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Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and 

subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using 

the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, 

injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", 

and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, 

squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects 

varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources 

affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at 

the variability of these parameters across subjects. In line with previous single-subject studies, we found that the 

most detectable effects originate from source locations that are closest to the sensors and oriented tangentially 

with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level 

detectability, boosting detection in regions where this variability was small and hindering detection in regions 

where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their 

cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of 

these variables independently of one another. We thus also performed simulations where we controlled spatial 

properties independently of individual anatomy. These additional simulations confirmed the strong impact of dis- 

tance and orientation and further showed that orientation variability across subjects affects detectability, whereas 

position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the 

ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological 

studies and should be adapted according to the brain regions under study. 
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. Introduction 

Adequate statistical power is a requisite of robust, replicable sci-

nce. An important variable affecting statistical power is sample

ize, and it has been shown that previous studies have been un-

ermined by sample sizes that are too small ( Button et al., 2013 ;

zucs and Ioannidis, 2017 ). Additionally, suboptimal scientific prac-

ices such as experimental designs and analysis approaches inappropri-

te to answering the posed scientific question have accentuated this

roblem ( Gelman and Loken, 2013 ; Kerr, 1998 ; Kriegeskorte et al.,

009 ; Luck and Gaspelin, 2017 ). Overall, data gathering and ana-

ytical procedures that once were widely used are now identified as

eing flawed, while reporting procedures are codified ( Keil et al.,

014 ; Pernet et al., 2020 ) and their endorsement is critically assessed

 Clayson et al., 2019 ; Larson and Carbine, 2017 ). Emphasis is being
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ut, on the one hand, on improving the robustness of statistical infer-

nce ( Groppe, 2017 ; Kappenman and Keil, 2017 ; Kilner, 2013 ; Luck and

aspelin, 2017 ; Simonsohn et al., 2013 ), and on the other hand, on

he design, preparation, and documentation of carefully planned exper-

ments ( Chambers et al., 2015 ; Foster and Deardorff, 2017 ; Luck, 2005 ).

he current study is at the crossroads of these two trends, aiming to

id researchers in cognitive, social and systems neuroscience in mak-

ng principled decisions on how many trials and subjects to include in

heir experiments to achieve adequate levels of statistical power. More

recisely, we highlight some important variables that one should pay

ttention to when considering how many repetitions of experimental

onditions and how many subjects one should test to achieve robust

tatistical inference in an MEG experiment. 

The question of knowing how many trials and subjects to include

n an MEG or EEG experiment has to date been largely a matter of

know-how ” or “rules of thumb ” ( Gross et al., 2013 ; Luck, 2012 ). In-
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1 Described here: http://www.fieldtriptoolbox.org/faq/how_are_the_different_ 

head_and_mri_coordinate_systems_defined/#details-of-the-4dbti-coordinate- 
eed, this topic has been discussed for decades without reaching any

efinitive conclusions ( Duncan et al., 2009 ; Hari et al., 2018 ; Kane et al.,

017 ; Keil et al., 2014 ; Picton et al., 2000 ; Pivik et al., 1993 ). How-

ver, the above-mentioned concerns about power and reproducibil-

ty call for a systematic evaluation of variations in statistical power.

his is particularly crucial in these current days where high-density

EG/EEG data are typically acquired. Which variables critically af-

ect statistical power? Considering these, how can the necessary (and

ufficient) number of trials and subjects be planned in advance? Re-

ently, Boudewyn et al. (2018) took a first step at answering this ques-

ion in a principled manner. They used EEG recordings from 40 par-

icipants to examine how the number of observations included in their

nalyses affected the probability of finding a significant effect in Event-

elated Potential (ERP) measures. As expected, large effects (e.g., an

rror-related negativity, producing a 5–15 μV difference wave in the

EG) were detected at sensor level with fewer trials/participants than

maller effects were (e.g., a finer ~ 1 μV amplitude modulation in the

ateralized readiness potential). We believe Boudewyn et al. (2018) to

e the first EEG study that directly related the number of observa-

ions (trials and subjects) to statistical power. In another recent study,

aker et al. (2019) took this approach one step further, by acknowledg-

ng the difference between within-sample (i.e. inter-trial) and between-

ample (i.e. between subjects) variability in a number of assessment

odalities, including MEG and EEG. They introduced so-called "power

ontours" —plots that depict statistical power as a joint function of the

umber of trials and the number of subjects. These power contours re-

eal the level of statistical power reached for given trial and subject

umbers. We illustrate the findings of the present study using this power

ontour plotting approach. 

Here, we used MEG data from a large sample of subjects to reliably

xamine the behavior of statistical power measures. We simulated “ex-

eriments ” with the open resting-state MEG dataset of the Human Con-

ectome Project (HCP, Larson-Prior et al., 2013 ), varying the numbers

f trials and subjects to assess the effects of within- and between-subject

ample sizes, respectively. Importantly, we focused our analysis on the

patial properties of the neural source of the simulated effect. We sam-

led from a large cohort of subjects to approximate spatial variability

cross brains, but we did not attempt to model functional variability, in

pace or time. The only source of within-subject variability that we ac-

ounted for here is the level of physiological noise present in the data,

hich we approximated using resting-state HCP data from individual

ubjects. 

This allowed us to simulate power in the context of real physiological

ackground activity. We simulated effects by injecting dipolar sources

f fixed amplitude at known anatomical locations in one half the data

nd not in the other half ( Fig. 1 ). We then detected the effects observed

t sensor level with classical paired t-tests across subjects, corrected

or multiple comparisons using a cluster-based approach. In an initial

xploration, we used detailed individual source models and observed

hat detectability varies drastically according to the anatomical loca-

ion of the source. Accordingly, we explored the spatial properties of the

ources across the brain, focusing on their distance with respect to the

losest sensor, their orientation with respect to the closest point on the

phere encompassing the subject’s head, and the cross-subject variabil-

ty of these parameters. For this, we undertook two types of simulations.

irst, we examined changes of detectability across different anatomi-

al areas, simulating sources in the real anatomy of individual subjects

n our HCP dataset. In doing so, we observed that the four measured

roperties were impossible to properly disentangle due to anatomical

onstraints. Therefore, we ran a second set of simulations, where we

mposed spatial properties of the sources independently of individual

rain anatomy while using the same simulation strategy as before. In

his way, we could assess separately the effect of each spatial property

f the sources (position, orientation, and their cross-subject variability)

n detectability. 
s

2 
. Material & methods 

.1. Software 

All data were processed using MATLAB (The Mathworks, Natick,

A, USA; Version 2018a) and the FieldTrip toolbox ( Oostenveld et al.,

011 , github release of October 25 2019,). All analysis and visualiza-

ion scripts and toolboxes, including the FieldTrip toolbox and megcon-

ectome toolbox used, are available online at https://gitlab.com/icm-

nstitute/meg/solid_meg . 

.2. Data 

.2.1. Input data 

We used MEG data from 89 subjects from the Human Connec-

ome Project (HCP) open data repository, described in detail in Larson-

rior et al. (2013) . Of the 100 recorded young adult subjects, 95 were

ncluded in the latest release (V3.0) of the MEG HCP data, 6 subjects

ith missing data in one or another of the components described be-

ow were discarded, resulting in the final number of 89 subjects for our

nalyses. 

A whole series of preprocessing steps are already performed on

he HCP data. For complete details, see the descriptions of the pre-

rocessing pipelines for MEG ( Larson-Prior et al., 2013 ), structural

RI ( Glasser et al., 2013 ) , as well as the online resources avail-

ble at https://www.humanconnectome.org/software . We henceforth

efer to these two preprocessing pipelines as the HCP-MEG pipeline and

he HCP-structural pipeline . Note that these pipelines are part of differ-

nt releases of the HCP data that were downloaded separately from

ttps://db.humanconnectome.org . Subject identifier codes being con-

istent across these releases, we used them to merge the data from both

ipelines. 

Briefly, the MEG data were acquired at 2043.5101 Hz (bandpass

ltering: DC-400 Hz) with a whole-head 248 magnetometer device

MAGNES 3600, 4D Neuroimaging, San Diego, CA). The HCP includes

ata from several activation tasks and three 6-minute resting state peri-

ds (eyes open, fixating). We used the latter dataset in this study. MEG

ducials were obtained with a Polhemus system for coregistration to

tructural MRI data. Each subject was scanned with a high-resolution

tructural MRI on a 3T Siemens Skyra MRI scanner ( Van Essen et al.,

012 ). Within the HCP-MEG pipeline, the structural MRI was used to

reate a single-shell volume conduction model using FieldTrip. Further-

ore, to define anatomical labels in our study, we used the output of

he HCP-structural pipeline, where a high-definition segmentation and

natomical labeling (Destrieux Atlas) of the cortical mantle was per-

ormed using Freesurfer (Version 5.2, Fischl, 2012 ) . 

