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A B S T R A C T

Brain-computer interfaces (BCIs) have been largely developed to allow communication, control, and neurofeed-
back in human beings. Despite their great potential, BCIs perform inconsistently across individuals and the neural
processes that enable humans to achieve good control remain poorly understood. To address this question, we
performed simultaneous high-density electroencephalographic (EEG) and magnetoencephalographic (MEG) re-
cordings in a motor imagery-based BCI training involving a group of healthy subjects. After reconstructing the
signals at the cortical level, we showed that the reinforcement of motor-related activity during the BCI skill
acquisition is paralleled by a progressive disconnection of associative areas which were not directly targeted
during the experiments. Notably, these network connectivity changes reflected growing automaticity associated
with BCI performance and predicted future learning rate. Altogether, our findings provide new insights into the
large-scale cortical organizational mechanisms underlying BCI learning, which have implications for the
improvement of this technology in a broad range of real-life applications.
1. Introduction

Voluntarily modulating brain activity is a skill that can be learned by
capitalizing on the feedback presented to the user. Such an ability is
typically used in neurofeedback control to self-regulate putative neural
substrates underlying a specific behavior, as well as in brain-machine
interfaces, or brain-computer interfaces (BCIs) (McFarland and Wol-
paw, 2018), to directly regulate external devices. Despite the potential
impact, from elucidating brain-behavior relationships (Shibata et al.,
2011) to identifying new therapeutics for psychiatric (Kim and Bir-
baumer, 2014) and neurological disorders (Pichiorri et al., 2015; King
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et al., 2013), both neurofeedback and BCIs face several challenges that
affect their usability. This includes inter-subject variability, uncertain
long-term effects, and the apparent failure of some individuals to achieve
self-regulation (Vidaurre and Blankertz, 2010). To tackle these issues,
investigators have searched for better decoders of neural activity (Lotte
et al., 2018) as well as for psychological factors (Kleih et al., 2010) and
appropriate training regimens (Jeunet et al., 2016) that can influence the
user’s performance. On the other hand, neuroplasticity is thought to be
crucial for achieving effective control and this has motivated a deeper
understanding of the neurophysiological mechanisms of neurofeedback
and BCI learning (Sitaram et al., 2016). At small spatial scales, the role of
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cortico-striatal loops with the associated dopaminergic and gluta-
matergic synaptic organization has been demonstrated in human and
animal studies suggesting the procedural nature of neurofeedback
learning (Koralek et al., 2012). At larger spatial scales, evidence sup-
porting the involvement of distributed brain areas related to control,
learning, and reward processing has been provided in fMRI-based neu-
rofeedback experiments (Emmert et al., 2016). Recently, a motor imag-
ery (MI) BCI study based on ECoG recordings showed that successful
learning was associated with a decreased activity in the dorsal premotor,
prefrontal, and posterior parietal cortices (Wander et al., 2013). To date,
however, the evolution of large-scale cortical network changes during
BCI training has not been tested directly.

On the above-mentioned grounds, we hypothesized that BCI learning
would result from a large-scale dynamic brain connectivity reorganiza-
tion. More specifically, based on previous evidence documenting user’s
transition from a deliberate mental strategy to nearly automatic execu-
tion (Sitaram et al., 2016), we expected that the reinforcement of activity
in the cortical areas targeted by the BCI would be accompanied by a
progressive decrease of functional integration in regions associated with
the cognitive processes of human learning (Seger and Miller, 2010).
Furthermore, we hypothesized that the characteristics of such network
changes would contain valuable information for the prediction of the BCI
learning rate.

To test these predictions, we simultaneously recorded high-density
EEG and MEG signals in a group of naive healthy subjects during a
simple MI-based BCI training consisting of 4 sessions over 2 weeks. For
both EEG and MEG, we derived cortical activity signals by performing
source-reconstruction and we studied the longitudinal task-modulated
changes in different frequency bands. Specifically, we evaluated the
spatial extension of the activated cortical areas as well as the regional
connectivity strength over time. Finally, we tested their relationships
with learning as measured by the BCI performance.

