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Abstract: 

Numerous theories propose a key role for brain oscillations in visual perception. Most of these theories 
postulate that sensory information is encoded in specific oscillatory components (e.g., power or phase) 
of specific frequency bands. These theories are often tested with whole-brain recording methods of low 
spatial resolution (EEG or MEG), or depth recordings that provide a local, incomplete view of the brain. 
Opportunities to bridge the gap between local neural populations and whole-brain signals are rare. Here, 
using representational similarity analysis we ask which MEG oscillatory components (power and phase, 
across various frequency bands) correspond to low or high-level visual object representations, using 
brain representations from fMRI, or layer-wise representations in Deep Neural Networks (DNNs) as a 
template for low/high-level object representations. The results showed that around stimulus onset and 
offset, most transient oscillatory signals correlated with low-level brain patterns (V1). During stimulus 
presentation, sustained beta (~20Hz) and gamma (>60Hz) power best correlated with V1, while 
oscillatory phase components correlated with IT representations. Surprisingly, this pattern of results did 
not always correspond to low- or high-level DNN layer activity. In particular, sustained beta-band 
oscillatory power reflected high-level DNN layers, suggestive of a feed-back component. These results 
begin to bridge the gap between whole-brain oscillatory signals and object representations supported 
by local neuronal activations. 

Introduction: 

Oscillatory neuronal activity is thought to underlie a variety of perceptual functions. Different frequency 
bands can carry information about different stimulus properties (e.g., whether the stimulus consists of 
coarse or fine object features) (Smith, Gosselin et al. 2006, Romei, Driver et al. 2011), feedforward or 
feedback signals (van Kerkoerle, Self et al. 2014, Bastos, Vezoli et al. 2015), or may reflect neuronal 
communication between different neuronal populations (Fries 2005, Jensen and Mazaheri 2010). Other 
studies have shown that different components of an oscillation (e.g., its power or phase) encode different 
types of sensory information (Smith, Gosselin et al. 2006). 

Although neuronal oscillations are observed in different brain regions, and key theories hold that they 
reflect processing within, and communication between, brain regions (Fries 2005, Jensen and Mazaheri 
2010), it has been difficult to pin down how large-scale brain oscillations are related to local patterns of 
neural activity, and how this relationship unfolds over time. This is because oscillatory activity is often 
studied with methods such as EEG or MEG, which have low spatial resolution. Although oscillatory 
signals with high spatial specificity can be recorded via local field potential recordings in humans or 
animals, these methods usually only target specific brain regions, and thus can only provide a partial 
view of oscillatory activity and its role in large-scale brain function. A direct link between large-scale 
oscillations and local neural activity is missing. 

Here, we combine large-scale oscillatory signals recorded by MEG with local patterns of neural activity 
recorded with fMRI to bridge the gap between oscillatory components and the different levels of object 
representation in the brain. Using representational similarity analysis (RSA, (Kriegeskorte, Mur et al. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279216
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

2008)), we investigate the information carried by whole-brain oscillations obtained from MEG, and 
examine how this information evolves over time during an object recognition task. 

We define three distinct dimensions of interest along which neural representations may unfold, and 
which are often conflated in the literature. First, we use the terms “early” and “late” to denote the temporal 
evolution of representations. Second, we differentiate between “low-level” and “high-level” stages of a 
processing hierarchy. Third, we consider the complexity of representations by distinguishing between 
“basic” and more “refined” information. In many information processing systems and in many typical 
experimental situations, these three dimensions are directly related to one another, as input information 
propagates over time through a succession of hierarchical stages, becoming more and more refined 
along the way. In such situations, the three dimensions of interest are in fact redundant and need not 
be further distinguished. But in systems with recurrence and feedback loops (like the brain), time, space 
and information complexity are not always linearly related. For example, a lower hierarchical level (e.g. 
V1) can carry more refined representations, later in time, as a result of feedback loops or lateral 
connections (Lamme and Roelfsema 2000). In our terminology, such a representation would be 
classified as late in time, low-level in the hierarchy, yet refined in terms of complexity. 

In this work, we consider two main hierarchical systems. We are interested in understanding information 
processing in the human brain, so we use V1 and IT fMRI brain representations, as done in a number 
of recent studies (Cichy, Pantazis et al. 2014, Khaligh-Razavi and Kriegeskorte 2014). Representational 
similarity between MEG oscillations and this fMRI-based hierarchy can be interpreted in terms of early 
and late representations (based on the timing of the MEG oscillations), and in terms of low-level (V1) 
vs. high-level (IT) hierarchical stages. To assess the complexity of representations independent of 
temporal evolution and hierarchy of processing, we related our data to a second class of hierarchical 
systems: artificial feed-forward Deep Neural Networks (DNNs). In these artificial networks, the 
hierarchical level (low-level vs. high-level) is directly related to feature complexity (basic vs. refined 
representations), due to the absence of feed-back or recurrent loops. For any MEG oscillatory signal, 
representational similarity with DNN activation patterns can thus inform us about representational 
complexity. In turn, any difference between DNN-based and brain-based RSA may be suggestive of 
feed-back or recurrent influences in the MEG oscillatory signals. 

