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RESEARCH ARTICLE

Gene networks for three feed efficiency 
criteria reveal shared and specific biological 
processes
Sébastien Taussat1,2* , Mekki Boussaha1, Yuliaxis Ramayo‑Caldas1, Pauline Martin1, Eric Venot1, 
Gonzalo Cantalapiedra‑Hijar3, Chris Hozé1,2, Sébastien Fritz1,2 and Gilles Renand1

Abstract 

Background: French beef producers suffer from the decrease in profitability of their farms mainly because of the 
continuous increase in feed costs. Selection for feed efficiency in beef cattle represents a relevant solution to face this 
problem. However, feed efficiency is a complex trait that can be assessed by three major criteria: residual feed intake 
(RFI), residual gain (RG) and feed efficiency ratio (FE), which involve different genetic determinisms. An analysis that 
combines phenotype and whole‑genome sequence data provides a unique framework for genomic studies. The 
aim of our study was to identify the gene networks and the biological processes that are responsible for the genetic 
determinism that is shared between these three feed efficiency criteria.

Results: A population of 1477 French Charolais young bulls was phenotyped for feed intake (FI), average daily 
gain (ADG) and final weight (FW) to estimate RFI, RG and FE. A subset of 789 young bulls was genotyped on the 
BovineSNP50 single nucleotide polymorphism (SNP) array and imputed at the sequence level using RUN6 of the 1000 
Bull Genomes Project. We conducted a genome‑wide association study (GWAS) to estimate the individual effect of 
8.5 million SNPs and applied an association weight matrix (AWM) approach to analyse the results, one for each feed 
efficiency criterion. The results highlighted co‑association networks including 626 genes for RFI, 426 for RG and 564 
for FE. Enrichment assessment revealed the biological processes that show the strongest association with RFI, RG and 
FE, i.e. digestive tract (salivary, gastric and mucin secretion) and metabolic processes (cellular and cardiovascular). 
Energetic functions were more associated with RFI and FE and cardio‑vascular and cellular processes with RG. Several 
hormones such as apelin, glucagon, insulin, aldosterone, the gonadotrophin releasing hormone and the thyroid hor‑
mone were also identified, and these should be tested in future studies as candidate biomarkers for feed efficiency.

Conclusions: The combination of network and pathway analyses at the sequence level led to the identification of 
both common and specific mechanisms that are involved in RFI, RG and FE, and to a better understanding of the 
genetic determinism underlying these three criteria. The effects of the genes involved in each of the identified pro‑
cesses need to be tested in genomic evaluations to confirm the potential gain in reliability of using functional variants 
to select animals for feed efficiency.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Improving feed efficiency of beef cattle is a major con-
cern for beef producers. In France, on the one hand, the 
carcass weight of Charolais beef bulls has increased by 
13% between 1996 and 2016 [1, 2] due to the improve-
ment of management and breeding practices and on the 
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other hand, the consumption of concentrate has risen 
by 29% and feeding costs by 50% over the same period 
[3]. Depending on the economic weight of the inputs 
and outputs, feed efficiency can be improved by reduc-
ing consumption without affecting production and/or, 
conversely, by increasing production without increas-
ing consumption. The simplest measure to estimate the 
feed efficiency of growing animals is the feed efficiency 
ratio (FE), which is the average daily gain (ADG) divided 
by feed intake (FI) or its inverse, the feed conversion 
rate (FCR = FI/ADG). However, FE is difficult to use as a 
selection criterion because the genetic responses of the 
components (FI and ADG) of this ratio are unpredict-
able [4]. Currently, the most commonly used criterion for 
selecting efficient animals is residual feed intake (RFI), 
which is the difference between observed FI and FI pre-
dicted from the animal’s maintenance and needs [5]. Usu-
ally, for growing animals, RFI is calculated as the residual 
of the regression of intake on metabolic body weight and 
daily gain. This criterion is not correlated with its com-
ponents, and animals that have negative RFI values, i.e. 
that eat less than expected, are considered as efficient. 
Another feed efficiency criterion that has been suggested 
to identify differences in feed use among growing animals 
is residual gain (RG) [5], which is the difference between 
observed and predicted ADG and is calculated as the 
residual from a multiple regression of ADG on metabolic 
body weight and feed intake. Animals with higher RG 
values are more efficient.

Estimates of the heritability of FCR, RFI and RG are 
moderate, i.e. on average 0.23, 0.33 and 0.28, respectively 
(see review in [6]). Thus, genetic improvement of the feed 
efficiency of growing cattle can be achieved by breeding 
high merit animals. However, implementation of a breed-
ing program based on performance records and pedigree 
information is difficult, because measuring individual 
feed intake is too costly and time-consuming for routine 
recording on commercial farms. In this context, genomic 
selection can be a relevant alternative to improve feed 
efficiency, since it requires phenotype records for the ref-
erence population only. Thus, it is important to identify 
genetic markers associated with feed efficiency. Several 
genome-wide association studies (GWAS) have been 
conducted on cattle populations and have revealed puta-
tive quantitative trait loci (QTL) that are associated with 
phenotypic differences in feed use and associated traits 
[7–15]. These studies confirmed that many genes are 
involved in the genetic differences regarding feed use, 
each one explaining only a small proportion of the phe-
notypic variance and most of them being breed-specific. 
By using single nucleotide polymorphisms (SNPs) that 
are significantly associated with performance, genomic 
estimated breeding values (GEBV) for feed efficiency can 

now be predicted, but with a moderate accuracy [16]. The 
use of whole-genome sequence (WGS) data increases the 
accuracy of GEBV of complex traits [17], thus allowing 
the detection of causative variants [18]. Since the inclu-
sion of causative variants can improve the accuracy of 
genomic predictions and allows robust predictions across 
cattle populations, the identification of functional genes 
involved in feed efficiency will greatly benefit programs 
that aim at improving this trait [19]. The identification 
of causative variants in WGS is still very difficult since a 
large number of variants can be in linkage disequilibrium 
(LD) within a QTL region and imputation of WGS for 
rare variants is far from perfect [20]. The recent devel-
opment of systems biology approaches allows the iden-
tification of the relationships between markers, genes 
and phenotypes, and can enhance our knowledge on the 
genetic architecture of complex traits [21–24].