All of the material described above is available from the HCP

atabase (individual MEG sensor space time courses, magnetometer def-

nition, individual source space and individual head model) and formed

he input data for our study. 

.2.2. Head model, source space, and forward model 

We used the head models as provided for each subject by the HCP-

EG pipeline. We used the 4D Neuroimaging/BTi coordinate system

o identify source positions within these models throughout the paper 1 

with mm units for clarity). We created a leadfield matrix with FieldTrip

sing the magnetometer description and the provided head models, and

enerated the sensor signals by projecting sources (see below) with a 10

A.m amplitude through the leadfield to the sensors. 

We used two different types of source models, where the source

ipoles were either constrained to be orthogonal to the individual corti-

al mantle, or free from any anatomical constraint, as explained below.
ystem 

https://gitlab.com/icm-institute/meg/solid_meg
https://www.humanconnectome.org/software
https://db.humanconnectome.org
http://www.fieldtriptoolbox.org/faq/how_are_the_different_head_and_mri_coordinate_systems_defined/\043details-of-the-4dbti-coordinate-system
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Fig. 1. Schematic of simulation method. For a given "experiment" 

simulation with K subjects and N trials, K subjects were first selected 

at random. In each subject, N trials (that is, 50 time-point segments 

averaged along time) were randomly chosen and assigned to the two 

"conditions" from the Resting State (RS) data of the HCP. A signal cre- 

ated with the individual’s head model was added to the trials of the 

“signal ” condition, whereas trials in the “noise ” condition were unal- 

tered. The data were averaged across the trials in each condition, the 

amplitude, squared amplitude, or global field power were computed, 

and the procedure was repeated for the K subjects. Significance was 

then tested across subjects by means of paired t-tests between condi- 

tions, corrected for multiple comparisons. The whole computation was 

repeated 500 times with different random samples of N subjects and 

K trials to yield an estimate of statistical power for this [K,N] pair, 

which was the number of significant permutation tests at the peak 

electrode (marked with a pink dot on the signal topography and on 

the statistics topography) divided by 500. This value was then color 

coded in the bottom power contour plot which represents power for 

every tested [K,N] pair. Contour lines in this and other power con- 

tour plots indicate power values (spline-interpolated for visualization 

purposes). These plots are used throughout the paper to illustrate the 

detectability of a given effect. 
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.2.2.1. Source models constrained by anatomy. We performed a first set

f simulations constrained by individual subjects’ anatomy, where the

ignal to be added to the resting-state data was generated from one

ource (i.e. one vertex) of the cortical mesh provided by the HCP. This

ource was oriented orthogonally to the cortical mesh. Across partici-

ants, we identified sources of similar areal origin by means of their

ndex in the cortical mesh provided by the HCP. It is worth mentioning

hat we do not imply that these indices map strictly homologous por-

ions of cortex across subjects. The mesh topology is, however, identical

n all 89 subjects (all 64,984 vertices, spaced on average by 1.5 mm,
3 
re connected in the same way in every subject), and it is used in

ractice to make cross-subject source-level comparisons and averaging

 Fischl, 2012 ). No within- or between-subject variability other than the

ne already present in the HCP data was added. Between-subject vari-

bility thus occurred because of variations in position and orientation

f the source vertices across subjects. 

For high-resolution rendering of the cortical surface in figures, we

sed the high-definition segmentation with 163,842 vertices, spaced

n average by 0.5 mm, per hemisphere found in the HCP-structural

ipeline ( Glasser et al., 2013 ). All segmentations used in this study are
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2  

s  

n  
inearly coregistered to MNI coordinates (same origin, scale, and orien-

ation), but not "warped" (i.e. non-linearly transformed to closely map

o the MNI template brain) as is often performed for mapping individ-

al source reconstructions across participants in MEG. This non-linear

apping would have been inappropriate here since we were interested

n between-subject anatomical variability. 

All our brain anatomy-constrained simulations used an equivalent

urrent dipole of 10 nA.m as the source of difference between the two

onditions. Thus, we did not vary signal amplitude in this study. In a

ecent study, Murakami and Okada (2015) showed that current density

ue to local neuronal currents, expressed as equivalent current dipole

er unit of surface (in nA.m/mm 

2 ), is remarkably constant throughout

 range of vertebrate species. They argued that a value of current dipole

oment density of 0.16–0.77 nA.m/mm 

2 may serve as an effective phys-

ological constraint for human neocortical MEG/EEG sources. As an in-

ication, according to these estimates, the current dipole value of 10

A.m that we chose in this study could correspond to an activation sur-

ace ranging between 13 and 62 mm 

2 . However, complexities arise due

o the spatial extent of the sources (e.g. changing orientations around

onvexities of the cortical mantle). Accounting for these complexities

s beyond the scope of this paper, but it has been tackled in previous

tudies ( Ahlfors et al., 2010 ; Fuchs et al., 2017 ). 

.2.2.2. Source models unconstrained by anatomy. As will become clear,

easures of source properties that affect detectability tend to covary

cross the brain in ways that are not readily predictable (Supplemen-

ary Figure 2). We thus also used a simulation approach where dipoles

ere placed independently of cortical anatomy. For these simulations,

e took an initial source located within the precentral region ( x = − 12,

 = 33, z = 70; source position illustrated in Fig. 8 ), oriented it nor-

ally to the mean cortical surface at that location, and systematically

aried the spatial source properties starting from that location (see

 Source properties description ", below). 

All other parameters of the simulations were kept identical to those

f the anatomically constrained simulations described above, except

hat the amplitude of the injected sources was reduced to 5 nA.m to

void strong saturation of the power contour plots due to the very weak

etween-subject variability in simulations where individual parameters

ere held constant (see details below). 

.3. Simulations 

In all of our simulations, we used the same procedure based on a

onte Carlo resampling strategy. The Monte Carlo procedure uses re-

eated random selection from a data sample to approximate a property

f the general population, that is, here, the probability of finding a sta-

istically significant effect in the general population (a.k.a. statistical

ower). 

As illustrated in Fig. 1 , for each simulation with a given number of

ubjects and trials, we first randomly chose the required number of sub-

ects from the HCP database, sampling without replacement. For each

ubject, we then randomly selected our "trials". Each trial consisted of

5-ms (50 samples) time segments of the continuous resting state data,

t least 2 s apart from each other. We then split these trials randomly

n two sets of equal size, added signal (according to the procedure ex-

lained above) in one set and averaged the data across time points and

rials separately for each set. So, our two conditions consisted of “sig-

al ” and “noise ” trials. We then ran a paired t -test of the difference be-

ween the two sets across subjects at each sensor and noted significance

 p < 0.05, uncorrected). To summarize the whole MEG helmet with one

alue, we used the state-of-the-art spatial cluster-mass based correction

or multiple comparisons ( Maris and Oostenveld, 2007 ; 1000 permu-

ations, cluster and significance thresholds both at p < 0.05) and con-

idered a given comparison significant only when the peak sensor (i.e.

he sensor at which the absolute value of the projection of the source

ignal peaked) was included in a significant cluster. We repeated this
4 
rocedure 500 times for each trial-by-subject number pair and noted

he number of times where the comparison was significant among these

00 simulations. This so-called Monte Carlo statistical power estimate

pproximates the probability of finding a significant effect if we were to

un an experiment with the given parameters (number of subjects, trials

nd signal properties) in the general population. 

In an initial simulation, we assessed overall variations in statisti-

al power for simulated sources throughout the brain with the “rule

f thumb ” number of subjects and trials (25 subjects, 50 trials per con-

ition for each subject). This is reported in the initial results section,

 Overall variations of statistical power throughout the brain ". 

In subsequent simulations, we ran Monte Carlo simulations for all

ombinations of trial and subject numbers, from a single trial to 100

rials (in steps of 10) in each condition and with 5 to 50 subjects (in

teps of 5), in order to assess the impact of different source properties

n statistical power as described below. 

For all analyses, we ran paired t-tests on amplitude differences, as

ell as on differences in squared amplitudes (a.k.a. signal power) and

n the difference in standard deviation of amplitudes across sensors

a.k.a. global field power, or GFP, or global mean field power, GMFP,

ehmann and Skrandies, 1980 ), because these are common measures

pplied to data in sensor-level analyses. 

.4. Source properties description 

We used the simulation approach described above to evaluate how

ariations in the spatial properties of the source dipole affect signal de-

ection at sensor level. We examined what we call first- and second-level

roperties of the sources. First-level properties refer to the position and

rientation parameters of the sources. We defined position as the dis-

ance between the source and the closest sensor, and orientation as the

rientation of the source with respect to the closest point on a sphere

tted to the subjects’ head. Second-level properties refer to the variabil-

ty in first-level properties across subjects. We examined separately the

rst-level properties (position and orientation) and second-level prop-

rties (cross-subject variability in position and in orientation), in four

ets of simulations. Each property was first examined in simulations of

ources using individual brain anatomy, then manipulated in simula-

ions unconstrained by anatomy. 

