ 2 ρ k+q-q 2 . ( 6 
)
Note the symmetry towards the exchange

k ↔ k = k + q in A 1 and k ↔ k = k + q -q in A 2
, which is a consequence of the hermiticity of the Hamiltonian (4). Computing the transition amplitude in second-order perturbation theory (not forgetting the contribution of three-phonon residual interaction [START_REF] Petković | Dynamics of a Mobile Impurity in a One-Dimensional Bose Liquid[END_REF][START_REF] Castin | Erratum: Landau Phonon-Roton Theory Revisited for Superfluid 4 He and Fermi Gases[END_REF]), on the mass shell we obtain

A if = A 2 (k, q, q ) + A 1 (k -q , q )A 1 (k -q , q) k -hω q -k -q + A 1 (k, q)A 1 (k , q ) hω q + k -k+q + 2A 3 (q , q -q )A 1 (k, q -q ) hω q -hω q-q -hω q + 2A 3 (q, q -q)A 1 (k , q -q) k -k -hω q-q δ k+q,k +q . (7) 
To compute the damping rate (1) at low temperature, we need the amplitude [START_REF] Beaufils | Alloptical production of chromium Bose-Einstein condensates[END_REF] expressed at the leading order in small q and q . The energy conservation constraint of Eq. ( 1) has non-trivial solutions only for the backscattering events, i.e., at qq < 0. It leads to the relation

q = -q × (c -v k )/(c + v k ) + O(q), kq > 0, (c + v k )/(c -v k ) + O(q), kq < 0. (8) 
Since the quasiparticle scattering off a phonon experiences a small energy change, we expand it to second order around the initial energy k as

k (ρ) = k (ρ)+hv k (ρ)(k -k)+ h2 (k -k) 2 2m * (k, ρ) +O(k -k) 3 .
(9) In the limit q → 0, the on-shell amplitude takes the form

A if = hc |qq |Y k δ k+q,k +q /2ρ, where Y k = ρ 2 mc 2 (c 2 -v 2 k ) (c 2 -v 2 k )∂ 2 ρ k -(∂ ρ k )∂ ρ (c 2 -v 2 k ) + h2 c 2 k 2 m * ρ 2 - (∂ ρ k ) 2 m * - 2hck ρ (v k ∂ ρ c -c∂ ρ v k ) , (10) 
in agreement with Ref. [START_REF] Matveev | Scattering of hole excitations in a one-dimensional spinless quantum liquid[END_REF]. Equation ( 10) has a divergence when v k approaches c. At high momenta this occur after the roton minimum when the quasiparticle becomes supersonic, see Fig. 1. Such singularity physically denotes the possibility for the decay by a single phonon emission. The same type of divergence in Y k also exists when the quasiparticle approaches the phonon regime. Those two thresholds are the boundaries of validity of our hydrodynamic approach (see the vertical red lines in Fig. 1).

Using the calculated on-shell amplitude we can now evaluate the damping rate (1). To the leading order in temperature we obtain

Γ k ∼ T →0 T 3 Y 2 k 8πh 3 c 2 ρ 2   c J c-v k c+v k c + v k + c J c+v k c-v k c -v k   , (11) 
where Y k is given by Eq. ( 10), while the dimensionless

J(x) = x +∞ 0
dq q2 [1+ ñ(xq)]ñ(q), with ñ(q) = 1/(e q -1). The rate (11) is our main result. It shows that the lowtemperature quasiparticle decay rate universally scales with the third power of temperature. The expression [START_REF] Baranov | Condensed Matter Theory of Dipolar Quantum Gases[END_REF] is general and independent of the particle interaction strength. The k-dependent part of the rate is contained in Γ k and depends on the specific details of the spectrum. We study now Eq. ( 11) in more details.

