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Abstract. In a long term exploitation environment, a Question An-
swering (QA) system should maintain or even improve its performance
over time, trying to overcome the lacks made evident through the in-
teractions with users. We claim that, in order to make progress in the
QA over Knowledge Bases (KBs) research field, we must deal with two
problems at the same time: the translation of Natural Language (NL)
questions into formal queries, and the detection of missing knowledge
that impact the way a question is answered. The research on these two
challenges has not been addressed jointly until now, what motivates the
main goals of this work: (i) the definition of the problem and (ii) the
development of a methodology to create the evaluation resources needed
to address this challenge.

Keywords: Question Answering · Lifelong Learning · Evaluation re-
sources.

1 Introduction

Since every human domain is dynamic and evolves over time, in the mid-long
term, any Knowledge Base (KB) will become incomplete or, at least, it won’t we
able to satisfy user demands of information. In a long term exploitation environ-
ment, QA systems must deal with the challenge of maintaining their performance
over time and try to overcome the lacks made evident through the interactions
with the users. In other words, we need to provide QA systems with Lifelong
Learning mechanisms. The first step is the detection of such situations. QA sys-
tems must distinguish the reason why the system cannot answer a question:
either the problem is in the translation of the Natural Language (NL) question
into a formal query, or the problem is a lack of knowledge that prevent the sys-
tem from giving an answer. If the reason is the latter, the system must trigger a
learning process to overcome this limitation and update its previous knowledge.

Unfortunately, most of the current research in QA over KBs works with
datasets of questions that can always be answered by the KB [7,4]. That is to
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say, the research focus is on the problem of how to translate a NL question
into a formal query. However, working under the assumption that there exists
an answer to the question according to the KB leads researchers to a set of
solutions that will not work in a real scenario.

We claim that, in order to make progress in the QA research field, we must
deal with both problems at the same time: the translation of NL into formal
queries, and the detection of lacks of knowledge that impact the way questions
are answered. To the best of our knowledge, the effort done in this direction
has not been significant. Therefore, the main goals of this work are (i) the def-
inition of the problem and (ii) the development of a methodology to create the
evaluation resources needed to address this challenge.

For a better understanding of the problem, we chose the context of a real user
demand, constructing an imperfect (by definition) Knowledge Graph (KG), and
asking real users to pose questions that the QA system has to answer. Then,
a set of annotators have tried to translate the real NL questions into formal
queries, identifying when the questions can be translated and when they cannot,
annotating the reasons why. Examples of annotations can be found in Figure 1.

The form of the Knowledge Base is a Graph (i.e. RDF triples style) for several
reasons. First, the updating of the KG with new classes (or types), property
names (or relations), instances (or objects), etc. is straightforward and does not
affect the previous version. It only requires the addition of new triples. Secondly,
working with a graph makes the use of different formalisms and different retrieval
engines possible, from using SPARQL over database managers (like Virtuoso) to
the use of simple Prolog. That is, in a Lifelong scenario where the systems must
evolve over time and continuously update their knowledge, KGs seem to be the
most appropriate formalism.

In the following sections, we describe the whole process in detail, together
with our learnings and conclusions. The contributions of this work are:

– The definition of the problem;
– A methodology for studying it and creating the evaluation resources;
– A publicly available Knowledge Graph (in cooking domain)4;
– A first version of a set of answerable and unanswerable questions over this

KG, for benchmarking system self-diagnostic about the reasons why the
question cannot be answered by the KG5.

2 Previous work

2.1 Question Answering with unanswerable questions

We are interested in QA systems with the ability to recognize unanswerable
questions. This problem has been addressed lately under the free text assumption
and only partially. To the best of our knowledge, it has never been addressed in
QA over KBs.
4 http://nlp.uned.es/lihlith-project/cook/
5 https://perso.limsi.fr/rosset/resources/cooking_LL_QA.json

http://nlp.uned.es/lihlith-project/cook/
https://perso.limsi.fr/rosset/resources/cooking_LL_QA.json
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Under the free text paradigm, systems must answer questions whose answer
can be found in a given text. Current research is more focused on answer ex-
traction than in the complete QA architecture that includes the recovering or
ranking of candidate paragraphs. (as opposed to KG-based QA, where the whole
process must be carried out). SQuAD [12], TriviaQA [5] and MS Marco [11] are
among the most popular collections for QA over free text featuring empty an-
swers. They are all created following one or various crowdsourcing annotation
processes. Current systems competing with these datasets are usually made out
of ensembles of pre-trained language models like ALBERT [6] and XLNet [13].

