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Abstract

Motivated by recent observations of coherent dipolar cyclone-anticyclone structures in the ocean, the modons, and their
signature in the surface temperature field, we demonstrate that the classical modon solutions of the barotropic quasi-
geostrophic equations can be generalized to include buoyancy or temperature as an active tracer. The properties of such
“thermal” modons, and especially their ability to carry heat anomaly over long distances, depend on the relative sign of
the associated vorticity and buoyancy anomalies. We show using numerical simulations with the thermal shallow water
equations, and their quasi-geostrophic version, that the evolution of the modons is consistent with the observations.

1. Introduction

Mesoscale eddies are ubiquitous features of the ocean
circulation, and an important component of the ocean en-
ergetics and variability (Ferrari and Wunsch, 2009; Chel-
ton et al., 2011). They play an active role in the transport
of heat, salt, and biogeochemical constituents (Yamamoto
et al., 2018; Sun et al., 2019). While isolated eddies drift
westward at rather slow speed in the linear regime, espe-
cially in mid-to-high latitudes (their velocity follows the
Rossby wave speed), non-linearities can allow for anoma-
lous propagation velocities (Chelton et al., 2011). Among
nonlinear mechanisms, the pairing of counter-rotating vor-
tices can lead to rapid propagation, which has an impact
on transport properties.

Recently Hughes and Miller (2017) reported a discov-
ery of long-living coherent dipolar structures in the ocean,
and convincingly associated them with long-known modon
solutions of the barotropic quasi-geostrophic (QG) equa-
tions (Larichev and Reznik, 1976). The modons detected
in the data evolve on the background of inhomogeneous
surface temperature, and carry with them, for some time,
temperature anomalies (Hughes and Miller, 2017, Fig. 3).
Modons are coherent steady-moving cyclone-anticyclone
eddy pairs which capture and transport fluid masses, but
both the classical (Larichev and Reznik, 1976) and more
recent (Kizner et al., 2008; Ribstein et al., 2010) modon
theories are essentially barotropic, and allow the inclusion
of variable temperature and/or buoyancy only as passive
tracers. Yet the overall temperature field in the obser-
vations does not appear to be perfectly captured by the

∗Corresponding author : zeitlin@lmd.ens.fr
1Current affiliation: Inria / Irmar, Campus Universitaire de

Beaulieu, 35042 Rennes Cedex, France.

dipoles. This suggests that temperature does not behave
as a purely passive tracer, and the question of its possi-
ble influence on the evolution of the vortex dipoles arises,
which is the main motivation of this work.

We recall that there exists a generalization of the clas-
sical Rotating Shallow Water (RSW) model, of which the
barotropic QG model is a low Rossby number limit, al-
lowing for inclusion of variable buoyancy as a dynamically
active tracer. This is the so-called thermal shallow wa-
ter (TSW) model, which was multiply reinvented in the
context of the boundary layer in the atmosphere (Lavoie,
1972; Salby, 1989) and mixed layer in the ocean (Mc-
Creary et al., 1993; Young, 1994; Ripa, 1995), and share
some similarities with other simplified models of the lat-
ter (e.g. Szoeke and Richman, 1984). The QG limit of
TSW, which we will call TQG, was established by Warn-
erford and Dellar (2013). The typical Rossby number of
the modons reported by Hughes and Miller (2017) was of
the order 10−2 (considering the ”global” Rossby number,
i.e. Ro = U∗/fL∗ where U∗ is the typical velocity and
L∗ the typical size of the modon), which makes the TQG
model a good framework for investigating their dynamics.
Below, we extend the classical derivation of the modon so-
lutions to the TQG model, and then show, with the help
of numerical simulations, that such solutions exist also in
the full TSW model. We demonstrate that the proper-
ties of thus obtained “thermal” modons crucially depend
on the relative sign of associated vorticity and buoyancy
anomalies. The evolution of the thermal modons will be
shown to be consistent with the observations.
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2. TSW and TQG models and existence of modon
solutions

2.1. Equations of motion

The TSW model, which we will be considering in the
f - plane approximation (the generalization to the beta-
plane is straightforward), can be derived by vertical aver-
aging of the primitive equations under the columnar mo-
tion hypothesis (e.g. Zeitlin, 2018, Ch. 14). The equations
of the model for horizontal velocity v(x, y, z), total thick-
ness (geopotential height) h(x, y, z), and total buoyancy
b(x, y, z) fields read:{