2. Materials and methods

2.1. Participants and experiment

Twenty healthy subjects (aged 27.5 � 4.0 years, 12 men), all right-
handed, participated in the study. Subjects were enrolled in a longitu-
dinal EEG-based BCI training (twice a week for two weeks). All subjects
were BCI-naive and none presented with medical or psychological dis-
orders. According to the declaration of Helsinki, written informed con-
sent was obtained from subjects after explanation of the study, which was
approved by the ethical committee CPP-IDF-VI of Paris. All participants
received financial compensation at the end of their participation (around
30 euros per hour).

The BCI task consisted of a standard 1D, two-target box task (Wolpaw
et al., 2003) in which the subjects modulated their α [8–12 Hz] and/or β
[14–29 Hz] activity to control the vertical position of a cursor moving
with constant velocity from the left to the right side of the screen. To hit
the up-target, the subjects performed a sustained motor imagery of
right-hand grasping (MI condition) and to hit the down-target they
remained at rest (Rest condition). Each run consisted of 32 trials with up
and down targets, consisting in a grey vertical bar displayed on the right
part of the screen, equally and randomly distributed across trials. Each
session was divided into two phases (see Supplementary Materials
Fig. S1):

1. The training phase consisted of five consecutive runs without any
feedback. For a given trial, the first second corresponded to the inter-
stimulus interval (ISI), while the target was presented during the
subsequent 5 s. From the data obtained during this phase, contrast
maps between conditions were computed for each bin comprised
between 5 and 40 Hz to elicit the features, i.e. (channel; frequency)
couples of interest that best discriminate the subjects’ mental state
over the left motor area and within the mu-beta frequency ranges (see
2

Supplementary Materials Fig. S2). For that purpose, we used the R-
square as a metric of such a discrimination between the conditions. To
avoid redundant information in the classification, we only selected
the couples that show the highest R-square values (typically two
channels associated with two frequency bins each). As a rule of
thumb, from four to six features were manually chosen (Schalk et al.,
2004)).

2. The testing phase consisted of six runs with a cursor feedback. For a
given trial, the first second corresponded to the ISI, while the target
was presented throughout the subsequent 5 s, just as in the training
phase. The visual feedback, displayed from 3 s to 6 s, consists of a
cursor that starts from the left-middle part of the screen and moves
with a fixed velocity to the right part of the screen. The subjects were
asked to control the vertical position by modulating their brain ac-
tivity. During our experiments, the online features (i.e. power spectra
estimated by an autoregressive model based on the Maximum En-
tropyMethod (Kay, 1988) every 28ms on time window of 0.5 s with a
model order of 28) were classified by using the Linear Discriminant
Analysis (LDA) method. The classifier was retrained in each session
based on the (channel; frequency bin) couples preselected during the
on-going session. Its output enabled the control of the vertical posi-
tion of the moving cursor through the linear combination of power
spectra computed at the pre-selected (channel; frequency bin) couples
by applying the moving average method (Ramoser et al., 2009). The
present work relies only on the data obtained from the testing phase.

