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Abstract—Current schemes in steganography relying on syn-
chronization are all based on a general heuristic to take into
account interactions between embedding changes. However these
approaches, while often competitive, lack a clear model for the
relationship between pixels/DCT coefficient and the distortion
function, and, as such, do not give any guarantees in terms
of detectabilty. To solve this problem, we herein propose a
synchronized side-informed scheme in the JPEG domain based
on minimizing statistical detectability which achieves state-of-the-
art performances. This is done by exploiting a statistical model
that takes into account correlations between DCT coefficients and
adding an optimal steganographic-signal with covariance which
is a scaled version of the cover noise covariance. This method
allows a clear understanding of the reasons why, depending on
the processing pipeline, synchronization using both intra and
inter-block dependencies allows such gains in performance.

I. INTRODUCTION

Imperfect steganography has historically always been
grounded on the assumption of independence between samples
(pixels or DCT). Indeed, most of the current-art steganographic
scheme assumes that the modification of one cover element
does not affect the detectability over neighboring elements and
hence does not change the probability of modifying another.
Recently however, several strategies have been proposed to
take into account interactions between embedding changes.
In fact there is a striking asymmetry between steganography
and steganalysis on this assumption of independent cover
samples. On the one hand, steganography largely relies on this
assumption, in large part because of practical aspects such as
the use of the STC that use an addition distortion function.
On the other hand, steganalysis does exploit more and more
accurately the correlation between neighboring samples in
order to detect minor changes due to data hiding.

Roughly speaking, there have been two types of approaches
that have been proposed in order to exploit sample correlation
in the design of steganography. The most general of method
uses the so-called Gibbs construction [1] to allow the use of
any non-additive distortion function which can be expressed as
a sum of locally supported potential. Despite its generality, the
success of this approach has been quite mild as it did not shed
any light on the link between a non-additive distortion function
and empirical detectability. Without such a link, a number of
heuristic schemes have been proposed [2]–[4]. While those

approaches allow improving substantially the performance of
steganography with respect to the empirical detectors, these
heuristic approaches do not give any guarantees of perfor-
mance as their distortion functions are not based on any
statistical model. Yet, there now exist a few approaches, both
in the spatial [5], [6] and JPEG domain [7]–[9] for designing
schemes using the framework initially proposed in [10], [11]
based on hypothesis testing and minimizing the power of the
most powerful detector. This framework has the advantage of
giving guarantees of performance in terms of detectability as
long as the cover and stego under scrutiny follow the model
assumed by the steganographic scheme .

A scheme using synchronization under this framework has
yet to be proposed. This is the main contribution of this work.

In this paper, we design a scheme, focusing on the JPEG
domain though the method can also be used in the spatial
domain, which minimizes statistical detectability through the
use of synchronization. More specifically, we extend our
previous work on Gaussian embedding [9] to take into account
correlations between DCT coefficients. In the first section, we
present the model of the cover and stego model and derive
the performance of the optimal detector as well as the optimal
form of the stego signal. In the second section we design a
multivariate version of Gaussian embedding which fully takes
the covariance of DCT blocks into account using the results
of Section II. We finally present the results of our method in
the last section for different processing pipelines and quality
factors.

II. COVER AND STEGO MODELS

In this section, we present the model that will be used
in the design of our synchronized embedding scheme. The
model we consider here is applicable both to the spatial and
JPEG domain. Following the same motivations as in [9], [12]–
[14], [23], we model the precover as an image consisting of
N independent M × M blocks Pi following a multivariate
Gaussian. Though the signal will eventually be embedded
in the discretized domain, we model a steganographer trying
to minimize the detectability in the continuous domain with
a payload constraint in the discrete domain. To do so, we
model a “pre-stego” Q as the image to which was added



signal consisting of N independent M ×M blocks following
a multivariate Gaussian with zero-mean. Formally, let :