However, when doing QA over KBs, a more sophisticated process is required.
In general, all systems proceed with a multi-step process, comprising a com-
bination of complex steps: Question Analysis, Named Entity Recognition and
Linking, Disambiguation and Parsing. There are some surveys detailing these
systems, we refer the reader to them [2], and [4]. Over the last years, neural sys-
tems have tremendously increased in capability, however in the specific domain
of QA over KBs, it has been argued that deep learning does not contribute that
much [10]. In particular, these systems can, for now, only answer simple ques-
tions [1,3,8]. Furthermore, to solve QA over KBs, the majority of approaches
assume that the question can be answered by the KG because the most popu-
lar collections like QALD [7] or LC-QUAD [4] do not contain empty answers.
Therefore, answering a question is a kind of graph matching against the KG.

In summary, a production system for QA over KBs requires the ability to
recognize unanswerable questions, and therefore, we identify the need to correctly
define the problem of QA over KBs, but also to develop the necessary resources
to train and evaluate systems to solve this problem.

2.2 Lifelong learning and Question Answering

This problem has already captured the attention of some researchers such as
Mazumder and his colleagues [9] although in that work, the problem is only
addressed partially. In particular, queries to the system are just single triples,
reducing to the trivial case the problem of deciding whether the answer to a
question is in the KG or not. It simplifies also the problem of detecting the
pieces of knowledge that have to be added to the KG. The option taken for
enriching the KG is to ask the user for some missing pieces of knowledge and
try to find strategies to infer some others. However, in the general scenario of
complex NL QA over KGs these decisions are not trivial. If a system does not
get an answer to a question, it could be due to several factors, including some
errors in the process of NL interpretation (e.g. Entity Linking).

3 Cooking Knowledge Graph construction

The KG is a set of triples <arg1, property-name, arg2>, where the first ar-
gument must be always an entity and the second one can be both an entity or
a literal (number or string). Entities (also mentioned as resources or objects)
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can refer to type names (or classes, e.g. cookbook:ingredients), instances (e.g.
cookbook:milk), or category names (e.g. category:pancake_recipes). Cate-
gories refer to groups of recipes according to some criteria given by the original
wiki. Thus, a recipe can belong to several categories and this will be encoded
through the corresponding triples with the property name recipeCategory.
Recipe categories use the prefix category: instead of cookbook: used for the
rest of entities. The property names (or relations) used here follow the Recipe
schema6 when it has been possible. The complete set of properties is shown in
Table 1.

The KG has been derived from the English wikibook (enwikibooks-20190701-
pages-articles.xml) related to cooking (name space 102, Cookbook). We have
processed both the cookbook pages one by one, and the category links file
(enwikibooks-20190701-categorylinks.sql).

The processing of the category links file produced 480 triples among cate-
gories, 6935 triples that link recipes to recipe categories, and 4479 type relation-
ships.

With respect to the processing of the Cookbook enwikibook pages, the method
has been the following:

1. Consider the mark redirect inside the wiki pages to store which is the canon-
ical uri for each object.

2. Use the title of the page to produce the name and url relations.
3. Identify sections in recipe pages.
4. Process ingredients section and produce the triples for the recipeIngredi-

ent and recipeFoodstuff relations. The former one corresponds to the text
describing the ingredient, quantity, etc. The latter one, corresponds to the
object in the Knowledge Graph associated to the food used as ingredient.

5. Process instructions section to produce a triple that relates the recipe with
the list of steps (recipeInstructions relationship). Each element in the list
corresponds to the original text describing the step.

6. Process the section of notes and variations, and produce the triple for the
recipeNotes between the recipe object and the corresponding text.

