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Abstract. Tractograms are virtual representations of the white matter
fibers of the brain. They are of primary interest for tasks like presur-
gical planning, and investigation of neuroplasticity or brain disorders.
Each tractogram is composed of millions of fibers encoded as 3D poly-
lines. Unfortunately, a large portion of those fibers are not anatomically
plausible and can be considered artifacts of the tracking algorithms. Com-
mon methods for tractogram filtering are based on signal reconstruction,
a principled approach, but unable to consider the knowledge of brain
anatomy. In this work, we address the problem of tractogram filtering as
a supervised learning problem by exploiting the ground truth annotations
obtained with a recent heuristic method, which labels fibers as either
anatomically plausible or non-plausible according to well-established
anatomical properties. The intuitive idea is to model a fiber as a point
cloud and the goal is to investigate whether and how a geometric deep
learning model might capture its anatomical properties. Our contribution
is an extension of the Dynamic Edge Convolution model that exploits
the sequential relations of points in a fiber and discriminates with high
accuracy plausible/non-plausible fibers.

1 Introduction

Tractography represents a powerful method to reconstruct the white matter
fibers from diffusion magnetic resonance (MR) recordings [1]. While this method
provides a good approximation of the brain connectivity structure, there is an
open issue of artifactual fibers [12,11], i.e. anatomically non-plausible pathways.
We address the task of filtering out such artifactual fibers using a deep learning
model.
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The structural connectivity of the brain can be reconstructed from diffusion
MR signal by a step of local estimation of the diffusivity model [21] and a
subsequent step of fiber tracking [6]. The outcome is a tractogram, a virtual
representation of the axonal pathways in the white matter, where each fiber is
encoded as 3D polylines, commonly referred to as streamlines. Typically, a whole
brain tractogram is composed of millions of streamlines.

Tractograms are providing valuable contributions to critical tasks like presur-
gical intervention planning, the detection of biomarkers for brain disorders and
the investigation of neuroplasticity. For these purposes, the accuracy of fiber
tracking is of paramount importance. While in the preprocessing of diffusion data
it is common practice to denoise the signal before estimating the diffusivity model
[7,25], there is no similar step after fiber tracking to filter out noisy streamlines.

The assessment of the accuracy of fiber tracking has been approached a few
years ago with an open contest7 involving many (20) research groups. The contest
was designed as a task of bundle detection on a dataset composed of simulated
diffusion MRI data. The joint effort allowed the evaluation of the quality and
limits of the most common tracking methods [12]. The positive outcome has been
the lack of false negative streamlines, the critical issue has concerned the many
false positive errors, e.g. artifactual streamlines.

The occurrence of false positive streamlines is not surprising. The general
strategy of tracking methods is to oversample the possible pathways to preserve
the property of coverage of all true positive fibers [19]. The tacit assumption
is to postpone the task of filtering false positive streamlines to a subsequent
post-processing step. The reason for this strategy is the difficulty of encoding
anatomical priors into tracking algorithms.

The most common approach to reduce artifactual streamlines are methods
based on the inverse problem of signal reconstruction, e.g. Life [16], SIFT [20],
Commit [3]. The intuitive idea is to estimate how much the orientation of a
streamline explains the diffusion signal. Despite the principled criterion, these
methods do not take into account the knowledge of brain anatomy, like another
method based on the topological properties of streamlines [24].

A recent rule-based method, namely ExTractor [10], has been proposed to filter
out artifactual streamlines from tractograms by following anatomical principles.
The rules that it proposes encode the geometrical and spatial properties of the
streamlines with respect to the basics of white matter neuroanatomy in terms
of association, projection, and commissural fibers. As output, ExTractor labels
streamlines as anatomically plausible or anatomically non-plausible.

In this work, we address for the first time the problem of tractogram filtering as
a supervised learning problem. We need to train a binary classifier to discriminate
between two classes: anatomically plausible (P) and non-plausible (nP) fibers.
The intuitive idea is to exploit the labeling of fibers provided by the rule-based
method [10] and to adopt deep learning models to learn the features of streamlines
underlying the rules. The ultimate goal is to have a fast run-time solution to filter
large tractograms and a flexible method to transpose new expert annotations.
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Given the sequential structure of a streamline, we have chosen as reference
learning model a bidirectional LSTM (bLSTM) neural network [9]. Although this
model can exploit the sequential information, it requires forcing the streamline
representation to a fixed number of points. For this reason, we consider Geometric
Deep Learning (GDL) models [13] that support more flexible and appropriate data
representations. We investigate a PointNet (PN) model [18], where a streamline
can be represented as a point cloud i.e. set of 3D points, and a Dynamic Edge
Convolution (DEC) model [23], which in addition to PN considers the relations
between points belonging to the same spherical local context. Our experiments
shows that both GDL models provide an improvement with respect to bLSTM.