.4.1. First-level properties: position and orientation of the source 

The following two measures allowed us to explore the extent to

hich effect detectability depends on the distance of the source with

espect to the sensor array and on its orientation with respect to the

phere encompassing the subjects’ head. 

.4.1.1. Distance to the closest sensor. Distance from the source to the

etector is a major determinant of the measured signal amplitude. In

imulations constrained by individual brain anatomy, the distance to

he closest sensor for a given source was measured on the individual

natomy in each subject . In simulations not constrained by anatomy,

e imposed this distance by shifting the position of the initial source

described in the " Models unconstrained by anatomy " section above) by a

arget distance inwards or outwards, along the line passing through the

ensor closest to the initial source (labeled A44 in the original data) and

he origin of the coordinate system, so that the distance to the closest

ensor ranged from 40 to 120 mm. A source property more commonly

ssessed when studying source detectability is source depth in the head

i.e. distance from the source to the scalp; Hämäläinen et al., 1993 ). We

hose distance to sensor instead because it is ultimately the one that

atters for signal detection, and to account for uncontrolled head-size

ariability in depth. 

.4.1.2. Orientation angle with respect to the head surface. Dipolar

ources oriented radially within a spherical volume conductor produce

o net magnetic field outside of this volume. Even if the sphere is a
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ross approximation of the subjects’ head volume, the orientation angle

f brain sources with respect to the sphere encompassing the subjects’

ead is often used as a reference to predict the detectability of a source.

ere, we computed the orientation angle of brain sources with respect

o the closest point on a sphere of 10 cm radius fitted to the shape of

he single-shell head model provided by the HCP MEG pipeline. The ori-

ntation angle, expressed in degrees, was computed as the arccosine of

he product of the orientation vector of the source with the orientation

ector normal to the closest point on the sphere. It ranged from 0° for

ources pointing directly towards the sphere surface (i.e. radial sources

ointing outward the head surface), through 90° for sources pointing

rthogonal to the sphere surface (i.e. tangential sources), up to 180°

or sources pointing directly away from the sphere surface (i.e. radial

nward-directed sources). 

The source orientation angle was normal to the cortical surface in

imulations using individual brain anatomy. It was manipulated para-

etrically in simulations not constrained by anatomy, by rotating the

nitial source dipole around the y-axis of the coordinate system (that

s, the axis passing through both ears). This axis approximates, for the

nitial source used in these simulations, the rotation from a radially ori-

nted source on the precentral gyrus to a tangentially oriented source

uch as the sources located on the wall of the nearby central sulcus. 

.4.2. Second-level properties: variability of the sources across subjects 

Cross-subject variability in source position and orientation are

hought to decrease detectability at the group level, and were thus ex-

mined here. 

.4.2.1. Position variability. Position variability was defined as the stan-

ard deviation of source position across subjects. In simulations not con-

trained by individual anatomy, we sampled dipole locations at random

rom an uncorrelated trivariate (x, y, z) normal distribution with a stan-

ard deviation varying from 0 to 10 mm. Put in another way, in these

imulations, the dipoles were varied randomly across subjects so that

pproximately 95% of the dipoles were encompassed within a sphere

ith a radius about twice the given standard deviation. 

.4.2.2. Orientation angle variability. To measure orientation angle vari-

bility, we computed the length of the average orientation vector across

ubjects for each source location and we took the log of the inverse

f this value, so that smaller values (lower bound of 0) reflect smaller

ariability and higher values (upper bound of infinity) reflect higher

ariability. This measure is unitless. In simulations not constrained by

natomy, orientation variability was imposed by adding an uncorrelated

andom bivariate (azimuth and elevation) normally distributed angle to

he individual sources with a standard deviation varying from 0 to 180°.

. Results 

.1. Overall variations of statistical power throughout the brain 

Before getting into the description of the explored spatial properties,

ere we describe the overall variations of statistical power for detect-

ng sources throughout the brain. We considered three types of signal

easures that are commonly used in sensor-level analyses: amplitude,

quared amplitude (or power), and standard deviation of amplitude

cross sensors (or global field power, GFP). In Fig. 2 , we present sta-

istical power as computed for these three measures at sensor level. We

alculated the average statistical power for detecting a source at each

ossible cortical location for a highly detailed source model following

ndividual brain anatomy, in a simulated dataset of 25 human subjects

nd 50 trials per condition. Such subject and trial sample size is quite

ypical in cognitive and social neuroscience studies. 

Fig. 2 presents the results of this initial analysis. Note that the ab-

olute statistical power values per se are somewhat arbitrary, because
5 
e simulated the effect of dipoles with an arbitrary, constant ampli-

ude. What is important is the striking heterogeneity of statistical power

cross the brain that this figure reveals and the complex dependency of

tatistical power on the type of measure considered. Some of this hetero-

eneity may appear trivial with regard to what is known on MEG signal

ensitivity to source orientation and depth. For instance, sources at gyral

rests tend to be detected with low statistical power, probably because

hey are radially oriented. In contrast, sources on the walls of the cen-

ral sulcus and on the medial surface of the frontal lobe —which are

angentially oriented —are detected with high power. However, some

ther observations may appear to be far less intuitive. For instance, the

entral surface of the temporal lobes shows relatively high power in

omparison to the lateral surfaces, even though it is further away from

he sensors. In addition, the results obtained using different measures

f the sensor level signal ( Fig. 2 b, and c) also revealed that the compu-

ation used to quantify activity affects statistical power. This observed

eterogeneity of statistical power across the brain and across measures

alls for a better understanding of the influence of source properties on

he sensor-level detectability of generated effects. For this, in the follow-

ng sections, we examined the first- and second-level spatial properties

f the sources, i.e. the spatial parameters defining source position and

rientation, and their variability across subjects. 

.2. First level properties: distance and orientation of sources 

.2.1. Distance 

Fig. 3 a depicts the average distance to the closest sensor for every

ource location on the cortical surface, plotted on the average brain

f the 89 subjects in the HCP database. The histogram of this distance

cross all vertices is plotted in Fig. 3 b. The distance varies from about

 cm in cortical regions closest to the sensor array (central sulcus, oc-

ipital cortex) to about 10 cm for the deepest structures (cortex near the

ippocampus, amygdala, and basal forebrain). 

The effect of distance to sensors on statistical power is, as expected, a

ecrease in power with increasing distance from the sensors. For brevity,

e illustrate this effect in detail in Supplementary Results (see Supple-

entary Figures 3, 4, and 5). In brief, the distance to the sensors affects

etectability drastically. A source with a given amplitude and orien-

ation that is readily detected with very few trials and subjects when

laced at a cortical location close to the sensors is virtually impossible

o detect if it occurs near the center of the head. However, in such a

ituation, changing the measure used to test for differences can have a

trong effect on statistical power. 

It may be noted that deep sources (that is, sources with large distance

o sensors) usually have a diffuse distribution of signal across multiple

ensors. Therefore one could wonder if averaging signal over multiple

ensors would augment deep source detectability. We found that this

as not the case. To test this, we replicated our analysis of the effect

f distance to sensor for sources unconstrained by brain anatomy (illus-

rated in Supplementary Figure 5), averaging signal measurements over

, 5, or 10 sensors around the maximal sensor. No change in statistical

ower could be observed. 

.2.2. Orientation 

Fig. 4 a shows the average source orientation relative to the closest

oint on a sphere encompassing the head of the subjects for every lo-

ation on the cortical surface, plotted on the average brain of the 89

ubjects in the HCP data. Most sulcal walls, a large part of the inferior

emporal cortex and of the medial wall are close to tangential orien-

ation (0°), whereas the crest of gyri (e.g. superior frontal gyrus) and

he depth of sulci (e.g. the insular cortex) are closer to radial orienta-

ion (90°). The histogram of source orientations across all vertices is

lotted in Fig. 4 b. It is evident that the distribution is skewed towards

alues below 90°, reflecting the overall convex topology of the cortical

antle. 
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Fig. 2. Variation in estimated statistical power 

across the cortical surface with three different 

signal measures for simulated evoked activity: 

Statistical power estimated from three different 

measures for detecting (at MEG sensor level) the 

activity generated by a single dipole placed in turn 

at every possible cortical position. At each posi- 

tion, we simulated experiments with 25 subjects 

with 50 trials each. Images of superior, left lateral, 

left medial, anterior, posterior, and inferior brain 

views are depicted. a. Amplitude difference. Note 

the relatively high statistical power values within 

major sulci and on the medial wall. b. Squared am- 

plitude difference. Note the relatively lower sta- 

tistical power in medial and inferior regions c. 

