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Stochastic modication of Newtonian dynamics and Induced potential -application to spiral galaxies and the dark potential

Using the formalism of stochastic embedding developed by [J. Cresson, D. Darses, J. Math. Phys. 48, 072703 (2007)], we study how the dynamics of the classical Newton equation for a force deriving from a potential is deformed under the assumption that this equation can admit stochastic processes as solutions. We focus on two denitions of a stochastic Newton's equation called dierential and variational. We rst prove a stochastic virial theorem which is a natural generalization of the classical case. The stochasticity modies the virial relation by adding a potential term called the induced potential which corresponds in quantum mechanics to the Bohm potential. Moreover, the dierential stochastic Newton equation naturally provides an action functional which satises a stochastic Hamilton-Jacobi equation. The real part of this equation corresponds to the classical Hamilton-Jacobi equation with an extra potential term corresponding to the induced potential already observed in the stochastic virial theorem. The induced potential has an explicit form depending on the density of the stochastic processes solutions of the stochastic Newton equation. It is proved that this density satises a nonlinear Schrödinger equation. Applying this formalism for the Kepler potential, one proves that the induced potential coincides with the ad-hoc "dark potential" used to recover a at rotation curve of spiral galaxies. We then discuss the application of the previous formalism in the context of spiral galaxies following the proposal and computations given by [D. Da Rocha and L. Nottale, Chaos, Solitons and Fractals, 16(4): 2003] where the emergence of the "dark potential" is seen as a consequence of the fractality of space in the context of the Scale relativity theory.

Introduction 1.General framework

Let us consider a given deterministic dynamics obtained via a set of physical laws like the Newton fundamental law of dynamics. In classical mechanics, a basic assumption leading to the laws of motion is that a particle describe a dierentiable curve in space-time which naturally induces that dynamics is usually described using dierential or partial dierential equations or more precisely, we restrict our attention to dynamics which can be described using the classical tools of the dierential calculus. Note that this assumption of dierentiability is an asymptotic one with respect to a given scale of observation for which such a description seems to be valuable (see [START_REF] Cresson | Multiscale functions, scale dynamics and applications to partial dierential equations[END_REF] for a discussion of this point). However, by denition a rule becomes a law of nature if one can eciently compare the results with the reality. Doing so, it proves that the initial rule is in some sense robust. The reality is most of the time not described by the ideal mathematical framework used to derive the law. In particular, one expects that stochasticity must be taken into account as the environment of a given experience is never described completely. In particular, even if the law is given in the initial ideal mathematical framework associated to the classical dierential calculus, the robustness of the law can be understood as providing some constraints even in a more general setting including stochasticity.

As a consequence, one is leaded to give a meaning to a given law expressed using the classical dierential calculus over stochastic processes and to study the corresponding dynamics. This is the extension problem over stochastic processes.

What are the minimal constraints on a given extension ? A rst one is that the ideal dynamics, understood as the one obtained in the ideal mathematical framework, must be contained in the extended model, meaning that over stochastic processes which correspond to differentiable functions the extended model reduces to the ideal one. This program is reminiscent of D. Mumford [START_REF] Mumford | The dawning of the age of stochasticity[END_REF] call for an integration of stochasticity into the foundations of modeling. It must be noted that the previous problem is very common in many dierent physical situations as for example in uid mechanics. The Navier-Stokes equations are derived assuming that the speed of a particle is two times dierentiable with respect to space and one time with respect to time. However, real uids behavior, in particular turbulent ones, are not satisfying these assumptions. As a consequence, one is leaded to extend the notion of solutions by extending the meaning of the equation over a bigger class of objects (Schwartz's distribution in this case).

Taking as an extension domain the set of stochastic processes, one can imagine dierent ways to handle the extension problem.

The most common one is to use the theory of stochastic dierential equations based on the Itô or Stratonovich stochastic calculus [START_REF] Altaisky | Stochastic dierential equations[END_REF], considering that the stochasticity induces a perturbation term which can be in some cases modeled by a Brownian motion (see [START_REF] Altaisky | Stochastic dierential equations[END_REF]), i.e. informally looking for an equation of the form P(d/dt)[x](t) + "noise" = 0, [START_REF] Albeverio | A stochastic model for the orbits of planets and satellites: an interpretation of the Titius-Bode law[END_REF] where P(d/dt) is a dierential operator depending on the operator d/dt and "noise" has to be modeled. A typical example in stellar dynamics is given by the seminal work of S.

Chandrasekhar (see [START_REF] Chandrasekhar | Stochastic problems in Physics and Astronomy[END_REF], Chap. IV, Section 1, p.68-70 and [START_REF] Chandrasekhar | Brownian motion, Dynamical friction and Stellar dynamics[END_REF]) where assuming the existence of close encounters between stars in a galaxy the long term motion of a star is modeled by a stochastic dierential equation in the Itô sense, i.e. of the form dX = v(X, t)dt + σ(X, t)dW t , [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] where W t is a Brownian motion.

However, this approach is perturbative in nature and does not give a satisfying answer to the extension problem. Indeed, the new equation is radically dierent from the initial deter-ministic one and can not be reduced to it looking for regular solutions.

Another strategy is to directly extend the meaning of the dynamics over stochastic processes without adding a perturbation term but looking for the constraints induced on the stochastic dynamics by the underlying law, i.e. informally by dening a convenient analogue D of d/dt over stochastic processes and looking for P(D)[X] = 0, [START_REF] Bekenstein | Does missing mass problem signal the breakdown of Newtonian gravity ?[END_REF] where X is a stochastic process.

Such a program was initiated by E. Nelson in [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF] leading to the framework of stochastic mechanics. This framework is an example of embedding formalism of dierential equations dened in [START_REF] Cresson | The stochastisation hypothesis and the spacing of planetary systems[END_REF][START_REF] Cresson | Introduction to embedding of Lagrangian systems[END_REF] in a general setting and in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] in the stochastic case. In this article, we follow this strategy.

The rst step in such a program is to dene a convenient framework enable us to write the dynamics. This framework must coincide with the classical dierential calculus when the underlying functional space reduces to the set of dierentiable functions. Such a formalism is developed in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] where a notion of stochastic derivative is dened combining the forward and backward derivatives on stochastic processes of E. Nelson [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF] and using the idea of a complex derivative operator dened by L. Nottale (see [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF],p.147 and [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],p.105-106). Such a framework can then be used to extend classical dierential equations in the stochastic case using dierent strategies. Two of them are listed in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF][START_REF] Cresson | Introduction to embedding of Lagrangian systems[END_REF]: the dierential embedding is a pure algebraic extension obtained by replacing the ordinary time derivative by the stochastic derivative. The variational embedding consists in extending rst the notion of Lagrangian functional and then developing the corresponding stochastic calculus of variations. Having such an extension of a given dynamics over stochastic processes, one can then study the persistence of some properties of the initial deterministic dynamics like symmetries, rst integrals, etc. The validity of such an extension in order to describe the eective dynamics of a given physical process must be cases by cases discussed.

The stochasticity can be intrinsic like in some views of quantum mechanics [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF] or extrinsic like a convenient description of the long term behavior of chaotic dynamical systems [START_REF] Nottale | New formulation of stochastic mechanics. Application to chaos, in "Chaos and diusion in Hamiltonian systems[END_REF][START_REF] Cresson | The stochastisation hypothesis and the spacing of planetary systems[END_REF].

In some applications, the stochastic embedding formalism (dierential or variational) can be seen as a concrete realization of the scale relativity principle of L. Nottale [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF]: equations of physics must keep the same form at each scale, the word "same" being understood as keeping the algebraic form of the dierential operator (dierential embedding) or the variational character (variational embedding) or both (coherent embedding) (see [START_REF] Cresson | Introduction to embedding of Lagrangian systems[END_REF][START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF]).

Main results

In this article, we focus on the stochastic embedding of the Newton equation for a given potential U . We rst prove that the solutions of the (dierential) stochastic Newton equation are always gradient diusion thanks to the characterization of gradient diusion given by S.

Darses and I. Nourdin in [START_REF] Darses | Dynamical properties and characterization of gradient drift diusion[END_REF]. This result induces a natural complex valued action functional which generalize the classical action functional in mechanics. In particular, we write a stochastic version of the Hamilton-Jacobi equation. The real part of this equation can be viewed as a modied Hamilton-Jacobi equation the modication being on the potential which is in some sense corrected by a stochastic "induced" potential. The imaginary part corresponds to a continuity equation satises by the density of the stochastic process solution of the stochastic Newton equation. Many applications in mechanics make use of the virial Theorem relating the kinetic and potential energy at equilibrium. A typical application in Astrophysics is the determination of the mass of a galaxy from the observation of the characteristic speed of stars.

We derive stochastic analogues of the virial Theorem depending on the notion of equilibrium one is looking for. In the strong case, we look for a quantity which is a constant stochastic process. This leads to a result similar to the classical virial Theorem but again the potential is corrected by the same potential as for the stochastic Hamilton-Jacobi equation of pure stochastic origin. The second point of view is to look for quantities whose expectation are constant called the weak case. Another result is then obtained but more dicult to interpret.

The stochastic induced potential depends explicitly on the density of the stochastic process solution of the stochastic Newton equation. In order to compute this density, we make use of the result obtained by one of the author and S. Darses in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] relating the stochastic Newton equation to the Schrödinger equation. This connection allows us to use known results on the solutions of the Schrödinger equation to obtain information of the density of the stochastic processes solution of the stochastic Newton equation. This take this opportunity to cancel the initial assumption of gradient diusion made in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] and going back originally to an assumption of E. Nelson [START_REF] Nelson | Derivation of the Schrödinger equation from Newtonien mechanics[END_REF] in the context of stochastic mechanics, as it follows from the structure of the equation. We then apply our results taking the Kepler potential. In that case, we give an explicit form to the stochastic induced potential and we derive several dynamical results.

In particular, the at rotation curve Theorem which shows that the real part of the speed is constant in that case. This constant speed can be used to obtain an explicit form of the diusion coecient. Our main objective being to apply our result in the context of spiral galaxies, we derive a Noether type result which enables us to obtain an estimation of the circular velocity of a particle moving on a circular orbit. We then apply all these results in the context of the dynamics of spiral galaxies. Using the Scale Relativity Theory developed by L.

Nottale in [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF][START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF] as a support to justify the use of the stochastic Newton equation and using known numerical values for mass and speed of the observed rotation curve for the Milky way, we predict the distance at which the rotation curve begins to be at and obtain a very good agreement with the observations. Moreover, the stochastic induced potential corresponds in that case to the ad-hoc "dark potential" used in the literature to recover the observed rotation curve of spiral galaxies.