Despite the better results provided by PN and DEC, these models are invariant
to permutations of points in the input point cloud. It means that if we permute
the points in a streamline classified as plausible, the model will continue to classify
it as plausible albeit the altered sequence of points. To overcome this issue we
propose a Sequence Dynamic Edge Convolution (sDEC) model, an extension of
the DEC model that introduces the property of being sequence sensitive.

While the sDEC model provides only a modest increase in accuracy with
respect to PN in classifying P and nP fibers, the analysis of error distribution
shows different behaviours. sDEC is more robust when fibers are long and curved:
those are the type of fibers where PN performs worst and produces significantly
more false positive errors. In addition, visual inspection of the false negatives
errors made by sDEC shows that these fibers look truly anatomically non-plausible.
We may argue that this apparent mismatch might be related to the noise of the
labelling process.

2 Materials

Dataset. Our reference dataset is composed of a collection of tractograms of
20 subjects randomly selected from the HCP dataset [22], which is a publicly
available curated MRI dataset. The tractograms were obtained computing (i) the
constrained spherical deconvolution (CSD) model [21] on the 3T DWI (1.25mm,
270 multishell gradients), and the (ii) Particle Filtering Anatomically Constrained
Tractography (PF-ACT) algorithm [6]. Specifically, the tracking generated around
∼ 1M fibers for each tractogram by seeding 16 points for each voxel with step
size 0.5mm. The tractogram of each subject has been non linearly coregistered
to the MNI standard space, and, for computational purposes, all the fibers have
been compressed to the most significant points [17].

ExTractor labelling. According to the premise of a supervised learning approach,
we created a dataset where for each tractogram we labeled the fiber as either plau-
sible (P) or non-plausible (nP). The procedure of labelling followed the heuristic
rules defined by ExTractor [10], a tool that encodes the current knowledge on
the anatomical pathways of white matter structures. In particular, ExTractor
carries out a 2-step procedure. First, fibers are marked as nP when they are
either (i) shorter than 20 mm, (ii) contain a loop, or (iii) are truncated, i.e.,
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Fig. 1: The DEC architecture adopted. Green, gray, and red blocks represent input,
intermediate, and output tensors, respectively. Parametric layers are colored in
blue, while fixed layers in white.

they terminate in the deep white matter. The second step is concerned with the
labeling of fibers marked as P, by splitting the main pathways into the three
macro classes: association, projection, and commissural. This selection of fibers is
further refined to filter out non-plausible pathways using a clustering method [2].
The outcome of the ExTractor procedure is a balanced partition between P and
nP fibers, irrespective of the different tracking algorithms and data sources [10].
On our dataset, Extractor resulted in 49.7± 1.5% of P streamlines on average
on the 20 subjects, but more significantly it showed the presence of a massive
percentage, 31.8± 1.2%, of nP streamlines shorter than 20mm.

3 Methods

The intuition underlying our work is to treat a streamline as an undirected
sequence of 3D points, aiming to learn geometric and spatial features relevant for
the tractography filtering task. Currently, the best way to achieve such a goal is
by employing GDL models [13], which are designed to learn geometric features of
graphs and point clouds. Among the existing GDL approaches, PointNet [18] is the
most adopted method both for its simplicity and effectiveness. Nevertheless, such
an approach does not consider relations between points. It learns global properties
of a point cloud just by encoding all the points separately and then aggregating
them in a single descriptor through global pooling. Conversely, Dynamic Edge
Convolution (DEC) [23] considers the points relations, by encoding them as edges
of a graph dynamically induced by the point cloud.

Dynamic Edge Convolution. Considering a point cloud X = {x1,x2, . . . ,xn},
xi ∈ R3, the DEC model first guesses an initial graph structure for the point
cloud by retrieving for each point xi the set of k nearest neighbors, knn(xi) =
{xji1

, . . . ,xjik
}, in terms of Euclidean distance (see Figure 2a). Hence, DEC

builds a k-nn graph, G(V, E), where V = X is the set of nodes, and an edge
(i, j) ∈ E exists iff xj ∈ knn(xi). Then, each point representation, xi, is enriched
with the representation of each of its neighbors xji , creating edges features eij ,
which are learnt through a neural network hΘ, i.e. eij = hΘ(xi⊕(xj−xi)), where
⊕ denotes the concatenation operator. Finally, a new representation of a point, x′i,
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Fig. 2: Comparison between Euclidean k-nn (a), and k-nn based on the sequence
graph (b).