With this dual approach, we find a complex picture of transient and sustained oscillatory signals that can 
be related to V1 and IT representations. Transient oscillatory components around stimulus onset and 
offset, as well as sustained beta (~20Hz) and gamma (>60Hz) power components resemble V1 
representations, while phase-dependent sustained activity correlates best with IT representations. 
However, when compared to DNNs, some early V1-like components actually correlate more with higher 
DNN layers, suggesting that stimulus representations early in time may already include refined 
information, presumably as a result of feedback or top-down influences (Kar, Kubilius et al. 2019, 
Kietzmann, Spoerer et al. 2019). 

In effect our results narrow the gap between the description of neural dynamics in terms of whole-brain 
oscillatory signals and local neural activation patterns. Disentangling temporal evolution, hierarchical 
stage of processing and complexity of representations from each other, our approach allows for a more 
nuanced view on cortical information flow in human object processing. 

Methods: 

Experimental paradigm and data acquisition: The data analyzed in this study was obtained from 
(Cichy, Pantazis et al. 2014), and detailed methods can be obtained from that paper. 

Fifteen subjects performed separate MEG and fMRI sessions while they viewed a set of 92 images. The 
image set consisted of human and non-human faces and bodies, and artificial and natural everyday 
objects. The 92-image stimulus set  was taken from the Kiani image set (Kiani, Esteky et al. 2007), 
which consists of cutout objects on a gray background. 
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In the MEG sessions, each image was presented for 0.5s followed by an inter-stimulus interval (ISI) of 
1.2 or 1.5s. Every 3-5 trials, a target paperclip object was presented, and subjects’ task was to press a 
button and blink whenever they detected this target image. Subjects performed 2 MEG sessions, of 2 
hours each. In each session they performed between 10 to 15 runs. Each image was presented twice 
in each run, in random order. 

In each of two fMRI sessions, each image was presented for 0.5s followed by an ISI of 2.5 or 5.5s. 
Subjects’ task in the fMRI sessions was to press a button when they detected a color change in the 
fixation cross on 30 null trials, when no image was presented. Each image was presented once in each 
fMRI run, and subjects performed 10-14 runs in each session. 

The MEG data was acquired from 306 channels (204 planar gradiometers, 102 magnetometers, Elekta 
Neuromag TRIUX, Elekta, Stockholm) at the Massachusetts Institute of Technology. The MRI 
experiment was conducted on a 3T Trio scanner (Siemens, Erlangen, Germany), with a 32-channel 
head coil. The structural images were acquired using a T1-weighted sequence (192 sagittal slices, FOV 
= 256mm2, TR=1,900ms, TE=2.52ms, flip angle=9 degrees). For the fMRI runs, 192 images were 
acquired for each participant (gradient-echo EPI sequence: TR = 2,000ms, TE=32 ms, flip angle = 80 
degrees, FOV read = 192 mm, FOV phase = 100%, ascending acquisition gap = 10%, resolution = 
2mm, slices=25). 

 

 

Figure 1: MEG-fMRI RSA analysis. (a) MEG analysis and MEG representational dissimilarity matrices (RDMs). 
From the MEG signals, the complex time frequency (TF) transform was computed for each of the 306 MEG sensors. 
The amplitude and phase (separated into cosine and sine) values were extracted from the complex number at each 
TF coordinate, and a MEG RDM was constructed, reflecting the distance between oscillatory activation patterns for 
every pair of images (i,j) (see methods for details). As a result, we obtained a power and phase MEG RDM at each 
TF coordinate for each participant. (b) fMRI RDMs were obtained from (Cichy, Pantazis et al. 2014). Two regions 
of interest (ROI) were defined: V1 and IT and one fMRI RDM was obtained for each ROI, and each participant, 
reflecting the distance between BOLD activation patterns for every pair of images (i,j). (c) The MEG power or phase 
RDMs were compared to the fMRI RDMs (V1 or IT) by computing the partial Pearson’s R. This step was performed 
at each TF coordinate, resulting in an RSA map of R values at each TF coordinate, for each subject and ROI. 
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MEG analysis - preprocessing: MEG trials were extracted with a 600 ms baseline before stimulus 
onset until 1200 ms post-stimulus onset. A total of 20-30 trials were obtained for each condition, session, 
and participant. Each image was considered as a different condition. 

Data were analyzed using custom scripts in Matlab (Mathworks) and FieldTrip (Oostenveld, Fries et al. 
2011). Data were downsampled offline to 500 Hz. For each trial and sensor, we computed the complex 
time frequency decomposition using multitapers. Parameters used were: 50 distinct frequencies 
increasing logarithmically from 3 to 100 Hz, over a time interval of -600ms to 700ms with respect to 
stimulus onset, in steps of 20 ms. The length of the sliding time window was chosen such that there 
were two full cycles per time-window. The amount of smoothing increased with frequency (0.4 * 
frequency). 

From the complex number at each time-frequency (TF) coordinate, we extracted two measures for each 
sensor and each condition: the power and the phase of the oscillation. For each channel and condition, 
on each trial, the power was first expressed in decibels, and then averaged across trials to obtain one 
power value per condition. The phase of the oscillation was obtained by first normalizing each trial to 
make each trial’s vector in the complex domain of unit length, and then averaging across trials for each 
condition. The resultant average vector was then normalized to unit length, and the sine (real) and 
cosine (imaginary) components were extracted for each condition and each sensor. 