A previous study [25] that estimated genetic parame-
ters of French Charolais beef bulls showed that FE, RFI 
and RG had similar and moderate heritabilities (0.35 to 
0.36) and were moderately to strongly correlated: i.e. 
genetic correlation estimates were − 0.77 between FE 
and RFI, − 0.45 between RFI and RG, and 0.91 between 
FE and RG. Such genetic correlations suggest that part 
of the genetic determinism underlying RFI, RG and FE 
is shared, but that different genetic mechanisms are also 
involved in the expression of each trait. The objective of 
our work was to identify some of the biological processes 
that are responsible for both the shared and specific 
genetic determinisms among these three feed efficiency 
criteria. First, we performed a GWAS of imputed WGS 
data for each criterion and the associated traits. Then, we 
applied an association weight matrix (AWM) approach 
to identify candidate gene networks and biological pro-
cesses with an enrichment analysis.

Methods
Animal management and phenotyping
During this experiment, all animals were kept indoors, 
handled with care following the Institut National 
de Recherche pour l’Agriculture, l’Alimentation et 
l’Environnement (INRAE) ethics policy in accordance 
with the guidelines for animal research of the French 
Ministry of Agriculture (https ://www.legif rance .gouv.fr/
eli/decre t/2013/2/1/2013-118/jo/texte ).

The animal design used in this study was similar to 
that previously reported in [25]. Briefly, 60 Charolais 
bulls were used to inseminate purebred Charolais 
females on the INRAE experimental farm in Bourges. 
Progenies were born between 1988 and 2009 and 
weaned at 221 ± 3 days, on average. Immediately after 
weaning, uncastrated male calves were moved to a fat-
tening barn and allotted by groups of seven individuals 

https://www.legifrance.gouv.fr/eli/decret/2013/2/1/2013-118/jo/texte
https://www.legifrance.gouv.fr/eli/decret/2013/2/1/2013-118/jo/texte
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into pens, which were equipped with Calan Gates 
(American Calan, Northwood, NH) that allow individ-
ual recording of feed intake. These young bulls were 
adapted to the fattening diet during 6 to 8 weeks and 
were then fed ad libitum with a complete pelleted diet 
that is composed of 29% dehydrated alfalfa hay, 29% 
dehydrated beet pulp, 21% bran and other ingredi-
ents to make a balanced diet. At the beginning of the 
test period, young bulls were on average 275 (± 10) 
days old and were weighed on two consecutive days 
to establish their initial body weight. Then, they were 
weighed every 14 days to monitor their growth. All the 
young bulls were tested until 15  months of age and, 
for half of the animals, feeding was continued until 
19  months of age. At the end of the test period, they 
were weighed on two consecutive days to establish the 
final weight (FW).

Description of the traits measured
Records for growth and feed intake traits in the experi-
mental fattening barn were available for 1477 animals. 
Initial and final weights were used to compute ADG 
and mid-test weight. The metabolic mid-test weight 
( MMW ) was calculated as the mid-test  weight0.75. 
Daily FI of the fattening bulls was equal to the mean 
of all daily dry matter intake records over the period. 
Feed intake was used to calculate RFI , RG and the FE 
ratio. Residual feed intake ( RFI ) was equal to the dif-
ference between observed and expected FI , computed 
by a regression of FI on MMW andADG , using the 
Proc GLM of SAS/STAT® software, version 9.4 of the 
SAS System for Linux (Copyright© 2002 to 2012 by 
SAS Institute Inc., Cary, NC, USA). The model was:

where year was the fixed effect of the contemporary 
group (from 1988 to 2009), β1 was the partial regression 
of FI on MMW , β2 was the partial regression of FI on 
ADG , β3 was the partial regression of FI on age at the end 
of the test. Residual gain ( RG ) was the difference between 
ADG and expected ADG and was computed by a regres-
sion of ADG on MMW and FI , using the Proc GLM of 
SAS/STAT® software. The model was:

 where year was the fixed effect of the contemporary 
group (from 1988 to 2009), β1 was the partial regression 
of ADG on MMW , β2 was the partial regression of ADG 
on FI , β3 was the partial regression of ADG on age at the 
end of the test. FE was equal to ADG/FI and represented 
the gain in body weight for 1 kg of feed consumed.

FI = year + β1(MMW)+ β2(ADG)+ β3
(

final age
)

+ RFI,

ADG = year + β1(MMW)+ β2(FI)+ β3(final age)+ RG

50 K genotypes and imputation to whole‑genome 
sequences
A subset of 789 young bulls was genotyped with the 
BovineSNP50™ BeadChip (50  K) (Illumina Inc., San 
Diego, CA). Means and standard deviations of feed effi-
ciency and production traits for this subset are in Table 1. 
After quality control based on the French national evalu-
ation system [26], i.e. removing an individual with a call 
rate higher than 95%, a SNP with a call rate higher than 
90% or with a minor allele frequency (MAF) higher than 
5% in at least one major French dairy cattle breed, and 
SNPs with a deviation of genotype frequencies from 
Hardy–Weinberg equilibrium with P > 10–4, 43,801 auto-
somal SNPs remained for further analyses.