∂tv + v · ∇v + fẑ ∧ v = −b∇h− h

2
∇b ,

∂th+∇ · (vh) = 0 , ∂tb+ v · ∇b = 0,
(1)

where ∇ = (∂x, ∂y). Both the thickness and buoyancy
are positive, with a constant horizontally-averaged value
h, b > 0. The buoyancy is related to temperature anomaly:
according to the most frequent interpretation, the model
describes the active upper layer of the ocean, b = g ρ0−ρρ0

,
where ρ and ρ0 = const are densities of the upper and
infinitely deep passive lower layers (Warnerford and Del-
lar, 2013). Other interpretations however exist, in the
oceanic or the atmospheric context (Zeitlin, 2018) – see
a discussion in Sec. 5 below. By the standard procedure,
in the limit of small Rossby number, the quasi-geostrophic
limit of these equations is obtained (Warnerford and Del-
lar, 2013, their equations 4.12 a–c):{

∂t

(
∇2ψ − ψ−b

Bu

)
+ J (ψ,∇2ψ) = 0,

∂tb+ J (ψ, b) = 0.
(2)

Here, the buoyancy b is the anomaly (i.e. b− b, but we use
the same symbol b, not to overcharge the notation), and
the geostrophic streamfunction is ψ = b+η, where η is the
thickness anomaly (h − h). These equations are dimen-
sionless: in particular x, y are non-dimensionalized by the
typical length scale of the flow L∗ and time t by L∗/U∗.
The potential vorticity anomaly in the TQG model is q =
∇2ψ − η/Bu, where Bu = R2

d/L
∗2 is the Burger number

and Rd is the Rossby deformation radius.

2.2. TQG modons

We now generalize the classical procedure of construc-
tion of the modon solutions (Larichev and Reznik, 1976)
to the TQG case. This solution consists of a dipolar struc-
ture with a compact circular support, stationary in a frame
co-moving with a constant (non-dimensional) velocity U ,
and is obtained by assuming a linear relation between the
streamfunction and the potential vorticity. We thus look
for solutions of (2) moving steadily in the zonal direction:
ψ = ψ(x−Ut, y), b = b(x−Ut, y) whereby ∂t → −U∂x in
eqs. (2). Note that U will thus be the propagation speed of

the modon, which can be different from typical velocities
induced by the dipolar structure. In this case:

− U∂x
(
∇2ψ − ψ

)
+ J (ψ,∇2ψ − b) = 0, (3a)

− U∂xb+ J (ψ, b) = 0. (3b)

To simplify the formulas above, we here further rescaled
x, y and, accordingly, U , by

√
Bu and got rid of Bu. This

implies that length is now measured in units of Rd instead
of L.

Equation (3b) is equivalent to J (ψ+Uy, b) = 0, whence
b = F (ψ+Uy), where F is an arbitrary differentiable func-
tion. Substitution of this expression in equation (3a) gives
(see Appendix A)

J
(
ψ + Uy,∇2ψ − ψ − U y F ′(ψ + Uy)

)
= 0, (4)

where the prime here and below denotes an ordinary deriva-
tive of a function of a single variable. At this point we
make a simplifying hypothesis by assuming that F is a
linear function with F ′ = κ = const. In this case the
general solution of (4) obeys

∇2ψ − ψ − Uκy = G(ψ + Uy), (5)

where G is an arbitrary function. As in the classical con-
struction (Larichev and Reznik, 1976), we consider this
equation in the outer (+) and inner (−) domains sepa-
rated by a circle of radius r = a. This parameter defines
the typical scale of the flow L and is thus set by the Burger
number: a ≡ L = 1/

√
Bu (in units of Rd). We then sup-

pose that G is a linear function in each of the domains:
G(ψ + Uy) = α±(ψ + Uy) with α± = const. Hence

∇2ψ± − (1 + α±)ψ± = Uy(α± + κ±). (6)

We further consider solutions with no buoyancy anomaly
in the exterior region, by setting κ+ = 0 there.