MEG analysis – multivariate analysis (Figure 1a): At each TF coordinate and for each condition, we 
next arranged the 306 power values from the 306 MEG sensors into a 306-dimensional vector 
representing the power pattern vector for that condition. Similarly, at each TF coordinate and for each 
condition we concatenated the 306 sine and 306 cosine values into a 612-dimensional phase pattern 
vector for that condition. 

We next computed two representational dissimilarity matrices (RDMs): one for power and one for phase, 
at each TF point. For each pair of conditions, the power (phase) pattern vectors were correlated using 
the Pearson correlation measure, and the resulting 1-correlation value was assigned to a 92 by 92 power 
(phase) RDM, in which the rows and columns corresponded to the images being compared. This matrix 
is symmetric across the diagonal. This procedure results in one power (phase) RDM at each TF point. 

fMRI analysis (Figure 1b): The preprocessing steps for the fMRI data are described in detail in (Cichy, 
Pantazis et al. 2014). For the multivariate analysis, two regions of interest (ROIs) were defined: V1 and 
IT. In each subject, for each ROI, voxel activation values were extracted for each condition, and the 
resulting values were arranged in a pattern vector for each condition. Then, in each ROI, for each pair 
of conditions, the corresponding pattern vectors were correlated using the Pearson correlation measure, 
and the resulting 1-correlation value was assigned to the 92x92 fMRI RDM. For further analysis the fMRI 
RDMs were averaged across the 15 subjects, resulting in one RDM per ROI. The fMRI RDMs were 
provided by R. Cichy, D. Pantazis and A. Oliva (Cichy, Pantazis et al. 2014). 

MEG-fMRI Representational Similarity Analysis (RSA) (Figure 1c): RSA between the MEG and fMRI 
RDMs was performed by computing the partial Pearson’s correlation between each MEG (phase or 
power) RDM with each fMRI RDM (V1 or IT), while partialling out any contribution from the other fMRI 
RDM (IT or V1). We chose to perform a partial correlation because the V1 and IT RDMs were positively 
correlated with each other (r~0.3); compared to a standard correlation, the partial correlation allowed us 
to isolate the unique correlation of each fMRI RDM with the MEG RDM, while discarding their joint 
contribution. 

This procedure resulted in four RSA maps (power/phase MEG RDMs x V1/IT fMRI RDMs). Each RSA 
map shows the R-value between the MEG signals and the V1/IT activation patterns at each TF point. 
Significance of the RSA result was evaluated with a paired t-test against 0, FDR corrected, alpha = 0.05. 

Clustering analysis: The MEG time-frequency RDMs are heavily correlated with each other. To 
facilitate the interpretation of the information content of oscillatory signals, and to determine which 
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features co-vary and which are independent, K-means clustering was performed on the MEG power 
and phase RDMs. Clustering was performed on the 4186-dimensional ((92*92-92)/2) RDMs across all 
(66) time points and (46) frequency points, combining the power and phase signals (resulting in 46*66*2 
= 6072 data points to cluster in a 4186-dimensional space). K-means was implemented with the Matlab 
function kmeans, with the correlational distance measure, five replicates, and the number of clusters 
going from 1 to 20. The optimal number of clusters was then determined with the elbow criterion defined 
as the point just before the local maximum of the second derivative of the residual sum of squares 
(corresponding to the point at which adding another cluster would only provide a marginal gain in 
variance explained). With this method, the first elbow, occurred at k=7 clusters. 

The chosen clusters could be visualized by plotting the correlation distance (in the 4186-dimensional 
RDM space) between the cluster’s centroid and every time-frequency point, for both power and phase 
signals. 

RSA (using partial Pearson’s correlation) was performed between each cluster’s centroid and each of 
the fMRI RDMs (see below). For RSA with fMRI, this procedure resulted in two RSA values (one each 
for V1 and IT). Since each cluster centroid could correspond to both V1 and IT to different degrees, the 
information content of the cluster was positioned somewhere between V1/low-level and IT/high-level 
using the following equation: 

                 𝐼𝐼 = 𝜎𝜎 �(𝑅𝑅𝐼𝐼𝐼𝐼 −  𝑅𝑅𝑉𝑉1)
(𝑅𝑅𝐼𝐼𝐼𝐼 +  𝑅𝑅𝑉𝑉1)� �                (eq. 1) 

where σ denotes the sigmoid function. The measure I could vary between 0 (when the cluster’s 
representational content was perfectly similar to V1) and 1 (when it was perfectly similar to IT). 

Significance of RSA between the cluster centroids and the fMRI RDMs was computed with a surrogate 
test. On each iteration, the cluster centroid RDM was randomly shuffled and the partial correlation was 
computed between this shuffled RDM and the true RDM. This procedure was repeated for 105 iterations, 
and the number of iterations on which the shuffled RSA values were higher than the true RSA values 
was counted. 