Pi ∼ N (µi,Σi), (1)
Qi ∼ N (µi,Σi + εi). (2)

Following the methodology proposed in [5], we design a
steganographic scheme which generates a signal that min-
imizes the power of the most powerful (MP) detector. To
cast the steganography problem into the continuous domain,
we will work under the assumption that the Warden knows
ε = (ε1, ε2, . . . , εN ) as well as the model parameters µ =
(µ1, µ2, . . . , µN ) and Σ = (Σ1,Σ2, . . . ,ΣN ) and analyses
the image blocks before rounding z = (z1, z2, . . . , zN ).
The Warden’s goal is to decide between the two hypotheses
∀i ∈ {1, 2, . . . , N}:{

H0 = {zi ∼ N (µi,Σi)} ,
H1 = {zi ∼ N (µi,Σi + εi)} .

(3)

Let the pdf of the noise distribution under H0, pΣi
(x), and

qΣi,εi (x) under H1 as

pΣi (x) =
exp

(
(x− µi)T Σ−1

i (x− µi)
)

√
2π|Σi|

(4)

qΣi,εi (x) =
exp

(
(x− µi)T (Σi + εi)

−1
(x− µi)

)
√

2π|Σi + εi|
. (5)

We can then use the Neyman-Pearson criterion of optimal-
ity. In this case the Warden constructs a test δ : R →
{H0,H1} which maximizes the power of the test PD ,
P (δ (x) = H1|H1) under a given false-alarm probability
PFA , P (δ (x) = H1|H0).

Under these assumptions, the problem of the Warden (3) is
reduced to a choice between two simple hypotheses for which
the Neyman-Pearson Lemma states that the most-powerful
test is the likelihood ratio test (LRT), defined, in our case
as follows:

Λi(z,Σi, εi) = ln

(
pΣi

(z)

qΣi,εi (z)

)
, (6)

Λ(z,Σ, ε) =

N∑
i=0

Λi(zi,Σi, εi)
H0

≶
H1

τ, (7)

since we assume independence between image blocks.
We now give, without proof due to space constraints, the

asymptotic power of the LRT.
Let Ai = Σ−1

i − (Σi + εi)
−1 and let the j-th eigenvalue of

AiΣi be written as k0
j and the j-th eigenvalue of Ai (Σi + εi)

as k1
j . The first two moments of the LRT under each hypothesis

are given by:
As the number N of independent blocks of cover elements

N →∞, Linderberg’s central limit theorem implies that:

Λ(z,Σ, ε) 

{
N (EH0

,VarH0
) , under H0

N (EH1
,VarH1

) , under H1

(8)

EHi
[Λ] V arHi

[Λ]

0 −
∑N

i=1 DKL

(
pΣc

i
||qΣs

i

)
1
2

∑N
i=1

∑M
j=1(k0

ij)2

1
∑N

i=1 DKL

(
qΣs

i
||pΣc

i

)
1
2

∑N
i=1

∑M
j=1(k1

ij)2

where  denotes convergence in distribution.
One can easily establish the power function and the false

alarm probability of the LR test using the limiting distribution
of the log-likelihood ratio (11). To this end we will first
establish the threshold τ that guarantees that the test (7)
satisfies a given constraint on the false alarm rate:

PFA(τ) = P (Λ(z,Σ, ε) > τ |H0) = Q

(
τ − EH0√

VarH0

)
,

⇔ τ = Q−1(PFA)
√

VarH0 − EH0 . (9)

where Q is the tail distribution function of the standard normal
distribution.
Similarly the power function is given

PD(τ) = P (Λ(z,Σ, ε) > τ |H1) = Q

(
τ − EH1√

VarH1

)
. (10)

Replacing in (10) the expression of the threshold given in (9)
eventually yields to:

PD = P (δ (x) = H1|H1) (11)

= Q

(
Q−1 (PFA)

√
VarH0

+ EH1
− EH0√

VarH1

)
, (12)

We show in the appendix that the “optimal” covariance stego
signal, that minimizes the power function, has the following
form:

εi = αΣi, (13)

with α ∈ R+.