GFP difference. Note the relatively high statistical 

power at superficial neocortical sources, and low 

statistical power in deep sources. The paired dif- 

ferences between these three maps are shown in 

Supplementary Figure 1. 
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The effects of source orientation with respect to the sphere encom-

assing the subject’s head are, as expected, that radial sources are very

ifficult to detect. For brevity, we show these effects in detail in Sup-

lementary Results (see Supplementary Figures 6, 7, 8). In brief, source

rientation affects detectability drastically, especially when sources are

ointing exactly towards (or away from) the head surface (i.e. radially).

owever, this loss of power is recovered rapidly as soon as the orienta-

ion of the sources shifts away from the radial orientation. Moreover, the

ffect of orientation on statistical power is greatly affected by the type of

ignal measure applied to the data before testing. Differences between

FP measures, and to a lesser extent differences of squared amplitudes,

an increase statistical power for detecting sensor-level effect of radial

ources, especially when superficial sources are considered (see Fig. 2 ,

nd Supplementary Figure 1). 

Taken together, the results above allowed us to explore the effect of

he position and orientation of dipolar sources on statistical power for

etecting effects at the sensor level. Quite predictably, we have seen that

hese first-level properties have a strong impact on signal detectability.

e now turn to our explorations of second-level spatial properties, and

heir effect on group-level source detectability, where the observable

ffects can at times be somewhat unexpected. 
6 
.3. Second-level properties: position and orientation variability across 

ubjects 

.3.1. Position variability across subjects 

Fig. 5 a shows the average cross-subject standard deviation (across

he three cartesian dimensions) in position for every source location on

he cortical surface. The variability histogram across all vertices is plot-

ed in Fig. 5 b. Overall, values ranged from 3.4 to 8.1 mm, with maximal

alues occurring in areas where cortical folding is more variable across

ubjects, such as in occipital cortex, and minimal values occurring in

nterior medio-ventral region and in insular cortex. Dipoles placed in

he most variable regions could be up to 10 mm away from each other,

hereas dipoles placed, for example, in the insular cortex, are on aver-

ge within 5 mm from each other. 

Position variability is expected to have an impact on detectability

ecause dipoles at different locations, even if they share the same orien-

ation, project a magnetic field that is topographically different. How-

ver, changes in position will rarely change the polarity of the magnetic

eld at a given sensor, and the similarity in the topographies created by

wo dipoles may override their differences. So, it is hard to predict the

xtent to which variability in position will affect detectability at sensor
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Fig. 3. Mean distance to the closest sensor across subjects. Data calculated from 89 subjects in the HCP MEG dataset and presented on the average brain. a. 

Mean distance to the closest sensor, mapped on average brain views (from left to right and top to bottom: superior, left lateral, left medial, posterior, anterior, and 

inferior views). Greater distances appear in darker color. b. Histogram of the distribution of the mean distance to closest sensor across all cortical vertices. The 

red and green vertical lines indicate the distance to the closest sensor of the two dipoles that we selected to illustrate the effect of this parameter in Supplementary 

Figures 3 and 4, respectively. 

Fig. 4. Average dipole orientation with respect to the closest point on the sphere encompassing the head across subjects. Data from 89 subjects in the 

HCP data plotted on the average brain. a. Average orientation relative to the closest point on the sphere. The figure shows the mean orientation mapped on 

superior, left lateral, left medial, posterior, anterior, and inferior views of the brain (from left to right and top to bottom). For illustration clarity, here, we mirrored 

the computed angle around the tangential axis (90°). In other words, we discarded information on whether the dipoles pointed towards or away from the sphere 

surface and only considered orientation (numerically, the values displayed are the inverse cosine of the absolute value of the product of interest). Legend on color 

bar: Rad. = radial (0 or 180°), Tan. = tangential (90°), Avg. = average, wrt. = with respect to. b. Histogram of the distribution of mean orientation across all 

cortical vertices. Contrary to panel a , values spread the full half circle. The red and green vertical lines indicate the orientation of the two dipoles that we selected 

to illustrate the effect of this parameter in Supplementary Figures 6 and 7, respectively. 

Fig. 5. Average cross-subject variability in position shown on the average brain of 89 subjects in the HCP dataset. a. The cross-subject variability in position 

is the standard deviation of position of the sources across subjects, shown on superior, left lateral, left medial, posterior, anterior, and inferior views of the brain 

(from left to right and top to bottom). b. Histogram of the distribution of average standard deviations across all cortical vertices. The red and green vertical 

lines indicate the orientation of the two dipoles that we selected to illustrate the effect of this parameter in Figs. 6 and 7 , respectively. 
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evel. To address this question, we first selected two posterior locations

n the individual brains of the HCP subjects, one with relatively low spa-

ial variability in fusiform gyrus ( x = − 39, y = 33, z = 5), and the second

ne with large variability in superior occipital cortex ( x = − 69, y = 12,

 = 48). 

For the fusiform gyrus source, the dipole was contained within a nar-

ow + /- 10 mm region in the horizontal plane (x-y plane in Fig. 6 a) and

ithin + /- 15 mm in the vertical plane (x-z plane in Fig. 6 a), across all

ubjects (see also Fig. 6 b). The orientation of this dipole was relatively
7 
onsistent across subjects ( Fig. 6 c). This source resulted in a signal with

 strong amplitude at sensor level ( Fig. 6 d), despite being at a consider-

ble distance from sensors, and it was thus detected with a high statis-

ical power across subjects, with 80% power observed with as little as

5 subjects with 60 trials each, or only 20 trials in 35 or more subjects

 Fig. 6 e). When using the difference of squared amplitudes at sensors, or

f GFP, to compare conditions statistical power was generally decreased.

Unlike the fusiform source, the source in the superior occipital gyrus,

ad a much larger variability in position across the 89 HCP subjects. This
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Fig. 6. Detecting sensor-level effects for a source with relatively low cross-subject position variability in the fusiform gyrus. a. positions of individual 

dipoles in 89 subjects (red arrows) are represented on the average brain in a superior overall view, and in zoomed superior, lateral, and posterior partial brain views. 

The bold black arrow in each panel shows the resultant vector or average dipole across 89 subjects. b. Histogram of the distance of each dipole to the mean 

position of all dipoles in the three cartesian dimensions. c. Polar histogram of the orientations of the individual dipoles relative to the orientation of the 

closest point on the sphere encompassing the subjects’ head. Azimuth and elevation are referenced to the closest point on the sphere surface, so an orientation 

orthogonal to that of the sphere encompassing the subjects’ head is shown as tangential (90°), and the colinear orientation is shown as radial (0°). The black thick line 

coming outwards from the center of the plot represents the orientation and length of the resultant vector scaled so that a resultant vector of length 1 (if all dipoles 

were strictly collinear and pointing in the same direction) would span the whole radius of the plot. d. Average projection of the dipoles in sensor space. Black 

circles identify sensor positions on the topographical view; the nose is at the top of the view, and the left side of the head appears on the left. The color bar indicates 

the strength of magnetic field exiting (red) and entering (blue) the head in femtoTeslas (fT). e. Power contour plots for tests on simple amplitude differences at 

this location. Color represents the statistical power estimated by Monte Carlo simulations, i.e. the number of significant tests divided by the number of simulations 

(500) for all tested combinations of trial and subject numbers. Black isocontour lines on the plots highlight spline-interpolated power estimates of 0.5 and 0.8. f. 

Power contour plots for tests on differences of squared amplitudes at this location. The same conventions as in e apply. g. Power contour plots for tests on 

differences in GFP at this location. The same conventions as in e apply. 
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patial variability is visible in Figs. 7 a and 7 b. We note that, although

elatively limited compared to some other sources, orientation variabil-

ty at this location was also larger than in the fusiform cortex ( Fig. 7 c).

ogether, these differences yielded a relatively lower amplitude of sig-

al at sensor level ( Fig. 7 d), as compared to the previous dipole in the

usiform gyrus. Accordingly, the detectability of this source was poor,

ith no tested number of subjects and trials reaching 50% statistical

ower ( Fig. 7 e). When using the difference of squared amplitudes at

ensors, or of GFP, to compare conditions statistical power was gener-

lly increased. 

The two dipole locations presented above illustrate qualitatively the

ffect of position variability on detectability. However, as already men-
8 
ioned, co-variation in the different spatial properties of anatomically

onstrained sources is a confound that undermines robust conclusions

pecific to position variability. Therefore, we moved to a more specific

anipulation of position variability, maintaining other variables con-

tant, in simulations unconstrained by anatomy. Here, we selectively al-

owed dipoles to change position across subjects by sampling positions

t random from a 3D normal distribution with a set standard deviation

cross subjects. Fig. 8 shows the effect of this manipulation on statisti-

al power for five equally spaced position variabilities ranging from 0

o 10 mm standard deviation. For all explored position variabilities, the

nitial dipole position was selected on the anterior bank of the precen-

ral gyrus, hence average position of dipoles across participants tended
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Fig. 7. Detecting sensor-level effects for a source with high cross-subject position variability in the superior occipital gyrus. The same conventions and 

legends as for Fig. 6 apply. See main text for further explanation. 
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oward that same position ( Fig. 8 a). The projected signal at sensor level

s illustrated in Fig. 8 b, showing little effect on signal amplitude, and in

urn little effect on estimated statistical power ( Fig. 8 c). 