Deep Neural Network (DNN) RDMs: The MEG phase/power representations were also compared to 
representations in four DNNs (so as to ensure that conclusions were not dependent on one specific 
network architecture): AlexNet (Krizhevksy, Sutskever et al. 2012), VGG16 (Simonyan and Zisserman 
2014), GoogleNet (Szegedy, Liu et al. 2015), and InceptionV3 (Szegedy, Ioffe et al. 2017) processing 
the same 92 images as in our MEG and fMRI data. However, in contrast to our 92-image stimulus set, 
which consisted of cutout objects on a gray background, the DNNs had been trained on images from 
ImageNet (millions of photographs with one or more objects in natural backgrounds). The networks had 
thus learned optimal representations for their training set, but in this representation space our 92 images 
tended to cluster into a remote “corner” (Figure 2), with low dissimilarity (1- Pearson’s R) values between 
images, and a resulting RDM of poor quality. To retrieve meaningful distances between the 
representations of the 92 images, we first performed a centering procedure: we centered the activation 
of each layer of each DNN by subtracting the mean activation of an independent set of 368 images from 
the Kiani image set. This independent image set consisted of four images from each of the categories 
in our 92-image set. Importantly, because the image set used for centering did not include any of the 92 
images from our study, there was no circularity in the centering operation, nor any leakage of information 
between the representations of our 92 images. 

RDMs were constructed for each convolutional layer of each network based on the layer activation 
values. There were 5 layers for AlexNet, 13 for VGG16, 12 for GoogleNet and 16 for InceptionV3. RSA 
was then performed (with the Spearman correlation) between these RDMs and the centroid of each 
cluster (see above for details of the clustering analysis). The layer with maximum RSA, normalized by 
the number of layers in the DNN, was taken to reflect the information content of this cluster between 0 
(in the terminology defined in the Introduction, “low-level” and basic, corresponding to the DNN’s first 
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layer) and 1 (“high-level” and refined, corresponding to the DNN’s last layer), and finally averaged across 
the four DNNs. 

 

Figure 2: t-SNE visualizations of 500 ImageNet samples and the 92-image stimulus-set used in this study across 
two representative layers of the VGG network. The DNNs used in this study had been trained on images from 
ImageNet, which consists of millions of photographs of one or more objects in natural backgrounds. In contrast, our 
92-image stimulus set consists of cut-out images on a gray background. The DNNs learn optimal representations 
for the training images from ImageNet, i.e., different images from different categories are mapped to different 
regions of the representation space, and the whole space tends to be equally occupied by the training samples. 
However, as the t-SNE visualizations show, our 92 images are all projected into a remote corner of this space, 
meaning that the RDM distances between the 92 images are confounded by the mean vector (the pairwise Pearson 
distance depends more on the alignment with the mean vector, and less on the true physical distance between 
points). To circumvent this problem, we used a re-centering approach as described in the methods section. 
 

Results: 

Fifteen participants viewed the same set of 92 images while fMRI and MEG data was recorded (in 
separate sessions). The image set consisted of human and non-human bodies and faces, and artificial 
and natural stimuli. Each stimulus was presented for 0.5s, followed by a 1.2 or 1.5s baseline period. 

To assess oscillatory components, we extracted stimulus-related activity from -600ms to 1200ms 
relative to stimulus onset from the MEG data. For each trial, and each sensor a time-frequency (TF) 
decomposition was performed, and a power and phase value extracted at each time and frequency 
point. These values were used to compute representational dissimilarity matrices (RDMs) at each TF 
point, separately for power and phase (Methods and Figure 1a). Each element in the MEG RDMs 
indicates how distinct the corresponding images are in the MEG power or phase spaces, and the entire 
MEG RDM is a summary of how the 92-image stimulus set is represented in the MEG oscillatory power 
or phase at each TF point. 

To assess local patterns of neural activity we generated fMRI RDMs by performing comparisons 
between the local BOLD activation patterns of pairs of images in V1 and IT (Cichy, Pantazis et al. 2014). 
Two fMRI RDMs were obtained (Figure 1b), one for V1 and one for IT. The fMRI RDMs are a measure 
of the representation of the image set in the voxel space of V1 and IT local neural activity. 

Bridging the space, time and frequency gap in object recognition: 

How similar is the oscillatory representation of the images to their representation in each brain region? 
The MEG RDMs (power and/or phase) at each TF point represent the stimulus set in a large-scale brain 
oscillatory activity space, while the fMRI RDMs represent the same image set via BOLD activity in a 
local population of neurons in two brain regions (V1 or IT). We evaluated the similarity of representations 
in the time-frequency domain with those in the fMRI activation patterns by computing the partial 
Pearson’s correlation between the MEG RDMs (phase or power) with the fMRI RDMs (V1/IT), at each 
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TF point (Figure 1c). This analysis resulted in four time frequency maps of R-values (or RSA maps), 
which provide the unique correspondence between whole-brain oscillations and local patterns of neural 
activity in V1 and IT, at each TF point (Figure 3). With these maps we can ask if and when stimulus 
information contained in oscillatory phase or power at each TF point resembles BOLD activations in a 
given brain region (V1/IT), and potentially, which region it resembles more. The advantage of measuring 
partial correlation (instead of a standard correlation) is to discard the (potentially large) portion of the 
variance in oscillatory representations that is explained equally well by V1 or IT BOLD representations—
owing to the fact that V1 and IT signals already share similarities. This way, we concentrate on the part 
of oscillatory representations that is uniquely explained by each brain region-of-interest. 

 

 
 
Figure 3: Results of the 2x2 RSA 
comparisons (MEG power/phase x fMRI 
V1/IT), averaged over all subjects. The purple 
contours mark those regions in the maps that 
are significantly different from zero (paired t-
test against 0 across N=15 subjects, FDR 
correction, alpha = 0.05). Note that the 
absolute latencies are not directly comparable 
across frequencies, because of different 
smoothing windows applied at the different 
frequencies when performing the TF 
transform (hence, the x-axis is labeled as 
uncorrected time). 
 