III. MULTIVARIATE GAUSSIAN EMBEDDING

In this section we design a synchronized embedding scheme,
which we will name Multivariate Gaussian embedding (MGE),
which is able to take into account correlations between neigh-
boring pixels/DCT coefficients by leveraging the model de-
scribed in the preceding section. Due to space considerations,
we will here only consider the case of a Payload-Limited
Sender (PLS).

In our case, the payload-limited sender wants to minimize
the power of the LRT (11) under a given payload constraint:

min
εi

PD (εi)

R =

n∑
i=0

∑
j∈Z

β
(j)
i log

(
β

(j)
i

) (14)

where β(j)
i is the probability of adding +j to the ith coeffi-

cient, n is the total number of elements (DCT coefficients) and
R is the desired payload in bits. Also note that we minimize



the power of the detector in the continuous domain while the
payload constraint is expressed in the quantized domain.

Assuming each M × M block of DCT coefficient inde-
pendent and using the results of the appendix; εi has the form
given in Eq (13). To minimize PD under the payload constraint
we therefore only have to perform a binary search on α until
the constraint is met.

The problem is now reduced to computing the probabilities
of adding +j to the ith coefficient β(j)

i efficiently. To do so we
compute the Gaussian parameters µ̄i and ε̄i of each element
of the stego-signal conditioned on the realizations of previous
embedding. This can be done efficiently using the Cholesky
decomposition of Σi :

Σi = LiL
T
i . (15)

Using the Cholesky decomposition, we can first sample the
stego-signal as realizations of a standard normal distribution
x. We then correlate the samples using L:

x′i = Lixi, (16)

finally scaling them accordingly to meet the constraint.
The parameters are then obtained by :

ε̄i =
√
αLii, (17)

µ̄i =
√
α (x′i − ε̄ixi) . (18)

The β(j)
i are then obtained by :

β
(j)
i = Φ

(
j − ri − µ̄i + 0.5

ε̄i

)
−Φ

(
j − ri − µ̄i − 0.5

ε̄i

)
, (19)

where Φ(·) represents the cumulative distribution function of
the standard normal distribution and ri = xi − [xi] denotes
the rounding error of i-th DCT coefficient. In practice, the
alphabet size of the embedding scheme is finite; j is thus
constrained to a finite range and the β(j)

i must be normalized
accordingly.

IV. MULTIVARIATE EMBEDDING IN PRACTICE

In the preceding section we showed how to simulate MGE
for a given covariance matrix of the cover noise. In this section
we explain how we estimate the covariance matrix in practice
and how the block size is chosen. We also give the rationale for
using this scheme with Syndrome-Trellis-Codes [15] (STC).

A. Estimation of the Covariance Matrix

Before estimating the covariance matrix, the steganographer
has to decide what block size M ×M to use. This block size
determines what dependencies are taken into account by the
embedding scheme. If a block size of 8 × 8 is chosen, only
intra-block dependencies are taken into account while a higher
block-size will allow capturing inter-block dependencies. This
choice is then a trade-off between computational tractability of
the covariance matrix and security of the embedding scheme.
In practice we decided to fix the block size as 24 × 24 in

order to capture inter-block dependencies in every direction
(horizontal, vertical and diagonal blocks) while still allowing
fast computation of the covariance matrix.