Connection with previous results

The stochastic embedding formalism used in this article use the tools developed by E. Nelson for the formulation of the stochastic mechanics [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF][START_REF] Nelson | Derivation of the Schrödinger equation from Newtonien mechanics[END_REF][START_REF] Nelson | Stochastic mechanics and random elds[END_REF]. The main dierence is the use of the stochastic derivative mixing in a complex valued operator the left and right stochastic derivative of Nelson following an idea of L. Nottale in [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF]. We refer to [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] where this formalism is developed. Several computations and results are derived in an informal way in dierent articles and books of L. Nottale [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF][START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF]. In particular, the stochastic embedding formalism can be seen as a formal account of the strategy described by L. Nottale in [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF] to discuss the connection between the scale relativity theory and stochastic mechanics and in [START_REF] Nottale | New formulation of stochastic mechanics. Application to chaos, in "Chaos and diusion in Hamiltonian systems[END_REF] relating the long term dynamics of dynamical systems with a stochastic system.

The strong stochastic virial Theorem was discussed in the context of stochastic mechanics by S.M. Moore in [START_REF] Moore | Stochastic elds from stochastic mechanics[END_REF] but the proof seems to be incomplete (see Section 4. The weak stochastic virial Theorem is discused by P.H. Chavanis in ( [START_REF] Chavanis | Derivation of a generalized Schr"odinger equation from the theory of scale relativity[END_REF],V) in a particular case.

A real stochastic Hamilton-Jacobi equation was discussed by F. Guerra and L.M. Morato [START_REF] Guerra | Quantization of dynamical systems and stochastic control theory[END_REF] in the context of stochastic mechanics. They obtain this equation from a particular notion of critical point for a functional called in the sense of Laerty by E. Nelson (see [START_REF] Nelson | Stochastic mechanics and random elds[END_REF],p.439).

The main dierence is the complex nature of our stochastic Hamilton Jacobi equation which implies that we obtain some mixing between the real and imaginary part of the complex derivative in the equation. Another one (also real) was introduced by J-P. Ortega and L. Cami in [START_REF] Lázaro-Camí | The stochastic Hamilton-Jacobi equation[END_REF] in the context of stochastic geometric mechanics in [START_REF] Lázaro-Camí | The stochastic Hamilton-Jacobi equation[END_REF] following the seminal work of J-M.

Bismut [START_REF] Bismut | Mécanique aléatoire[END_REF] on random mechanics. The two results do not coincide as the underlying theories are completely dierent.

The stochastic induced potential appears already in the literature and is known as the Bohm's potential or quantum potential. We refer to the book of J-C. Zambrini ([16],p.168) for an historical account of the emergence of this potential in quantum mechanics related with the hidden variable theory of D. Bohm.

The connection between the stochastic Newton equation used in this article and the Schrödinger equation was already discussed in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] and is based on the seminal work of E.

Nelson [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF] and the idea of L. Nottale in [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF]. Other derivation of the same result are done for example by P-H. Chavanis in ( [START_REF] Chavanis | Derivation of a generalized Schr"odinger equation from the theory of scale relativity[END_REF], equation (B.1)). These derivations make the assumption that the stochastic derivative is a gradient or give an informal proof. In this article, we cancel the gradient assumption as it follows from the structure of the equation.

The application to the dynamics of spiral galaxies follows the previous work of L. Nottale and D. Rocha in [START_REF] Rocha | Gravitational structure formation in scale relativity[END_REF] and ( [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],Section 13.8.2 p.652-654). All their results are analyzed in the stochastic framework that we develop.

A very close related work is done by F. Pierret in [START_REF] Pierret | Scale dynamical origin of modication or addition of potential in mechanics, a possible framework for the MOND theory and the dark matter[END_REF] using the scale dynamics formalism developed in [START_REF] Cresson | Multiscale functions, scale dynamics and applications to partial dierential equations[END_REF]. The framework is not stochastic. A generalized version of the virial Theorem as well as a generalized Hamilton-Jacobi equation are derived. In particular, the stochastic induced potential appears in [START_REF] Pierret | Scale dynamical origin of modication or addition of potential in mechanics, a possible framework for the MOND theory and the dark matter[END_REF] as a scale dynamical eect.

Organization of the paper

The plan of the paper is as follows:

In Section 2, we remind the denition of the stochastic derivative introduced in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] and some of its properties. In Section 3, we dene the dierential and variational stochastic Newton equation following [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] and the stochastic embedding formalism. In Section 4, we prove a stochastic version of the virial Theorem. Section 5 is dedicated to some properties of the dierential stochastic Newton equation. In particular, we prove that in this case, solutions of the equation are gradient diusions. Section 6, we dene a stochastic action functional and we derive the corresponding form of the stochastic Hamilton-Jacobi equation. Section 7 shows that the real part of the stochastic Hamilton-Jacobi equation is a perturbation of the classical Hamilton-Jacobi equation by a potential which is induced by the stochastic character of the underlying set of solutions. This induced potential can be explicitly written in term of the density of the stochastic process solution of the stochastic Newton equation. In order to compute the density and to explicit the induced potential, we transform in Section 8 the stochastic Newton equation in a Schrödinger like equation using a change of variable. As an application, we explicit the form of the induced potential when the underlying potential is the Kepler one. We then obtain that the induced potential corresponds to the ad-hoc choice of a "dark potential" used in the literature to explain the at rotation curve of spiral galaxies.

The application of such a formalism in this setting is discussed. Finally, we give in Section 12 some perspectives of this work.

Reminder about the stochastic derivative

In this Section, we remind some denitions and properties obtained in [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF][START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF][START_REF] Darses | Stochastic derivatives for fractional diusions[END_REF][START_REF] Darses | Dynamical properties and characterization of gradient drift diusion[END_REF] about Nelson left and right derivatives and the stochastic derivative introduced in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF]. We do not give the more general class of stochastic processes for which such quantities are dened and for which formula can be given but instead restrict our attention to Brownian diusion processes with a constant diusion. We refer to [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF][START_REF] Darses | Stochastic derivatives for fractional diusions[END_REF][START_REF] Darses | Dynamical properties and characterization of gradient drift diusion[END_REF] for more general results.

The stochastic derivative

In the following, we restrict our attention to stochastic processes which are diusion processes of the form

dX t = v(t, X t )dt + σdW t , (4) 
where

W t is a R n Brownian motion, σ ∈ R is constant and v : R × R n → R n is a function such that (i) For all x, y ∈ R d , sup t∈[0,T ] | v(t, x) -v(t, y) |≤ K | x -y |, (ii) sup t∈[0,T ] | v(t, x) |≤ K(1+ | x |),
which are classical conditions (see [START_REF] Altaisky | Stochastic dierential equations[END_REF] Theorem 5.2.1 p.70) ensuring the existence and uniqueness of solutions for Itô stochastic dierential equations.

Remark 1 The terminology of diusion coecient is often used to speak of σ. This is due to the fact that if one considers the Brownian motion dX t = σdW t , the density p t (x) = u(t, x) of X t satises the diusion equation or heat equation

∂u ∂t = D∆u, (5) 
with diusion coecient

D = σ 2 2 . ( 6 
)
We refer to the historical account given in ( [START_REF] Evans | An introduction to stochastic dierential equations[END_REF],Section 3.1.1 p.37-39) for more details.

The coecient D is used by L. Nottale in ( [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF], p.143-153) to discuss the connection between stochastic mechanics and scale relativity. However, the diusion coecient D has a completely dierent meaning. It is understood in scale relativity as a parameter related to the fractal dimension (see [START_REF] Tricot | Courbes et dimension fractale[END_REF]) of the trajectories. As a consequence, it is related to a fundamental geometric property of space-time which is assumed to be fractal in scale relativity.

It must be noted that the assumption that trajectories have a fractal dimension equal to 2 is more general than the assumption that the trajectories are described by stochastic diusion processes. In particular, all the geometric properties of trajectories in scale relativity can not be reducible to the use of stochastic processes, even by extending the class of these processes in order to include fractional Brownian motion of arbitrary order. We refer to ( [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF],p.145-146) for more details.

We denote by D + and D -the right and left Nelson derivatives (see [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF]):

D + [X t ] = lim h→0 + E X t+h -X t h | P t , D -[X t ] = lim h→0 + E X t -X t-h h | F t , (7) 
where P t (resp. F t ) is the forward (resp. backward) dierentiating σ-eld for Brownian diusions X of the form (4) in the sense of [START_REF] Darses | Stochastic derivatives for fractional diusions[END_REF].

Under weak conditions, one can prove that (See [START_REF] Darses | Dynamical properties and characterization of gradient drift diusion[END_REF],Proposition 2):

D + [X t ] = v(t, X t ), D -[X t ] = v(t, X t ) -σ 2 ∇p t p t (X t ), (8) 
where p t is the density associated to the law of X t .

Moreover, one can prove the following chain rule formula (see [START_REF] Darses | Dynamical properties and characterization of gradient drift diusion[END_REF],Proposition 3):

D ± [g(X t , t)] = ∂ t + D ± [X t ] ∇ x ± σ 2 2 ∆ x [g](X t , t), (9) 
The stochastic derivative introduced in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] is dened as

D µ = D + + D - 2 + iµ D + -D - 2 , µ ∈ {-1, 1}. ( 10 
)
This operator is extended to complex stochastic process by linearity. This operator appears rst in the work of L. Nottale (see [ [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF],p.147] and [ [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],p.165-166]).

Remark 2 The complex nature of the stochastic derivative, i.e. the special form of the new operator combining the two information contained in D + X and D -X, is supported both by mathematical arguments related to the notion of doubling algebra (see [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],p.160-161) and physical arguments (see [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],p.161-164) related to the requirement of form invariance of fundamental equations or covariance as used by A. Einstein [START_REF] Einstein | The principle of relativity[END_REF].

Two comments on the form of the stochastic derivative:

The stochastic derivative gives the same weight to D + and D -, i.e. to the past and the future.

If X is a deterministic dierentiable process, i.e. dX t (ω) = f (t)dt for all ω ∈ Ω, then D + X = D -X and D µ X = f (t), which coincides with dX t dt .

As a consequence, the stochastic derivative can be used for the extension problem stated in the Introduction.

The set of diusion processes for which the stochastic derivative is well dened coincides with the one ensuring the existence of the Nelson backward and forward derivatives D + and D -. This set has been well studied in the literature and we refer to [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] for an overview and in particular to the work of E. Nelson [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF], W.A. Zheng and P.A. Meyer [START_REF] Zheng | Quelques résultats de "mécanique stochastique[END_REF][START_REF] Zheng | Construction de processus de Nelson réversibles[END_REF], R. Carmona [START_REF] Carmona | Probabilistic construction of Nelson processes[END_REF] and H. Föllmer [START_REF] Föllmer | Time reversal on Wiener space[END_REF] and more recently to the work of L. Wu [START_REF] Wu | Uniqueness of Nelson's diusions[END_REF] and S. Darses and I. Nourdin [START_REF] Darses | Dynamical properties and characterization of gradient drift diusion[END_REF][START_REF] Darses | Stochastic derivatives for fractional diusions[END_REF].