7. Process the marks that associate the main types with the page under process-
ing. These main types are: recipes, diets, equipment, ingredients and tech-
niques. Main ingredient subtypes are: cereals, chesses, fruits, herbs_and_spices,
meat_and_poultry, nuts_and_seeds, seafood and vegetables. These types
and subtypes are the ones defined originally in the wikibook. We observed
that, in many cases, there are inconsistencies in the types of the objects. In
principle, since the types described are a partition, no objected should have
more than one of these main types. However, in the majority of cases it is
the type recipes the one that spreads incorrectly over the objects. In these
cases, we promote the other types.

8. Process the links in the page with two purposes: (i) to store their text as
label for the corresponding objects and (ii) identify that there is an implicit
relationship between two objects. In the wiki pages there exist a number of

6 https://schema.org/Recipe

https://schema.org/Recipe
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links that relate the current page to another page. In our case, both pages
will correspond to objects in the knowledge graph, but we need to infer the
appropriate property name that must identify this relationship. Once the
types of the source and target objects are solved according to the previous
step, then the implicit relationship between them is trivially solved and made
explicit.

9. Process the recipe summary according to the corresponding template in-
structions. This processing produces the triples for recipeCategory, recipeYield
(servings), totalTime and difficulty (numeric value from 1 to 5).

Freq. Property name Example

G
en

er
al

p
ro
p
s

8263 label baguette label "french bread"
5214 url adobo url en.wikibooks.org/wiki/Cookbook:Adobo
5214 name frosting_and_icing_recipes name "Frosting"
5156 type baking_soda type cookbook:leavening_agents

R
ec
ip
e

p
ro
p
er
ti
es

21077 recipeIngredient chocolate_mousse recipeIngredient "200 g bitter..."
15616 recipeCategory chocolate_mousse recipeCategory category:dessert_recipes
12343 recipeFoodstuff chocolate_mousse recipeFoodstuff cookbook:chocolate
2419 recipeInstructions chocolate_mousse recipeInstructions ["Melt chocolate..."]
849 difficulty chocolate_mousse difficulty 2
844 totalTime chocolate_mousse totalTime "30 minutes"
805 recipeYield chocolate_mousse recipeYield 4
458 recipeNotes chocolate_mousse recipeNotes "* This recipe is not the..."

Table 1. Property names in the Cooking KG

4 Methodology for dataset creation

This section describes the creation process of the developed dataset. The ob-
jective of this dataset is to help the research community to study the following
research issues: (i) the translation of NL into formal queries, (ii) the detection
of unanswerable questions and (iii) the identification of elements missing in the
KG which impact the way questions are answered. We first describe how we
collected the user’s queries in NL and then how we annotated them.

4.1 Collection of queries in natural language

We asked collaborators from our institutions through a web form to write at
least 5 queries in natural language in English. The participants were no native
English speakers but Spanish and French people. We received 30 responses in
3 days, resulting in 169 queries. The participants needed around 5 minutes to
read the guidelines and write at least 5 queries. They were asked to pose any
question about the cooking domain. Thus we provided them a non exhaustive
list of items they could ask about along with some examples. The query could
be posed in any of these four possible ways: interrogative (e.g., “Which herbs go
well with mushrooms?”), imperative (e.g., “Give me a soup recipe for tonight”),
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informative (“I’m looking for the name of the utensil that is used to beat the egg
whites”), or propositional (yes/no question e.g. “Is tomato a fruit?”) and have to
fit in only one sentence.

After collecting the queries in NL, we filtered them by assessing their usability
regarding our task7. It allowed us to directly discard the queries that couldn’t
be answered either with the current KG or by adding new elements to the KG.
Each question has been annotated as usable or not by two different persons.
After filtering, 124 queries were identified as usable (around 73%).

4.2 Annotations

Fig. 1. Examples of annotated user’s queries. This annotated queries are not part of
the dataset.

The annotations were made using a unique table for each annotator as pre-
sented in Figure 1. Using the provided guidelines7 the annotators had to write
the associated Prolog query and to give the result of it, or if it was not possible,
to give the elements missing in the KG that made the question unanswerable.