The covariance matrix itself is estimated using the method
described in [9, Section II]. The H matrix modeling the
processing pipeline is estimated using a simple least square
regression. To that end, we use a synthetic constant RAW
image to which centered Gaussian noise with constant variance
is added. This image is then processed using the relevant
processing pipeline. When using both intra-block and inter-
block dependencies, the RAW and developed images are then
reshaped as arrays of (24k + 2) × (24k + 2) and 24 × 24
blocks respectively where k is the resize factor of the image
from the RAW domain to the JPEG domain (which is equal
to 1 if no resizing was performed). When using only intra-
block dependencies, we use (8k + 2) × (8k + 2) and 8 × 8
respectively. Denoting the blocks in the RAW domain and in
the developed domain as XRAW and Xdev , respectively, H is
obtained by solving:

Xdev = HXRAW . (20)

B. Embedding using STC

We now outline an implementation of MGE using STCs.
When using STCs, we need to compute the embedding prob-
abilities β(j)

i using the methodology given in the preceding
section and convert them to costs using:

β
(j)
i =

e−λρ
(j)
i

1 +
∑
j∈A\{0} e

−λρ(j)i

. (21)

However, the probability of embedding in the k-th coef-
ficient of a given block depends on the actual embedding
performed by the STC on all the preceding coefficients in
that block. Such an implementation will thus require to be
performed iteratively.

In the first iteration we compute the embedding probabilities
in the first coefficient of each block. Here, we necessarily
have µ̄i = 0 for all coefficients, β(j)

i ’s can thus directly be
computed and converted to costs. Once the payload has been
embedded, the xi corresponding to each of these coefficient
must be computed. To do so we can sample x′i using rejection
sampling until the rounded value of x′i matches the actual
embedding. We then compute xi using Eq. (16).

The k-th iteration is done in exactly the same manner,
for the k-th coefficient of each block, except, this time, we
compute µ̄i using the previously computed xi and Eq (18).

The only caveat with this approach is that α must be
fixed before the embedding and be identical for each lattice.
However, since the actual entropy depends on the β(j)

i , hence
on the actual embedding performed, it is theoretically not
possible to compute the minimal α that would allow to reach
the payload size. In practice, this is not such a problem as we
observed during simulations that the realizations of the xi play
a very small role on the entropy; it will usually make it change
by 1 or 2 nats at most if at all. A good rule of thumb would



TABLE I: Names and operations of the processing pipelines used in the experiments. Gamma correction is never performed
except when explicitly stated. The operations are performed in the order they are presented in the table

Pipeline name Demosaicking White Balance RGB to grey Downsampling method

Linear Pipeline Bilinear No Yes Edge crop, 256× 256
BOSS Pipeline PPG Yes, Camera Yes Resize from 768× 768 (Edge crop) to 256× 256, Lanczos kernel
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Fig. 1: Comparison of the proposed embedding schemes with prior art using the PE as a function of the payload size for
BossBase developed with the BOSS pipeline.

then be to find the optimal α for a slightly higher payload and
to use it to ensure the message will fit on the first try.

V. RESULTS

In this section, we study the performance of our different
extensions of Gaussian Embedding in the JPEG domain. In
order to have access to a precise estimation of the covariance
matrix, we use the estimation method described in our previous
work [9, Section II]. Consequently we use the knowledge
of the RAW file and of the processing pipeline. We use the
BOSS [16] RAW dataset excluding the M9 camera because of
its peculiar distribution of its photonic (see [17], Fig. 2) which
would lead to imprecise estimation of the covariance matrix.
From this dataset comprising 7642 RAW images taken with
6 different cameras we produce two new datasets using two
different processing pipeline : a linear processing pipeline and
a processing pipeline close to the original BOSSBase [16].
The details are exposed in Table I.

The different embedding schemes used as well as their pa-
rameters are described in Table II. Steganalysis was performed
with DCTR [18] and the Low-complexity Linear Classifier
(LCLC) [19]. Eventually, the empirical security of the schemes
is evaluated using the minimal probability of error under
equal priors: PE = minPFA

PMD+PFA
2 . Results are given in

Figure 1 and 2.

TABLE II: Nomenclature of the embedding schemes

Name Meaning

Σ-SI-Gaussian Minimizes the power of the MP detector in the continuous domain
supposing the DCT coefficient to be independent as described in
[9].