Experiments were conducted with a 74 EEG-channel system, with Ag/
AgCl passive sensors (Easycap, Germany) placed according to the stan-
dard 10-10 montage. EEG signals were referenced to mastoid signals,
with the ground electrode located at the left scapula, and impedances
were kept lower than 20kOhms. A system composed by 102 magne-
tometers and 204 gradiometers collected MEG data (Elekta Neuromag
TRIUX MEG system). EEG and MEG signals were simultaneously recor-
ded in a magnetic shielded room with a sampling frequency of 1 kHz and
a bandwidth of 0.01–300 Hz. The amplification of the EEG signals was
directly performed by the Elekta acquisition system. To digitize the head
positions, we used the Polhemus Fastrak digitizer (Polhemus, Colchester,
VT). Nasion, left and right pre-auricular points were used as landmark
points to provide co-registration with the anatomical MRI. Four Head
Position Indicator (HPI) coils were attached to the EEG cap. The subjects
were seated in front of a screen at a distance of 90 cm. To ensure the
stability of the position of the hands, the subjects rested their arms on a
comfortable support, with palms facing upward. We also recorded elec-
tromyogram (EMG) signals from the left and right arm of the subjects.
Expert bioengineers visually inspected EMG activity to ensure that sub-
jects were not moving their forearms during the recording sessions. We
carried out BCI sessions with EEG signals transmitted to the BCI2000
toolbox (Schalk et al., 2004) via the Fieldtrip buffer (Oostenveld et al.,
2010). To obtain accurate head models using surface-based alignment
(Gross et al., 2013), individual T1 sequences (256 sagittal slices, TR ¼
2.40 ms, TE ¼ 2.22 ms, 0.80 mm isotropic voxels, 300 � 320 matrix; flip
angle ¼ 9�) have been obtained by using a 3T Siemens Magnetom
PRISMA after the fourth session. The experiments consisted of a 15
min-resting-state task. Images were preprocessed via the FreeSurfer
toolbox (Fischl, 2012) and directly imported (15002 vertices) to the
Brainstorm toolbox. In this work, we used the Destrieux atlas (Destrieux
et al., 2010). We digitized the location of the EEG electrodes using the
FastTrak 3D digitizer (Polhemus, Inc., VT, USA), the landmarks (nasion,
left and right preauricular points), and at the scalp. We aligned these
locations with the MRI using the Brainstorm toolbox (Tadel et al., 2011).

Several neurocognitive questionnaires were proposed to subjects to
assess their specific traits such as the self-esteem (Rosenberg, 1965), and
the global motivation (Guay et al., 2003), as well as the ability to perform
a motor imagery task (Roberts et al., 2008). Before each session, the
subjects’ anxiety was also measured (Spielberger et al., 1983). To rein-
force the learning and to improve the subjects’ autonomy (Lotte et al.,
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2013), the subjects were asked to train at home and alone with a 10-min
video, which corresponded to 3 training runs without any provided
feedback, each day between two sessions. Between two sessions, a new
video was sent to the subjects.

2.2. M/EEG preprocessing and source reconstruction

MEG signals were first preprocessed by applying the temporal
extension of the Signal Space Separation (tSSS) to remove environmental
noise with MaxFilter (Taulu and Simola, 2006). MEG and EEG signals
were downsampled to 250 Hz before performing an ICA (Independent
Components Analysis) with the Infomax approach using the Fieldtrip
toolbox (Bell and Sejnowski, 1995; Oostenveld et al., 2010). The number
of computed components corresponds to the number of channels, i.e. 72
for EEG (T9 and T10 were removed). Only the independent components
(ICs) that contain ocular or cardiac artifacts were removed. The selection
of the components was performed via a visual inspection of the signals
(from both time series and topographies). On average, 2 ICs were
removed. Data were then segmented into epochs of 7 s corresponding to
the trial period. Our quality check was based on the variance and the
visual inspection of the signals. For each channel and each trial, we
plotted the associated variance values. We kept a ratio below 3 between
the noisiest and the cleanest trials. The percentage of removed trials was
kept below 10% of the total number of trials (Gross et al., 2013).

After having average referenced the signals, we performed source
reconstruction by computing the individual head model with the
Boundary Element Method (BEM) (Fuchs et al., 2001; Gramfort et al.,
2010). BEM surfaces were obtained from three layers associated with the
subject’s MRI (scalp, inner skull, outer skull) that contain 1922 vertices
each. Then, we estimated the sources with the weighted Minimum Norm
Estimate (wMNE) (Fuchs et al., 1999; Lin et al., 2006; Gramfort et al.,
2014) using the Brainstorm toolbox (Tadel et al., 2011). Here, we used
the identity matrix as the noise covariance matrix. The minimum norm
estimate corresponds in our case to the current density map. We con-
strained the dipole orientations normal to the cortex. To perform the
group analysis, we projected the sources estimated on each subject, and
each session, onto the common template anatomy MNI-ICBM152 (Maz-
ziotta et al., 2001) via Shepard’s interpolation. From these estimated
signals, we computed the associated power spectra. To identify the
anatomical structures associated with the obtained clusters without
restricting our work on motor or sensorimotor areas, we used the Des-
trieux atlas (Destrieux et al., 2010).