is obtained by aggregating all the learned edge features with a pooling operator,
i.e. x′i = pool(eij), j : (i, j) ∈ E , where pool is either max or mean. The sequence
of operations that from X produce X ′ define an Edge Convolution (EC) layer,
which in the DEC model is repeated multiple times. Referring to our architecture,
see Figure 1, two EC layers are stacked in depth to produce new representations
X ′ and X ′′ with 64 and 128 features respectively. Each of the two EC layers
computes its own k-nn graph in order to adjust the local neighborhood of points
to its input representation, i.e, X and X ′. The re-computation of knn is what
defines the DEC model as dynamic. Finally, the different learned representations
are concatenated, encoded with a learning layer, gΦ, to 1024 features, and pooled
to obtain a single descriptor of the point cloud, Z = pool(gΦ(X ′ ⊕X ′′)), which
is classified using a fully connected (FC) network.

Dynamic Edge Convolution of a Sequence. A remarkable property of the DEC
model (also shared by PN) is the invariance to the permutation of the points in
the input point cloud. Indeed, such models make use only of operators invariant
to the order e.g., FC layers, max / mean pooling layers. Although this property
is fundamental in the point cloud domain, it becomes undesired if the input
is a sequence as in our case. To solve this issue, we propose a simple but well-
motivated modification of the DEC model, in which we impose the input point
cloud to have a graph structure, without needing a Euclidean k-nn to induce it.
According to the streamline structure, we impose the input to be a bidirectional
sequence graph where each non-terminal point, xi6=0,n, has two neighbors: the
previous and the next point in the sequence, while the terminal points, x0,xn,
have just one neighbor (see Figure 2b):

G(V, E ′), e′ij ∈ E ′ : xi → xj , j = i + 1 ∨ j = i− 1.

It is important to remark that we impose this structure only in the first sDEC
layer, which is enough to lose the invariance with respect to the input permutations
while maintaining the invariance with respect to the flipping of the sequence,
thanks to the bidirectionality of the sequence graph. Also, imposing this structure
only in the first layer preserves the dynamicity of the model, which remains able
to re-organize the structure of the point cloud in the latent space according to
the task at hand.
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Method Accuracy Precision Recall DSC

bLSTM 92.8 (±0.3) 93.7 (±0.5) 96.1 (±0.2) 94.9 (±0.3)
PN 94.5 (±0.1) 95.4 (±0.2) 96.8 (±0.2) 96.1 (±0.2)
DEC 94.3 (±0.1) 95.4 (±0.3) 96.5 (±0.2) 95.9 (±0.2)
sDEC 95.2 (±0.1) 96.2 (±0.3) 96.9 (±0.1) 96.6 (±0.2)

Table 1: Average scores for the 4 HCP subjects of test set. Standard deviation
among the 4 subjects is reported between brackets.

4 Experiments and Results

The main purpose of the experiments is to perform an empirical assessment of
the behaviour of different models for the task of tractogram filtering. In our
comparison, we consider a reference model, bLSTM, and three competing models
based on geometric deep learning: PN, DEC, and sDEC.

Before setting the training of learning models, we carried out a few preprocess-
ing steps. The first step was the pruning of fibers. An analysis of the distribution
of fibers between P and nP according to the ExTractors rules, highlighted a
massive percentage of very short streamlines, i.e. length below 20 mm. All of
them were labeled as nP. To reduce this potential bias for the learning models we
removed such streamlines from the tractograms. After the pruning, the average
distribution of P and nP classes was 68% and 32% respectively. The second pre-
processing step concerned the resampling of the points of streamlines. Traditional
learning models, e.g. bLSTM, require input to be represented as fixed vectorial
representations. Therefore, despite GDL models can deal with a varying number
of points, we have to resample all streamlines to have the same number of points
[5,14,8]. We computed the resampling using a cubic B-spline interpolation and
empirically compared different representations based on 12, 16 and 20 points.
No meaningful performance differences were noticed. In Table 1 we report the
results for streamlines resampled to 16 points.

To perform a fair comparison of the four models, we have configured all
of them to have a similar number of parameters, approximately around 900K.
While the architecture of DEC and sDEC models is reported in Figure 1, the
configuration of the remaining models is:
bLSTM: MLP(128) → LSTM(256) ⊕ LSTM−1(256) → MLP(256, 128) → FC(2);

PN: MLP(64,64,64,128,1024) → MAX → MLP(512,256,40) → FC(2),

where FC is a Fully Connected layer, and MLP contains sequences of (FC, BatchNorm,

ReLU). For the implementation of the models, we adopted the PyTorch library
[15] with the PyTorch Geometric extension [4].