2.2.1. External region

A decay condition is imposed in the external region:
ψ+|r→∞ → 0. Hence, from (6) Uα+ = 0 ⇒ α+ = 0, and

∇2ψ+ − ψ+ = 0. (7)

This equation is solved by separation of variables in polar
coordinates (r, θ). By anticipating a matching with the
inner solution, we choose

ψ+ = A+K1(r) sin θ, (8)

where A+ is a constant to be determined, and K1 is the
modified Bessel function of order 1.

2.2.2. Internal region

The solution in the internal region is sought as a com-
bination ψ− = ψ̃− + ψ̄−, with

−(1 + α−)ψ̄− = Uy(α− + κ), ∇2ψ̃− − (1 + α−)ψ̃− = 0.
(9)
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(From now on we omit the subscript in κ−). By antici-
pating a matching with the outer region, the solution is
chosen in the form

ψ− =

(
A−J1(λr) + Ur

κ− λ2 − 1

λ2

)
sin θ, (10)

where A− is a constant to be determined, J1 is the Bessel
function of order 1, and we introduced the notation 1 +
α− = −λ2.

2.2.3. Matching at r = a

The continuity of the streamfunction across r = a in
the co-moving frame: ψ+ + Uy = ψ− + Uy = 0 allows to
fix the constants A±:

A+ = − Ua

K1(a)
, A− = Ua

1− κ
λ2J1(λa)

. (11)

The second matching condition at r = a, ∂rψ+ = ∂rψ−,
leads, as usual, to a transcendental equation allowing to
determine λ at a given κ:

J ′1(λa)

J1(λa)
=

1

λa

(
1 +

λ2

1− κ

)
− λ

1− κ
K ′1(a)

K1(a)
. (12)

The lowest root of this equation gives a modon solution,
the higher roots give so called ”shielded” modons with
strongly sheared velocity field. The speed U of the modon
determines its intensity, cf. (11). Note that apart from
the new parameter κ the obtained solution reproduces the
velocity field of the classical f -plane modon (cf. Ribstein
et al., 2010). Changing the sign of κ leads to a change
of the relative sign of circulation and buoyancy anomaly
of a given vortex inside the modon. Thus, there exist
TQG modons with inner cyclones with positive or negative
buoyancy anomaly, and vice-verse for anticyclones. Below,
the former will be called regular, and the latter - anoma-
lous. An example of thickness and buoyancy anomalies of
a TQG modon is presented in Fig. 1.

3. Evolution of “thermal” modons as follows from
numerical simulations

3.1. Typical parameters of observed modons

We first resume the typical dynamical parameters es-
timated from 9 modons reported by Hughes and Miller
(2017) from observations in the southern mid-latitude ocean
(also see their Supplementary Information). For the ob-
served dipolar structures, these dynamical parameters are
in a narrow range. The typical size varies from 100 to
200 km, in an environment where the first baroclinic de-
formation radius is about 25 km. Although the vertical ex-
tent of the modons is not known, we can thus estimate the
typical Burger number to be 0.015−0.07. The mean prop-
agation velocity of the modons is between 5 and 10 cm/s,
sometimes even larger (up to 20 cm/s). The corresponding
global Rossby number (U/fa), as defined in the derivation

of the modon solution, is thus between 10−3 and 10−2. As
we said previously, this propagation speed does not reflect
the typical velocities induced by the modon which are of
order 0.5 m/s, thus corresponding to a global Rossby num-
ber approximately four times larger, while the local Rossby
number number ζ/|f | is 0.1− 0.3. As the modons propa-
gate in an environment with a meridional gradient of sea
surface temperature (SST), the patterns of SST anomaly
carried by the dipoles – which strongly depend on the lo-
cation of the eddy formation – are rather diverse (Hughes
and Miller, 2017, SI). Nonetheless, the temperature differ-
ence between the cyclone and the anticyclone varies typ-
ically between 0 °C, when both eddies have roughly the
same SST, and 2 °C. In one single case the SST inside the
cyclone is higher than in the anticyclone. This apparently
narrow range of dynamical parameters may be biased by
the method of observation, which is limited in resolution.
Hence, the typical values of Burger number above should
be considered as a lower bound, since smaller – and po-
tentially more ageostrophic – dipoles may exist.