Hard phonon regime.-Since T mc 2 , there exists a regime of "hard phonons" with the characteristic energy T k mc 2 , such that our hydrodynamic approach applies. We consider the general form of the spectrum of the energetic quasiparticle, i.e., a hard phonon,

k = hc(ρ)|k| 1 + γ(ρ) 8 
k 2 q 2 0 + O (k/q 0 ) 4 . ( 12 
)
Here the coefficient of the small correction term is negative, γ(ρ) < 0, which ensures that the excitation branch is subsonic (i.e., concave) and that the zero-temperature decay by phonon emission [START_REF] Ristivojevic | Decay of Bogoliubov excitations in one-dimensional Bose gases[END_REF] does not occur. Expanding Eq. ( 10) at small k we obtain Y k = -Ak/q 0 + O(k/q 0 ) 2 , where

A = 1 -2ρ c c -ρ 2 c 2 c 2 -ρ 2 c c + ρ γ γ 1 + ρ c c . (13) 
By prime we denote the derivative with respect to ρ. Using J(x) ∼ 2ζ(3)x at x → ∞, the rate (11) becomes

Γ k ∼ T →0 k/q0→0 32ζ(3) 9π A 2 q 2 0 γ 2 k 2 T 3 h3 c 2 ρ 2 . ( 14 
)
Equation ( 14) becomes very large at small k, which reflects the denominator in Eq. [START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF]. Our approach requires the quasiparticle energy correction δ k = k -hc|k| of Eq. ( 12) not to be thermally smeared, i.e., δ k T . Therefore the rate ( 14) applies for phonons of wavevectors satisfying q 1/3 th q 2/3 0 |k| q 0 with the thermal wavevector q th = T /hc. To study the regime of k comparable to q 1/3 th q 2/3 0 , our phonon Hamiltonian (2) should be further expanded to describe four-phonon interactions [START_REF] Kurkjian | Landau-Khalatnikov phonon damping in strongly interacting Fermi gases[END_REF], while the phonon dispersion should be now taken with the correction, as in Eq. [START_REF] Wenzel | Striped states in a many-body system of tilted dipoles[END_REF]. In fact, this regime has been studied microscopically [START_REF] Lin | Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid[END_REF][START_REF] Ristivojevic | Decay of Bogoliubov quasiparticles in a nonideal one-dimensional Bose gas[END_REF]. For k = αq 1/3 th q 2/3 0 and α independent of temperature, the T 3 power law for Γ k breaks down. However, quite remarkably, one recovers Eq. ( 14) (specified to the Bogoliubov dispersion, see below) by taking the limit α → ∞ (see Eq. ( 8) in Ref. [START_REF] Lin | Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid[END_REF]). This excludes the existence of an intermediate scaling law between the regimes k ≈ q 0 (of which Eq. ( 14) gives the low-k limit) and k ≈ q 1/3 th q 2/3 0 (of which Eq. ( 8) in Ref. [START_REF] Lin | Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid[END_REF] gives the high-k limit).

Case of the rotons.-Rotons are a special case of the energetic quasiparticles considered above, which have a purely quadratic dispersion around the roton minimum k 0 :

k (ρ) = ∆(ρ) + h2 [k -k 0 (ρ)] 2 2m * (ρ) + O(k -k 0 ) 3 . ( 15 
)
The effective mass m * is positive for rotons, but the present discussion also applies to maxons, which have a similar quadratic dispersion but a negative mass, m * < 0. For such quadratic dispersion, using J(1) = π 2 /3, the damping rate (11) acquires a simpler form

Γ k0 ∼ T →0 π 12 Y 2 k0 T 3 h3 c 2 ρ 2 , (16) 
where one can use Eq. ( 10) at k = k 0 or its alternative version

Y k0 = ρ 2 mc 2 dµ dρ 2 d 2 ∆ dµ 2 - d∆ ρdρ - 1 m * d∆ cdρ 2 + h2 (k 0 /ρ -dk 0 /dρ) 2 m * . (17) 
The correspondence with the general form ( 10) is seen using

∆ = k0 , d∆/dρ = ∂ ρ k0 , d 2 ∆/dρ 2 + (hdk 0 /dρ) 2 /m * = ∂ 2 ρ k0 , v k0 = 0, and hdk 0 /m * dρ = -∂ ρ v k | k=k0
, which follows from partially deriving Eq. ( 15) with respect to ρ and k . The sound velocity c is related to the chemical potential of the gas µ via the relation mc 2 = ρdµ/dρ.