Interim Summary. Manipulating position variability had little ef-

ect on detectability when the manipulation was selective. In realistic

ettings, regions with high position variability across subjects such as

he occipital cortex tend to be also more variable in terms of orientation.

e explore further the effect of orientation variability across subjects in

he next section. 

.3.2. Orientation variability across subjects 

Fig. 9 a shows cross-subject variability in orientation for every source

ocation on the cortical surface, plotted on the average brain of the 89

ubjects in the HCP dataset. The histogram of these vector lengths across

ll vertices is plotted in Fig. 9 b, which highlights the heterogeneity of

rientation variability across the brain. Overall, values ranged between

.0019 and 0.74, with maximal values in lateral occipital regions, and

inimal values along the central sulcus, the ventral prefrontal cortex,

orsomedial prefrontal cortex and insular cortex. Dipoles in the most

ariable regions of the lateral occipital cortex could be oriented up to

80° apart (i.e. in opposite directions) across subjects, dramatically re-

ucing the net contribution to the signal at sensor level across a group

f subjects. 
9 
Orientation variability is expected to have an impact on detectabil-

ty because dipoles with different orientations, even if they share the

ame position, project a magnetic field that has a different topography

t the sensor level. Contrary to position variability, changes in orien-

ation can change the polarity of the magnetic field at a given sensor

ven with minimal orientation change. Hence a major effect on statisti-

al power may be expected. Here, we review two example locations, one

ith relatively low orientation variability across subjects, in the insula

 x = 6, y = 36, z = 30), and the second one with large variability, in the

osterior superior temporal sulcus ( x = − 47, y = 42, z = 30). 

For the insula source, Fig. 10 a shows that most individual sources

re parallel (see in particular the middle zoomed inset), resulting in a

ength of the resultant vector of 0.90, shown as a black line in Fig. 10 c,

nd an average projection to sensors with relatively high amplitude as

an been in FIgure 10 d. It may be noted that the position variability of

his source was also limited ( Fig. 10 b). The power to detect this signal

s such that 20 subjects with 90 trials each, or 50 subjects with 30 trials

ach allow detecting the 10 nA.m source with 80% statistical power

 Fig. 10 e). When using the difference of squared amplitudes at sensors,

r GFP, to compare conditions statistical power was generally decreased.

The source in the posterior superior temporal sulcus (pSTS) on

he other hand showed a highly variable orientation across subjects

 Fig. 11 a and c), with a resultant vector length of 0.30. We note that
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Fig. 8. Detecting sources with varying cross-subject position variability. a. Locations of individual dipoles. Source dipoles in 89 subjects (colored arrows) 

are represented on an individual head model (pinkish inner surface) relative to sensor positions (black open circles on outer surface). The source dipoles spanned 

one of five linearly increasing standard deviation values around the initial source in the precentral gyrus (see main text), ranging from 0 (no variability at all), to 

1 cm standard deviation in radius. b. Average projection of the dipoles in sensor space. The same conventions as in Fig. 6 d and 7 d apply, however, the scale on 

the amplitude axis has been altered. c. Power contour plots for each simulated level of source position variability. These plots were obtained by Monte Carlo 

simulations as explained in Method and Fig. 6 e. The same conventions as in Fig. 6 e and 7 e apply. 

Fig. 9. Average cross-subject variability in orientation shown on the average brain of 89 subjects in the HCP data. a. The cross-subject variability in orientation 

is the log of the inverse of the average resultant vector length across individual sources, for each cortical location. It is shown on superior, left lateral, left medial, 

posterior, anterior, and inferior views of the brain (from left to right and top to bottom). b. Histogram of the distribution of cross-subject variability across all 

cortical vertices. The red and green vertical lines indicate the orientation of the two dipoles that we selected to illustrate the effect of this parameter in Figs. 10 and 

11 , respectively. 
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lthough we tried to select a source with high orientation variability

hile keeping its other spatial properties similar to the previous exam-

le source, the position variability of the pSTS source was relatively

mportant. This source resulted in a very weak average amplitude of the

ignal projected at sensor level ( Fig. 11 d). Accordingly, this signal was

irtually undetectable within the range of explored subjects and trial

umbers ( Fig. 11 e). When using the difference of squared amplitudes at

ensors, or GFP, to compare conditions statistical power was generally

ncreased. 

The two dipole locations presented above illustrate qualitatively the

ffect of orientation variability on detectability. To examine this effect

ore systematically, we next move to a specific manipulation of orien-

ation variability, in simulations unconstrained by anatomy. This time,

osition was held constant and only orientation was varied across sub-

ects. We sampled orientations at random, adding a normally distributed

andom azimuth and elevation to the original orientation (arbitrarily

et to the tangential source in the precentral sulcus examined in Sup-

lementary Figure 6), with a standard deviation across subjects set to

ve evenly spaced values between 0° (fixed orientation) and 180° The
 b  

10 
ffect of this manipulation on statistical power is illustrated in Fig. 12 .

t is noteworthy that the effect of orientation variability is most visi-

le for random orientations with a standard deviation above 90° This

s arguably due to the fact that dipoles cancelling each other out (i.e.

riented in opposite directions) can only occur when the distribution of

rientations is sufficiently broad. 

Interim Summary. We showed that second-level properties of the

ources have very different effects on detectability. Within the range

f variabilities explored, orientation variability had a much larger ef-

ect than position variability. Together with the effect of the first-level

roperties examined above, these results highlight the importance of

onsidering source properties when planning a well-powered MEG ex-

eriment. We discuss this and other issues in more detail below. 

. Discussion 

Adequately powered MEG (and EEG) experiments require an appro-

riate sample size. In this study, we showed that the properties of the

rain sources expected to contribute effects in a given experiment criti-
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Fig. 10. Detecting sensor-level effects for a source with low cross-subject orientation variability in the insula. The same conventions as for Fig. 6 apply. See 

main text for further explanation. 
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ally affect attainable statistical power in MEG. Specifically, we focused

n the spatial properties of the sources and on their variability across

ubjects to examine how these factors affect group-level statistical power

ith classical tests at sensor level. We showed —quite expectedly —that

he distance of the sources to the sensor array has a strong effect on de-

ectability, with deeper sources being virtually undetectable with rea-

onable sample sizes for a single-session MEG experiment. We also ob-

erved another well-known effect, namely that sources oriented radially

re almost undetectable in MEG data, as compared to other orientations.

ost interestingly, we also found effects of source variability in location

nd orientation across subjects, which were not trivial and may also run

ounter to thinking about the detectability of neural sources. Finally,

he type of measure (i.e. amplitude, squared amplitude, or GFP) used to

est for differences also had a notable effect. 

Examining the influence of cross-subject variability, we observed

hat source position variability across subjects had, in fact, little ef-

ect on statistical power, whereas orientation variability (or the lack

hereof) strongly affected statistical power. Signal detectability at sen-

or level thus depends not only on the source origin (position and ori-

ntation), but also on the less well predictable cross-subject variability

t the source origin. Therefore, one take home message for this study is

hat there is no simple solution for finding the optimal number of trials

nd subjects for all types of evoked MEG (or EEG) studies. Considering
11 
ur present results, finding the optimal amount of trials and subjects

or all types of MEG and EEG evoked studies would require consider-

ble further methodological developments. One potential avenue could

e to use Sarvas’s formula ( Sarvas, 1987 ) as a starting point and an-

lytically derive the effects of the properties shown here on statistical

ower. However, there will likely be variations in power across different

rain structures within a single experiment that we believe will make

alculations of power challenging. Thus, we emphasize the importance

f considering the expected brain sources of activity, their anatomical

ocation, and their cross-subject variability while planning studies in

ognitive, social and systems neuroscience. 

Resources such as the present paper (and the code distributed with

t) could be used to predict the required number of subjects for detect-

ng signals coming from a specific region. This should, however, be

pproached with some caution. The present work focuses on the spa-

ial properties of the underlying neural sources. We did not attempt to

odel temporal variability - another important dimension in measur-

ng functional activation. Furthermore, the only form of within-subject

ariability included in our simulations was in the sampled resting state

ata. In a real experimental setting, it would be important to take into

ccount the fact that brain responses may never repeat twice in exactly

he same way. Latencies and spatial locations are likely to be different

rom one trial repetition to the next in any given experimental condi-
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Fig. 11. Detecting sensor-level effects for a source with high cross-subject orientation variability in the posterior superior temporal sulcus. The same 

conventions as for Fig. 6 apply. See main text for further explanation. 