In the following, we use parameters inferred from one
of the modons which was tracked over a long time, and had
a typical size of 100 km and a mean estimated propagation
velocity of 8.8 cm/s. The temperature anomaly carried by
the modon can be roughly estimated as 2°C. The corre-
sponding buoyancy anomaly is therefore b ≈ 4 ·10−3 m/s2.
Consistently with these values, we first study the evolution
of a modon with an initial Burger number Bu = 10−1, and
κ = ±0.5 within the TQG model. Then, we extend these
results to ageostrophic case using the parent TSW model.

3.2. Simulations with TQG model

To study the evolution of the modon solution derived
above, we implement the TQG equations (2) with a spec-
tral discretization in a doubly-periodic domain of size 8 a
and using the open-source code Dedalus (Burns et al.,
2019). A Laplacian viscosity/diffusivity for the momen-
tum and the buoyancy with a non-dimensional value of
10−6 is added to limit grid-scale oscillations. Time-stepping
is performed using a third-order 4-step implicit/explicit
Runge-Kutta scheme. We use 512 Fourier modes in each
direction and a dealiasing factor of 3/2 (e.g. Canuto et al.,
2006; Burns et al., 2019).

The evolution with positive and negative κ strongly
differ. In the case of an anomalous buoyancy perturbation
(negative κ), no noticeable change of shape of the modon
is observed over the duration of the simulation, which was
50 in non-dimensional time units (not shown). This is
an indication that such modon is a stable solution of the
TQG equations (at least over time scales of a few months
for typical Rossby numbers of O(10−2)). The evolution of
the stream-function, potential vorticity and buoyancy of a
regular modon (positive κ) is presented in Figure 2. Con-
trary to the anomalous modon, the regular modon rapidly
develops a small-scale instability of the kind observed in
Gouzien et al. (2017b). This convective-type instability
leads to a complete mixing of the buoyancy field after some
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Figure 1: Thickness (left panel) and buoyancy anomalies (right panel) for a TQG modon with κ = 0.5 and a = 1 (regular case) in the (x−y)-
plane in the co-moving frame. For better visualization, the buoyancy is rescaled by a factor 2.

time. The instability generates small-scale disturbances in
the buoyancy field, as previously reported in the case of
isolated vortices in the TSW model (Gouzien et al., 2017b).
In the case of a planar jet, the same kind of instability in
TSW model is dominated by even smaller wavenumbers
than for the vortices (unpublished results, see also a dis-
cussion in the TQG case below), which is consistent with
the dynamics observed in the present configuration.

Remarkably, the vorticity field keeps its coherence, lead-
ing, at the late stages of the evolution, to a steady modon
with quasi-neutral buoyancy. The destruction of the buoy-
ancy anomaly carried by the modon, and the limited mod-
ification of the modon’s dynamical core are illustrated in
Figure 3, where the evolution of the TQG energy (cf.
Warnerford and Dellar, 2013), the buoyancy variance, and
the speed of propagation of both regular and anomalous
modons are shown. As seen in the figure, the instability
triggers a decrease of buoyancy variance and enhances the
energy dissipation, which nevertheless remains weak. The
propagation velocity of the modon is also affected, exhibit-
ing a slight decrease in course of the development of the
instability. On the contrary, in the case of the anoma-
lous modon, all these fields (energy, buoyancy variance
and propagation speed) remain practically constant dur-
ing the whole simulation. This means that the decrease
of energy and buoyancy variance is due to the instability,
and that dissipation has a negligible impact on the evolu-
tion of the modon itself. The buoyancy variance was inte-
grated over the whole domain (continuous line) and over
the modon area only (circle of non-dimensional radius 1
– dashed lines), and divided by the area of the modon.
The difference between the dashed and continuous curves
is an indicator of buoyancy variance that is expunged from
the modon, showing that mixing of buoyancy (and other
tracers) across the edge of the dipole occurs in course of
destabilization. The above results suggest that most of
the buoyancy anomaly is dissipated locally, i.e. inside the
modon, while a smaller – albeit not negligible – portion of
it is expunged in the form of small anomalies (not captured
by the color bar resolution in the corresponding snapshots