Properties of the stochastic derivative

Using the previous results about Nelson's derivatives, we can prove that

D -µ (X t ) = D µ (X t ) + iµCor σ (X t ), (11) 
where the correction term Cor σ (X t ) is given by Cor σ (X t ) = σ 2 ∇p p .

(

) 12 
We also obtain the following chain rule formula

D µ [g(X t , t)] = ∂ t + D µ (X t )∇ + iµ σ 2 2 ∆ [g](X t , t), (13) 
which leads to

D -µ [g(X t , t)] = D µ [g(X t , t)] + iµ Cor σ (X t )∇ -σ 2 ∆ [g](X t , t). (14) 
The two expressions can be encoded in a single formula as

D αµ [g(X t , t)] = D µ [g(X t , t)] + i (1 -α) 2 µ Cor σ (X t )∇ -σ 2 ∆ [g](X t , t), (15) 
where α = ±1.

A Leibniz like formula can be obtained for the stochastic derivative: let X and Y be two complex stochastic processes, then

E [D µ X • Y + X • D -µ Y ] = d dt E(X • Y ), ( 16 
)
where E is the expectation. The interplay between D µ and D -µ comes from the non reversibility between D and D * .

In particular, replacing D -µ Y by its expression [START_REF] Chavanis | Derivation of a generalized Schrödinger equation for dark matter halos from the theory of scale relativity[END_REF] in function of D µ , we obtain

E [D µ X • Y + X • D µ Y ] + iµE [X • Cor σ (Y )] = d dt E(X • Y ), (17) 
Another important property that we will use in the following is the composition lemma:

Lemma 1 (Composition) For α = ±1 and µ = ±1, we have

D αµ • D µ = 1 4 (D 2 + + D 2 -)(1 -α) + (D + D -+ D -D + )(1 + α) +iµ 1 4 (D 2 + -D 2 -)(1 + α) + (D -D + -D + D -)(1 -α) . (18) 
When α = 1 we obtain for the real part of D 2 µ the quantity 1 2

(D + D -+D -D + ) called mean second derivative or mean acceleration by E. Nelson in ( [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF], equation ( 15) p.99). The imaginary part reduces to

µ 2 (D 2 + -D 2 
-) which will play an essential role in the construction of an action functional in Section 6.

The dierential and variational stochastic Newton equation

In this Section, we discuss dierent versions of what can be called a stochastic Newton equation. All these equations can be obtained via the stochastic embedding of dynamical systems dened in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] and dier in the properties they are preserving from the classical Newton equation.

The Newton equation

The Newton equation also called fundamental equation of dynamics is the dierential equation

d dt (∂ v K( ẋ)) = F (x, ẋ), (19) 
where ẋ = dx dt , K is a homogeneous function of order 2 and F is a force which can depends on x and linearly on ẋ.

Typical examples of forces are given by a force deriving from a potential U : R n → R which is a given C 1 function such that F (x, ẋ) = -∇U, [START_REF] Cresson | The stochastisation hypothesis and the spacing of planetary systems[END_REF] and friction forces which are of the form

F (x, ẋ) = -γ ẋ. (21)
When the force is conservative, meaning that the force derives from a potential U , one can prove that the solutions of the Newton equation are in correspondence with critical points of a functional dened by

L (x) = b a L(x(s), ẋ(s)) ds, ( 22 
)
where L : R n × R n → R is called a natural Lagrangian and is given by

L(x, v) = K(v) -U (x). (23) 
A stochastic extension of the Newton equation must then include a discussion of the properties the new equation is preserving. We discuss this point in the following Section using the formalism of the stochastic embedding developed in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF].

The dierential stochastic Newton equation

A rst idea to generalize the Newton equation is to preserve its form, meaning the algebraic structure of the dierential operator by replacing the classical derivative by our stochastic derivative. Such a procedure is called a dierential embedding in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF].

We restrict our attention in all this Section to Brownian diusion

dX t = v(X t , t)dt + σdW t , ( 24 
)
where σ is a constant and W t is a Brownian motion.

The dierential embedding of the Newton equation then leads to

D µ (∂ v K(D µ X t )) = F (X t , D µ X t ), µ ∈ {-1, 1}. (25) 
A main remark is that due to the complex nature of the stochastic derivative the left hand-side is a priori complex. The nature of the force has then huge consequences. In particular, we have the following distinctions:

A force deriving from a potential U (x) will always produce a real quantity by a stochastic embedding as the stochastic embedding of F (x) = -∇U (x) is given by F (X t ) = -∇U which is again real.

A dissipative force, depending on the speed of x, as for example a friction or damping term F (x) = -γ ẋ will produce by the stochastic embedding a term given by F (X t ) = -γD µ X t which is in general a complex quantity.

As we will see in Section 5, this property will cancel the possibility to dene a natural action functional in the dissipative case.

The variational stochastic Newton equation

We restrict our attention to the conservative version of the Newton equation. The stochastic embedding of the functional L dened in ( 22) is dened by

L (X t ) = E b a L(X s , D µ X t , s) ds , (26) 
which is a generalization of a seminal work of K. Yasue [START_REF] Yasue | Stochastic calculus of variations[END_REF] where a variational formulation is obtained for the stochastic Newton equation dened by E. Nelson [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF].

Developing the stochastic calculus of variations due to K. Yasue [START_REF] Yasue | Stochastic calculus of variations[END_REF] in our setting, we have proved that the stochastic Euler-Lagrange associated to the functional [START_REF] Dohrn | Nelson's stochastic mechanics on Riemannian manifolds[END_REF] when L is a natural Lagrangian is given by

D -µ (∂ v K(D µ X t )) = -∇(X t ), µ ∈ {-1, 1}, (27) 
and called the variational stochastic Newton equation.

As we see, the variational stochastic Newton equation does not correspond to the dierential stochastic Newton equation. The dependence of the equation on the extension one is performing is called the coherence problem and is in fact a general problem in all embedding formalism [START_REF] Cresson | Introduction to embedding of Lagrangian systems[END_REF].

Combining the two forms of stochastic Newton equations

The previous denitions can be mixed in a single one by introducing a constant α = ±. The α-stochastic Newton equation

D αµ (∂ v K(D µ X t )) = F (X t , DX t ), µ ∈ {-1, 1}, (28) 
and α = ±1.

When α = 1 this equation corresponds to the stochastic dierential embedding of the classical Newton equation. When α = -1 this equation corresponds to the stochastic variational embedding of the Newton equation and we have a one to one correspondence between critical points of a Lagrangian functional and solutions of the -1-stochastic Newton equation.

A stochastic virial theorem

In this Section, we derive a stochastic version of the classical virial Theorem. However, due to the existence of dierent notions of rst integrals in the stochastic case (strong or weak), one can look for dierent type of generalization. This point is discussed in the following section .

We then derive the strong stochastic virial Theorem whose interpretation is clear and the weak one whose dynamical meaning is not simple. Previous results in these directions have been obtained by S.M. Moore in [START_REF] Moore | Stochastic elds from stochastic mechanics[END_REF] where a strong virial theorem is discussed in the context of stochastic eld theory using the stochastic mechanics of E. Nelson [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF] and by P.H. Chavanis in ( [START_REF] Chavanis | Derivation of a generalized Schr"odinger equation from the theory of scale relativity[END_REF],V) where weak virial theorem is discused in a particular case.

Strong versus weak stochastic virial Theorem

Let K be the homogeneous function of order 2 given by

K(v) = 1 2 mv 2 , (29) 
and U be a homogeneous function of order γ ∈ R. The classical virial theorem asserts that

d dt (mx. ẋ) = 2K -γU, (30) 
so that when the system is at equilibrium we obtain

2K = γU. ( 31 
)
Another formulation of the same result can be obtained remarking that the moment of inertia

I(x) = mx 2 satises 1 2 
d 2 I dt 2 = 2K -γU, (32) 
and that at equilibrium one has

d 2 I dt 2 = 0, (33) 
meaning that dI dt is a rst integral of the system.

Looking for a stochastic version of the virial Theorem several possibilities can be considered depending on the object one focus and the way we interpret equilibrium.

Let J(x, v) be a quantity depending on x and v which in the classical case is evaluated over solutions of the system as J(x, ẋ). What is the stochastic analogue of the quantity

d dt [J(x, ẋ)] ? (34) 
First, the stochastic embedding of J leads directly to the following stochastic quantity J(X t , D µ X t ) over the solution of the stochastic Newton equation. Second, generalizing equation [START_REF] Milgrom | A modication of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis[END_REF] one can look for D µ [J(X t , D µ X t )] , [START_REF] Milgrom | MOND eects in the inner Solar system[END_REF] or to an averaged quantity

d dt [E (J(X t , D µ X t ))] . (36) 
In the next Sections, we explore these two possibilities.

Strong stochastic virial Theorem

The following result, which is a consequence of ( [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF] If we want to keep the classical interpretation of the virial Theorem view as the fact that the derivative of the moment of inertia is a constant of motion, we can compute rst D 2 (mX 2 ).

Theorem 1 (Strong stochastic virial theorem) Let X be satisfying the α-Newton equation ( 28), then we have

D 2 µ (mX 2 ) = 4K -2γU + 2iµmσ 2 div(D µ X). ( 37 
)
Remark 3 A stochastic virial Theorem is derived by S. M. Moore in ( [START_REF] Moore | Stochastic elds from stochastic mechanics[END_REF], Appendix p.2108-2109) which has some connections with our result. However, we have not been able to check the computations of the paper. In particular, equality (66) of [START_REF] Moore | Stochastic elds from stochastic mechanics[END_REF] seems a priori non trivial and does not follow from the classical properties of the Nelson forward and backward derivatives.

Proof. We denote the two real components of D µ X by v and u, i.e.

D µ X = v + iµu, (38) 
where v and u are functions of X and t and correspond to the current velocity and osmotic velocity dened by E. Nelson in ( [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF], p.105-106).

Using the chain rule formula ( 13), with g(x) = x 2 , we obtain

D µ (mX 2 ) = 2m(X.D µ X) + imµσ 2 . ( 39 
)
As a consequence, we have

D 2 µ (mX 2 ) = 2mD µ (X.D µ X) . (40) 
Using the decomposition of D µ X as a function of v and u, we are lead to the computation of two quantities D µ (X.v) and D µ (X.u).