The genotypes of the young bulls were imputed to 
WGS as described in [27]. Briefly, this approach includes 
two steps: imputation from 50 to 777  K high-density 
(HD) SNPs and then to WGS. With this method, the 
accuracy of the WGS imputed variants is higher [28]. For 
the first step, we used the FImpute software [29] to per-
form imputations from 50 K to HD using a within-breed 
reference set of 664 Charolais bulls that were genotyped 
with the Illumina BovineHD BeadChip (Illumina Inc., 
San Diego, CA). For the second step, we used the Mini-
mac software [30] to perform imputation from HD den-
sity to WGS, using WGS variants from the 6th run (UMD 
3.1 assembly) of the 1000 Bull Genomes consortium. 
This run contained 2333 Bos taurus individuals from dif-
ferent cattle breeds, most of them purebred. However, 
to reduce the time necessary for imputation to WGS, a 
subset of 18 cattle pure breeds was selected to build the 
reference population, by ensuring a sufficient representa-
tiveness of each breed and the genetic proximity with the 
French cattle pure breeds [see Additional file 1]. The new 

Table 1 Means and  standard deviations (SD) of  traits 
studied in  all young bulls (n = 1447) and  in  the sub-
population of genotyped young bulls (n = 789)

RFI residual feed intake, RG residual gain, FE feed efficiency ratio, FI daily feed 
intake, FW final weight, ADG average daily gain
a Results for the whole population from Taussat et al. [25]
b Subset of the terminal bulls that are genotyped and used for GWAS analysis

Traits Whole  populationa Genotyped sub‑
populationb

Mean SD Mean SD

RFI 0.00 0.81 − 0.01 0.81

RG 0.00 0.14 0.00 0.13

FE 0.14 0.02 0.14 0.02

FI 10.62 1.31 10.63 1.23

FW 682 87 695 87

ADG 1.45 0.20 1.44 0.19
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reference population panel included 1466 WGS purebred 
individuals of which 128 were Charolais individuals.

The accuracy of the imputation from HD to WGS was 
assessed by the coefficient of determination  (R2) as cal-
culated by the Minimac software. To remove variants 
with the lowest accuracies of imputation, only those with 
a  R2 higher than 30% and a MAF higher than 1% were 
retained for further association analyses, i.e. 8,602,123 
variants.

Association analysis
Single-trait association analyses were performed between 
the 8,602,123 variants and RFI, RG, FE, FI, FW and 
ADG of young bulls. These phenotypes were precor-
rected using the Proc GLM of SAS for the fixed effects 
of contemporary group (22 years), age of the dam (3, 4, 5, 
6 years and more) and twinning (single or twin), and age 
at the end of the test was included as a covariate. All asso-
ciation analyses were computed with the GCTA software 
(version 1.26) [31], using the mlma option, and applied to 
a mixed linear model with the following formula:

 where y is the vector of corrected phenotypes; µ is the 
overall mean; 1 is a vector of ones; b is the z-score of the 
additive effect of the SNP analysed; x is the predicted 
dosage (ranging from 0 to 2); u ∼ N (0,Gσ2u) is the vec-
tor of random polygenic effect, where G is the genomic 
relationship matrix, calculated using the 50 K SNP geno-
types, and σ2u is the polygenic variance that is estimated 
based on the null model ( y = µ+ u + e ), and then fixed 
when the association between each variant and the trait 
of interest is tested; and e ∼ N (0, Iσ2e) is the vector of 
random residual effects, where I the identity matrix and 
σ
2
e the residual variance.

Network analysis
We applied the AWM approach [21] to detect co-associ-
ated genes by combining the results of the GWAS with 
the network inference algorithms. Each AWM procedure 
was performed using RFI, RG or FE as key phenotype. 
First, a n×m matrix that contained z-score standard-
ized additive effects with SNPs row-wise ( n= 8,602,123) 
and phenotypes column-wise ( m= 6) was built. In this 
first step, only the SNPs with a P-value ≤ 0.001 for the 
key phenotype were included in the matrix. Then, cor-
relation coefficients were calculated between the z-scores 
of SNP effects for the key phenotypes and those of the 
five other traits. Traits that were correlated (|r|≥ 0.25) 
were kept for the next step, which aimed at detecting new 
SNPs associated (P-value ≤ 0.001) with at least two other 
traits among the remaining ones and including them in 
the AWM matrices. The last step of the AWM procedure 

y = 1µ+ xb+ u + e

consisted in selecting one marker per gene. First, SNPs 
that were located within the nearest annotated gene 
(UMD 3.1 assembly) were identified, but since in general 
we found several SNPs within each identified gene, the 
SNP that was associated with the largest number of traits 
or, in case of a tie, with the lowest cumulated P-value 
over the associated traits, was selected.

The proportion of variance explained by the SNPs 
retained after the three AWM analyses was estimated 
using the GCTA software. To do that, a new genomic 
relationship matrix was computed for each feed effi-
ciency trait with SNPs from the AWM analysis only. 
Then, these SNPs were used to perform a genome-based 
restricted maximum likelihood (GREML) analysis to esti-
mate the SNP-based heritability for each trait [32]. This 
analysis was repeated with a similar number of randomly 
selected WGS SNPs to compare the heritabilities esti-
mated from AWM SNPs and from random SNPs.

Enrichment analysis
Enrichment in gene ontology (GO) terms and pathways 
from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) was investigated for the genes selected by the 
AWM approach. The plug-in ClueGO 2.5.5 [33] for 
Cytoscape 3.7.1 was used for this analysis with a selec-
tion of levels 3 to 8 of the GO hierarchy to obtain nei-
ther too general nor too specific GO terms. A gene set 
was considered to be enriched if the P-value associ-
ated with the hypergeometric test was lower than 0.05, 
after application of the Benjamini–Hochberg correc-
tion for multiple testing. GO terms and KEGG path-
ways were subsequently clustered in functional groups if 
the kappa statistic was higher than 0.4. The results from 
ClueGO were used in CluePedia 1.5.5 [34], a plug-in for 
Cytoscape, to visualize the network interaction between 
genes and enriched processes.

Results
For feed efficiency traits, the Manhattan plots from 
the GWAS are in Figure S1 [see Additional file  2: 
Fig. S1]. A Bonferroni threshold, which accounts for 
multiple testing, is commonly used as significance 
threshold for such GWAS analyses. For our data, this 
threshold would have been really high, i.e. reaching 8.24 
(− log10(0.05/8,602,123)), because of the huge number 
of markers and tests at the sequence level. Considering 
this very stringent threshold, no variant exceeded this 
threshold for the three GWAS performed here. How-
ever, in a first approach, the 100 variants with the low-
est P-value for RFI, RG and FE were selected to find the 
most likely associated genes (variants included in the 
genes). This analysis revealed seven genes for RFI, eight 
for RG and 11 for FE (see Table  2). Of these 26 genes, 
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two were associated with both RFI and FE (CAPN7 
and CACNA1E) and two with both RG and FE (ENS-
BTAG00000030623 and MROH7). No gene was associ-
ated with both RFI and RG.