Fig. 12. Detecting sources with varying cross-subject orientation variability. The same conventions as in Fig. 8 apply. See main text for further explanations. 

12 
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ion. Moreover, properties such as source strength may compensate for

ome effects of spatial parameters (e.g., the effect of depth on source

etectability may be compensated by source strength). Thus, all rele-

ant parameters should be considered, when trying to predict statistical

ower for given sources in the real brain. We explicitly ignored these

ypes of variability here in order to keep the problem tractable. Below

e discuss some issues and considerations for planning MEEG studies,

hile keeping these limitations in mind. 

Previous studies have explored the effects of spatial properties from a

ingle-subject signal detection perspective, aiming to provide estimates

f how much MEG signal can be detected given these properties and

he amount of noise in an individual subject’s data ( Ahlfors et al., 2010 ;

oldenholz et al., 2009 ; Hillebrand and Barnes, 2002 ). It was demon-

trated that source depth relative to sensors is the most important fac-

or affecting source localizability, with additional effects due to source

rientation ( Hillebrand and Barnes, 2002 ). Additionally, others have

hown that MEG signal-to-noise varies considerably with source loca-

ion ( Goldenholz et al., 2009 ) and orientation ( Ahlfors et al., 2010 ) in

he brain. Pushing the analysis one step further, our group-level statis-

ics approach takes a pragmatic stance on this issue, speaking directly

o experimenters for whom changes in signal-to-noise ratio are partic-

larly relevant for deciding on sample size, i.e. how many subjects or

rials to include in an experiment. 

It is worthy to note here that although the general reasoning of this

tudy could be directly applied in EEG as well as MEG data, the effects of

ource orientation explored here cannot be directly applied to EEG, since

he EEG field does not suffer from cancelation for radial sources, and

he generally broader topographies elicited in EEG are also less prone

o cancelation due to orientation variability. 

Our study has identified challenges for estimation of statistical power

n simulations of brain activity. Not only are there interdependencies

etween source parameters, but differences also arise due to the chosen

rain activity measure (amplitude, squared amplitude, and GFP). As a

onsequence, we showed here that the source detectability question can-

ot be answered definitively. First, the large effects of spatial properties

cross cortical brain structures on detectability that we observed ( Fig. 2 )

re a major challenge for predicting statistical power. Indeed, not only

o the parameters that we examine greatly vary across the brain (as

hown by Figs. 3 , 4 , 5 and 9 ), but also these parameters are not inde-

endent of one another across the cortical mantle (Supplementary Fig-

re 2). For instance, sources with the shortest distances to sensors also

end to have a radial orientation, as gyral crests are generally found

n the outer surface of the brain. Other regions with mostly tangential

rientations, such as along the central sulcus, can be spatially highly

onsistent across subjects. In contrast, some brain regions have high de-

rees of inter-individual variability due to variations in cortical folding

e.g., pSTS, MT + /V5, inferior parietal cortex; Caspers et al., 2006 ), high

egrees of curvature (e.g., occipital pole), or hemispheric asymmetries

 Croxson et al., 2018 ; Ochiai et al., 2004 ). In addition, some deep brain

tructures, such as the hippocampus, may have less structural variability

cross subjects —this could mitigate some depth issues. 

The choice of signal measure also influenced the ability to detect

ffects at the sensor level. Simple amplitudes seem to allow better de-

ection of deeper structures, while squaring the data, or computing the

FP before contrasting conditions enhances statistical power for more

uperficial sources ( Fig. 2 ). Determining the parameters that govern how

hese transformations affect statistical power was beyond the scope of

he present paper and will be explored in future simulation studies. Al-

ogether, variations of power across the brain for a given sample size

re difficult to predict in practice. 

On a methodological note, we come to a forked path. Is it better to

erform a realistic simulation without being able to fully disentangle the

ource of variations, and eventually obtain a more practical power esti-

ate e.g. needed for planning new studies, grants etc.? Or, is it better

o simulate unconstrained by anatomy, to systematically explore each

arameter without considering interdepencies between source parame-
13 
ers? We believe that there is an important role for both types of simu-

ations —to generate a better understanding of what is being measured,

o that analysis methods can be improved in the future. In the present

ase, using these two types of simulation has shed light on some un-

xpected effects on signal detectability. Specifically, we have observed

npredicted enhancements or decreases in detectability that we would

ot have observed with tightly-controlled anatomically unconstrained

imulations. 

Statistical inference is usually made at the group-level. Predicting the

dequate number of subjects for a given study also implies considering

etween-subject variability in different cortical regions. Although first-

evel spatial properties and their effect on signal are straightforward to

easure and model with Maxwell’s equations, second level properties

nd their effects on group-level statistics are much more challenging to

odel. Our approach was to directly manipulate anatomical variations

n our simulations free from anatomical constraints. Our first observa-

ion was that strictly parallel dipoles tend to combine across subjects,

ven when their position is relatively spread out, thus creating a more

eadily detectable net magnetic field. Randomly oriented dipoles on the

ther hand tend to cancel each other out. Beyond a certain orientation

ariability, statistical power becomes critically low, giving no opportu-

ity to detect a signal even with a large number of subjects. This obser-

ation has an interesting implication: when comparing our whole brain

ower analysis for a sample of 25 subjects ( Fig. 2 ) with the whole brain

ignal-to-noise mapping for a single subject in MEG obtained by Gold-

nholz et al. ( Goldenholz et al., 2009 , their Fig. 2 , first row), at least

wo differences are apparent: First, some regions with high SNR e.g. in

he occipital/parietal cortices, remain hard to detect at the group-level,

t least if one relies on the amplitude difference. Second, other regions

ith low SNR, in particular on the medial and ventral surfaces of the

rain, are readily detectable at the group level (e.g. in anterior cingulate

ortex, or ventromedial prefrontal cortex). We hypothesize that cross-

ubject variability explains these discrepancies. On the one hand, it is

hanks to a particularly consistent source orientation across subjects that

ome regions with low SNR in Goldenholz’ study still show high power

n our study, and on the other hand other regions with high SNR are

ess detectable at the group level due to high variability in source ori-

ntations across subjects. In other words, the poor detectability of some

ortical regions seems to be mitigated by their anatomical consistency

cross subjects (and conversely some highly detectable regions become

ess visible at group level). Most importantly, overall, we believe that

here is no unequivocal answer to the question of an appropriate sample

ize in MEG (or EEG) experiments. Our study highlights the importance

f considering between-subject variability in addition to the long-known

patial properties of sources when it comes to deciding how many sub-

ects and trials to include in an experiment. 

An important point to note regarding the decreased detectability

ith higher between-subject source variability is that it is standard pro-

edure in MEG research to localize sources in individual subjects on their

wn anatomy before combining data for group analysis in source space

 Hari and Puce, 2017 ; Jas et al., 2018 ). Going for source-level analysis

t the individual subject level can avoid a large portion of the problem

f between-subject variability, provided that data at the cortical level

re properly aligned across subjects. Specifically, the cancelation effects

e observe here across subjects when sources of different subjects point

n opposing directions ( Fig. 11 ) should be largely avoided when sources

re estimated in individual subjects first, then aligned across subjects on

 template before being averaged ( Hari and Puce, 2017 ). Further studies

ill have to examine the limits of this reasoning in detail. In particular,

t will be important to examine group-level source detection in detail if

e want to formulate more precise recommendations in the future. 

As mentioned in introduction, a group-level approach has recently

een used by Boudewyn et al. (2018) for EEG data in sensor space, ex-

loring the dependency of statistical power on sample size (subjects and

rials), while focusing on effect size at the electrode level for a set of ERP

omponents. Our approach here is similar, but instead of starting from
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n expected ERP difference at sensor level, we started from the expected

eural source. This complementary approach may allow principled in-

estigations beyond known ERP effects, and could allow a better plan-

ing of studies targeted at activating specific brain regions. It also has

otentially strong practical implications as power analyses are usually

andatory in grant applications, or for preregistering studies. 

Another important aspect to consider for future studies will be that

f spatially extended sources. Here, we only modelled dipoles at single

ertices —a limitation of our study. Although dipolar sources are easy

o model and often used to appreciate detectability, more realistic ex-

ended patches of activity can have a difficult-to-predict net effect at sen-

ors. For instance, such extended patches that occur in the homologous

egions of the two hemispheres on the mesial wall, or that are spread

cross opposite walls of a sulcus, can show relatively lower detectabil-

ty due to opposite sources cancelling each other out ( Ahlfors et al.,

010 ; Fuchs et al., 2017 ; Hari and Puce, 2017 ). It should be noted,

owever, that functional area borders often tend to follow gyral and

ulcal crests, making synchronous activation on both sides of a sulcus

ess likely ( Destrieux et al., 2010 ; Glasser et al., 2016 ). The detectability

f extended sources at the group-level in such cortical regions needs to

e explored in the future for additional practical recommendations. 