We decided to remove from the final dataset all the annotated user’s queries
where the annotator wrote that more than one element was missing in the KG.
The first reason is that in this case, there can be multiple ways to represent
the missing knowledge in the KG and to annotate the reasons why the query
cannot be answered. In other words, the annotation would be subjective and the
dataset would suffer from inconsistencies. Secondly, regarding machine learning
algorithms, the tasks of identifying the elements missing will be much more
complex if it has to be able to detected when multiple elements are missing for
one user’s query, as it corresponds to a multi-labelling task. However, we consider
that the annotated user’s queries that were removed from the dataset, will be
7 The guidelines can be found here https://perso.limsi.fr/rosset/resources/
cooking_LL_QA.tar.gz

https://perso.limsi.fr/rosset/resources/cooking_LL_QA.tar.gz
https://perso.limsi.fr/rosset/resources/cooking_LL_QA.tar.gz
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useful anyway, either for detecting when a user’s query cannot be answered, or
in the future when a system will be mature enough.

Five Annotators, including PhD students and researchers from our institu-
tions, participated in the annotation process. Each annotator had to know at
least about the basis of Prolog. We expected to remove around 10% of the anno-
tated data when multiple elements were missing, so we decided to annotate 110
user’s queries to get at the end 100 annotated queries in the final dataset. To
make it possible, each annotator had 22 user’s queries to annotate. The annota-
tion process was quite long, since the annotators had to check for each element
if they exist in the KG and under which name. Depending on the knowledge on
Prolog and on the cooking KG, the annotators needed from 5 minutes to 20 min-
utes to annotate one user’s question. This time take into account the corrections
needed. At the end one person was responsible of reviewing all the annotations
and to correct them in order to have consistent data.

4.3 Description of the dataset

The original dataset is provided in the form of an Excel document. It contains
all the annotations as presented in Figure 1 with the comments of annotators.
The characteristics of the original dataset are presented in table 2. The final
dataset is provided in the form of a json file8. The questions where more than
one element was missing have been removed from this dataset. When a question
contained typos, we replaced the question with the corrected one in the final
dataset. The characteristics of the final dataset are presented in table 3.

#questions 110
answerable 40%
one element missing 38%
multiple element missing 22%

Table 2. Original dataset. Proportions
of questions among some categories.

#questions 86
typo mistakes 09%
one element missing 49%
type of element missing
entity 43%
type name 02%
property name 24%
triple 31%

Table 3. Final dataset. Proportions of
questions among some categories.

5 Lessons learned through the creation process

We have observed that in the majority of cases, the questions that cannot be
answered initially can become answerable after populating the knowledge graph
with new entities, property names or triples. So the system can evolve over time.
However, there is one situation where the system can’t evolve easily: when it af-
fects the structure of the data. For example, in the current version of the KG, the
8 https://perso.limsi.fr/rosset/resources/cooking_LL_QA.json

https://perso.limsi.fr/rosset/resources/cooking_LL_QA.json
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information related to a recipe ingredient is just a triple, but several questions
require it to be a tuple with additional information beyond the foodstuff (quan-
tity or amount, possible replacement, textual description, etc.). This problem
cannot be overcome by adding some triples, but altering the current structure
of the recipe ingredients nodes.

After completing the annotation process we re-evaluate the questions that
we annotated as not usable regarding our task. We came to the point that
we actually filtered too many questions and determined that only 10% of the
questions were not usable (against 27% previously). We also figured out that we
underestimated the proportion of questions with more that one element missing
(22% against 10% estimated). That is why the final dataset actually contains 86
annotated questions instead of 100.

6 Conclusion and future work

In a real exploitation environment, usual QA systems would provide an incorrect
answer when the question refers to element that are missing in the KB. Thus
we state that it is fundamental for lifelong learning QA systems to be able to
handle jointly the two following problems: the translation of Natural Language
(NL) questions into formal queries, and the detection and identification of miss-
ing knowledge that impact the way questions are answered. As no evaluation
resources are yet available to address these problems, we presented in this paper
a methodology for the creation of these resources. Moreover we publicly share
the resulting resources, namely i) A cooking KG and (ii) the first version of a
dataset containing a set of questions over the KG with the element missing in
the KB if an answer cannot be found.

For future work we plan to collect and annotate more questions by taking ad-
vantage of lessons learned though the creation of the first version of the dataset.
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