Association matrix
All the genes retained after the AWM analyses are in 
Tables S1, S2 and S3 [see Additional file 3: Tables S1, S2 
and S3]. In the AWM analysis with RFI as key pheno-
type, all the traits were correlated (using SNP z-scores) 
with RFI (|r|≥ 0.25). Thus, the six traits were used in the 
AWM analysis, which decreased the number of variants 
from 8,602,123 to 15,977 SNPs among which 5761 were 
located in 626 genes (Table 3 and [see Additional file 3: 
Table S1]). Among these 626 genes, 231 were associated 
with RFI only and 155 were associated with RFI and at 
least one other trait (82 genes with FE, 53 with FI, 14 with 
both FE and FI, 6 with both RG and FE). The remaining 
240 genes were associated with at least two traits other 
than RFI: 66 genes with RG and ADG, 57 genes with RG 
and FE and 48 genes with FI and FW. Overall, for the 
feed efficiency traits, this AWM analysis highlighted 386 
genes for RFI, 179 for FE and 146 for RG and for the pro-
duction traits, 133 genes for FI, 92 for FW and 130 for 
ADG (see Table 4).

Table 2 Genes associated with SNPs from the 100 SNPs with the lowest p-value for each feed efficiency trait

a Trait abbreviations: RFI residual feed intake, RG residual gain, FE feed efficiency ratio

BTA Gene symbol Gene name Trait  affecteda

1 CAPN7 Calpain 7 RFI, FE

1 SH3BP5 SH3 domain binding protein 5 RFI

3 INSL5 Insulin like 5 RG

3 TCTEX1D1 Tctex1 domain containing 1 RG

3 ENSBTAG00000030623 RG, FE

3 MROH7 Maestro heat like repeat family member 7 RG, FE

5 GUCY2C Guanylate cyclase 2C FE

5 SAMM50 SAMM50 sorting and assembly machinery component FE

10 SLC35F4 Solute carrier family 35 member F4 FE

11 SULT6B1 Sulfotransferase family 6B member 1 RFI

11 NCK2 NCK adaptor protein 2 RG

15 UBQLNL Ubiquilin like RG

15 MMP13 Matrix metallopeptidase 13 RFI

16 CACNA1E Calcium voltage-gated channel subunit alpha1 E RFI, FE

17 TRIM2 Tripartite motif containing 2 RFI

17 KNTC1 Kinetochore associated 1 RG

18 LOC514658 Bile salt sulfotransferase FE

18 ENSBTAG00000040054 FE

22 GADL1 Glutamate decarboxylase like 1 FE

24 ZNF407 Zinc finger protein 407 FE

27 RBPMS RNA binding protein RG

28 CHAT Choline O-acetyltransferase RFI

Table 3 Number of  genes retained for  the  three 
association weight matrix (AWM) analyses

RFI residual feed intake, RG residual gain, FE feed efficiency ratio

Key phenotype (KP) RFI RG FE

Number of traits retained 5 4 (not FI) 5

Number of genes specific to the KP 231 142 169

Number of genes common between 
the KP and traits

155 146 179

Number of other genes 240 138 216

Total number of genes retained 626 426 564

Table 4 Number of  genes associated with  traits 
for the three association weight matrix (AWM) analyses

RFI residual feed intake, RG residual gain, FE feed efficiency ratio, FI daily feed 
intake, FW final weight, ADG average daily gain

Traits Key phenotype

RFI RG FE

Number of genes associated with traits RFI 386 101 155

RG 146 288 146

FE 179 174 348

FI 133 NA 133

FW 92 44 92

ADG 130 127 130
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The AWM analysis with RG as key phenotype 
decreased the number of variants from 8,602,123 after 
the GWAS to 11,169 SNPs. Feed intake was not cor-
related (using SNP z-scores) with RG and was not in 
the AWM analysis. Of the 11,169 SNPs, 3750 that were 
located in 426 genes were retained (Table  3 and [see 
Additional file  3: Table  S2]). Among these 426 genes, 
142 were associated with RG only and 146 with RG and 
at least another trait: 67 with ADG, 56 with FE, 15 with 
both FE and ADG, two with both FW and ADG, one 
with FE, FW and ADG, and five with both RFI and FE. 
Among the 138 remaining genes, 96 were associated with 
RFI and FE, 41 with FW and ADG, and one with FE and 
ADG. This AWM analysis showed that 288 genes were 
associated with RG, 174 with FE, 127 with ADG, 101 
with RFI, 44 with FW and none with FI (see Table 4).

In total, 13,751 SNPs were selected after the AWM 
analysis with FE as key phenotype. All the traits were 
correlated (using SNP z-scores) with FE and used in 
the AWM analysis. Among the 13,751 SNPs, 4139 were 
located in 564 genes (Table 3 and [see Additional file 3: 
Table  S3]) among which 169 genes were identified with 
FE only and 179 with FE and at least one another trait: 
82 with RFI, 57 with RG, five with FI, 14 with both RFI 
and FI, 14 with both RG and ADG, one with RG, FW 
and ADG and six with both RFI and RG. Among the 216 
remaining genes, 66 were detected with both RG and 

ADG, 53 with both RFI and FI and 48 with both FI and 
FW. Overall, for feed efficiency traits, this AWM analysis 
highlighted 348 genes for FE, 155 with RFI and 146 with 
RG and for production traits, 133 genes for FI, 92 for FW 
and 130 genes for ADG (Table 4).

The RFI, RG and FE AWM analyses highlighted the 
same five genes that were associated with the three 
feed efficiency criteria: WDR27, PCDH8, CDCP2, ENS-
BTAG00000030623 and MROH7 [see Additional file  3: 
Tables S1, S2 and S3]. A sixth gene (NCK2) was identified 
with RFI, RG and FE in the AWM analyses with RFI or FE 
as key phenotype and with RG, FE and ADG in the AWM 
analysis with RG as key phenotype.

