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Gold is a precious metal and the symbol of continuity in time 
and, by extension, of health and eternal youth. For this reason, 
many civilizations have made use of gold in their traditional 
medicines. For example, Ayurvedic medicine has used the 
properties of metals to treat many diseases over thousands of 
years. Gold has been used to treat cancer, vascular disorders, 
arthritis and fertility problems.1-4 In occidental medicine, 
chrysotherapy (therapy based on gold compounds) is already 
used to treat rheumatoid arthritis,5 asthma6 and skin diseases7 and 
promising therapeutic strategies for cancer are also being 
investigated.8-11 Gold(I) derivatives have also been reported to 
have antibiotic activity.12-20 The conjugation of approved 
antibiotics with metal complexes, like ferrocenyl, already led to 
interesting antibacterial compounds.21 However, the conjugation 
of an antibiotic with gold(I) has never before been reported. We 
describe here the synthesis and biological evaluation of 
unprecedented organo-gold(I) derivatives of -lactam antibiotics.  

Phosphane gold(I) was added to antibiotics by 1,3-dipolar 
cycloaddition, with a phosphane gold(I) azide complex and a 
penam scaffold functionalized with a terminal triple bond. 
During this reaction, an additional migration of the phosphane 
gold(I) moiety occurs,  resulting in the formation of a 1,2,3-
triazole ring with the gold center in position 5.10,22 In the final 

conjugate, the gold(I) center is connected to the antibiotic 
through a -gold-carbon bond. The (trimethylphosphine)Au(I) 
azide 5, the (triethylphosphine)Au(I) azide 6, the 
(dimethylphenyl)Au(I) azide 7 and the (triphenylphosphine) 
Au(I) azide 8 were prepared according to a published 
procedure.20 Commercially available phosphine gold(I) chlorides 
1, 2, 3 and 4 were treated with thallium(I) acetylacetonate, and 
the resulting phosphine Au(I) acetylacetonates were treated with 
trimethylsilyl azide to obtain the expected reagents 5, 6, 7 and 8. 
Three different chemical functional groups were evaluated for 
connection of the phosphine-gold(I)-triazole moiety to the 
ampicillin molecule: carbamate (compounds 17 to 19), amide 
(compound 21) and urea (compound 22). Ampicillin 13 was thus 
treated with propargyl chloroformate, the pentafluorophenyl ester 
10 of pentynoic acid 9, or the p-nitrophenyl chloroformate 12 
prepared from propargylamine 11. The resulting alkynes 14, 15 
and 16 were then treated with gold(I) azides 5 to 8 to obtain the 
expected conjugates 17 to 22. (Scheme 1). 
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Gold(I) derivatives of a -lactam antibiotic were synthesized by click chemistry with phosphine-
gold(I) azides and an alkyne derivative of ampicillin. The resulting organogold conjugates had 
promising high levels of antibacterial activity against Gram-positive bacteria, including resistant 
strains. 
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The fully organic penam 25 was prepared, to made it possible 
to distinguish the relative importances of the gold ion and the 
1,2,3-triazole moiety for antibacterial activity. For this purpose, 
the 3-(1H-1,2,3-triazol-5-yl)propanoic acid 23 was synthesized 
according a published procedure.23 The carboxyl group of 23 was 
then activated in the form of a pentafluorophenyl-ester 24 and 
reacted with ampicillin 13 to generate the expected penam 
derivative 25 (Scheme 2).  

 

Scheme 1. Synthesis of phosphine gold(I) azides 5, 6, 7 and 8, and 
synthesis of ampicillin-Au(I) conjugates 17 to 22. i. Tl(acac), toluene, 20°C. 
ii. TMSN3, toluene/MeOH, 20 °C. iii. C6F5OH, EDCI, CH2Cl2, 20°C. iv. 
pNO2PhOCOCl, NEt3, THF 0°C to 20°C. v. Propargyl chloroformate, 10 or 
12, NEt3, THF/H2O, 0°C to 20°C. vi. 5, 6, 7 or 8, THF, 20°C. 

 

 
Scheme 2. Synthesis of ampicillin analog 25. i. C6F5OH, EDCI.HCl, 

CH2Cl2, 20°C. ii. NEt3, THF/H2O, 20°C. 