(

) 41 
Here again we use the chain rule formula with g 1 (x, t) = xv(x, t) and g 2 (x, t) = x.u(x, t)

respectively. We then obtain

D µ (X.v) = X ∂v ∂t + D µ X v + X ∂v ∂x + iµ σ 2 2 2 ∂v ∂x + X ∂ 2 v ∂x 2 , (42) 
and a similar equation for D µ (X.u). Combining the two equations, we nally obtain

D 2 µ (mX 2 ) = 2m(D µ X) 2 + i2mµdiv (D µ X) + 2mX (L[v] + iµL[u]) , (43) 
where div(D µ X) = ∂ x v + iµ∂ x u and L is the dierential operator

L = ∂ t + D µ X∂ x + iµ σ 2 2 ∆. (44) As D 2 µ X = D µ (v + iµu), one shows that L[v] + iµL[u] = D 2 µ X. (45) 
Equation ( 43) can then be written as

D 2 µ (mX 2 ) = 2m(D µ X) 2 + i2mµdiv (D µ X) + 2mXD 2 µ X. ( 46 
)
As X is a solution of the stochastic Newton equation, we have mXD 2 µ X = -X∇U . Due to the homogeneity of U , we then have due to the Euler Theorem that

mXD 2 µ X = -γU. ( 47 
)
As a consequence, using that K(v) = 1 2 mv 2 , we obtain

D 2 µ (mX 2 ) = 4K(D µ X) + i2mµdiv (D µ X) -2γU. (48) 
This concludes the proof.

Assuming that at equilibrium one has

D 2 µ X = 0, (49) 
we conclude that

2K(D µ X) + imµdiv (D µ X) -γU = 0. ( 50 
)
The real part of equation ( 50) is equivalent to

mv 2 = γU + m u 2 + σ 2 divu . (51) 
The stochastic component of the dynamics induced an extra potential given by

U σ,induced = -m u 2 + σ 2 divu . (52) 
Using the fact that u can be written as a function of the density p t of the stochastic process X as

u = σ 2 2 ∇p t p t , (53) 
we deduce that the induced potential in the strong stochastic virial Theorem is given by

U σ,induced = -m σ 4 2 ∆( √ p) √ p . (54) 
We then deduce that the strong stochastic virial Theorem gives at equilibrium the relation

mv 2 = γU -U σ,induced . (55) 
The extra potential U σ,induced will reappear in Section 7 as an extra potential term in the real part of the stochastic Hamilton-Jacobi equation.

Weak stochastic virial Theorem

In this Section, we look for a stochastic analogue of the relation [START_REF] Guerra | Quantization of dynamical systems and stochastic control theory[END_REF] by computing the quantity

d dt (E(X • ∇K)) . (56) 
We obtain the following result:

Theorem 2 (Weak Stochastic virial theorem) Let X satisfying the α-Newton equation ( 28), then we have

d dt (E(X • ∇K)) = E 2K -γU + iµ (1 + α) 2 (Cor σ (X t ) • ∇K) . ( 57 
)
As we see, there exists a strong dierence between the variational Newton equation corresponding to α = -1 where no modications of the classical virial Theorem exist and the dierential Newton equation corresponding to α = 1 where a correction term emerges. In the variational setting, the fact that the formulation of the virial theorem is preserved must be put in correspondence with the persistence of a Noether type result in the stochastic case. We refer to [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] for more details.

Proof. We have by the chain rule for Nelson's derivatives that

E(X.D αµ (∇K)) = d dt (E(X • ∇K)) -E(D -αµ X • ∇K). ( 58 
)
The homogeneity of K implies that

D µ X t • ∇K(D µ X t ) = 2K(D µ X t ), (59) 
and the homogeneity of U that

X • ∇U = γU. ( 60 
)
Multiplying the α-stochastic Newton equation by X and taking the expectation, we obtain

E(X.D αµ ∇K) = -E(X.∇U ). (61) 
For the variational stochastic Newton equation corresponding to α = -1, we obtain using the chain rule formula

d dt (E(X • ∇K)) = E(D µ X∇K) -E(X • ∇U ), = E(2K -γU ). (62) 
For the dierential stochastic Newton equation corresponding to α = 1, we have

d dt (E(X • ∇K)) = E(D -µ X∇K) -E(X • ∇U ), = E(D µ X∇K) + iµE(Cor σ (X t ) • ∇K) -E(αU ), = E(2K -γU + iµ(Cor σ (X t ) • ∇K)). (63) 
This concludes the proof.

Contrary to the strong stochastic virial Theorem, it is not easy to interpret the condition that d dt (E(X • ∇K)) = 0 and to ensure that this condition must be fullled at equilibrium. Remark 4 In ([10],V), P.H. Chavanis studies the behavior of I = mE(X 2 t ) corresponding to the moment of inertia for which he derived a virial type result.

Some properties of the dierential stochastic Newton equation

We prove that the stochastic processes which are solutions of the stochastic Newton equation are always gradient diusions. The complex nature of the stochastic derivative as well as the fact that the stochastic force has real value is fundamental. This result justify an assumption made by E. Nelson in [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF]. A dierent argument is given by L. Nottale in ( [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF],p.149). When the underlying force is dissipative, this argument is no longer true and the solutions of the stochastic Newton equations do not belong to gradient diusions. This result has strong consequences, as it cancels the possibility to dene a natural action functional for the stochastic system which is fundamental in Section 6.

Conservative forces -Gradient diusions and the reality condition

A main feature of the α-stochastic Newton equation in the conservative case is that, by construction the potential U (X t ) entering in equation ( 28) is real. This condition gives strong constraints on the stochastic processes solutions of equation [START_REF] Evans | An introduction to stochastic dierential equations[END_REF]. Indeed, using the composition Lemma we obtain the following constraint on solution of the α-stochastic Newton equation:

Lemma 3 (Reality condition) A stochastic process X t is a solution of the α-stochastic

Newton equation if and only if

(D 2 + -D 2 -)[X t ](1 + α) + (D -D + -D + D -)[X t ](1 -α) = 0. (64) 
Proof. As the potential U is assumed to be real, this implies that the imaginary part of Lemma 4 Let X t be a solution of the dierential stochastic Newton equation. Then, we have

D αµ • D µ [X t ] is
D 2 + X = D 2 -X.
Proof. This follows from the fact that in the dierential case, we have α = 1. Lemma 3

gives the result.

Although this condition does not seem to be fundamental this is precisely the key point as it implies that the drift must be a gradient, a condition that is most of the time assumed in the literature. Here, this follows directly from the structure of the equation. Precisely, we use the main result of [START_REF] Darses | Dynamical properties and characterization of gradient drift diusion[END_REF]:

Theorem 3 ([12],Theorem 5) Let X of the form [START_REF] Cresson | Multiscale functions, scale dynamics and applications to partial dierential equations[END_REF], verifying assumption (H), such that b ∈ C 2 (R d ) with bounded derivatives and such that for all t ∈ (0, T ) the second order derivatives of ∇ ln p t are bounded. Then we have the following equivalence :

D 2 + X = D 2 -X for almost all t ∈ (0, T ) ⇐⇒ b is a gradient. ( 65 
)
We then obtain the main result of this Section:

Theorem 4 Any solution of the dierential stochastic Newton equation is a gradient diusion meaning that there exists a potential W : R d → R so that the stochastic process is of the form

dX t = ∇W + σdW t . (66) 
Proof. Let X t be a solution of the dierential stochastic Newton equation, then by Lemma 4, we have D 2 + X t = D 2 -X t so that using Theorem 3 there exists a certain potential W : R d → R so that the stochastic process is of the form dX t = ∇W + σdW t . This Lemma allows us to introduce a special function called the action functional in Section 6.

It also proves that the assumption made by E. Nelson in ( [START_REF] Nelson | Derivation of the Schrödinger equation from Newtonien mechanics[END_REF],p.1082, equation ( 44)) that the real part of D µ X t is a gradient is direct consequence of the structure of the stochastic Newton equation and is then unnecessary. This is used in Section 8 in order to generalize our previous result [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] concerning the connection between solutions of the stochastic Newton equation and the Schrödinger equation.

Dissipative forces -non existence of a gradient diusion

As already discussed in Section 3.2, considering dissipative forces as a friction or damping term which depends linearly on the speed like F (x) = -γ ẋ leads by the stochastic embedding to a complex valued force given by F (X t ) = -γD µ X t .

A main consequence from Theorem 3 is the following: Theorem 5 Let F (x, ẋ) be a force such that F (X, DX) is not real, then the stochastic processes solution of the stochastic Newton equation are not gradient diusions. In particular, one can not nd a real function S such that the real part of DX = ∇S.

This Theorem implies directly that for dissipative forces in the stochastic case, the complex speed is never a gradient.

Of course, one can articially recover a gradient by breaking the algebraic structure of the stochastic embedding. Indeed, considering as a generalization of the dissipative force a quantity like

F (X t , v), ( 67 
) where v = D + X t + D -X t 2 
, Theorem 3 applies and we obtain a gradient diusion. This is for example the strategy followed by P.H. Chavanis in ([10],III.A). Other possibilities can of course be studied. However, there are no reasons a priori to change the way a given equation if embedded over the stochastic processes as long as one is considering dissipative forces.

The fact that X t is not a gradient in this case is in accordance with the fact that by the Helmholtz Theorem [START_REF] Olver | Applications of Lie groups to dierential equations[END_REF] already in the classical case, no Hamiltonian formulation of the system can be founded [START_REF] Santilli | Foundations of theoretical mechanics: the inverse problem in Newtonian mechanics[END_REF]. In the classical case, one can recover a Hamiltonian formulation by using the fractional calculus [START_REF] Cresson | Variational formulations of dierential equations and asymmetric fractional embedding[END_REF][START_REF] Cresson | Lagrangian for the convection-diusion equation[END_REF]. One can think to extend such a "fractional" point of view by looking for fractional diusion processes instead of classical diusion processes.

6 Action function and a stochastic Hamilton-Jacobi equation A useful consequence of Theorem 4 is that the speed V = DX can be written as a gradient of a complex function denoted by A (t, X), which corresponds in the classic case to the action functional [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF]. We prove that the complex action functional satises a generalization of the classical Hamilton-Jacobi equation in the stochastic case. Previous work in this direction has been made by F. Guerra and L.M. Morato in [START_REF] Guerra | Quantization of dynamical systems and stochastic control theory[END_REF] where a stochastic Hamilton-Jacobi equation is derived in the context of conservative diusion but dealing with a real action functional.

This dierence will induce strong dierences as the complex character of the functional implies the emergence of terms mixing the real and complex part of the functional in the stochastic Hamilton-Jacobi equation.

Action functional

Action functional plays a fundamental role in mechanics (see [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF], Chap. 9). Using the fact that DX t can be written as the gradient of a function, we introduce a natural analogue of the classical action functional in our stochastic setting. As the stochastic derivative is complex, the action functional takes also values in C. This will have a strong impact on the corresponding stochastic Hamilton-Jacobi equation that we derive in the next Section.