After each AWM analysis, genomic correlations 
were calculated using the variant’s z-score of the addi-
tive effects of the retained variants and compared with 
the genetic correlations computed from pedigree data 
(see Table  5). The genomic correlations between RFI, 
RG and FE were similar regardless of the AWM analy-
ses. However, genomic correlations between RFI and FE 
were stronger (− 0.91 to − 0.93) than genetic correla-
tion (− 0.78), which suggests that the selected variants 
explained an important proportion of the genetic rela-
tionships between RFI and FE. Although the estimated 
genomic correlations between RG and FE were lower 
than the genetic correlation, their high values showed 
that a large number of variants were shared between 

Table 5 Genomic correlations calculated using additive effects of the variants selected by the three association weight 
matrix (AWM) analyses (above the diagonal) and genetic correlations estimated from [25] (below the diagonal)

RFI residual feed intake, RG residual gain, FE feed efficiency ratio, FI daily feed intake, FW final weight, ADG average daily gain
a AWM using RFI as key phenotype
b AWM using RG as key phenotype
c AWM using FE as key phenotype

Traits RFI RG FE FI FW ADG

RFI − 0.57a − 0.93 0.88 − 0.10 − 0.11

− 0.53b − 0.91 NA − 0.22 − 0.29

− 0.60c − 0.93 0.85 − 0.01 − 0.21

RG − 0.45 0.78 − 0.26 0.47 0.85

0.81 NA 0.67 0.82

0.83 − 0.27 0.55 0.94

FE − 0.78 0.91 − 0.75 0.43 0.62

NA 0.24 0.37

− 0.70 0.18 0.49

FI 0.77 − 0.16 − 0.49 0.37 0.30

NA NA

0.52 0.26

FW 0.10 0.28 0.09 0.76 0.86

0.84

0.82

ADG − 0.04 0.80 0.57 0.44 0.80
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RG and FE. Genomic correlations between RFI and RG 
confirmed that the association between these two feed 
efficiency criteria was the weakest, which suggests that 
different mechanisms are involved in the expression of 
these two traits.

SNP‑based heritability
SNP-based heritability estimates from SNPs retained 
after each AWM analysis were calculated and compared 
to those from randomly selected SNPs. The variants from 
each AWM analysis explained 39, 36 and 38% of the phe-
notypic variance of RFI, RG and FE, respectively, whereas 
the randomly selected SNPs explained 10, 9 and 14%, 
respectively.

Functional analyses
Enrichment results from ClueGO for the three analyses 
are in Tables S4, S5 and S6 [see Additional file 4: Tables 
S4, S5 and S6] and the interaction networks between 
genes and processes are in Figures S2 and S3 [see Addi-
tional file  5: Figs. S2 and S3]. The genes retained after 
the AWM analysis with RFI as key phenotype enriched 
11 KEGG pathways and 26 GO terms, which clus-
tered into 12 functional groups ([see Additional file  4: 
Table  S4] and see Fig.  1). On average, the KEGG path-
ways and GO terms contained 12 genes. The biological 
process that contained the largest number of genes was 
“organonitrogen compound biosynthetic process”, which 
included 55 genes. The “carbohydrate derivative biosyn-
thetic process” was the highest significantly enriched 
process (P-value = 2.02E−04) (see Table  6). The largest 
functional group was represented by 10 KEGG pathways 
and two GO terms. From the AWM analysis with RG as 
key phenotype, the enrichment analysis highlighted 34 
KEGG pathways and 67 GO terms, which were grouped 
into 27 functional annotations [see Additional file  4: 
Table S5 and Additional file 5: Fig. S2]. The largest func-
tional group contained 29 KEGG pathways. The biologi-
cal processes and KEGG pathways included on average 
six genes and the “regulation of GTPase activity process” 
was the largest with 19 genes. “Retrograde vesicle-medi-
ated transport, Golgi to ER” was the most significantly 
enriched process (P-value = 3.00E−04) (see Table  6). 
For the AWM analysis with FE as key phenotype, 10 
KEGG pathways and 36 GO terms that clustered into 
17 functional groups, were found [see Additional file  4: 
Table S6 and Additional file 5: Fig. S3]. In this case, the 
“organonitrogen compound biosynthetic process” was 
the largest with 59 genes. One GO term and nine KEGG 
pathways were included in the largest functional group. 
On average, each process contained 11 genes and the 
most enriched process was “glycoprotein biosynthetic” 
(P-value = 9.39E−06) (see Table 6).

Six GO terms and six KEGG pathways were shared 
between the three analyses (see Fig. 2). The six GO terms 
were related to Golgi (“Golgi organization and retro-
grade vesicle-mediated transport—Golgi to ER “) and 
glycosylation (“macromolecule glycosylation, glycopro-
tein metabolic process, glycoprotein biosynthetic pro-
cess and protein glycosylation”) processes. Digestive tract 
processes (“mucin type O-glycan biosynthesis, salivary 
secretion and gastric acid secretion”), the “cGMP-PKG 
signaling” and the “vascular smooth muscle contraction 
and apelin signaling” pathways were associated with the 
six shared KEGG pathways because of common genes 
that enriched the same processes. For example, the 
“gastric acid secretion process” was overrepresented by 
ADCY8, CALM3, PLCB1, PLCB4 and SLC26A7. RFI and 
RG shared six GO terms and three KEGG pathways (see 
Fig.  2), which were related to “membrane depolariza-
tion”, “Ras protein”, “small GTPase”, “cGMP biosynthetic 
process”, “circadian entrainment”, “oxytocin signaling 
pathway” and “aldosterone”. RFI and FE shared the GO 
terms “thrombin”, “organonitrogen”, “cGMP”, “ATP” and 
“carbohydrate” processes and the glucagon signaling 
KEGG pathway. Positive regulation of the ATP meta-
bolic process was overrepresented by the ACTN3, INSR, 
PPARGC1A and VCP genes. RG and FE shared six GO 
terms (“related to cell–cell adhesion”, “smoothened sign-
aling pathway”, “transmembrane receptor protein”, “ser-
ine/threonine kinase” and “GTPase” activity) and three 
KEGG pathways (“platelet activation”, “GnRH signaling 
pathway” and “renin secretion”) (see Fig. 2).