 
The antibacterial properties of the chryso-lactams 17 to 22 

were then evaluated with characterized microorganisms and 
compared with those of ampicillin (Amp) 13, alkyne 14 and fully 
organic penam 25. Most of the pathogenic bacterial species used 
in the evaluation assays were Gram-positive (Staphylococcus 
aureus, Staphylococcus epidermis, Enterococcus faecalis and E. 
faecium). Minimal inhibitory concentrations (MIC) were also 
determined for Escherichia coli, a Gram-negative bacterium 
(Table 1). However, this bacterium turned out to be relatively 
resistant to the chryso-lactams in the range of concentrations 

tested. The resistance of Gram-negative bacteria to gold(I) 
derivatives has been reported to be due mostly to the low 
permeability of the bacterial outer membrane. Indeed, the 
presence of a membrane-permeabilizing agent greatly increases 
the antibacterial activity of gold(I) drugs against Gram-negative 
pathogens.19 By contrast, compounds 17 to 22 proved to be more 
effective than their non-metallic parental compounds against 
several pathogenic Gram-positive strains. The size of the 
phosphine ligand of the gold(I) derivative of ampicillin appeared 
to be crucial for biological activity. Indeed, compound 20, with 
its triphenylphosphine ligand, generally had lower activity than 
ampicillin. A decrease in ligand size (dimethylphenylphosphine) 
increased antibiotic activity, but compound 19 had a level of 
activity similar to that of ampicillin for only a subset of bacterial 
strains. The optimal ligand was triethylphosphine, as compound 
18 was more active against Staphylococcus species and several 
Enterococcus strains than ampicillin. Surprisingly, however, the 
use of a trimethylphosphine ligand (compound 17) did not further 
increase antibacterial activity against Gram-positive bacteria but 
resulted in moderate activity against E. coli. This finding is 
consistent with recently reported data for antibacterial gold(I) 
derivatives bearing trimethylphosphine as a ligand.24,25 
Conjugates 18, 21 and 22 had similar antibacterial profiles, 
demonstrating that the nature of the linker attaching the 
phosphine-Au(I)-triazole moiety to the penam scaffold does not 
greatly influence biological activity. Finally, purely organic 
penam derivatives 14 and 25 were less active than ampicillin, 
highlighting the negligible contribution of the triazole moiety and 
the major importance of the gold(I) center for antibacterial 
activity (Table 1). Chryso-antibiotic 18 thus appeared to the most 
promising of the gold(I) compounds synthesized. Other 
triethylphosphine gold(I) derivatives, such as auranofin, have 
already found uses in human medicine.25,26 The MICs of 
compound 18 were low for wild-type susceptible strains of S. 
aureus, S. epidermis and E. faecium. More importantly, they 
were not affected by the most prevalent mechanisms of resistance 
tolactams (e.g., methicillin and oxacillin) in Staphyloccus sp. 
or known mechanisms of resistance to glycopeptides (e.g., 
vancomycin) in Enterococcus sp. These data suggest that cross-
resistance between chryso-lactams and drugs classically used 
against Gram-positive bacteria should not emerge easily. The 
activity of compound 18 was similar to that of ampicillin with 
reference strains of E. faecalis. 

The toxicity of gold(I) is a critical issue for the further 
development of molecules of therapeutic potential, such as 
chryso-antibiotics. The cytotoxicity of compound 18 was 
assessed on healthy human hepatocytes and compared with that 
of ampicillin 13, used as a control. Compound 18 exhibit an 
EC50 of 16.39 ± 0.67 µM. In detail compound 18 did not affect 
cell viability at concentrations of up to 10 μM (7.9 µg.mL-1), but 
was toxic at higher concentrations, with only 40% viable cells at 
22.5 μM (17.7 µg.mL-1) and 10% at 25 μM (19.7 µg.mL-1). By 
contrast, ampicillin remained non-cytotoxic over the entire range 
of concentrations tested (see ESI). These data clearly characterize 
an interesting therapeutic window for compound 18 even the 
strong antibacterial activity of this molecule is counterbalanced 
by a peripheral toxicity to host cells.  