Σ-MGE Intra Only Minimizes the power of the MP detector in the continuous domain
supposing 8× 8 DCT block to be independent.

Σ-MGE Intra+Inter Minimizes the power of the MP detector in the continuous domain
supposing 24× 24 DCT block to be independent.

SI-UNIWARD Side informed distortion based schemes as described in [20].

First of all, one can observe that performance improves
drastically when using the intra AND inter block dependencies
especially for higher quality factors – ie. QF100 and QF95.
The average absolute gain in PE with respect to SI-UNIWARD
ranges from 6% to 9% respectively for the linear pipeline and
from 11% to 6% respectively for the BOSS pipeline. This gain
is only of 2% on average for QF75.

However, we also observe an average relative gain of 1.5
which is consistent across every pipeline and quality factor,
except at the two lowest payloads for the BOSS pipeline at
QF75 where all the schemes perform approximately the same.

Interestingly, at QF100 with the linear pipeline, using only
intra-block dependencies does not bring any gain in perfor-
mance compared to the scheme where the DCT coefficients
are deemed independent. However, the performance of the
method using only the intra-block tends to match with the one
using both inter and intra-block dependencies as the QF gets
lower. This phenomenon was already observed with Natural
Steganography [22] where not taking into account inter-block
dependencies would lead to a useless scheme at QF100, yet
the scheme would still perform acceptably for lower QF.

This phenomenon can be explained by the fact that the
inter-block covariances tend to be smaller by one or two
order of magnitude than the intra-block covariances. Higher
quantization steps and rounding will thus tend to reinforce this
fact, making the inter-block dependencies, and even eventually
the intra-block dependencies negligible.

The fact that this phenomenon is much less pronounced
for the Bosslike pipeline has to do with the fact that the
demosaicking algorithm, PPG, works independently on 8× 8
blocks, thus not creating inter-block dependencies in the JPEG
domain by itself. The only inter-block dependencies which
are introduced are thus due to the filtering used for the
resizing. However since we use a resize factor of 3, most
of these dependencies are lost during the decimation process
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Fig. 2: Comparison of the proposed embedding schemes with prior art using the PE as a function of the payload size for
BossBase developed with the Linear pipeline.

of the resizing process. The gain in using the inter-block
dependencies hence disappears far quicker with respect to the
QF than for the linear pipeline.

VI. CONCLUSION

In this paper, we presented a novel method able to take
correlations between cover elements into account. In particular,
we showed that, under some assumptions on the precover, the
optimal covariance of the prestego signal is simply a scaling
of the precover covariance. We then studied the performance
of this scheme and observed that using both intra and inter-
block dependencies consistently gave the best performance.
As future work, we will expand this scheme to forego the
assumption of independence between blocks in the model. We
will also propose a method to be able to use this scheme when
the RAW file is unavailable to the steganographer.

APPENDIX

A. Representation of the Optimal Stego Covariance

In this appendix we show that the optimal covariance of the
stego signal when the cover is corrupted by a non-stationary
multivariate Gaussian noise is a scaling of the covariance of
the cover noise.

This proof relies on three steps. In the first part we show
that if the cover element are independent Gaussians random
variables, then then the Gaussian stego signal that minimizes
the DKL, is also composed of independent element. Following
this, we show that one optimal detector in the general case
of a non-stationary multivariate signal can be expressed in
the domain where the noise is independent. From this, we
use the result derived in [9] that if the stego signal and the
cover element are independent Gaussians, the variance of the
optimal stego signal is a scaled version of the variance of the
corresponding cover element. We then conclude on the form
of the optimal covariance of the stego signal in the original
domain.

Let P be a precover image with N elements corrupted by
a multivariate Gaussian noise:

P ∼ N (µ,Σc) (22)

where Σc is a N ×N covariance matrix. Similarly let the
pre-stego Q follow a centered multivariate Gaussian noise :

Q ∼ N (µ,Σs) (23)

The steganographer wants to minimize the power of the
optimal detector given a payload constraint R.