 

 

Our results show that different oscillatory components map to different brain regions at different 
moments in time. Overall, the absolute maximum of representational similarity with brain area V1 
occurred in the alpha band around 120ms post-stimulus for oscillatory power, whereas the absolute 
maximum related to area IT occurred for theta- and alpha-phase around 200-300ms. More generally, a 
strong increase in representational similarity was observed shortly after stimulus onset in all four maps. 
The frequency, latency and duration of these similarity effects depended however on the exact 
oscillatory signal (power, phase) and brain region (V1, IT). In terms of MEG power (Figure 3a, b), the 
latencies (see also Figure 4) respected the hierarchical order of visual processing (Nowak and Bullier 
1998) with an increase in representational similarity in the lower (<20 Hz) frequency bands occurring 
around the evoked response first for V1, and about 20-30ms later for IT (paired t-test against 0, FDR 
corrected, alpha=0.05). This latency difference is similar to that reported in (Cichy, Pantazis et al. 2014), 
where the peak correspondence between the average MEG signal and V1 activity occurs about 30 ms 
prior to the peak with IT activity. The onset response in V1 also consisted of high gamma frequencies 
(>70Hz), whereas this high-gamma activity was not observed in IT. A sustained low-beta (20Hz, 200-
500ms) and an offset high-beta (30Hz, ~600ms) response also corresponded to V1 representations, 
although neither of these effects were observed in IT (see also Figure 4). In terms of stimulus 
representations in the MEG oscillatory phase (Figure 3c, d), after an initial broadband (3-100Hz) 
transient peak at stimulus onset corresponding to V1 representations, stimulus information carried by 
sustained oscillatory phase resembled IT representations in the low (<20Hz) and high frequency (60Hz) 
bands, and this resemblance persisted until the end of the trial. Phase representations corresponding 
to V1 patterns were observed again around stimulus offset, at alpha (~10Hz) and beta (20-30Hz) 
frequencies (see also Figure 4). 
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These results thus suggest that different oscillatory components correspond to different brain regions at 
different time-frequency points. However, since the RDMs in the time-frequency space are heavily 
correlated with each other, it is difficult to ascertain from this analysis which power/phase features co-
vary, and which effects occur independently. To better interpret the results shown in Figure 3 we turned 
to a clustering analysis. The clustering analysis allowed us to reduce the dimensionality of the dataspace 
and to determine which oscillatory signals occurred jointly, and which are independent.  We performed 
k-means clustering jointly on the power and phase RDMs. The results of the clustering analysis for k=7 
clusters (the “optimal” number of clusters for our dataset) are shown in Figure 5 (see also Figure 6). The 
first cluster (ranked by smallest distance from cluster centroid) corresponded to early broadband (0-100 
Hz) phase and power RDMs, followed by sustained gamma power (>60Hz), and beta power (20-30Hz) 
at stimulus offset. The second cluster corresponded to broadband (0-100Hz) and sustained (0.1-0.4s) 
phase effects after stimulus onset, without any noticeable power effects. The third cluster consisted 
primarily of sustained (0.1-0.6s) beta (10-30Hz) and low-gamma (<60Hz) power, without any noticeable 
phase effects. The fourth cluster reflected broadband phase effects (0-100Hz) at stimulus offset (without 
associated power effects). The last 3 clusters (5-7) all displayed pre-stimulus effects in alpha-beta 
power, or alpha or gamma phase, characteristic of spontaneous, stimulus-unrelated activity that we did 
not investigate further (Figure 6). The clustering analysis performed on the MEG RDMs thus identified 
four main clusters of power and phase oscillatory components that occurred at different time points and 
in different frequency bands after stimulus onset. 

 

Figure 4. Profile of the results of the RSA with V1 (green lines) and IT (black lines) in oscillatory power (top row) 
and oscillatory phase (bottom row) in different frequency bands. To examine the RSA maps in more detail, we 
extracted their time courses in different traditional frequency bands: alpha (8-13 Hz), low-beta (13-20 Hz), and high-
beta (20-32 Hz). In each of these frequency bands we computed the average R-values. Since the TF decomposition 
induces temporal smearing, and the amount of smearing differs for different frequencies, in order to interpret the 
latencies of the representational similarities, we corrected for this smearing effect. Specifically, to avoid 
underestimating the onset latencies, we corrected time by adding half the wavelet window duration at each 
frequency. Note that the same correction was applied to the two curves compared in each plot. Solid lines are the 
means across subjects, and the shaded areas correspond to the SEM across subjects. 
 