Lemma 5 (Action function) Let X be a stochastic process solution of the dierential stochastic Newton equation ( 28). Then, denoting V = DX the complex speed of the process, there exists a function A (t, X) called the action function such that

V = ∇A (t, X t ) m , (68) 
with

A (t, X t ) = S(t, X t ) + iµR(t, X t ), (69) 
where

S(t, X) = mW (t, X) - 1 2 mσ 2 ln(p t ), R(t, X) = 1 2 mσ 2 ln(p t ), (70) 
and the function W is given by Theorem 3.

Proof. This follows from the properties of the Nelson derivatives. Indeed, we have

D + X = V (X t ) and D -X = V (X t )-σ 2 ∇ ln(p t ).
As X is a solution of the dierential stochastic Newton equation, we have V (X t ) = ∇W (X t ) so that D + X and D -X are then gradients. By denition of DX, using the fact that

(D + X + D -X) = 2V (X t ) -σ 2 ∇ln(p t ) and (D + X -D -X) = σ 2 ∇ ln(p t )
and replacing V by its expression, we obtain the result.

Remark 5 In [START_REF] Guerra | Quantization of dynamical systems and stochastic control theory[END_REF], F. Guerra and L.M. Morato do not introduce the previous action functional as they always consider real quantities. However, if a stochastic process X t is a critical diusion in the sense of Laerty (see [START_REF] Nelson | Stochastic mechanics and random elds[END_REF],p.439) for a certain action functional then one has that real part of DX t is the gradient of a function S. We return further on this topic after as they derive a stochastic Hamilton-Jacobi equation for S.

A stochastic Hamilton-Jacobi equation

The action function A satises in the classical case (i.e. corresponding to σ = 0) a nonlinear rst-order partial dierential equation called the Hamilton-Jacobi equation (see [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF],Chap. 9, Section 46, p.255). In a similar way, we derive a stochastic version of the Hamilton-Jacobi equation:

Theorem 6 (A stochastic Hamilton-Jacobi equation) The action function A (t, X) satises the nonlinear partial dierential equation

∂ t A + 1 2m [∇A • ∇A ] + iµ σ 2 2 ∆A = -U. (71) 
It must be noted that when the dynamics is not stochastic, meaning that σ = 0, then A is real and reduces to S as R = 0 in this case. As a consequence, the stochastic Hamilton-Jacobi equation is equivalent to

∂ t S + 1 2m [∇S • ∇S] = -U, (72) 
which corresponds to the classical Hamilton-Jacobi equation introducing the Hamiltonian function

H(p, x, t) = 1 2 p 2 , (73) 
and rewriting equation (72) as

∂ t S + H(∇S, x, t) = -U. (74) 
Remark 6 A stochastic Hamilton-Jacobi equation was derived by F. Guerra and L.M. Morato in the context of stochastic mechanics (see [START_REF] Guerra | Quantization of dynamical systems and stochastic control theory[END_REF][START_REF] Guerra | A new interpretation of the Euclidean-Markov eld in the framework of physical Minkowski space-time[END_REF]). As their action functional is real, they obtain only a part of our equation. Moreover, their equation does not cover our result due to the fact that the complex nature of A mixes the real and imaginary part of A even by restricting our attention to the real part of the stochastic Hamilton-Jacobi equation. We refer to Section 7.1 for more details.

Remark 7

The stochastic Hamilton-Jacobi equation (71) has nothing to do with the one introduced in the context of stochastic geometric mechanics in [START_REF] Lázaro-Camí | The stochastic Hamilton-Jacobi equation[END_REF] following the seminal work of J-M. Bismut [START_REF] Bismut | Mécanique aléatoire[END_REF]. Indeed, these authors use the Stratonovich stochastic calculus (see [START_REF] Altaisky | Stochastic dierential equations[END_REF]) in order to preserve easily all the geometrical features of the classical Hamiltonian equations. This is not the case here where the Itô stochastic calculus is used.

Proof. Using Lemma 5, the dierential stochastic Newton equation corresponding to σ = 1 can be written as

D µ [∇A (t, X t )] = -∇U (X t ). (75) 
Using the chain rule formula (13), we then obtain

∂ t ∇A + ∇ [∇A ] DX + iµ σ 2 2 ∆∇A = -∇U. ( 76 
)
The regularity of A implies that we have

∂ t ∇A = ∇∂ t A . (77) 
Moreover, we have

∇ [∇A ] DX = ∇ [∇A ] ∇A m , = 1 2m ∇ [∇A • ∇A ] , (78) 
using the fact that the operator ∇ satises the Leibniz relation.

We also have

∆∇A = ∇ [∆A ] . (79) 
As a consequence, equation (76) can be rewritten as

∇ ∂ t A + 1 2m [∇A • ∇A ] + iµ σ 2 2 ∆A = -∇U. ( 80 
)
7 Emergence of a stochastic induced potential

As A is complex, we can explicit the real and imaginary part of the nonlinear partial dierential system (71) in term of S and R. Precisely, we have: Theorem 7 The real functions S and R satisfy the following system of nonlinear partial dierential equations:

∂S ∂t + 1 2m (∇S) 2 -µ 2 1 2m (∇R) 2 + σ 2 2 ∆R + U = 0, ∂R ∂t + 1 m (∇S) • (∇R) + σ 2 2 ∆S = 0. (81) 
It must be noted that the term

-µ 2 1 2m (∇R) 2 + σ 2 2 ∆R , (82) 
which can be interpreted as a modication of the potential U induced by the stochastic character of the motion is intimately related to the complex character of A as these terms do not exist when A is real.

Remark 8 In [START_REF] Guerra | Quantization of dynamical systems and stochastic control theory[END_REF], F. Guerra and L.M. Morato obtained the real part of the stochastic Hamiilton-Jacobi equation using a particular notion of critical diusion called Laerty critical diusion by E. Nelson in ( [START_REF] Nelson | Stochastic mechanics and random elds[END_REF],p.439) and considering a real action functional mixing in a particular way D + X t and D -X t . We refer to [START_REF] Guerra | Quantization of dynamical systems and stochastic control theory[END_REF] for more details and [START_REF] Nelson | Stochastic mechanics and random elds[END_REF] for a discussion of this work.

We can go further by expressing R as a function of p.

Real part of the stochastic Hamilton-Jacobi equation -emergence of a stochastic induced potential

A simple calculation leads to the following modied Hamilton-Jacobi equation:

Lemma 6 (Modied Hamilton-Jacobi equation) The rst equation of system (81) can be rewritten as

∂S ∂t + 1 2m (∇S) 2 -m σ 4 2 ∆( √ p) √ p + U = 0 (83)
called the modied Hamilton-Jacobi equation.

Proof. We denote by α = m

σ 2 2 . We have ∇R = α ∇p p and ∆R = -α ∇p • ∇p p 2 - ∆p p .
As a consequence, we obtain

- 1 2 (∇R) 2 -m σ 2 2 ∆R = - α 2 2 ∇p • ∇p p 2 + α 2 ∇p • ∇p p 2 - ∆p p , = -α 2 ∆p p + α 2 2 ∇p • ∇p p 2 . ( 84 
)
Writing p as p = ( √ p) 2 and using the identity ∆f 2 = 2f ∆f + 2∇f • ∇f , one obtain the identity (with f = √ p):

2 ∆( √ p) √ p = ∆p p - 1 2 ∇p • ∇p p 2 (85) 
which leads to

- 1 2 (∇R) 2 -m σ 2 2 ∆R = -2α 2 ∆( √ p) √ p . (86) 
This concludes the proof.

The main observation is that the stochastic nature of the dynamical system modies the classical Hamilton-Jacobi equation. The new term can be interpreted as the appearance of a new potential, of pure dynamical origin:

Denition 1 (Induced stochastic potential) Let σ > 0. We call induced stochastic potential and we denote by U σ,induced the potential dened by

U σ,induced = -m σ 4 2 ∆( √ p) √ p . ( 87 
)
The form of this potential is well known in quantum mechanics (see for example [START_REF]Quantum theory of measurement[END_REF]) and Remark 9 This emergent potential is exactly the one obtained by D. Rocha and L. Nottale in [START_REF] Rocha | Gravitational structure formation in scale relativity[END_REF] (see also [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF], equation (12.15) p.521).

is
Remark 10 One must be careful with the previous result by discussing the dynamical consequences of such an induced stochastic potential. This result is purely stochastic so that the real part of the stochastic Hamilton-Jacobi must not be interpreted as the classical Hamilton Jacobi equation with a potential given by U + U σ,induced . Indeed, the dynamical properties of a classical deterministic system whose dynamics is controlled by U + U σ,induced are dierent from the dynamical properties of a stochastic systems whose underlying dynamics is controlled by the potential U . This will be of importance when interpreting such a potential in our application to the at rotation curves of spiral galaxies in Section 11.

Imaginary part of the stochastic Hamilton-Jacobi equation -a density equation versus the Fokker-Planck equations

The second equation corresponds in fact to a classical continuity equation:

Lemma 7 (A continuity equation) The density p t of a stochastic process solution of the Newton stochastic dierential equation satises the following continuity equation

m ∂p ∂t + div(p ∇S) = 0. ( 88 
)
Proof. As R = m σ 2 2 ln(p), we obtain

∂R ∂t + 1 m (∇S) • (∇R) + σ 2 2 ∆S = σ 2 2p (m∂ t p + ∇S • ∇p + p∆S) = 0. ( 89 
)
Using the algebraic identity div(pV ) = pdiv(V ) + ∇p • V which allows us to rewrite the term ∇S • ∇p + p∆S as div(p ∇S), we obtain the result.

As already remarked by L. Nottale in ( [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF],p.146), the continuity equation is nothing else than a rewriting of the Fokker-Planck equation (see [START_REF] Kloeden | Numerical solution of stochastic dierential equations[END_REF], Section 2.4 p.68-69) for a stochastic process solution of the dierential stochastic Newton equation. Indeed, using results of E. Nelson ([38], equation ( 3) and ( 4) p.105), we have that the density p satises the classical Fokker-Planck equation

∂ t p = -div(pD + X) + σ 2 2 ∆p, (90) 
and another one corresponding to the time reversed process associated to X

∂ t p = -div(pD -X) - σ 2 2 ∆p. ( 91 
)
As a consequence, combining the two equations, we obtain that p must satises

2∂ t p = -div (p(D + + D -)X) , (92) 
which leads to the continuity equation derived in Lemma 7.

The dierential stochastic Newton equation as a Schrödinger equation

In order to apply the previous result in concrete situations and to identify the induced potential U σ,induced , one needs to have access to the density p or equivalently to the imaginary part of D µ X t of the stochastic process X t solution of the dierential stochastic Newton equation.