For all the experiments we considered a dataset of 20 tractograms from
20 different subjects. We partitioned the data into three sets: 12 tractograms
for training the models, 4 tractograms for hyperparameters tuning and model
selection, and 4 tractograms for testing. The training was designed as follows:
1000 epochs with evaluation step every 20 epochs; cross-entropy loss; Adam
optimizer with default alfa and beta momentum (0.9, 0.99); initial learning rate
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Fig. 3: Analysis of the error distribution for PN and sDEC models with respect to
streamlines length and curvature: (A) accuracy, (B) false positive rate. (C) Sample
of false negative streamlines, mistakenly classified as anatomically non-plausible.

of 10−3 multiplied by a factor of 0.7 every 90 epochs until a minimum value of
5 · 10−5 is reached. In the training procedure, we used mini-batches composed of
16K streamlines randomly sampled from two subjects, 8K from each of them. A
subject is sampled only once for each epoch. On the test set, we computed the
following evaluation measures: accuracy, precision, recall, and DSC. In Table 1
the values refer to the average for each subject. Notice that the classification task
is single-streamline, therefore the size of our test set is composed of ∼ 3 million
streamlines.

An additional experiment was designed to test the invariance of DEC and
sensitivity of sDEC with respect to the order of points in a streamline. To this
end, we tested the two models on a version of the test set where the the sequence
of points of streamlines were randomly permuted. In agreement with the working
hypothesis, the accuracy for DEC remained the same, 94.3%, while there was a
drop for sDEC to 30.0%.

A further analysis concerned the examination of the error distribution. We
restricted the analysis to PN and sDEC only. Our interest was to characterize
whether and how the error differs between the two models. We considered a couple
of features in the analysis: length and curvature of streamlines. All streamlines
were partitioned into three categories with respect to length (short [0, 50] mm,
medium [50, 100] mm, long [100, 300] mm) and curvature (straight [0.0, 0.05],
curved [0.05, 0.10], very curved [0.10, 0.20] ), where each of them contained at
least a portion of 15% of streamlines. Combining the partitions we obtained
9 categories. In Figure 3A we depict how the accuracy score varies across the
categories. The task becomes more difficult when both length and curvature are
greater. A similar analysis was carried out focusing on the distribution of false
positive error, i.e. streamlines mistakenly classified as anatomically plausible.
The results are reported in Figure 3B. In this case, we observe a major difference
between the two models in the most critical categories, namely long and curved
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streamlines. In Figure 3C we illustrate a qualitative example of false negative
errors, when streamlines should be recognized as anatomically plausible while
they are classified as anatomically non-plausible. Visual inspection by an expert
anatomist confirms that the classifier was indeed correct in those cases and that
the labelling process was noisy.

5 Discussion and Conclusions

The results reported in Table 1 confirm that we may successfully approach the
task of tractogram filtering as a supervised learning problem. The best accuracy
achieved by sDEC is beyond 95% with low standard deviation across subjects.
This performance is obtained considering only the representation of streamlines
as a sequence of 3D points. The runtime application of sDEC model is very fast.
We may filter a whole tractogram with ∼ 1M streamlines in less than one minute
(46.2 sec using a gpu NVIDIA Titan Xp 12Gb).

We argue that the accuracy is underestimated and the true score may be
even higher. If we look at the portion of false negative error, as reported in
Figure 3C, we may agree that some of those streamline trajectories can be
considered anatomically non-plausible, even though the true label states the
contrary. Therefore, the computation of accuracy is biased by this apparent
mismatch, which we can consider as part of the noise in the labelling process.
Moreover, we may claim that the sDEC model has a good generalization capability
and behaves accurately even in the presence of misleading labels.

The geometric deep learning models seem to provide only a small, even though
meaningful (t-test with p-value < 0.001), improvement in terms of accuracy
compared to bLSTM. Nevertheless PN and sDEC support higher flexibility in
the streamlines representation, both as points clouds or graphs. The sDEC model
seems the most appropriate for tractogram filtering because it is robust with
respect to the order of points in the streamlines while preserving the highest
accuracy in the discrimination of anatomical plausibility.

The analysis of error distribution allows a better understanding of the differ-
ence between PN and sDEC models. Around 40% of the misclassification error
concerns different streamlines, indicating that the two models behave differently:
in Figure 3A the most critical streamlines are those longer and more curved.
Nevertheless, sDEC is more robust and the drop in accuracy is lower than PN.
We may explain this difference with the property of sDEC to capture the relations
among the points because it is considering also the edges of streamlines. When
streamlines are long and curved, edges become more informative and provide a
competitive advantage. As illustrated in Figure 3B, PN has the bias to classify
long and curved streamlines as anatomically plausible doing more false positive
error.

We believe that a fast and accurate filtering of tractograms, like the one
supported by the sDEC model, is the premise for further investigations on how
tasks like bundle segmentation may take advantage of the removal of artifactual
streamlines.
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