2.3. Band power and connectivity metrics. Statistical analysis

For each subject, session, and trial in the source space, we computed
the power spectra. We used the Welch method with a window length of 1
s and a window overlap ratio of 50% applied during the feedback period
that ranged from t ¼ 3 s to t ¼ 6 s. In the case of the group analysis
presented in Fig. 2A, we worked within the ICBM152-MNI template.
Elsewhere, we used the individual anatomical space. To take into account
the subjects’ specificity when defining frequency ranges (Klimesch,
1999), we used a definition of the α and β bands that relies on the In-
dividual Alpha Frequency (IAF) obtained from a resting-state recording
that lasted 3 min (with the subjects’ eyes open). Similarly to (Pichiorri
et al., 2015), the IAF corresponds to the first peak of the power spectrum
between 6 and 12 Hz. The α1 ranges from IAF - 2 Hz to IAF, α2 from IAF to
IAF þ2 Hz, β1 from IAF þ2 Hz to IAF þ11 Hz and β2 from IAF þ11 Hz to
IAFþ20 Hz. Eventually, we averaged the power spectra values across the
frequency bins within each predefined band.

To perform the analysis presented in Fig. 2B, we computed statistical
differences among activations recorded in the MI and the rest conditions
at the group level or at the subject level via a paired t-test. Since we
expected a desynchronization between the two conditions, we applied a
one-tailed t-test. Statistics were corrected for multiple comparisons using
the cluster approach (Oostenveld et al., 2010; Tadel et al., 2011). We
3

fixed the statistical threshold to 0.05, a minimum number of neighbors of
2 and a number of randomization of 500, which lead to stable results
(Pernet et al., 2015). Clustering was performed on the basis of spatial
adjacency. Cluster-level statistics were obtained by using the sum of the
t-values within every cluster. To obtain the relative power ΔP; we
computed the relative difference, in terms of power spectra, between the
two conditions, as follows: ΔP ¼ 100 � PMI�PRest

PRest
; where PMI and PRest

correspond, respectively to the averaged power calculated across the
cluster from MI and Rest trials. The cluster size CS was obtained by
estimating the number of cortical vertices that belong to the cluster that
presented the best discrimination between the conditions. To perform the
study for each condition separately (Fig. 2), we normalized the power
spectra with respect to the inter-stimulus interval (ISI) with the Hilbert
transform, similar to the approach reported in (Wander et al., 2013).

The connectivity analysis (Fig. 3) was based on the cross-spectral
estimation computed with the Welch method. To reduce dimension-
ality, we extracted the first principal component obtained from the power
spectra calculated across the dipoles within each ROI. Then, we
computed the imaginary coherence between each pair of ROIs based on
the definition proposed in (Sekihara et al., 2011). From the resulting
connectivity matrix, we next computed the relative node strength ΔN

similarly to what we did for the relative power. The strength of the i-th
node was here calculated by summing the values of the i-th row of the
connectivity matrix.

To evaluate the session effect on BCI scores, ΔP, CS, and ΔN one-way
repeated non-parametric ANOVAs were applied with the session number
as the intra-subject factor. The computation of the p-values was based on
the bootstrapping approach with 200 repetitions (Delorme and Makeig,
2004). In the specific case of ΔN , the ANOVA was performed separately
for each ROI.

To estimate the correlations between BCI scores and, respectively, ΔP,
CS, and ΔN , we performed repeated-measures correlations (Bakdash and
Marusich, 2017) which control for non-independence of observations
obtained within each subject without averaging or aggregating data. In
the specific case of ΔN , the correlation analysis was performed separately
for each ROI. Results presented in sections 3.3 and 3.4 referred to a
statistical threshold of 0.05 corrected for multiple comparisons by
adopting a false discovery rate (FDR) criterion (Benjamini and Yekutieli,
2001), which is a method extensively used in biological studies (McAuley
et al., 2009; Sanders et al., 2012; Matthews and Farewell, 2015) (the
associated p values are noted pFDR).