The main point, already observed by L. Nottale [START_REF] Nottale | Fractal space-time and microphysics: towards a theory of scale relativity[END_REF], is that the solutions of the dierential stochastic Newton equation are in correspondence, via a simple change of variables using the action functional, with a particular nonlinear partial dierential equation which reduces to the linear Schrödinger equation in some cases. A complete proof of this correspondence was given in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] under the assumption that the real part of DX t where X t is a solution of the stochastic Newton equation, is a gradient. This assumption was also postulated by E. Nelson [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF] in his derivation of the Schrödinger equation in stochastic mechanics. Using the fact that solutions of the stochastic Newton equation are gradient diusions proved in Section 5, we are able to cancel the Nelson assumption and to generalize our previous result [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF]. We also discuss the relation between the usual Madelung transform and the stochastic Hamilton-Jacobi equation.

The stochastic Newton equation as a Schrödinger equation

In the following, we indicate explicitly the dependence of the action A (t, x) with respect to µ. Following E. Nelson in [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF], we introduce the following change of variables:

Denition 2 (Wave function) Let σ > 0 and C be a non zero real constant. We call wave function and we denote by ψ σ,µ the function dened by

ψ µ (t, x) = e i A µ (t, x) C . ( 93 
)
The constant C plays the role of a normalization constant. We will write ψ instead of ψ σ,µ in the following. The main point is that this function has only a meaning as long as one considers stochastic processes as in this case A(t, x) is complex by nature.

By denition of ψ, we have

∇A µ = -iC ∇ψ ψ . ( 94 
)
Since by denition of A µ , D µ X = ∇A µ m

, we deduce that the dierential stochastic Newton equation can be written as

iCD µ ∇ψ ψ = ∇U. (95) 
A computation then leads to the following Theorem:

Theorem 8 (Schrödinger formulation) If X is a solution of the dierential stochastic Newton equation then the wave function ψ satises the nonlinear partial dierential equation

iC∂ t ψ -µ σ 2 C 2 ∆ψ + C(µmσ 2 + C) 2m ∇ψ • ∇ψ ψ = ψ • U. ( 96 
)
When µ = -1, we obtain a nonlinear Schrödinger like equation

iC∂ t ψ + σ 2 C 2 ∆ψ + C(-mσ 2 + C) 2m ∇ψ • ∇ψ ψ = ψ • U. ( 97 
)
The main point is to observe that the nonlinearity induced by the stochastization assumption is of a very particular form. Remark 11 Nonlinear wave mechanics was initiated by L. De Broglie in [START_REF] Broglie | Nonlinear wave mechanics[END_REF] in order to have a better understanding of the relation between wave and particle (see [START_REF] Broglie | Nouvelles perspectives en microphysique[END_REF],p.227-231). It can be interesting to explore under dierent geometric assumptions the class of nonlinearity which arise.

The proof of Theorem 8 follows the same line as the corresponding result in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] under the gradient assumption of E. Nelson. We provide a complete proof for the convenience of the reader.

Remark 12 Equation (96) was rederived by P.H. Chavanis in ( [START_REF] Chavanis | Derivation of a generalized Schr"odinger equation from the theory of scale relativity[END_REF], equation (B.1)) without mention of our previous work [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] where this equation is rigorously proved for the rst time. It must be noted that this equation can also be derived in the context of non dierentiable deterministic trajectories as in [START_REF] Cresson | Scale calculus and the Schrödinger equation[END_REF] and in the context of multiscale functions as in [START_REF] Cresson | Multiscale functions, scale dynamics and applications to partial dierential equations[END_REF].

Proof. Using the stochastic chain rule formula [START_REF] Darses | Stochastic derivatives for fractional diusions[END_REF], we obtain

iC ∂ t ∇ψ ψ + D µ X • ∇ ∇ψ ψ + iµ σ 2 2 ∆ ∇ψ ψ = -∇U. ( 98 
)
We have the equality

∂ t ∇ψ ψ = ∂ t (∇ψ) • 1 ψ + ∇ψ • ∂ t 1 ψ , = (∇∂ t ψ) • 1 ψ -∇ψ • ∂ t ψ ψ 2 , = (∇∂ t ψ) • 1 ψ + ∇ 1 ψ • ∂ t ψ, = ∇ ∂ t ψ ψ . (99) 
Moreover, we have

∆ ∇ψ ψ = ∆ψ ψ - ∇ψ • ∇ψ ψ 2 , ( 100 
)
and

D µ X • ∇ ∇ψ ψ = -i C m ∇ψ ψ • ∇ ∇ψ ψ , = -i C m ∇ 1 2 ∇ψ • ∇ψ ψ 2 . (101) 
Replacing these expressions in equation ( 98), we obtain the result.

It must be noted that the density p t of the stochastic process X t solution of the dierential stochastic Newton equation is precisely related to the modulus of the wave function ψ as follows:

Lemma 8 (Density) Let X t be a solution of the dierential stochastic dierential equation and ψ its associated wave function then

ln(ψ ψ) = -µ m C σ 2 ln(p t ). (102) 
Proof. Indeed, by denition of ψ, we have

ln(ψ ψ) = i 1 C A µ -A µ , (103) 
which gives using the denition of the action functional in Lemma 5 that

A µ -A µ = 2iµR = iµσ 2 ln(p t ), (104) 
so that

ln(ψ ψ) = -µ m C σ 2 ln(p t ). (105) 
This concludes the proof.

In order to recover a usual relation between the density of the stochastic process and the modulus of the wave function ψ, one needs to choose K in such a way that -µ m C σ 2 = 1. This condition can also be seen as a condition canceling the nonlinearity. Precisely, we have:

Corollary 1 Let X be a solution of the dierential stochastic Newton equation, then taking the normalization constant

C = -µmσ 2 , (106) 
equation ( 96) reduces to the linear partial dierential equation

-iµmσ 2 ∂ t ψ + m σ 4 2 ∆ψ = ψ • U, (107) 
and

|ψ(t, x)| 2 = p t (x). (108) 
If moreover, we consider the case µ = -1 then equation (107) reduces to the classical linear Schrödinger equation

imσ 2 ∂ t ψ + m σ 4 2 ∆ψ = ψ • U. (109) 
The previous result oers the possibility to obtain an explicit expression for the induced potential by solving the linear Schrödinger equation for a given potential. A rst example in done in the next Section to prove the potentiality of the previous formalism.

Stochastic Hamilton-Jacobi equation versus the Madelung transform

The Madelung transform was introduced in the seminal paper of E. Madelung [START_REF] Madelung | Quanten theorie in Hydrodynamischer Form[END_REF] in order to relate the linear Schrödinger equation to a hydrodynamic type system. Precisely, let us consider the nonlinear Schrödinger equation

i ∂ t ψ + 2 2 ∆ψ = f (| ψ | 2 )ψ . (110) 
The Madelung transform is dened as follows:

Denition 3 The Madelung transform is the map Φ which to any pair of functions ρ : R n × R → R >0 and θ : R 2 × R → R associates a complex-valued function

Φ : (ρ, θ) → ψ := √ ρe iθ/ . (111) 
Denoting by v = ∇θ, we obtain the hydrodynamic form of the nonlinear Schrödinger equation (110):

   ∂ t vv • ∇v + ∇f (ρ) = 2 2 ∇ ∆( √ ρ) √ ρ , ∂ t ρ + div(ρv) = 0. (112) 
The Madelung transform can be interpreted in our setting as follows:

Let m = 1. The wave function dened in (93) with the constant C = -µσ 2 given in Corollary 1 and the condition µ = -1 in order to obtain the linear Schrödinger equation, can be written as

ψ = √ pe iS/σ 2 . ( 113 
)
As a consequence, we can intrepret the function ρ and θ of the Madelung transform:

We have ρ = p, θ = S, i.e. the density of the stochastic process X t solution of the stochastic Newton equation and the real part of the complex speed D µ X t or of the complex action functional A µ . Taking = σ 2 , the hydrodynamic form of the Schrödinger equation is nothing else than the stochastic Hamilton-Jacobi equation associated to A µ .

The right-hand side of the hydrodynamic form is called the quantum pressure and corresponds to the induced stochastic potential U σ,induced .

A more "physical" discussion of the Madelung transform is given by P.H. Chavanis in ( [START_REF] Chavanis | Derivation of a generalized Schr"odinger equation from the theory of scale relativity[END_REF],II.C, II.G, II.H and III.B).

Characterization of the set of diusion processes and the stochastic induced potential

In order to give a constrained theory for the applications of the previous formalism, one needs to identify the diusion coecient σ from observational data and to give the explicit form of the induced potential. We indicate a strategy, which will be followed in Section 10, in order to identify σ using the previous correspondence the stochastic Newton equation and the Schrödinger equation.

Let U be a given potential and let σ > 0. The main steps are the following:

Write the Schrödinger equation (109) and compute the ground state solution ψ.

Using formula (108), compute the density p t (x) of the stochastic process X.

Compute the induced stochastic potential U σ,induced using formula (87).

Identify the diusion coecient σ.

As one can see, the fact that the Schrödinger equation is underlying the dynamics of the stochastic Newton equation allows to bypass the explicit resolution of the stochastic equation by obtaining the density of the stochastic process.

10 Application in the Kepler case

In this Section, we use the previous formalism to explicit the induced potential when the initial potential is the Kepler potential. The induced potential takes the form of the ad-hoc dark potential used in the literature to explain the at rotation curves of spiral galaxies. Using the modied Hamilton-Jacobi equation we prove that the real part of the stochastic speed is indeed constant at the equilibrium. We also prove that the expectation of the real part of the stochastic angular momentum is a rst integral. This result can be interpreted as the fact that at equilibrium the mean motion takes place in a plane. We then discuss how the previous results are formulated in a polar coordinates systems leading to the fact that if the motion is assumed to be circular then the orthoradial speed is constant.

Induced potential in the Keplerian case

In this Section, we assume that the potential U is given for all (x, y, z

) ∈ R 3 \ {0} by the Kepler potential U (x, y, z) = -GM m r , (114) 
where r = x 2 + y 2 + z 2 , M > 0 and G is the universal constant of gravitation. 

where C is a real constant and r 0 is given by

1 r 0 = GM 2σ 4 . (116) 
We then have the density p t (x) of the underlying stochastic process equal to

p t (x) = C 2 m 2 σ 8 e -4r/r 0 . (117) 
Using this expression, we have the following Lemma:

Lemma 9 (Induced potential-Kepler case) Let µ = -1 and U be given by the Kepler potential (114). Then the induced stochastic potential is given by

U σ,induced = - GM m r 0 1 - r 0 r , (118) 
with r 0 given by (116).