How do the oscillatory representations in each cluster, and their different time and frequency profiles 
relate to local processing in V1 and IT as measured by fMRI representations? To address this question, 
we performed RSA between the cluster centroids and the V1 and IT RDMs. The cluster centroids 
correlated to different degrees with both V1 and IT (all partial R-values between 0.12 and 0.49; all 
significant at p < 1e-5 with a surrogate test; see methods). To evaluate the relative importance of each 
area’s representational similarity with the cluster centroid, we combined the two RSA partial R-values 
into a single scale (see Methods, equation 1). According to this scaling (see insets in Figure 5), the 
transient broadband phase and power effect with sustained gamma power in cluster 1 corresponded 
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best with V1 representations (i.e., “low-level”). Conversely, the broadband sustained phase effects of 
cluster 2 corresponded best to IT representations (“high-level”). The other two clusters (sustained beta-
gamma power in cluster 3, broadband offset-transient phase in cluster 4) had more balanced similarity 
to both V1 and IT, with a slight inclination towards V1. Thus, transient oscillatory components occurring 
around stimulus onset correspond more closely to V1 representations, whereas the more sustained 
components could be either more IT-like, or less localized depending on the frequency of the 
oscillations. These results thus suggest a complex link between oscillatory representations and local 
processing in V1 or IT. To try to clarify these relationships we next turned to using deep neural networks 
as a template for object representations. 

 

Figure 5: Clustering analysis. K-means clustering was performed on the MEG power and phase RDMs. Each time-
frequency plot shows the distance of each RDM from the centroid of the cluster. The purple lines correspond to the 
cluster boundaries as returned by the k-means algorithm, indicating that all points within the purple lines are 
assigned to this specific cluster based on their distance to the different cluster centroids. The insets show the 
relative degree of RSA between the cluster centroid and V1/IT (top), or the cluster centroid and the DNN layer 
hierarchy (bottom). For the DNNs, the layer with maximum RSA, normalized by the number of layers in the DNN 
hierarchy, and averaged across the four DNN types (colored ticks), was taken as the layer that corresponded to 
each cluster centroid (black arrowhead). 

 
Assessing representational complexity with deep neural networks: 
The fMRI RDMs are a representation of the image set in the multi-voxel space of V1 and IT. However, 
these fMRI representations are static because the fMRI BOLD signal used to construct the RDMs was 
measured over a period of several seconds. Neuronal activity in these regions, on the other hand, is 
known to evolve over fairly rapid timescales, on the order of hundreds of milliseconds as a result of 
feedback and top-down signals (Roelfsema, Lamme et al. 1998, Lamme and Roelfsema 2000). The 
fMRI RDMs are thus limited representations of the image set, potentially mixing basic and refined brain 
activity from different moments in each trial. Therefore, while it is tempting to interpret the oscillatory 
signals composing cluster 1 as basic in complexity, because they are more V1-like, and those forming 
cluster 2 as refined (more IT-like), such a conclusion would be premature as it ignores the dynamics of 
neural responses within and across brain regions, and how these neural responses evolve over different 
timescales. To obtain a complementary picture of low and high-level object representations, we 
considered the representations of our image set in different layers of feed-forward deep neural networks 
(DNNs) pretrained on a large dataset of natural images. To ensure the generality of our results we 
assessed four different DNNs: (AlexNet (Krizhevksy, Sutskever et al. 2012), VGG16 (Simonyan and 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279216
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Zisserman 2014), GoogleNet (Szegedy, Liu et al. 2015), and InceptionV3 (Szegedy, Ioffe et al. 2017)). 
Activity in each layer of these DNNs is not influenced by top-down or recurrent connections, and 
consequently represents a truly hierarchical evolution in the complexity of image representations, from 
basic to refined. Indeed, several studies have suggested that DNN representations approximate the 
feed-forward cascade of the visual processing hierarchy in the brain (Khaligh-Razavi and Kriegeskorte 
2014, Cichy, Khosla et al. 2016). Performing RSA between MEG oscillatory RDMs and DNN layer RDMs 
should thus reveal which features of the MEG oscillatory representations correspond to basic vs. refined 
object representations. 

An RDM was obtained for each convolutional layer of the four DNNs. RSA was then performed between 
the cluster centroids of the MEG RDMs and the DNN RDMs. For each cluster and DNN, the layer with 
maximum RSA was determined, and scaled between 0 (lowest layer, basic information) and 1 (highest 
layer, refined information) based on the number of layers in the DNN hierarchy. Despite slight 
differences between the four DNNs, the analysis revealed that clusters 2 and 3 mapped best to higher 
DNN layers, cluster 1 to intermediate layers, and only cluster 4 had similarity to lower layers. This is in 
stark contrast with the results of fMRI RSA, which had ranked clusters 2, 4, 3 and 1 in order of decreasing 
complexity. The most striking difference is obtained for cluster 3 (sustained beta-gamma power): a high-
level refined representation according to DNNs, but closer to V1 than to IT according to fMRI. Based on 
the logic above, this cluster is likely to reflect feed-back signals that carry refined object information 
(visible in high DNN layers) down to lower brain regions (visible in V1 BOLD signals). 