3. Results

3.1. Behavioral performance and BCI controlling features

At the beginning of each experimental session, we identified the
controlling EEG features among the electrodes over the contra-lateral
motor area and within the standard α and β frequency ranges during a
calibration phase (SI Fig. S2). We found that the ability to control the BCI
significantly increased across sessions (days) but not within sessions
(hours) (SI Fig. S3). The session effect was also present when we aver-
aged the BCI accuracy scores across the runs of each session (one-way
ANOVA, F3;57 ¼ 13:9; p ¼ 6:56:10�7). Despite the expected high inter-
subject variability (> 8:95%), 16 subjects out of 20 learned to control
the BCI by the end of the training, with accuracy scores above the chance
level of 57% (Müller-Putz et al., 2008) (Fig. 1A and SI Table S1).

We next investigated the characteristics of the EEG controlling fea-
tures. From a spatial perspective, the electrodes above the primary motor
area of the right hand (C3 and CP3) tended to better discriminate the MI
and Rest mental states (Fig. 1B). The most discriminant frequencies
occurred between high- α and low-β ranges (Fig. 1B). These results are in
line with previous studies (Neuper and Pfurtscheller, 2001). Notably, we
observed a progressive focus over CP3 and low-β ranges throughout the
sessions.
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Among the demographical and psychological items that we measured
before the experiment, only the kinesthetic imagery score (Roberts et al.,
2008) was moderately correlated with the ability of subjects to control
the BCI (Spearman, r ¼ 0.45, p ¼ 0.045, not significant after FDR
correction). However, these items were not correlated with the evolution
of BCI accuracy over time (SI Table S2), and it is possible that a more
complete psychological assessment could determine BCI performance
(Jeunet et al., 2015).
3.2. Reinforcement of sensorimotor cortical activity during BCI training

We evaluated the spatiotemporal cortical changes associated with the
BCI training by performing a statistical analysis of the MEG and EEG
signals at the source-space level. Separately for each neuroimaging mo-
dality, we computed the associated task-related brain activity by statis-
tically comparing the power spectra of theMI versus the Rest condition in
each session, across subjects. In both α and β frequency ranges, we found
a progressive involvement of EEG sources in the cortical hemisphere
contralateral to the movement (Fig. 2). The involved regions exhibited a
significant power decrease (p < 0.025), a phenomenon known as event-
related desynchronization (ERD) which reflects sensorimotor brain ac-
tivity (Lopes da Silva, 2013).

In session 3, ERDs were particularly significant in the α2 and β1
frequency bands, and mainly spanned the primary sensorimotor cortex
(pre- and postcentral gyri, central sulcus, inferior and superior parts of
the precentral sulcus) and secondary higher-order premotor and so-
matosensory areas (Fig. 2 and SI Figs. S5 and S8). At the end of training,
ERDs were more localized in the contralateral paracentral lobule, pre-
central gyrus, and superior parietal lobule (Fig. 2 and SI Figs. S5 and S9),
which are typically involved in hand motor tasks (Yousry et al., 1997) as
well as in motor imagery (Solodkin et al., 2004; Lotze and Halsband,
2006) and motor learning (McDougle et al., 2016). No other comparable
significant differences were observed in the other frequency bands (SI
Fig. S5).

To quantify these changes at the individual level, we calculated in
each subject the size CS and the relative power ΔP of the most significant
ERD cluster. These quantities exhibited a significant session effect only in
the α and β frequency ranges (p < 0.03, SI Table S3). Notably, BCI
training was accompanied by a reinforcement of task-related activity (CS

and ΔP), including areas that are mainly within the sensorimotor terri-
tory. These longitudinal changes were explained by the significant
decrease of relative power in the MI condition
(F3;57 ¼ 4:82; p ¼ 0:003; F3;57 ¼ 3:09; p ¼ 0:024 respectively in the α2
Fig. 1. (A) Evolution of BCI performance over sessions. Individual performance is
correctly hit targets) of the 96 trials in each session. In the violin plots, the black line
distribution. The horizontal dashed grey line shows the chance level (57%), which i
controlling features across all subjects. On the left, we show occurrences obtained acr
occurrences in terms of frequency bins selected over the sessions.
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and β1 bands), while the Rest condition did not vary across sessions (α2)
or varied with lower extent compared to MI (β1) (Fig. 2). These findings
confirm that during the training the subjects actually focused on how to
perform MI of the hand.