Proof. Denoting by γ the quantity C mσ 4 , the quantity p t (x) is given by γe -2r/r 0 . We deduce that

∂ √ p ∂x = -2 x r 0 r √ p, (119) 
and

∂ 2 √ p ∂x 2 = 2 1 r 0 r √ p 2x 2 r 0 r -1 + x 2 r 2 . ( 120 
)
As a consequence, we obtain

∆( √ p) = 2 1 r 0 r √ p 2r 2 r 0 r -3 + r 2 r 2 = 4 r 2 0 √ p 1 - r 0 r . ( 121 
)
As a consequence, the induced potential given by U σ,induced = -m σ 4 2 ∆( √ p) √ p can be explicitly written as

U σ,induced = - 2mσ 4 r 2 0 1 - r 0 r . (122) 
Replacing σ by its expression in function of r 0 using (116), we obtain the result.

The form of the induced potential is exactly the dark potential used in order to recover the at rotation curve of spiral galaxies (see [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF] p.652 for a discussion).

The at rotation curves Theorem and the diusion coecient

We are now in position to explore the consequences of the emergence of this extra potential on the dynamics. The main tool is the stochastic Hamilton-Jacobi equation that we have already proved in Section 6.

Theorem 9 (Flat rotation curves) At equilibrium the real part of the speed D µ X denoted by v has a constant norm equal to v 0 where v 0 is given by

v 2 0 = 2GM r 0 . (123) 
Proof. The modied Hamilton-Jacobi equation at equilibrium, i.e. ∂ t S = 0, gives

1 2m (∇S) 2 = -U -U σ,induced . (124) 
Using the expression of U add just obtained, we have U + U add = -GM m r 0

. As a consequence, the real part of the speed D µ X denoted by v satises

v • v = 2GM r 0 , (125) 
which is constant.

A consequence of the previous Theorem is that the diusion coecient σ can be evaluated as a function of v 0 using the denition of r 0 given by equation (116): Lemma 10 (Diusion coecient) The diusion coecient σ is given by

σ 2 = GM v 0 . ( 126 
)
The form of σ coincides with the one obtained by L. Nottale in ( [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF], p.652, (13.153)).

The dimension of σ 2 is m 2 s -1 where m stands for meter and s for seconds which is coherent with formula (116) and the fact that σdW t must be proportional to a distance m. Indeed, as dW t is in s 1/2 and σ in ms -1/2 we obtain that σdW t is in m.

A stochastic Noether Theorem and preservation of the stochastic angular momentum

A useful property of the motion in a central potential is that the motion is restricted to a plane due to the preservation of the angular momentum. It can be interesting to study the preservation of this property under stochastization. Adapting our proof of the stochastic Noether theorem in [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF], we prove that the real part of the stochastic angular momentum X ∧ D µ X is preserved under the motion of the dierential stochastic Newton equation.

We have the following result: Theorem 10 Let U be a central potential, meaning that U depends only on x and X be a solution of the dierential stochastic Newton equation, then we have the following identity

d dt E (X ∧ D µ X) -iµσ 2 E ∇p p ∧ D µ X = 0. (127) 
We postpone the proof at the end of this Section.

The quantity X ∧ D µ X is the stochastic analogue of the angular momentum x t ∧ v t . A classical result states that the angular momentum is a constant vector due to the invariance of the Lagrangian [START_REF] Cresson | Variational formulations of dierential equations and asymmetric fractional embedding[END_REF] under the group of rotations. This result is important since it implies that the motion takes place in a plane orthogonal to the angular momentum. This fundamental result extends in the stochastic case for what concerns the real part of the stochastic angular momentum. Precisely, we have: Lemma 11 Let U be a central potential and X be a solution of the dierential stochastic Newton equation. Let v t be the real part of D µ X, then we have

d dt E (X ∧ v) = 0. (128) 
Proof. We have to evaluate the real part of the correcting term iµσ 

d dt E (X ∧ v) = 0.
As a consequence, the real part of the expectation of the stochastic angular momentum

L t = E(X t ∧ v t ), (130) 
is a constant vector.

The consequence of this result on the motion X t of the dierential stochastic Newton equation are not easy to deduce. However, the situation is very simple at equilibrium: Theorem 11 At equilibrium, the mean motion E(X t ) takes place in a plane orthogonal to the constant vector L 0 dened by (130).

Proof. At equilibrium the real part of the speed D µ X denoted by v t is not random as v t • v t is constant. As a consequence, we have E(X ∧ v) = E(X) ∧ v = L 0 and the mean motion E(X t ) takes place in a plane orthogonal to L 0 .

Proof of Theorem 10

We consider the classical Lagrangian

L(x, v) = 1 2 m v 2 -∇U (x), (131) 
where U is assume to be central, i.e. that U depends only on x .

We denote by {e 1 , e 2 , e 3 } the canonical basis of R 3 . Let φ s,k : R 3 -→ R 3 be the one parameter family of rotations around the axis e k for k = 1, 2, 3. As an example, for all X ∈ R 3 , we have

φ s,1 (X) =   1 0 0 0 cos s -sin s 0 sin s cos s   • X. (132)
We have the following result: Lemma 12 The Lagrangian function L(X, Z), X ∈ R 3 , Z ∈ C 3 dened by ( 131) with U a central potential is invariant under the one parameter group of rotations φ s,k for k = 1, 2, 3, i.e. that L(φ s,k (X), φ s,k (Z)) = L(X, Z). Proof. As φ s,k is an isometry of R 3 , we have φ s,k (X) = X . As U (x) only depends on x , we then obtain U (φ s,k (X)) = U (X). 

(Z) = Z for Z ∈ C 3 . Indeed, let Z = a + ib, (a, b) ∈ R 3 × R 3 , then φ s,k (Z) 2 = φ s,k (a) 2 -φ s,k (b) 2 +2iφ s,k (a) • φ s,k (b). (135)
As φ s,k is an isometry of R 3 , it preserves the norm of a and b and the scalar product a • b. As a consequence, we obtain

φ s,k (Z) 2 = a 2 -b 2 +2ia • b = Z 2 . ( 136 
)
As a consequence, we obtain

1 2 m φ s,k (Z) = 1 2 m Z . ( 137 
)
This concludes the proof.

We then deduce that for all s ∈ R, the following equality is satised

L(φ s,k (X), φ s,k (D µ X)) = L(X, D µ X). (138) 
By deriving with respect to s, we obtain

d ds [L(φ s,k (X), φ s,k (D µ X))] = 0, (139) 
which can be rewritten as

∂L ∂x (φ s,k (X), φ s,k (D µ X))• ∂ ∂s (φ s,k (X))+ ∂L ∂v (φ s,k (X), φ s,k (D µ X))• ∂ ∂s (φ s,k (D µ X)) = 0. ( 140 
)
As φ s,k is linear whose matrix coecients do not depend on t, we have

φ s,k (D µ (X)) = D µ (φ s,k (X)), (141) 
and

∂ ∂s φ s,k (D µ (X)) = D µ ∂ ∂s φ s,k (X) . (142) 
Moreover for s = 0, we have φ 0,k (X) = X and equality (140) in s = 0 reduces to

∂L ∂x (X, D µ X) • ∂ ∂s (φ s,k (X))| s=0 + ∂L ∂v (X, D µ X) • D µ ∂ ∂s (φ s,k (X))| s=0 = 0. (143) 
A simple computation gives

∂ ∂s (φ s,k (X))| s=0 = e k ∧ X. (144) 
The dierential Newton equation can be rewritten using L as

D µ ∂L ∂v (X, D µ (X)) = ∂L ∂x (X, D µ X). (145) 
Using this equality, we can replace the term ∂L ∂x (X, D µ X) in equation ( 143) by D µ ∂L ∂v (X, D µ (X)) .

We then have

D µ ∂L ∂v (X, D µ (X)) • (e k ∧ X) + ∂L ∂v (X, D µ X) • D µ (e k ∧ X) = 0. (146) 
In order to use the Leibniz formula [START_REF] Cresson | Scale calculus and the Schrödinger equation[END_REF], we need to explicit the quantity Cor σ (e k ∧ X). A simple computation gives

Cor σ (e k ∧ X) = e k ∧ Cor σ (X), (147) 
where Cor σ (X) = σ 2 ∇p p . As a consequence, taking the expectation of equation ( 146) leads to

d dt E ∂L ∂v (X, D µ (X)) • (e k ∧ X) -iµE ∂L ∂v (X, D µ X) • (e k ∧ Cor σ (X)) = 0. (148) 
As ∂L ∂v = mv, we nally have

d dt E (D µ (X) • (e k ∧ X)) -iµE (D µ X • (e k ∧ Cor σ (X))) = 0. (149) 
As we have u

• (v ∧ w) = (u ∧ v) • w, equation (149) can be rewritten as d dt E (e k • (X ∧ D µ (X))) -iµE (e k • (Cor σ (X) ∧ D µ X)) = 0, (150) 
for k = 1, 2, 3 which implies that

d dt E (X ∧ D µ (X)) -iµE (Cor σ (X) ∧ D µ X) = 0. (151) 
Replacing Cor σ (X) by its expression, we obtain the result.

Stochastic motion in a plane: radial and orthoradial stochastic speed

The previous result suggest to study a simplied situation where the stochastic motion is restricted to a plane. In that case, a classical way to describe the motion is to use polar coordinates (r, θ) ∈ R + × [0, 2π[ and to look for the motion X t as

X t = r t e θt , (152) 
where e θt = (cos(θ t ), sin(θ t )). As X t is a stochastic process, we assume that r t and θ t are diusion process of the form

dr t = a r dt + σ r dW t , dθ t = a θ dt + σ θ dW t , (153) 
where a r and a θ are two functions a priori depending on r and θ and σ r and σ θ are assumed to be constant in a rst approximation.

Under these assumptions, one can compute the form of v t corresponding to the real part of D µ (X t ). Indeed, denoting by f the function dened by f (r, θ) = re θ , (154) and using the chain rule formula (13), we have

D µ (X t ) = D µ [f (r t , θ t )] , = D µ r t e θt + D µ θ t r t e ⊥ θt -i µ 2 σ 2 θ e θt + iµσ r σ θ e ⊥ θt , (155) 
where e ⊥ θt = (-sin θ t , cos θ t ).

The real part of D µ (X t ) denoted by v t is then given by

v t = Re [D µ r t ] e θt + Re [D µ θ t ] r t e ⊥ θt , (156) 
where for z ∈ C we denoted by Re [z] the real part of z.

As usual, the speed v t can be decomposed in two components denoted by v r,t and v θ,t

dened by v r,t = Re [D µ r t ] e θt , and v θ,t = Re [D µ θ t ] r t e ⊥ θt , (157) 
corresponding to the radial and orthoradial components of v t .

Using the previous expression, we obtain

X t ∧ v t = r 2 t Re [D µ θ t ] k, ( 158 
)
where k is the canonical vector (0, 0, 1).

Lemma 11 is then equivalent to

d dt E r 2 t Re [D µ θ t ] = 0, (159) 
as k is constant and non zero.