in Fig. 2, right column), and then rapidly eliminated by
diffusion. Because of the very small scales associated with
the development of the instability, the details of the ratio
of interior dissipation vs. expulsion are sensitive to the nu-
merical resolution (the same run was repeated with 1024
Fourier modes) and the value of the diffusivity used, al-
though the results remain qualitatively the same, and are
confirmed in full TSW model below. Higher dissipation
inhibits the development of the instability, resulting in a
slower decrease of the buoyancy variance, and a smaller
portion of buoyancy expulsion. A decrease of buoyancy
mixing is observed also for the higher resolution, indicating
a slow numerical convergence. Indeed, the buoyancy vari-
ance spectrum (not shown) is nearly flat at high wavenum-
bers down to the numerical resolution cutoff, and, prob-
ably, a more sophisticated parameterization of the hori-
zontal mixing should be used to allow for more quanti-
tative diagnostics. Nonetheless, this result has important
implications for the transport properties of such coherent
structures, which are usually characterized by their ability
to isolate inner water masses from their environment and
transport them over long distances. Here, the instability
provides a pathway for the exchange of water between the
modon and its environment, and associated reduction of
the heat anomaly.

Although detailed investigations of parameter regimes
and case studies are out of the scope of the paper, we
should mention that simulations of anomalous modons with
κ < −1 show destabilization similar to that of regular
modons.

3.3. Simulations with full TSW model

A natural question is whether the described TQG modon
solutions sustain the ageostrophic corrections, in other words
do ageostrophic TSW modons exist, as it is the case with
”ordinary” RSW modons. Using the strategy of Ribstein
et al. (2010), we initialized numerical simulations in the
full TSW model (1) with the TQG modon profiles of ve-
locity, buoyancy and thickness anomalies, as constructed
above, and looked whether such initial conditions adjust
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Figure 2: Evolution of the regular TQG modon: streamfunction (left column), potential vorticity (middle column) and buoyancy (right
column). All quantities are non-dimensional and the domain shown is co-moving with the modon.
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Figure 3: Evolution of the TQG energy (top left), integrated buoyancy variance (bottom left), propagation speed (top right) and trajectory
(bottom right) for the unstable regular modon (black) and the stable anomalous modon (grey).

to a coherent TSW structure. Following Gouzien et al.
(2017b), the simulations were performed with a second-
order centered finite-difference shallow-water scheme (Sadourny,
1975), which was extended to TSW by adding the corre-
sponding terms in the momentum equations and an upwind-
biased finite-volume buoyancy transport scheme. An ex-
plicit minimal Newtonian viscosity was added to the equa-
tions of the model (1) in order to regularize very small scale
structures which can be produced by convective-type in-
stabilities in TRSW, (Gouzien et al., 2017b). The values
we used were ν ≤ 10−3, with the precise value of ν having
no global impact on the major features of the evolution of
the modons.

Typical results from the simulations are presented in
Fig. 4. The Rossby and Burger numbers of the initial
TQG modons were 0.1 and 1, respectively. As in the
”pure” RSW case (Ribstein et al., 2010), corresponding to
κ = 0, after a period of initial adjustment, the QG modon
sheds a part of cyclonic vorticity, loses its initial cyclone-
anticyclone symmetry, and, as a consequence, starts mov-
ing along the curved trajectory. In the case where the
cyclonic part is associated with positive anomaly of b, i.e.
negative values of the parameter κ (anomalous modon),
the dipole keeps it coherence for a long time, as in the
”non-thermal” RSW case. On the contrary, in the oppo-
site case, the regular modon undergoes a convective-type
instability, as in the TQG simulations above, which leads

to a complete mixing of the buoyancy field. The insta-
bility acts more vigorously in the cyclone (as visible in
the second row of Fig. 4, right panel), thus resulting in a
slightly asymmetric distribution of buoyancy in the final
dipole. Different stages in both cases are visualized in Fig.
4, and the ”final”, or ”adjusted” modons in both stable
and unstable cases are presented in Fig. 5.

4. Jet and vortex instability in the TQG model

As discussed above, the instability observed in the modon
is small scale. The difference in stability properties of the
vortices depending on the sign of the buoyancy anomaly
relative to vorticity anomaly could be anticipated in view
of our previous results on the stability of monopolar vor-
tices in the TSW model (Gouzien et al., 2017b), where
we found the same dependence. Moreover, the fact that
the instability is more vigorous in the cyclone – in the
TSW model – agrees with the observation of Gouzien et al.
(2017b) that, for the same range of parameters (Rossby
and Burger numbers), the cyclones were more unstable
than anticyclones.