Weak coupling limit.-At weak interaction, one can calculate analytically the quasiparticle spectrum [START_REF] Sinha | Cold Dipolar Gases in Quasi-One-Dimensional Geometries[END_REF][START_REF] Ristivojevic | Decay of Bogoliubov excitations in one-dimensional Bose gases[END_REF] which takes the Bogoliubov form,

k = E k (E k + 2ρg k ), (18) 
where E k = h2 k 2 /2m is the kinetic energy of a free boson. By g k is denoted the Fourier transform of the effective two particle interaction. Postponing the discussion about its specific form for the following paragraph, we now assume that the spectrum has the characteristic form with the roton minimum, see Fig. 1. Equation ( 18) enables us to compute the relevant derivatives with respect to the density:

ρ∂ ρ k = 2 k -E 2 k 2 k , ρ 2 ∂ 2 ρ k = - ( 2 k -E 2 k ) 2 4 3 k , ρ∂ ρ v k = v k 2 k + E 2 k 2 2 k - hk m E k k . (19) 
The roton damping rate ( 16) now depends only on ∆ and k 0 , besides the thermodynamic parameters T, c, and ρ which already appears in Eq. ( 16). Since those quantities have been measured experimentally, our expression of Γ k0 can be tested without any assumption on g k . At ∆ → 0, such that T ∆ E k0 , mc 2 , we find

Γ k0 ∼ T →0 ∆→0 π 192 (1 + R) 2 E 8 k0 (mc 2 ) 2 ∆ 6 T 3 h3 c 2 ρ 2 , (20) 
which diverges as ∆ -6 . In Eq. ( 20) we have introduced the dimensionless parameter

R = ∆/m * c 2 . ( 21 
)
It has a finite nonzero limit at ∆ → 0. We finally notice that the Bogoliubov spectrum (18) leads to A = 3(γ -1)/2γ, with γ = 1 + 2ρmg 0 /h 2 , which should be substituted in Eq. ( 14). The quasiparticle spectrum k in units of the transverse trapping energy hω (red solid line) and their rescaled damping rate h3 ρ 2 c 2 Γ k /T 3 (blue solid line) in a quasi-one-dimensional dipolar Bose gas as a function of the wavevector k in units of 2/l = 2 √ mω/h. The dotted vertical black lines show the maxon and roton extrema. The dashed black curve is the hard-phonon asymptote of Eq. ( 14).

Effective interaction potential.-For the application of our theory on the realistic model, we consider cylindrically symmetric quasi-one-dimensional Bose gas characterized by the transverse trapping frequency ω in both transverse directions, and the average dipole moment along the direction of motion x [START_REF] Sinha | Cold Dipolar Gases in Quasi-One-Dimensional Geometries[END_REF]. In Fourier space, the effective one-dimensional interaction potential acquires the form

g k = g 1D - 4αd 2 l 2 1 -ǩ2 e ǩ2 Γ 0, ǩ2 , (22) 
where g 1D is the effective one-dimensional contact coupling constant describing short-range interactions (including the short-range behavior of the dipolar interactions [START_REF] Deuretzbacher | Groundstate properties of few dipolar bosons in a quasi-onedimensional harmonic trap[END_REF][START_REF] Deuretzbacher | Erratum: Ground-state properties of few dipolar bosons in a quasi-onedimensional harmonic trap[END_REF]), ǩ = kl/2 where l = h/ √ mω is the harmonic-oscillator length, d is the dipole moment, while Γ denotes the incomplete gamma function. The dipole precesses at high frequency around x-axis, which leads to an effective dipolar strength αd 2 with -1/2 < α < 1 [START_REF] Giovanazzi | Tuning the Dipolar Interaction in Quantum Gases[END_REF]. For the interaction potential [START_REF] Santos | Roton-Maxon Spectrum and Stability of Trapped Dipolar Bose-Einstein Condensates[END_REF], the sound velocity satisfies mc 2 = ρ(g 1D -V d ), where V d = 4αd 2 /l 2 . The low-energy stability condition requires g 1D > V d . A roton minimum appears at k 0 (which solves d k /dk| k=k0 = 0) for g 1D < 0 and V d,min < V d < V d,max < g 1D . The lower bound V d,min is reached at the phase transition ∆ = k0 = 0 and the upper bound V d,max when the dispersion has an inflexion point (when simultaneously d k /dk| k=k0 = 0 and d 2 k /dk 2 | k=k0 = 0). In Fig. 2 we plot the quasiparticle dispersion and the rescaled damping rate as functions of the wavevector, at the interaction strengths ρg 1D = -hω and ρV d = -1.144hω. The rate Γ k diverges at low k as predicted by Eq. ( 14) as well as at k l l/2 0.44 when the excitations become supersonic (v k l = c). It varies several order of magnitude between the maxon and the roton regimes, the latter being far more susceptible to the decay. Figure 3 shows the roton damping rate as a function of the dipolar interaction strength ρV d , or equivalently of the roton gap ∆, fixing the short-range coupling constant ρg 1D = -hω. The roton minimum exists for -1.182hω < ∼ ρV d < ∼ -1.143hω and the gap varies from 0 to about 0.13hω. The rate Γ k is a monotonic decreasing function of ∆ and diverges as ∆ -6 when ∆ → 0 as Eq. ( 20) predicts.