The current antibiotic arsenal mostly consists of purely 
organic compounds, with carbon, hydrogen, sulfur, oxygen and 
nitrogen atoms involved in the inhibitory processes. However, 
the emergence and rise of increasingly resistant bacterial strains, 
has led to the use of last-resort antibiotics known to have 
significant adverse effects.27,28 

 



 

Table 1. Minimal inhibitory concentration (MIC) in µg.mL-1 of ampicillin (Amp), penam 14 and gold(I) conjugates 17 to 22 and 
25 for a panel of wild-type and resistant strains.a 

Bacteria tested Amp(13) 14 17 18 19 20 21 22 25 

S. aureus 

ATCC 25923c 

ATCC 700699d,e 

ATCC 29213c 

ST20131365d,e 

 

0.5 

>8 

0.5 

4 

 

1 

8 

1 

4 

 

0.5 

0.5 

NAb 

NAb 

 

0.125 

0.25 

0.125 

0.25 

 

1 

2 

1 

2 

 

4 

8 

4 

8 

 

0.125 

0.125 

0.125 

0.125 

 

0.125 

0.25 

0.125 

0.25 

 

2 

>8 

2 

>8 

S. epidermidis 

ATCC 14990c 

ATCC 35984 d 

ST20140436 d,e 

ST20150446 d,e 

 

1 

>8 

4 

8 

 

2 

>8 

>8 

4 

 

0.125 

0.25 

NAb 

NAb 

 

≤0.06 

≤0.06 

≤0.06 

0.125 

 

0.125 

0.5 

1 

1 

 

4 

4 

8 

4 

 

≤0.06 

≤0.06 

≤0.06 

0.125 

 

≤0.06 

0.125 

0.125 

0.125 

 

1 

>8 

>8 

>8 

E. faecalis 

JH2-2c 

UCN41e 

V583 e 

 

0.5 

0.5 

0.5 

 

1 

2 

1 

 

1 

0.5 

NAb 

 

0.5 

1 

1 

 

1 

2 

2 

 

8 

8 

8 

 

0.5 

0.5 

0.5 

 

0.5 

0.25 

0.5 

 

4 

8 

4 

E. faecium 

ATCC 19434Tc 

BM 4147 d,e 

AUS0004 d,e 

 

0.5 

8 

>8 

 

2 

>8 

>8 

 

1 

1 

NAb 

 

1 

2 

1 

 

2 

4 

2 

 

4 

8 

8 

 

0.5 

1 

0.5 

 

0.5 

0.5 

0.5 

 

8 

>8 

>8 

E. coli 

ATCC 25922c 

 

2 

 

>8 

 

8 

 

>8 

 

>8 

 

>8 

 

>8 

 

>8 

 

>8 

a The MIC values displayed are the highest values obtained in two independent experiments. b Not Assessed (NA). c Susceptible strain.d-lactam-resistant strain. 
e Glycopeptide-resistant strain.  

Compounds containing other elements from the periodic table 
have been developed against cancer, but other applications of 
these compounds in the treatment of bacterial infections have 
been limited by peripheral toxicity issues, particularly for 
molecules administered intravenously. Organometallic 
compounds should be more and more competitive in terms of the 
benefit vs risk balance for the patient. Chryso-lactams proved to 
have a specific activity on Gram-positive microorganisms and the 
low permeability of Gram-negative bacteria outer envelope 
seems to impair the antibacterial efficiency of many gold(I) 
compounds.19 Therefore, the vectorization of organometallic 
drugs using nutrient uptake systems, should increase their 
therapeutic potential (antibacterial activity, cytotoxicity).29,30  

This article describes the synthesis of the first conjugates of -
lactam antibiotics with phosphine-gold(I) complexes. In these 
conjugates, ampicillin was connected to the metal complex 
through a 1,2,3-triazole linker. Triethylphosphine derivative 18 
proved to be an effective molecule against Gram-positive 
bacteria, with an activity 120 times that of ampicillin with certain 
strains of S. aureus, S. epidermis and E. faecium. This compound 
escapes the most common mechanisms of resistance to -lactams 
and glycopeptides. With, for certain bacterial strains, a selectivity 
index ca 130, compound 18 will serve as lead molecule in the 
development of the next generation of chryso-lactams. However, 
the mode of action of compound 18 and its ability to select 
resistant isolates should now be investigated. This information 
will be crucial for the further development of chryso-antibiotics 
with better antibacterial properties, manageable toxicity profile 
and competitive with strategies based on antibacterial gold 
nanoparticles.31,32  
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Appendix A. Supplementary Data 

Protocols and analytical data concerning compounds 14 to 22 and 
compound 25, experimental conditions for Minimum Inhibitory 
Concentration assays, additional MICs on resistant 
Staphylococcus strains for compound 18 compared to ampicillin, 
concentrations assessments for the in vitro cytotoxicity of 
compound 18 and ampicillin can be found online DOI xxxxxxxx 

 