The modons are pairs of opposite-sign vortices whose
interaction gives rise to an intense jet between them, on
the central axis (e.g. Lahaye and Zeitlin, 2012b). To get
more insight on the instability of the modon in the TQG
model and its implications, we investigated the evolution
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κ = −0, 5 κ = +0, 5

Figure 4: Snapshots of the evolution of the anomalous (κ = −.5), left panel, and regular (κ = +.5), right panel, modons. Initialization of
full TSW simulations with a TQG modon with Rossby number Ro = 0.1 and Burger number Bu = 1. Min and max values in the colorbar
corresponds to ±0.05 for the buoyancy anomaly and ±2 for the relative vorticity. Grey contour lines of buoyancy anomaly at ±0.01 are added.

of jets and vortices in the TQG model in similar dynamical
regimes. Initial profiles are constructed from the potential
vorticity and buoyancy fields of the modon. In the case of
the jet, the PV and buyancy profiles are taken from the
modon solution at its center at x = 0, and replicated along
the x-axis, and the PV equation in cartesian coordinates,
which depends on the y coordinate only, is inverted to
obtain the pressure field. For the vortex, we fit the PV
profile of one pole (at y > 0) and along the line x = 0 to
a Gaussian bump cut from below: Q ∝ exp(−(x/δ))2 −
exp(−(a/2δ)2), |r| < a/2, where δ is the fitting parameter,
and Q = 0 for |r| > a. Then, we invert the PV equation in
polar coordinates (the corresponding equation depends on
the radius r only) while imposing the buoyancy field to be
proportional to this initial PV. An additional outer ring of
weak negative PV anomaly is added in order to shut the
far-field circulation. Dynamical parameters are the same
as for the TQG modon: Bu = 0.1, κ = ±0.5. Additional

runs with larger values of κ were also conducted to better
illustrate the instability mechanism.

We first studied the linear stability of the jet. The
stability diagram, which we do not present, reveals the
standard barotropic instability at synoptic along-jet wave
numbers (typically around k = 2), as expected given the
alternating sign of the PV profile (e.g. Poulin and Flierl,
2003). In addition, for κ > 0, a small-scale instability
strongly localized at the center of the jet in y-direction,
and with a pronounced signature on the buoyancy field, is
observed. For κ < 0, only the barotropic instability was
found. In the range of investigated along-jet wavenum-
bers (1–19), the growth rate of the small-scale instability
increases with the wavenumber, which supports the very
small-scale character of the instability observed for the
modons. These results are, again, in agreement with pre-
vious findings in the TSW model (Gouzien et al., 2017a).

The nonlinear evolution of this instability is investi-
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Figure 5: Adjusted stable (upper row), and unstable (lower row) modons corresponding to respective simulations of Fig. 4 at t = 400. Left
panels: thickness , right panels: buoyancy anomaly. The latter is multiplied by 2 and fields are rotated to lie along the x-axis for better
comparison with Fig. 1.

gated by means of numerical simulations in the TQG model
by using the background jet with superimposed unstable
mode of small amplitude as initial conditions. The results
of such simulations are presented for κ = 0.5 and κ = 2
in Fig. 6, left columns. The initial stage of the instability
reflects the structure of the linear unstable mode. It then
exhibits a very rapid development, resulting in fast mix-
ing of the buoyancy. While the latter remains localized
near the central axis of the jet for κ = 0.5, it develops and
mixes buoyancy over a much larger region for larger values
of κ (κ = 2 as shown in the Figure, bottom rows, and and
additional experiment with κ = 5 – not shown – further
confirms this behavior).

The instability of vortices was investigated by super-
posing a weak random noise (with a relative magnitude
of 2%), as well as the most linearly unstable mode found
(for azimuthal wavenumber l = 8) with an even weaker
amplitude, onto the initial buoyancy field in the initial
conditions. Results from the linear stability analysis are
difficult to discuss independently, because of the presence
of critical layers giving rise to pseudo-modes, and would
need further dedicated work. We thus rely mostly on the
nonlinear simulations in the present paper, presented in
Figure 6 (right columns). The vortex develops an insta-
bility very similar to the one reported by Gouzien et al.
(2017b) in the TSW model, while the vortex with nega-
tive κ remains stable over the same duration (not shown).
This instability is not as vigorous as in the jet configu-

ration, and generate moderate mixing of buoyancy, which
increases with the magnitude of the initial buoyancy pro-
file.