Discussion
Identification of several variants with small effects
In the past, most studies have focused their GWAS on a 
P-value approach, using a Bonferroni or false discovery 
rate (FDR) threshold. These methods attempt to find 
the good balance between highly conservative thresh-
olds that result in strong but few SNPs, and relaxed 
thresholds that result in more SNPs but with potential 
false positive results. In our study, at the whole-genome 
scale, this approach would have been too stringent and 
no SNPs would have passed the thresholds. This absence 
of major effects for SNPs associated with feed efficiency 
has already been observed in the literature and, usu-
ally, very weak thresholds (in  log10) are set to detect sig-
nificant associations. For instance, in [7] 75 SNPs were 
associated with RFI with a P-value of 0.001; in [8] 31 
SNPs were associated with RFI with the same P-value 
but none exceeded the FDR threshold; in [10] only two 
SNPs were detected that exceeded the Bonferroni thresh-
old; and in [15] only three quantitative trait loci (QTL) 
for RFI were reported when using a Bonferroni thresh-
old for high-density SNPs, of which only one reached the 
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whole-genome threshold. These previously published 
results confirm that feed efficiency is a complex trait that 
is influenced by several biological processes.

In our study, first we used an approach to select the 100 
variants with the lowest p-value for each feed efficiency 
criterion and to investigate in which gene they were pre-
sent. Some genes related to proteolysis such as CAPN7 
and UBQLNL were highlighted in this approach. CAPN7 
encodes a calpain that is known for its role in meat ten-
derness in several species. UBQLNL is involved in the 
ubiquitination machinery that regulates the degrada-
tion, cellular localization, activation and inactivation of 

proteins. CAPN7 and UBQLNL are involved in protein 
turnover, and low RFI animals seem to adopt a low pro-
tein degradation strategy to decrease energy expenditure 
of this function [35]. We also identified INSL5 that was 
associated with RG, and CACNA1E that was associated 
with both RFI and FE. INSL5 is linked to energetic func-
tions and involved in hepatic glucose production [36]. 
CACNA1E encodes the calcium voltage-gated chan-
nel subunit alpha1 E, which is one of the subunits that 
form the channel that mediates the entry of calcium ions 
into excitable cells. It is involved in a variety of calcium-
dependent processes, including muscle contraction, 

Fig. 1 Network interaction between GO terms, KEGG pathways and genes from the association weight matrix (AWM) analysis with RFI as key 
phenotype
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hormone or neurotransmitter release, gene expression, 
cell motility, cell division and cell death.

SNPs selected by the AWM approach are informative
The AWM method was proposed as an alternative 
approach to retain more variants than the P-value 
approach while minimising the number of false positive 
variants by in-silico validation [21]. Only a few studies 
[37, 38] have used this approach for feed efficiency traits. 
The AWM networks highlighted more genes associated 
with RFI than with FE and RG. Regardless of the trait, 
these genes explained a significant part of the phenotypic 

variance, i.e. 39% for RFI, 36% for RG and 38% for FE. The 
genomic correlation between RFI and ADG, although 
quite low (ranging from − 0.29 to − 0.11), was surprising 
because, by definition, these two traits are phenotypically 
independent and were genetically independent (− 0.04). 
In a study on pigs, a very low genomic correlation (0.011) 
was found between RFI and ADG [38]. Interestingly, the 
strongest genomic correlations found in this study were 
between RFI and FE. In the literature, genomic correla-
tions of 0.63 and 0.763 were estimated between RFI and 
FCR using a bovine 50 K SNP array [37] and in pig [38], 
respectively.

Table 6 Top 10 of the GO terms and KEGG pathways enriched by the three feed efficiency  networksa

RFI residual feed intake, RG residual gain, FE feed efficiency ratio

GOID GO term P‑value % Associated genes Number 
of genes

RFI

 GO:1901137 Carbohydrate derivative biosynthetic process 2.02E−04 6.42 35

 GO:000900 Glycoprotein metabolic process 2.15E−04 7.74 24

 GO:0043413 macromolecule glycosylation 2.61E−04 8.88 19

 GO:0006486 Protein glycosylation 2.61E−04 8.88 19

 GO:0009101 Glycoprotein biosynthetic process 3.08E−04 8.59 22

 GO:1901135 Carbohydrate derivative metabolic process 2.06E−03 4.97 45

 GO:0071896 Protein localization to adherens junction 3.47E−03 75.00 3

 KEGG:04371 Apelin signaling pathway 3.80E−03 9.15 13

 KEGG:00512 Mucin type O‑glycan biosynthesis 4.30E−03 19.35 6

 KEGG:04022 cGMP‑PKG signaling pathway 4.37E−03 8.43 14

RG

 GO:0006890 Retrograde vesicle‑mediated transport, Golgi to ER 3.00E−04 20.59 7

 GO:0043087 Regulation of GTPase activity 1.99E−03 5.32 19

 GO:0043547 Positive regulation of GTPase activity 7.03E−03 5.23 16

 GO:0009101 Glycoprotein biosynthetic process 8.65E−03 5.47 14

 GO:0008589 Regulation of smoothened signaling pathway 1.26E−02 10.34 6

 GO:0009100 Glycoprotein metabolic process 1.28E−02 4.84 15

 KEGG:04713 Circadian entrainment 1.32E−02 8.00 8

 KEGG:04713 Circadian entrainment 1.32E−02 8.00 8

 KEGG:04913 Ovarian steroidogenesis 1.33E−02 10.00 6

 GO:0007030 Golgi organization 1.40E−02 8.24 7

FE

 GO:0009101 Glycoprotein biosynthetic process 9.39E−06 8.98 23

 GO:0009100 Glycoprotein metabolic process 1.04E−05 8.39 26

 GO:1901137 Carbohydrate derivative biosynthetic process 1.31E−05 6.42 35

 GO:1901135 Carbohydrate derivative metabolic process 3.36E−05 5.19 47

 KEGG:00512 Mucin type O‑glycan biosynthesis 3.95E−05 25.81 8

 GO:0043413 Macromolecule glycosylation 2.24E−04 8.41 18

 GO:0006486 Protein glycosylation 2.24E−04 8.41 18

 GO:1901566 Organonitrogen compound biosynthetic process 2.83E−04 4.37 59

 GO:0030948 Negative regulation of vascular endothelial growth factor 
receptor signaling pathway