The previous result can be used to translate the at rotation curves Theorem in a polar coordinate systems assuming that the motion is a circular orbit:

Theorem 12 (Flat rotation curve -polar coordinates) At equilibrium, assuming that the motion is a circular orbit of radius r, we have v t = v θ and

E [v θ ] = v 2 0 = L 2 0 r 2 , (160) 
where v 0 is given by Theorem 9 and L 0 is the constant

L 0 = r 2 E [Re [D µ θ t ]]. Proof. We have v t 2 = v 2 r + v 2 θ .
Taking the expectation, we deduce that

E v t 2 = E v 2 r + E v 2 θ , = E Re [D µ r t ] 2 + +E r 2 t Re [D µ θ t ] 2 . ( 161 
)
As the motion is a circular orbit of radius r, we have r t = r and D µ r t = 0 so that

E v t 2 = E v 2 θ . (162) 
Moreover, we have E r

2 t Re [D µ θ t ] = r 2 [Re [D µ θ t ]] which is constant equal to L 0 by assump- tion. Then E v θ 2 = r 2 E Re [D µ θ t ] 2 = L 2 0 /r 2 . Theorem 9 implies that E v t 2 = v 2 0 .
This concludes the proof.

The previous result indicates that in some particular cases, one can directly connect the at rotation curve Theorem with the fact that the mean of the real part of the orthoradial speed is constant.

An interesting consequence of Theorem 12 and Theorem 9 using the explicit expression of v 0 depending on r 0 , is the following formula for r:

r 2 = L 2 0 r 0 2GM . ( 163 
)
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The "dark matter" problem and at rotation curves of spiral galaxies

As the induced potential in the Kepler case corresponds to the usual ad-hoc dark potential used in astrophysics, one is leaded to discuss the applications of the previous formalism in the setting of the dynamics of galaxies. We follow here the arguments given by D. Rocha and L.

Nottale in [START_REF] Rocha | Gravitational structure formation in scale relativity[END_REF] and ( [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],Section 13.8.2 p.652-654).

Structural assumptions on the galaxy and the dark matter problem

We consider an isolated spiral galaxy which is already formed. A spiral galaxy is always decomposed in three components:

The central bulb which looks approximately like a sphere containing gazes and stars in a homogeneous way.

The disk which is itself decomposed in two components: a ne disk which is dense and a rough one.

The pair bulb-disk is contained in a halo of stars which is more or less a sphere but of low density.

These structures can be observed by all possible methods and give the total mass of the galaxy or in order to be precise the mass which can be detected by our actual observational means. Using these data, classical physics tell us that the stars which are meanly in the disk would have Keplerian orbits around the bulb. In this case, their speed of rotation would decrease as a function of the distance to the center of the galaxy. This is not the case and observational data show that the speed of rotation is more or less constant leading to a paradox.

Two main theories have been designed to solve this problem:

The rst and most common proposition is the existence of a huge amount of invisible matter with very specic properties called the "dark matter". We refer to [START_REF] Persic | The universal rotation curve of spiral galaxies the dark matter connection[END_REF] for more details. A consequence of both approaches is to lead to add a new potential to the classical initial potential. This two point of view have induced a great number of works and we refer to ( [START_REF] Blanchet | External eld eect of modied Newtonian dynamics in the Solar system[END_REF], [START_REF] Bekenstein | Does missing mass problem signal the breakdown of Newtonian gravity ?[END_REF], [START_REF] Milgrom | MOND eects in the inner Solar system[END_REF], [START_REF] Sanders | Modied Newtonian dynamics as an alternative to dark matter[END_REF]) for more details and recent works.

Brownian diusion and scale relativity

In order to apply our results, we need to justify the assumption that we consider the modication of the Newton equation on Brownian diusion. Such a discussion is provided by S. Albeverio and al. in ([1],p.366) in the context of the dynamics of a protoplanetary nebulae (see also [START_REF] Cresson | The stochastisation hypothesis and the spacing of planetary systems[END_REF], Section 5.1). In our setting, the consideration of the Newton equation in a stochastic setting can be justied in essentially two dierent points of view:

In scale-relativity, the fact that space has a fractal structure at small scales implies via the scale-relativity principle that a fractal structure of space also emerges at large scale (see [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],p.559). Assuming that the structure of space outside the bulb becomes fractal with a fractal dimension equal to 2, one can model the eects of the fractals structure using stochastic processes and in particular Brownian diusion.

Another point of view, already discuss by L. Nottale in [START_REF] Nottale | New formulation of stochastic mechanics. Application to chaos, in "Chaos and diusion in Hamiltonian systems[END_REF] (see also [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF], p.559) is to consider that the underlying dynamics is chaotic, allowing a description of the long-term dynamics using stochastic processes.

In both cases, the use of stochastic processes and in particular Brownian diusion is a rst possible model.

An essential assumption in order to consider Brownian diusion with constant coecient is to assume that the underlying stochasticity is:

Isotropic

Homogeneous

With respect to a general diusion coecient σ(t, x), the isotropy condition implies that σ depends only on t and homogeneity implies that σ(t) is constant in time.

Of course, the assumption that the diusion coecient is constant is only a rst approximation and can be weakened in future explorations. In particular, it seems that isotropy is a too strong condition for some applications.

Numerical estimates for a "typical" galaxy

Assuming that the previous assumptions are valid as a rst approximation, one can give some numerical estimates for the diusion coecient as long as one can predict the value of the mass M , r 0 and v 0 for a given galaxy.

We rst introduce some notations and Units:

The mass M of a galaxy is given in Solar mass denoted by M with M = 1.98 10 30 kg.

The size of a galaxy is given in Parsec denoted P c and equal to 3.086 10 13 km.

The gravitational constant G is equal to 4.3 10 -6 Kpc km 2 s -2 M -1 .

A typical spiral galaxy has the following properties:

an extension/size denoted by l 0 between 2 and 100 Kpc.

The mass is of the form 10 p M where p is between 8 and 12.

A typical rotation curve for a spiral galaxy is characterized by two quantities:

A distance r 0,obs at which the rotation curve begins to be at.

A speed v 0,obs corresponding to the averaged speed in the at part of the rotation curve.

This two sentences must be taken with some care as the rotation curve is uctuating around a given value.

The typical value for v 0,obs is 144 km.s -1 as taken from the Persic-Salucci catalog [49]. A discussion of this value is given in ( [START_REF] Nottale | Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics[END_REF],p.653-654). If we use our formula relating r 0 and v 0 taking for v 0 the value v 0,obs , we obtain an estimation denoted r 0,estimated of size r 0,estimated = 4.1 10 p-10 Kpc.

(164) As p goes from 8 to 12, we then have r 0,estimated running from 41 P c to 410 Kpc.

For our Galaxy however since the Visible Mass is about 810 10 M s and v 0,obs is 220 km.s -1 the r 0,estimated is around 8 Kpc which corresponds approximately to the distance at which the rotation curve begins to be at as it can be seen with the observations reported in gure 4.

The diusion coecient σ can also be estimated using this value of v 0,obs and we obtain All the previous computations are based on a very crude approximation on the distribution of matter. However, one can already derive some physical conclusion at this level:

The induced potential applied to the ordinary visible matter of a given spiral galaxy (like ours) is thus doing the work which is usually attributed to ad hoc dark matter. Note that here this potential is repulsive for r < r 0 , but it is attractive if not. Indeed if one looks at its expression it reaches closely the required saturation value as soon as r overtakes a few times the associated r 0,estimated value. For example in our Milky Way depending on the chosen model for dark matter and its spatial extension its mass necessary to explain the v 0,obs is comprised in the range 1.5 -2.3 10 12 M , obviously not using our relation between v 0 and r 0 . Our result conrms indeed the previous work of L. Nottale and D. Rocha in [START_REF] Rocha | Gravitational structure formation in scale relativity[END_REF].

12 Perspectives

The previous illustration allows us to put in evidence the main diculties in order to apply the previous theory:

Compute the diusion parameter σ and if possible, relates it to observational data.

Identify the potential U entering in the Newton equation.

Compute an explicit expression for of the corresponding Shcrödinger equation.

Depending on the physical problem one is studying, this questions can be very complicated.

However, the previous results indicates that the strategy proposed in [START_REF] Nottale | Proceedings of Birla Science Center Fourth International Symposium[END_REF] and [START_REF] Rocha | Gravitational structure formation in scale relativity[END_REF] can be rigorously founded in the framework of the stochastic embedding formalism of [START_REF] Cresson | Stochastic embedding of dynamical systems[END_REF] based on E. Nelson stochastic derivatives [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF].

We can generalize the previous work in various directions.

A rst one is to consider a more general class of Brownian diusion considering non constant diusion, i.e. a σ depending on x. This assumption will lead us to consider a distribution of mass with a density ρ(x) and then a mass M (x) in the computation via the Poisson equation.

Another possibility is to use the extension of the stochastic derivative to cover fractional diusion processes as dened in [START_REF] Darses | Stochastic derivatives for fractional diusions[END_REF].

A third one is to explore more general family of potentials and also to take care of dissipative eects in the initial Newton equation.

Last, but not least, one can extend the framework of the stochastic embedding to equations on Riemannian manifolds in order to cover a stochastic generalization of relativistic eects. A starting point can be to use the work of T. G. Dankel [START_REF] Dankel | Mechanics on manifolds and the incorporation of spin into Nelson's stochastic mechanics[END_REF], D. Dohrn and F. Guerra [START_REF] Dohrn | Nelson's stochastic mechanics on Riemannian manifolds[END_REF] and T. Zastawniak [START_REF] Zastawniak | A relativistic version of Nelson's stochastic mechanics[END_REF] where the stochastic mechanics of E. Nelson was extended on Riemannian manifolds.

  real. The result then follows from the composition Lemma. This condition reduces to (D 2 + -D 2 -)[X t ] = 0 when α = 1 corresponding to the dierential stochastic Newton equation. When α = -1 corresponding to the variational stochastic Newton equation, the reality condition reduces to (D -D + -D + D -)[X t ] = 0.

  The linear Schrödinger equation (109) with a Kepler potential has well known solutions as it corresponds to the Hydrogen atom model. It is well known that the ground state solution of the linear Schrödinger equation (109) given in Corollary 1 is such that |ψ| = C mσ 4 e -2r/r 0 ,

  Extending φ s,k by linearity to C 3 , i.e. φ s,k (a + ib) = φ s,k (a) + iφ s,k (b), we also have φ s,k
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 15 Figure5: For r 0 = 1, curves for the 3 potentials (normalized to GM/r 0 ): U tot = U Kepler + U induced = -1 (in orange), U Kepler (in blue) and U induced (in green).

  Let Y be a process such that D µ Y exists. Then Y is a constant (i.e. Y t is the same random variable for all t) if and only if D µ Y = 0.
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  called Bohm's potential or quantum potential in the literature (see for example the book of J-C. Zambrini ([16],p.168). It was introduced by D. Bohm in his non-local hidden variable theory for quantum mechanics.
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