High-temporal resolution is desirable in clinical and research stud-

es of cognitive and social neuroscience. This is particularly true where

he precise detection of timely neural activity is key, such as in detecting

ources of epileptogenic spikes and seizures, as well as in hyperscanning

nd naturalistic protocols. It will therefore be of importance to extend

xplorations of statistical power to the time domain, in order to char-

cterize how it may change over time, particularly before and imme-

iately after stimulus onset, and examine effects on group-level signal

etectability at specific latencies. Moreover, we think that investiga-

ions in sensor space will remain important in the foreseeable future,

n addition to those in source space, because portable EEG and room

emperature MEG studies are more likely to use relatively low numbers

f sensors, making it potentially unrealistic to transform these data into

ource space. 

Given the current emphasis on whole-brain data collection in cog-

itive, social and systems neuroscience, the explosion of network sci-

nce based data analyses ( Bassett and Sporns, 2017 ), and the modula-

ion of activation as a function of perceptual and cognitive manipula-

ions ( Medaglia et al., 2015 ), it is important to understand how statis-

ical power can vary across the brain and the critical dimensions along

hich these variations occur. Critically, the statistical power for detect-

ng activity across a given network will at most be only as good as its least

etectable node . It is thus important while planning an experiment to con-

ider sample size in regard with the set of brain regions believed to be

nvolved, especially when envisioning a network analysis. We hope that

he present paper helps raising awareness about this and provides help-

ul information to the researchers for deciding on trial and subject num-

ers while balancing on experiment duration and budget constraints. 
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Supplementary Results 
 

Choice of signal measure differentially affects  statistical power 

throughout the brain 

Supplementary Figure 1 below shows the difference in estimated statistical power between 

three types of signal measures. a. Amplitude vs. squared amplitude (depicting the difference 

between Figure 2a and Figure 2b in main text). b. Amplitude vs. GFP (depicting the difference 

between Figure 2a and Figure 2c in main text) c.	Squared amplitudes vs. GFP (depicting the 

difference between Figure 2b, and Figure 2c in main text). 
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Supplementary Figure 1: Difference in estimated statistical power across the cortical 
surface, depending on the chosen signal measure. We considered the statistical power for  
detecting (at MEG sensor level) activity generated by a single dipole placed in turn at every 
possible cortical position, in simulated experiments with 25 subjects with 50 trials each. This 
activity was measured as signal amplitude, squared signal amplitude, or GFP, and statistical 
power, computed for each type of measure (as illustrated in Figure 2 in the main text). We then 
computed the difference in statistical power obtained for each type of measure. Images of superior, 
left lateral, left medial, anterior, posterior, and inferior brain views are depicted. a. Difference in 
statistical power between amplitude and squared amplitude measures. b. Difference in statistical 
power between amplitude and GFP measures. c. Difference in statistical power between squared 
amplitudes and GFP. 

 

Covariation among first- and second-level spatial properties 

The spatial source properties used in the study strongly covary in a way that is not linearly 

determined. Characterizing these covariations is beyond the scope of this paper, but is 

illustrated in the figure below. 
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Supplementary Figure 2: Covariation among spatial properties of sources across the brain. 
The diagonal histograms show the distribution of each property (averaged across subjects), 
reproducing the insets in Figures 3, 4, 5, and 9 of the main text. The off-diagonal scatterplots show 
the covariation amongst every pair of variables. Note that the figure is symmetrical along its 
diagonal. 
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Manipulating ‘first-level’ spatial source properties  

The observed heterogeneity of statistical power across the brain [see Figure 2 main text] calls 

for a better understanding of the influence of source properties on detectable responses at	the	

sensor	level. In this Supplementary Results section, we display the results of simulations for 

first-level properties i.e. source position and orientation. We present two example locations in 

the brain to illustrate realistic variations in each property. These realistic variations are 

always concomitant with changes in other properties. We therefore also ran simulations for 

each source property unconstrained by brain anatomy. 

Distance 

Based on physics, the distance to sensors is expected to have a large effect on signal 

amplitude, and thus on detectability of brain responses at sensor level (Hämäläinen, Hari, 

Ilmoniemi, Knuutila, & Lounasmaa, 1993; Hillebrand & Barnes, 2002; Malmivuo, Suihko, & 

Eskola, 1997). Here we illustrate how group-level statistical power changes with the numbers 

of subjects and trials for a 10 nA.m dipole placed in two locations—one in the middle frontal 

gyrus and the other in the orbitofrontal gyrus. 

The first location in the middle frontal gyrus (x=71, y=21, z=41 mm) is at a distance of 5.6 cm 

to the closest sensor (on average across subjects). Supplementary Figure 3 presents 

simulation results for this dipole. An identical figure structure will be repeated for illustration 

of other source locations in the figures that follow. Supplementary Figure 3a displays the 

chosen dipoles across the 89 subjects of the HCP MEG dataset as well as the average dipole 

across all subjects. The position variability across subjects can be well seen in these top 

panels, as well as in Supplementary Figure 3b, which shows the histogram of dipole positions 

relative to the average position across subjects, indicating that the dipoles spread within +/- 

10 mm from the average position in most subjects. Similarly, Supplementary Figure 3c shows 
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the distribution of dipole orientations with respect to the closest point on the subjects' head 

across subjects. This plot indicates that the orientation for the chosen middle frontal gyrus 

dipole is on average 69° away from the radial orientation (i.e. away from the orientation that 

points exactly in the same direction as the closest sensor). Supplementary Figure 3d shows 

the average projection of this dipole to the sensor array, revealing a high signal amplitude at 

frontal sensors. This amplitude, when added to the resting state data could be detected with a 

standard paired t-test across subjects (corrected for multiple comparisons across sensors) 

against resting state data alone, with the estimated statistical power level shown in 

Supplementary Figure 3e for varying numbers of subjects and trials. In this particular case, 

achieving 80% power to detect the dipole signal requires at least 20 subjects with ~50 trials 

per subject, or up to 50 subjects with only 10 trials per subject. When using the difference of 

squared amplitudes at sensors to compare conditions, statistical power was decreased for all 

trial and subject numbers. When using the difference of GFP, statistical power was affected 

less dramatically in this case. 
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Supplementary Figure 3. Detecting sensor-level effects for a source close to the sensors in 
the middle frontal gyrus. a. positions of individual dipoles in 89 subjects (red arrows) are 
represented on the average brain in a superior overall view, and in zoomed superior, lateral, and 
posterior partial brain views. The bold black arrow in each panel shows the resultant vector or 
average dipole across 89 subjects. b. Histogram of the distance of each dipole to the mean 
position of all dipoles in the three cartesian dimensions. c. Polar histogram of the 
orientations of the individual dipoles relative to the orientation of the closest point on the 
sphere encompassing the subjects' head. Azimuth and elevation are referenced to the closest 
point on the sphere surface, so an orientation orthogonal to that of the sphere encompassing the 
subjects' head is shown as tangential (90°), and the colinear orientation is shown as radial (0°). 
The black thick line coming outwards from the center of the plot represents the orientation and 
length of the resultant vector scaled so that a resultant vector of length 1 (if all dipoles were strictly 
collinear and pointing in the same direction) would span the whole radius of the plot. d. Average 
projection of the dipoles in sensor space. Black circles identify sensor positions on the 
topographical view; the nose is at the top of the view, and the left side of the head appears on the 
left. The color bar indicates the strength of magnetic field exiting (red) and entering (blue) the head 
in femtoTeslas (fT). e. Power contour plots for tests on simple amplitude differences. Color 
represents the statistical power estimated by Monte Carlo simulations, i.e. the number of significant 
tests divided by the number of simulations (500) for all tested combinations of trial and subject 
numbers. Black isocontour lines on the plots highlight spline-interpolated power estimates of 0.5 
and 0.8. f. Power contour plots for tests on differences of squared amplitudes. The same 
conventions as in e apply. g. Power contour plots for tests on differences in GFP. The same 
conventions as in e apply.  
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After examining the effects on statistical power of this relatively close-to-sensors dipole, we 

now turn to the detection of a deeper dipole, situated in the orbitofrontal gyrus (Suppl. Fig 4, 

x=44, y=13, z=7), at a distance of 8.4 cm from the closest sensor (on average across subjects). 