 

Figure 6: Clustering results for clusters 5-7. We identify these clusters as noise components because (i) their 
distance to the cluster centroid is typically higher than for other clusters, and (ii) they mainly map onto pre-stimulus 
oscillatory activity. Pre-stimulus oscillations, while accounting for a sizeable portion of the (notoriously noisy) MEG 
signal variance, cannot possibly encode the identity of a stimulus that has not been presented yet. Pre-stimulus 
alpha is a well-studied oscillatory component reflecting the attention state of the observer, and whose phase is 
known to modulate the subsequent ERP amplitudes and latencies; as such, it is not surprising that the phase of 
this oscillatory component would induce a separate cluster of RDM patterns (cluster 5). Similarly, pre-stimulus 
alpha-beta power (cluster 6) and gamma phase (cluster 7) could reflect preparatory attention or motor signals 
(including muscular artifacts) not related to stimulus identity.  Notations as in Figure 5.  
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Discussion: 

Our results show that MEG oscillatory components at different frequencies carry stimulus-related 
information at specific times, which can be linked, via RSA, to stimulus representations in different brain 
regions (V1, IT), and with different representational complexity (as measured by deep neural networks). 
Importantly, the representational dynamics of brain oscillations can be very differently expressed by 
power vs. phase signals. At stimulus onset and offset, broadband phase transients (possibly related to 
fluctuations in evoked potential latencies) carry mainly basic or intermediate-complexity information 
(clusters 1, 4 in Figure 5). However, during stimulus presentation, sustained phase information is visible 
across all frequencies, and consistently maps to high-level refined representations (IT and high DNN 
layers, cluster 2). Oscillatory power components (clusters 1 and 3) tend to correlate with both V1 and IT 
fMRI representations (with an inclination towards V1); however, onset-transient low-frequency (<20Hz) 
power together with sustained high-frequency (>60Hz) power (i.e., cluster 1) correspond best to 
intermediate DNN layers, whereas sustained beta-gamma power (20-60Hz) clearly maps to the highest 
DNN layers (cluster 3). 

In our study we found no simple mapping between low/high-level (or basic/refined) representations and 
oscillatory components (power/phase) or frequency. Both low-frequency (theta, alpha) and high-
frequency (beta, gamma) oscillatory signals can carry either low/basic or high-level/refined 
representations at different times (e.g. clusters 2 vs. 4). Similarly, both phase and power signals can 
carry either low or high-level representations (e.g. clusters 1 vs. 3). The picture that emerges is a rather 
complex one, in which successive interactions between different oscillatory components in different 
brain regions and at different frequencies reflect the different stages of neural processing involved in 
object recognition. 

Our results highlight the importance of complementing MEG-fMRI RSA with another measure of 
representational content such as feed-forward DNNs (Hebart, Bankson et al. 2018, Khaligh-Razavi, 
Cichy et al. 2018). fMRI BOLD signals are often analyzed such that they reflect a single static 
representation. Thus, they cannot distinguish dynamics in local patterns as for example early 
feedforward and later feedback activity. By design, feedforward DNN layers cannot be dynamically 
influenced by feedback signals, and could be considered to provide a template for basic vs. refined 
representations during the different stages of image processing. Perhaps the best illustration of this 
notion stems from the discrepancy between fMRI and DNN RSA for MEG cluster 3, which suggests that 
sustained beta-gamma power during stimulus presentation could reflect feedback signals: best 
corresponding to V1 fMRI activity (low-level), but higher DNN layers (refined). Without this additional 
information (e.g., looking at Figure 3a alone), one might have interpreted sustained beta-power as a 
strictly low-level signal. The observed distinction between sustained power effects at lower frequencies 
(beta and low-gamma, cluster 3) vs. higher frequencies (high-gamma, cluster 1) is consistent with a 
large number of recent studies that reported a functional distinction between gamma-band and beta-
band signals, respectively supporting feed-forward and feedback communication (Fontolan, Morillon et 
al. 2014, van Kerkoerle, Self et al. 2014, Bastos, Vezoli et al. 2015, Michalareas, Vezoli et al. 2016). 
Future work could attempt to separate feedforward from feedback signals (e.g. with backward masking), 
to confirm the differential contribution of gamma and beta-band oscillatory frequencies to feedforward 
vs. feedback object representations, as determined with RSA. 

In addition to their involvement in the transmission of feedforward and feedback signals, several studies 
have shown that different oscillations can carry distinct information about stimulus properties (Hebart, 
Bankson et al. 2018, Khaligh-Razavi, Cichy et al. 2018). Here we considered whether oscillatory 
components in different frequencies correspond to basic or more refined stimulus processing stages. 
Our results suggest that most oscillatory brain activity, at least at the broad spatial scale that is measured 
with MEG, reflects already advanced stimulus processing in object detection tasks. This result can be 
seen in Figure 5 where most oscillatory components are more related to higher-level DNN layer 
representations, with the exception of the offset-transient (cluster 4). Indeed, one might have expected 
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that stimulus representations at both stimulus onset and offset are more reflective of transient low-
level/basic processing. However, while both onset and offset signals (cluster 1 and cluster 4) are better 
matched to V1 than IT (“low-level”, see also Figure 3c, d), in terms of DNN activations the offset-transient 
(cluster 4) appears to be much more basic in complexity and the onset-transient more refined (cluster 
1). A tentative explanation could be that the continued presence of the stimulus after the onset-transient 
supports a rapid refinement of object representations, which would not be the case for the offset-
transient (because the stimulus is absent from the retina). Indeed, it is remarkable that, aside from this 
offset-transient broadband phase activity (cluster 4), no other oscillatory signal was found to reflect low-
level DNN layers (i.e., basic information). 

In conclusion, our results help characterize the representational content of oscillatory signals during 
visual object perception. By separately considering hierarchical level (V1/IT) and representational 
complexity (based on DNNs), we narrow the gap between whole-brain oscillations and visual object 
representations supported by local neural activation patterns. 