These results thus show that the instability of the modon
described in the previous section is consistent with the in-
stabilities observed in a jet or a monopolar vortex in the
TQG model. The details of the properties of the instabil-
ity and its physical origin remain to be fully understood,
which is left for future work.

5. Discussion

We thus demonstrated the existence of modons - co-
herent dipolar vortices - in a model of the mixed layer
of the ocean with variable buoyancy acting as an active
tracer and contributing to pressure variations. Depend-
ing on the relative orientation of circulation and buoyancy
anomaly, the latter is either carried along the trajectory
of the modon, or dissipated. The dissipation of buoyancy
anomaly is due to small-scale convective-type instability
which is not proper uniquely to the modons, but manifests
itself also for jets and monopolar vortices with the same
relative sign of vorticity and buoyancy anomalies. These
results were obtained both in the ”parent” model, namely
the TSW equations, where ageostrophic effects are present
and give rise to cyclone/anticyclone asymmetry that af-
fects the trajectory and the details of the development of
the instability for the ”anomalous” modon, as well as in
the QG limit of this model.
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Figure 6: Instability of a jet (left pair of columns) and a vortex (right pair of columns) with Bu = .1 and κ = +0.5 (upper two rows) and
κ = 2 (lower two rows), showing early (first and third rows) and advanced (second and last rows) stages of the instabilities as seen in the
pressure (first and third columns) and buoyancy (second and last columns) fields.
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We should stress at this point that the physical mean-
ing of the results depends on the interpretation of the TSW
model (and the QG limit). If it is understood as being
purely barotropic, and is obtained by vertical averaging
through the whole depth (Zeitlin, 2018, Ch. 14), then
b = g ρ

ρ0
, where ρ and ρ0 are the variable and constant

parts of water density, respectively. This means that b de-
creases with temperature. If the model is understood as
describing the baroclinic motions in the two-layer ocean
with infinitely deep lower layer, as in Warnerford and Del-
lar (2013), then b = g ρ0−ρρ0

, where ρ and ρ0 = const are
densities of the upper and lower layers, i.e. b increases
with temperature. As can be inferred from the observa-
tions (Hughes and Miller, 2017) the anticyclone (the obser-
vations are in the Southern hemisphere) carries for some
time a positive temperature anomaly. It seems plausible
(although this is not proved) that the observed dipoles are
surface-intensified. In this case the second interpretation is
appropriate, and observations correspond to the unstable
case. However, with the realistic parameters, roughly cor-
responding to those in the observations, which were used
in the TQG simulations, the time of mixing of the buoy-
ancy perturbation is several months (we should recall that
non-dimensional time and real time are related through
the factor Ro−1). This typical timescale for the elimina-
tion of the heat anomaly actually matches the observations
reported in Hughes and Miller (2017, Fig. 3), where the
dipole loses its temperature anomaly and exhibit entrain-
ment of temperature anomaly from the exterior. Among
other possibilities, such as interactions with an inhomo-
geneous environment and exterior shear/strain, the insta-
bility revealed in our simulations could be responsible for
this observed behavior.

Let us finally mention that the known modon solutions
in two-layer QG and RSW models, e.g. Lahaye and Zeitlin
(2012a), can be generalized to the thermal counterparts of
both models along the same lines as above. Yet, in order to
compare such solutions with observations, an information
on the deep structure is needed in these latter.
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Appendix A. Derivation of eq. (4)

Eq. (3a) gives, term by term and distributing the last
term:

J
(
Uy,∇2ψ − ψ

)
+ J

(
ψ,∇2ψ − ψ

)
− J (ψ, b) = 0.

where J (ψ + Uy, b) = 0 was used in the last term. The
first two terms can be combined to give J

(
ψ + Uy,∇2ψ − ψ

)
.

The last term, by virtue of J (ψ + Uy, b) = 0, gives:

+J (Uy, F (ψ + Uy)) = −∂xψUF ′(ψ+Uy) = −J (ψ + Uy,UyF ′(ψ + Uy)) .

Straightforward combination of these terms yields eq. (4).
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