5.27E−03 60.00 3

 KEGG:04971 Gastric acid secretion 1.37E−02 10.81 8
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Five common genes were identified in each of the 
three feed efficiency networks: WDR27, PCDH8, 
CDCP2, ENSBTAG00000030623 and MROH7. ENS-
BTAG00000030623 and MROH7 were among the genes 
that harboured SNPs from the 100 SNPs with the low-
est p-value for RG and FE (Table  2). Previous stud-
ies reported that CDCP2, ENSBTAG00000030623 and 
MROH7 were located within two QTL for body weight 
and dystocia in Holstein cattle [39] and PCDH8 in a QTL 
for marbling score in Angus cattle [40]. We also found 
that the NCK2 gene was retained in the two AWM analy-
ses with RFI and FE as key phenotypes and was associ-
ated with all three feed efficiency criteria. Moreover, 
NCK2 was among the genes that harboured SNPs from 
the SNPs with the 100 lowest P-value for RG. In Angus 
cattle, the NCK2 gene has been located in four QTL for 
yearling and mature body weight, marbling score and fat 
thickness [40].

Biological functions shared with feed efficiency traits
To help interpretation of the underlying biological func-
tions of all the genes identified in the three feed effi-
ciency networks, we performed enrichment analyses of 

biological processes and metabolic pathways. This work 
allowed us to confirm the effects of the genes detected 
by the AWM approach and to better understand the 
mechanisms involved in each feed efficiency trait. One 
first result is that the RFI network enriched the small-
est number of GO terms and KEGG pathways although 
it contained the largest number of genes. Conversely, the 
RG network comprised the smallest number of genes but 
enriched the largest number of GO terms and KEGG 
pathways. This suggests that the genes in the RG network 
might have a higher level of pleiotropy than those in the 
RFI network, and thus the latter might be more specific. 
In spite of the differences in the biological processes 
identified in each network, some were common across 
the networks (see Fig. 2).

Digestive functions
The three feed efficiency networks were enriched for 
mucin type O-glycan. Mucins are glycoproteins that 
are secreted in mucosal sites such as the urogenital, 
airway and gastrointestinal tracts, and are the major 
macromolecular components of mucus [41]. Mucin 
type-O-glycan plays roles in cell protection i.e. in mucus 

Fig. 2 Shared biological processes between the three feed efficiency traits. aTrait abbreviations: RFI residual feed intake, RG residual gain; FE feed 
efficiency ratio
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barrier functions, and promotes homeostasis with 
microbes. Dysfunction of the mucin barrier enhances 
chronic inflammation of the colon in mice devoid of 
mucin [42]. A study on the human gut showed that 
mucin O-glycan has an important role in the synthesis of 
n-butyrate by the microbiota, which regulates T cell dif-
ferentiation to reduce gut inflammation [43]. The three 
feed efficiency networks highlighted two KEGG pathways 
linked to the digestive tract: “salivary secretion” and “gas-
tric acid secretion”. In cattle, saliva does not change the 
structure of cellulose but enhances cellulase-catalyzed 
degradation of cellulose [44]. Gastric acid is secreted in 
the abomasum of cattle and contributes to feed diges-
tion. The “apelin signalling” pathway was also enriched 
in each network and had pleiotropic functions in hydric 
and energetic homeostasis, digestive tract, adipo-insu-
lar axis, cardiovascular system and angiogenesis. It has 
been suggested that apelin is related with feed and water 
intake, digestive mobility, absorption and digestive secre-
tions [45]. A study on goats highlighted the role of ape-
lin in feeding processes and in the pituitary gland for 
enhancing secretion of the adrenocorticotropic hormone 
(ACTH) and growth hormone (GH) [46].

Energy metabolism
Several processes related to the energetic pathway were 
enriched by both RFI and FE networks, in particu-
lar the regulation of ATP and carbohydrate processes 
(see Fig.  2). Mitochondria are responsible of approxi-
mately 90% of the oxygen consumption [47]. It has been 
reported that the lymphocytes of low-RFI steers have a 
larger mitochondrial complex I, which suggests a higher 
production of ATP in efficient animals [48]. Moreo-
ver, the respirator acceptor control ratio (state 3:state 2) 
was higher in low-RFI beef cattle [49]. In lambs, a nega-
tive correlation was found between RFI and respiratory 
chain complex activities [50]. In addition, high FE broil-
ers had higher complex I and II activities [51]. Taken 
together, these results confirm our finding that RFI and 
FE have an energetic function and the important role of 
mitochondria in feed efficiency, as explained in detail in 
[52]. Another energetic pathway enriched by both the 
RFI and FE networks was the glucagon signalling path-
way. Glucagon reduces glucose utilisation in adipose tis-
sue, stimulates lipolysis and increases gluconeogenesis. 
This pathway was also highlighted in Nellore cattle [53] 
and the ADCY2 gene was identified in both our study and 
[53].

Vascular system
The “cGMP-PKG signalling” pathway (regulation of 
relaxation and contraction of vascular smooth muscle 
cells) and “vascular smooth muscle contraction” pathway 

were enriched by the three feed efficiency networks. In 
addition, the RFI and FE networks also included throm-
bin-activated receptor. Thrombin is a serine protease that 
regulates platelet aggregation, endothelial cell activation 
and several processes in vascular biology such as conver-
sion of circulating fibrinogen to fibrin monomer [54]. 
Linked to this protease, the thrombin signalling pathway 
was also enriched in a study that performed Ingenuity 
Pathway Analysis [37]. Moreover, the thrombin receptor 
signalling pathway was reported in [53] and two of the 
genes, F2RL2 and IQGAP2, detected in [53], were found 
in our study. Both the RG and FE networks also enriched 
several processes related to the vascular system, such as 
renin secretion, hematopoietic progenitor cell differen-
tiation, smoothened signalling pathway and platelet acti-
vation (see Fig. 2). Several other studies also highlighted 
cardio-vascular system processes associated with feed 
efficiency [37, 38, 55].