 

References: 

Bastos, A. M., J. Vezoli, C. A. Bosman, J. M. Schoffelen, R. Oostenveld, J. R. Dowdall, P. De Weerd, H. Kennedy 
and P. Fries (2015). "Visual areas exert feedforward and feedback influences through distinct frequency channels." 
Neuron 85(2): 390-401. 
Cichy, R. M., A. Khosla, D. Pantazis, A. Torralba and A. Oliva (2016). "Comparison of deep neural networks to 
spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence." Sci Rep 
6: 27755. 
Cichy, R. M., D. Pantazis and A. Oliva (2014). "Resolving human object recognition in space and time." Nat Neurosci 
17(3): 455-462. 
Fontolan, L., B. Morillon, C. Liegeois-Chauvel and A. L. Giraud (2014). "The contribution of frequency-specific 
activity to hierarchical information processing in the human auditory cortex." Nat Commun 5: 4694. 
Fries, P. (2005). "A mechanism for cognitive dynamics: neuronal communication through neuronal coherence." 
Trends Cogn Sci 9(10): 474-480. 
Hebart, M. N., B. B. Bankson, A. Harel, C. I. Baker and R. M. Cichy (2018). "The representational dynamics of task 
and object processing in humans." Elife 7. 
Jensen, O. and A. Mazaheri (2010). "Shaping functional architecture by oscillatory alpha activity: gating by 
inhibition." Front Hum Neurosci 4: 186. 
Kar, K., J. Kubilius, K. Schmidt, E. B. Issa and J. J. DiCarlo (2019). "Evidence that recurrent circuits are critical to 
the ventral stream's execution of core object recognition behavior." Nat Neurosci 22(6): 974-983. 
Khaligh-Razavi, S.-M. and N. Kriegeskorte (2014). "Deep supervised, but not unsupervised, models may explain IT 
cortical representation." PLoS Comput Biol 10(11): e1003915. 
Khaligh-Razavi, S. M., R. M. Cichy, D. Pantazis and A. Oliva (2018). "Tracking the Spatiotemporal Neural Dynamics 
of Real-world Object Size and Animacy in the Human Brain." J Cogn Neurosci 30(11): 1559-1576. 
Kiani, R., H. Esteky, K. Mirpour and K. Tanaka (2007). "Object category structure in response patterns of neuronal 
population in monkey inferior temporal cortex." J Neurophysiol 97(6): 4296-4309. 
Kietzmann, T. C., C. J. Spoerer, L. K. A. Sorensen, R. M. Cichy, O. Hauk and N. Kriegeskorte (2019). "Recurrence 
is required to capture the representational dynamics of the human visual system." Proc Natl Acad Sci U S A 116(43): 
21854-21863. 
Kriegeskorte, N., M. Mur and P. Bandettini (2008). "Representational similarity analysis - connecting the branches 
of systems neuroscience." Front Syst Neurosci 2: 4. 
Krizhevksy, A., I. Sutskever and G. E. Hinton (2012). "Imagenet classification with deep convolutional neural 
networks." Advances in Neural Information Processing Systems 25: 1097-1105. 
Lamme, V. A. and P. R. Roelfsema (2000). "The distinct modes of vision offered by feedforward and recurrent 
processing." Trends Neurosci 23(11): 571-579. 
Michalareas, G., J. Vezoli, S. van Pelt, J. M. Schoffelen, H. Kennedy and P. Fries (2016). "Alpha-Beta and Gamma 
Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas." Neuron 89(2): 
384-397. 
Nowak, L. and J. Bullier (1998). The timing of information transfer in the visual system. Cerebral Cortex. J. H. Kaas, 
K. Rockland and A. Peters. New York, Plenum Press: 205-241. 
Oostenveld, R., P. Fries, E. Maris and J. M. Schoffelen (2011). "FieldTrip: Open source software for advanced 
analysis of MEG, EEG, and invasive electrophysiological data." Comput Intell Neurosci 2011: 156869. 
Roelfsema, P. R., V. A. Lamme and H. Spekreijse (1998). "Object-based attention in the primary visual cortex of 
the macaque monkey." Nature 395(6700): 376-381. 
Romei, V., J. Driver, P. G. Schyns and G. Thut (2011). "Rhythmic TMS over parietal cortex links distinct brain 
frequencies to global versus local visual processing." Curr Biol 21(4): 334-337. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279216
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Simonyan, K. and A. Zisserman (2014). "Very Deep Convolutional Networks for Large-Scale Visual Recognition." 
CoRR abs/1409.1556. 
Smith, M. L., F. Gosselin and P. G. Schyns (2006). "Perceptual moments of conscious visual experience inferred 
from oscillatory brain activity." Proc Natl Acad Sci U S A 103(14): 5626-5631. 
Szegedy, C., S. Ioffe and V. Vanhoucke (2017). "Inception-v4, Inception-ResNet and the Impact of Residual 
Connections on Learning." Thirty-first AAAI conference on artificial intelligence. 
Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich (2015). 
"Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition: 1-9. 
van Kerkoerle, T., M. W. Self, B. Dagnino, M. A. Gariel-Mathis, J. Poort, C. van der Togt and P. R. Roelfsema 
(2014). "Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex." 
Proc Natl Acad Sci U S A 111(40): 14332-14341. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279216
http://creativecommons.org/licenses/by-nc-nd/4.0/