(∆/ ω) 6 ρ 2 c 2 Γ k /T 3 ∆/ ω ρV d / ω
Discussion.-The T 3 behavior of the damping rate is perhaps our most easily testable prediction. This power law is specific to one-dimensional systems, and it would change to T 5 in the two-dimensional case, [START_REF]This follows from a simple power-counting[END_REF] and to T 7 in three dimensions [START_REF] Landau | Teoriya vyazkosti Geliya-II[END_REF][START_REF] Castin | Landau Phonon-Roton Theory Revisited for Superfluid 4 He and Fermi Gases[END_REF][START_REF] Fåk | Roton-Phonon Interactions in Superfluid 4 He[END_REF]. Attempts to observe the T 7 behavior of the roton-phonon damping rate in superfluid helium failed to resolve it from the roton-roton damping rate [START_REF] Fåk | Roton-Phonon Interactions in Superfluid 4 He[END_REF], which follows an activation law in e -∆/T . In our case, the T 3 law is more favorable, and the capacity to tune the gap offered by ultracold gases can also be used to engender a large prefactor (see, e.g., Fig. 3). We note that the regime ∆ T is largely within the reach of the state of the art experiments since a temperature of 500 nK was reached in Ref. [START_REF] Ilzhöfer | Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms[END_REF]. For a gap of about 10 2 Hz, this gives ∆/T ≈ 10 -3 . Bragg-spectroscopic measurements capable of detecting the linewidths of the elementary modes have also been demonstrated in Ref. [START_REF] Petter | Probing the roton excitation spectrum of a stable dipolar bose gas[END_REF]. Let us finally notice that an attempt to describe the quasiparticle damping rate for a two-dimensional dipolar Bose gas is made in Ref. [START_REF] Natu | Landau damping in a collisionless dipolar Bose gas[END_REF] using the Beliaev-like process where a quasiparticle decays into two others, which resulted in an exponentially suppressed rate at low temperatures. However, our theory adopted to the two-dimensional case would give a universal T 5 power law.

In this paper we studied the damping of quasiparticles of the dipolar Bose gas with rotons, which cannot decay at T = 0 except at large wavevectors. This should be contrasted with the weakly-interacting Bose gas with short-range interactions which has a convex spectrum and thus the decay occurs al-ready at T = 0 [START_REF] Ristivojevic | Decay of Bogoliubov excitations in one-dimensional Bose gases[END_REF]. At weak interaction, the two cases have an overlap at very large wavevectors, where the damping rate at T = 0 approaches a constant value [START_REF] Tan | Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas[END_REF][START_REF] Ristivojevic | Decay of Bogoliubov excitations in one-dimensional Bose gases[END_REF].
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  Figure 2.The quasiparticle spectrum k in units of the transverse trapping energy hω (red solid line) and their rescaled damping rate h3 ρ 2 c 2 Γ k /T 3 (blue solid line) in a quasi-one-dimensional dipolar Bose gas as a function of the wavevector k in units of 2/l = 2 √ mω/h. The dotted vertical black lines show the maxon and roton extrema. The dashed black curve is the hard-phonon asymptote of Eq. (14).
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 3 Figure 3. Rescaled roton (blue curve) and maxon (orange curve) damping rates (∆/hω) 6 ρ 2 c 2 Γ k /T 3 as functions of the roton gap (lower x-axis) or the dipolar strength ρV d (upper x-axis) at fixed ρg1D = -hω. The dashed black line is the corresponding ∆ → 0 asymptote of the roton damping rate obtained from Eq. (20).