Compared to the previous location just described, in spite of its slightly more consistent 

location (Suppl. Fig 4b) and orientation (Suppl. Fig 4c) across subjects, and an almost 

tangential orientation (85° away from the radial orientation), the signal from this dipole 

projects with a much weaker amplitude to the sensor array (Suppl. Fig 4d). It is accordingly 

less well detected than the previous dipole (Suppl. Fig 4e). At least 25 subjects with 90 trials 

each, or 50 subjects with at least 40 trials each are necessary to detect this dipole with 80% 

statistical power. When squaring amplitudes before computing their difference to compare 

conditions, statistical power was generally decreased for all trial and subject numbers. When 

using the difference of GFP, statistical power was decreased even further. 
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Supplementary Figure 4:  Detecting sensor-level effects for a deep source in orbitofrontal 
cortex. The same conventions as for Supplementary Figure 3 apply. See supplementary text for 
further explanation. 

 

The two anterior frontal dipole locations presented above illustrate qualitatively the effect of 

distance to the sensors, but also highlight a clear limitation of this first approach of describing 

the effect of source properties on statistical power. Given how dipole properties covary in 

realistic source models across brain regions, it is nearly impossible to disentangle the 

respective contributions of distance, orientation, and their variability across subjects with 

these realistic source models. Therefore, we turned to a more selective manipulation of the 

distance to sensors by eliminating individual variation in other source properties—due to 

constraints of individual brain anatomies—in our simulations that appear below.  
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We selectively placed sources at set distances from sensors, along a radius running from an 

initial  source position in the precentral sulcus (x=-12, y=33, z=70; a region close to sensors, 

detected with high power, as we later discuss; see Supplementary Figure 6) towards the 

center of the head, and ran simulations in the same way as before. Supplementary Figure 5 

shows the effect of this manipulation on statistical power for distances to the closest sensor 

ranging from 4 to 12 cm. For all distances explored, dipoles were arranged in strictly the same 

orientation and relative positions (spatial variability in this case came only from the position 

variability of the initial source, Supplementary Figure 6a). The projected signal at sensors is 

illustrated in Supplementary Figure 5b, showing the sole effect of distance to sensors on 

signal amplitude. Finally, Supplementary Figure 5c shows how estimated statistical power 

varies across the distance parameter in these simulations. Note that our goal here is not to 

make a specific claim about statistical power at any specific distance, but rather to show how 

power varies with distance. In fact, we used dipoles with an amplitude of 5 nA.m in those 

simulations, i.e. half the amplitude used in the simulations constrained by anatomy, so as to 

not saturate completely the power plots. Under these conditions, our simulations show that 

distance to sensors greatly affects detectability: Sources that could be detected with 100% 

power for any number of trials above 10 in as few as 10 subjects when placed at 4 cm from 

the closest sensor were almost undetectable when placed at 10 cm away.  
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Supplementary Figure 5. Detecting sensor-level effects for  sources at varying distances 
from the sensors. a. Locations of individual dipoles. Source dipoles in 89 subjects (colored 
arrows) are represented on an individual head model (pinkish inner surface) relative to sensor 
positions (black open circles on outer surface). The source dipoles were placed at five equally 
spaced distances ranging from 40 to 120 mm from the sensor closest to an initial source in the 
precentral sulcus (see text), towards the center of the head (origin of the coordinate system). b. 
Average projection of the dipoles in sensor space. The same conventions as in Supplementary 
Figure 2d apply. c. Power contour plots obtained by Monte Carlo simulations at each 
location, for amplitude measures. The same conventions as in Supplementary Figure 3e apply. 

 

Orientation 

Here, we use the same logic and display format as in the previous section. Based on physics, 

we expected the orientation of the sources relative to that of the head surface to have a large 

effect on signal amplitude (Hämäläinen et al., 1993; Hillebrand & Barnes, 2002; J. A. Malmivuo 

& Suihko, 2004), and thus on detectability.  

We illustrate the effect of source orientation relative to sensors on group-level statistical 

power by examining two 10 nA.m dipoles at closeby locations in the precentral region, one in 

the posterior bank of the precentral sulcus, and the other on the gyral crest of the precentral 

gyrus . Each of these locations have very similar spatial properties, except for their orientation 

relative to the head surface. The sulcal source (x=-12, y=33, z=70) is close to a tangential 

orientation, while the gyral source (x=-4, y=37, z=78) is closer to a radial orientation. Our 

simulations show how the detectability of MEG signals at sensor level varies across numbers 

of subjects and trials for these two dipoles, as shown on the power plots of Supplementary 

Figures 6e and 7e. From these example sources, the effect of orientation appears to be 

dramatic, with 80% power for as little as 15 subjects and 40 trials, or 10 trials in 40 or more 

subjects for the first (more tangential) dipole, and no sufficient number of subjects and trials 

in our simulations to reach 80% power for the second (more radial) dipole. This illustrates 

the well-known effect of source orientation on MEG signal (Cohen & Hosaka, 1976). When 

squaring amplitudes prior to computing their difference, statistical power was decreased for 
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all trial and subject numbers for the source close to tangential orientation, and increased for 

the source close to radial orientation. In contrast, for the source close to radial in orientation, 

power was generally greater.  When computing GFP prior to computing the difference, 

statistical power was affected less dramatically for the source close to tangential orientation, 

but greatly increased for the source close to a radial orientation. 

 

Supplementary Figure 6.  Detecting sensor-level effects for a tangential source in the 
precentral sulcus. The same conventions as for Supplementary Figure 3 apply. See 
supplementary text for further explanation. 
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Supplementary Figure 7.  Detecting sensor-level effects for a radial source in the precentral 
gyrus. The same conventions as for Supplementary Figure 3 apply. See supplementary text for 
further explanation. 

 

We now turn to a more selective manipulation of orientation by eliminating individual 

anatomical variation. Here, we chose a source at a set position and oriented it at set angles 

with respect to the closest point on a sphere encompassing the subject's head. We then ran 

simulations in the same way as previously. Supplementary Figure 8 shows the effect of this 

manipulation on statistical power for five equally spaced orientations ranging from 0° to 90°, 

starting from an original orientation strictly tangential to head surface, and progressively 

tipping around the y axis (passing through both ears), up to an orthogonal orientation 

(approximately tangential to the sphere encompassing the subjects' head; Supplementary 
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Figure 8a).  The projected signal at sensor level is illustrated in Supplementary Figure 8b, 

showing the effect of source orientation on signal amplitude. The most radial sources (left) 

produce a simulated signal that is about 10 times smaller than the most tangential sources 

(right), although with similar topography. Finally, Supplementary Figure 8c shows how 

estimated statistical power varied in these simulations from a situation where signal could 

never be detected above 40% with the number of subjects and trials explored for radial 

source orientations, to a situation where any number of trials above 10 to 20 in 15 or more 

subjects yielded 100% estimated power for tangential source orientations. Noteworthy, the 

decrease in detectability is narrowly focused at the radial orientation. A mere 22.5° shift away 

from this orientation (second orientation from the left in Supplementary Figure 8) produces a 

major improvement in detectability, with 80% power reached with for instance 50 trials in 20 

subjects. 

 

 

Supplementary Figure 8. Detecting sensor-level effects for sources at varying orientations 
with respect to sensors. The same conventions as in Supplementary Figure 3 apply. Orientations 
vary from 0°, i.e. radial orientation, on the left, to 90°, i.e. tangential orientation, in 5 equally spaced 
angles (0, 22.5, 45, 67.5, 90°). See supplementary text for further explanations. 
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In summary, these supplementary results allowed us to explore the effect of the position and 

orientation of dipolar sources—our so-called "first-level properties". Quite predictably, we 

found that these first-level properties have a strong impact on signal detectability.  

 

References 

Cohen, D., & Hosaka, H. (1976). Part II magnetic field produced by a current dipole. Journal	of	

Electrocardiology, 9(4), 409–417. https://doi.org/10.1016/S0022-0736(76)80041-6 

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). 

Magnetoencephalography—Theory, instrumentation, and applications to noninvasive 

studies of the working human brain. Reviews	of	Modern	Physics, 65(2), 413–497. 

https://doi.org/10.1103/RevModPhys.65.413 

Hillebrand, A., & Barnes, G. R. (2002). A Quantitative Assessment of the Sensitivity of Whole-

Head MEG to Activity in the Adult Human Cortex. NeuroImage, 16(3, Part A), 638–650. 

https://doi.org/10.1006/nimg.2002.1102 

Malmivuo, J. A., & Suihko, V. E. (2004). Effect of Skull Resistivity on the Spatial Resolutions of 

EEG and MEG. IEEE	Transactions	on	Biomedical	Engineering, 51(7), 1276–1280. 

https://doi.org/10.1109/TBME.2004.827255 

Malmivuo, J., Suihko, V., & Eskola, H. (1997). Sensitivity distributions of EEG and MEG 

measurements. IEEE	Transactions	on	Biomedical	Engineering, 44(3), 196–208. 

https://doi.org/10.1109/10.554766 

 


	Chaumon_StatPower_MEG_NIMG2021_published
	Chaumon_StatPower_MEG_NIMG2021_SupplMat