1) Independant stego signal for independant Gaussian
cover noise: We here show that if Σc is diagonal, which
we will write as Σc = diag(σ2

c ) then one of the optimal
covariance for the prestego is also diagonal. In this subsection
only, we will write Σs to talk about the non diagonal stego
covariance matrix, while we will re-write diag(σ2

s) if we talk
a bout the diagonal one.

As N →∞, it is sufficient to show that the KL-divergence
between the cover and the stego is greater if Σs is not diagonal.
We will assume here than N is large enough for the asymptotic
regime to hold.

Now, using the chain rule of KL-divergence and the fact
that the cover elements are diagonal:

DKL (P ||Q) =

N∑
i=1

DKL (p(zi)||q(zi|z1 . . . zi−1) . (24)

If Σs = diag(σ2
s) then:

DKL (P ||Q) =

N∑
i=1

log

(
σs,i
σc,i

)
+

N∑
i=1

σ2
c,i

2σ2
s,i

− N

2
. (25)

If Σs is not diagonal, then:

DKL (P ||Q) =

N∑
i=1

log

(
σ̄s,i
σc,i

)
+

N∑
i=1

σ2
c,i

2σ̄2
s,i

+

N∑
i=1

µ̄2
s,i

2σ̄2
s,i

− N
2
,

(26)
where µ̄s,i and σ̄2

s,i is the mean and variance of the i-th
conditioned Gaussian in Eq (24).

Now we use the payload constraint to observe that:

log (|Σs|) = log
(
|diag(σ2

s)|
)

(27)

=

N∑
i=1

log
(
2πeσ2

s,i

)
(28)

=

N∑
i=1

log
(
2πeσ̄2

s,i

)
. (29)



Now, it is easy to show, using the technique of Lagrange
multipliers in the same way as in [9], that there is a unique
solution which minimizes the first and the second term of the
LHS of Eq (25) and Eq (26) for a given constraint. Since the
constraint is the same for both cases we can conclude that in
order to minimize the first two terms of the LHS for both cases,
we necessarily have diag(σ2

s,i) = diag(σ̄2
s,i) ∀i ∈ {1 . . . N}.

However, since µ̄2
s,i ≥ 0, the minimum DKL when Σs is

not diagonal is necessarily greater than the DKL when it is.
2) Optimal detector: Let the eigendecomposition of Σc be

written as :
Σc = UKU−1, (30)

and
zu = Uz. (31)

Since Σc is symmetric positive definite, it follows that U is
a full-rank non-singular matrix. Hence, expressing the samples
in this new basis has no impact on the power of the LRT. An
equivalent expression of the optimal test expressed in Eq (7)
is thus (see [21, Chapter 3 Section 3] for a derivation):

zTu

(
K−1 −

(
UΣsU

T
)−1
)

zu
H0

≶
H1

τu, (32)

Let Kε = UΣsU
T−K be the covariance of the stego signal

in this new basis. Since K is diagonal, we have seen that the
optimal Kε must also be diagonal. More precisely, using the
results of our preceding work [9] we know that the optimal Kε

is given by scaling of each variance by the Lagrange multiplier
λ:

Kε =

√
λ

2
K , αK, (33)

Going back to the original basis of the samples, the expres-
sion of the optimal stego covariance matrix is directly given
by:

ε = U−1αKU = αΣc. (34)

The optimal covariance of the stego signal is thus a scaling
of the original covariance matrix of the cover noise. Further-
more note that the performance of the LRT is obtained in a
similar way as for the independent case and thus its power
can be quantified by:

% =

√√√√ N∑
i=1

k2
εi

2k2
i

, (35)

where k2
i and k2

εi are the eigenvalues of Σc and Σs − Σc
respectively.
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