Hormones
Both RG and FE networks enriched the gonadotrophin 
releasing hormone (GnRH) signalling pathway, which 
is known to be the most significantly enriched KEGG 
pathway for growth and RFI enriched networks [37]. 
This pathway has also been shown to be enriched for RFI 
only [55]. Although no clear relationship has been estab-
lished between feed efficiency and reproductive func-
tions, a study on lambs immunized against GnRH had 
lower ADG, higher feed intake and lower FE compared 
to untreated animals [56]. Another study with Angus 
cattle revealed a higher GnRH and lower gonadotropin-
inhibitory hormone (GnIH) expression level for highly 
feed efficient animals [57]. These results suggest that 
GnRH could be involved in feed efficiency and growth 
regulation. Another interesting result was the enrich-
ment of the oxytocin signalling pathway by both RFI and 
RG networks. Some studies highlighted oxytocin for its 
role in the regulation of gastrointestinal motility in rab-
bits [58] and rats [59]. Moreover, oxytocin was reported 
to be expressed throughout the human digestive tract 
[60]. This hormone could have a role in feed efficiency 
in beef cattle through its function in the digestive pro-
cess, notably in gastrointestinal motility. Both RFI and 
RG networks also enriched the aldosterone synthesis and 
secretion pathway. Aldosterone is a mineralocorticoid 
hormone involved in sodium–potassium balance and 
hydric regulation. Aldosterone activity involved in renal 
sodium reabsorption is associated with feed efficiency in 
Nellore bulls [61]. A study on piglets estimated that 10% 
of the metabolizable energy for maintenance is related to 
mineral reabsorption in the kidney [62]. The aldosterone 
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signalling pathway in epithelial cells was found to be 
associated with feed efficiency in pigs [38].

Other biological functions
Metabolisms related to glycoproteins were enriched in 
the three feed efficiency networks. Glycoproteins are 
subjected to post-transcriptional modifications that cata-
lyse covalent cross-linking of oligosaccharide chains to 
amino acids [41]. Glycoproteins have several functions 
related to the immune system, transport, reproduction, 
hormones and protection of cells. Glycoprotein processes 
take place in the Golgi and glycoproteins are transported 
in vesicles. Processes related to Golgi organization and 
retrograde vesicle-mediated transport (Golgi to ER) were 
also enriched in the three feed efficiency networks. The 
whole biology of glycoprotein was related to the three 
feed efficiency criteria (Fig.  2). Ras protein processes 
were enriched by both RFI and RG networks and have 
functions in cell proliferation, differentiation and sur-
vival. In a review, Ras signalling pathway and Ras-related 
protein 1 signalling pathway were highlighted as common 
biological pathways in different RFI studies conducted in 
beef cattle [35]. We also confirmed their result [35] that 
the circadian entrainment process was enriched by both 
RFI and RG networks. A previous study that focused on 
the circadian evolution of blood plasma cortisol showed 
that it increased during the night, especially for high feed 
efficiency animals [63]. Cortisol has important func-
tions notably on fat and protein regulation, carbohydrate 
metabolism and muscle maintenance.

Biological functions specific to each feed efficiency trait
Our results show that RFI is specifically associated with 
the ossification process, inflammatory response, cel-
lular component disassembly, protein localization and 
melanogenesis. Melanogenesis has been shown to be 
related to RFI [55, 64]. For RG criteria, the network was 
enriched for two hormones: insulin and thyroid. Insulin 
is a hormone responsible for glucose uptake by the liver, 
skeletal muscle and adipose tissue and is one of the fac-
tors that activate the mTORC complex, which has a role 
in cell growth and proliferation and protein synthesis. An 
enrichment of insulin secretion with RFI was reported 
in Angus cattle [55]. The thyroid hormone is involved 
in both lipolysis and lipogenesis functions, which are 
related to energetic functions and were also enriched in 
the RG network. This network also enriched a huge num-
ber of processes related to heart function from neuronal 
action potential to muscle contraction and several cellu-
lar processes like mitotic functions, cytoskeleton, regula-
tion of proteolysis, vesicle transport, membrane cell and 
adherent junctions. Feed efficiency ratio was specifically 

associated with processes related to the immune and 
stress response, and to vascular endothelial cell, regula-
tion of skeletal muscle fiber development and MAPK 
pathways. Several studies [35, 55, 64, 65] have revealed 
mitogen-activated protein kinase (MAP-K) processes 
related to feed efficiency traits, which suggest the impor-
tant role of these processes in these phenotypes.

Conclusions
Our results revealed both common and specific biological 
processes associated to RFI, RG and FE and allow a bet-
ter understanding of the genetic determinism of these feed 
efficiency criteria. Each of the three gene networks, one 
for each trait, confirmed the strong association between 
FE and RFI and between FE and RG and also the weaker 
association between RFI and RG. The enrichment analysis 
highlighted the complexity of the genetic architecture of 
feed efficiency, especially for RG that enriched the largest 
number of processes. Indeed, a huge number of cardio-
vascular and cellular processes were highlighted for this 
trait and several others such as the immune system, repro-
duction, protein regulation and signalling systems. Inter-
estingly, RFI and FE seemed to be more associated with 
energy functions, which confirms the role of the energy 
metabolism on feed efficiency. The three feed efficiency 
criteria were also associated with digestive tract processes 
such as salivary, gastric and mucin secretion. Moreover, 
our study identified several potential markers that could 
be used to predict feed efficiency e.g. apelin, glucagon, 
insulin, aldosterone, GnRH or the thyroid hormone. Our 
findings confirm the real interest of using gene network 
analyses to identify genes that have small effects on traits. 
The effects of these genes need to be tested in genomic 
evaluation to confirm the potential benefit of using func-
tional SNPs to select animals for feed efficiency.
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