Similar results were obtained when we considered MEG source-
reconstructed signals (SI Figs. S4, S6 and S7). Given the higher spatial
resolution of MEG, we will focus on the results obtained with this mo-
dality while providing detailed EEG analysis in the supplementary
materials.
3.3. Progressive functional disconnection of associative cortical areas

To evaluate the cortical changes at the network level, we considered
functional connectivity (FC) patterns that have been previously shown to
be sensitive to BCI-related tasks (Mottaz et al., 2018) as well as to
learning processes (Bassett and Khambhati, 2017). For this purpose, we
calculated the imaginary coherence between the source reconstructed
signals of each pair of regions of interest (ROIs) corresponding to the
Destrieux atlas. Imaginary coherence is a spectral measure of coherence
weakly affected by volume conduction and spatial leakage (Nolte et al.,
2004; Sekihara et al., 2011).

By statistically comparing the MEG-based FC values between MI and
Rest conditions across subjects, we found a progressive decrease of task-
related connectivity in both α and β frequency ranges along sessions (SI
Figs. S11 and S12). In α frequency ranges, the strongest decreases
involved fronto-occipital (α1, α2) and parieto-occipital (α2) interactions.
In β frequency ranges, significant decrements involved parieto-occipital
(β1) but also fronto-central and bilateral temporal interactions (β1, β2).

For each subject, we quantified the regional connectivity changes by
computing the relative node strength ΔN in the α and β frequency ranges.
Significant across-session declines were spatially distributed involving
bilaterally primary visual areas and associative regions (p < 0.025, SI
Fig. S13). Specifically, in the α2 band, the ΔN values of the ROIs typically
associated with visuo-spatial attentional tasks (Silver et al., 2007) (e.g.
cuneus) decreased significantly with the training (SI Table S5). In the β1
band, we observed a significant reduction for the orbital part of the
inferior frontal gyrus, which is involved in mental rotation (Milivojevic
et al., 2009) and working memory (Wilson et al., 2014; Christophel et al.,
2017) (SI Table S5).

Collectively, the results indicate that BCI training is associated with a
progressive reduction of integration among cortical systems that are
specialized for different functions such as motor imagery and learning,
visual attention, and working memory. Similar results from the analysis
measured by considering the average BCI accuracy score (i.e. percentages of
corresponds to the group-averaged BCI score and the outer shape represents its
s here considered as learning threshold. (B) Representation of the selected EEG
oss subjects and sessions in terms of pre-selected channels; on the right, we show



Fig. 2. Cortical activity changes during BCI
training. (A) Task-related activity maps obtained
with EEG-source reconstructed power spectra in
the α2 and β1 frequency band. The colors code the
statistical difference obtained by contrasting
motor-imagery and rest conditions through
cluster-based permutation t-tests performed at
the group level. For illustrative purposes, we
show the obtained p-values multiplied by the sign
of the t-values. (B) Normalized power spectra
across the sessions for the motor-imagery (blue)
and rest (red) condition from EEG signals. The
significant clusters of activity in each individual
were obtained with respect to the inter-stimulus
intervals (ISI). The group results for the α2 fre-
quency band are illustrated by the boxplots on
the left side of the panel, while results from the β1
frequency band are shown on the right. For
illustrative purposes, we plotted the log trans-
formed values. Similar results were obtained with
MEG signals.
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of EEG-based FC networks are reported in SI Figs. S10, S12, S13, SI
Table S4.
3.4. Predictive markers of BCI performance and learning rate

To better understand how the observed cortical changes in α and β
frequency ranges were associated with performance, we next performed
a repeated-measures correlation analysis which takes into account the
longitudinal nature of our data (Bakdash and Marusich, 2017). In gen-
eral, we found strong correlations in the α2 and β1 frequency bands where
both activity and connectivity metrics significantly correlated with the
BCI performance within the same session (SI Tables S6 and SI Fig. S15).
Higher BCI scores were associated with a higher number of task-related
cortical sources CS (Fig. 4A) and with a stronger decrease of relative
power ΔP (Fig. 4B). From a network perspective, better performance was
associated with larger reduction of relative node strength ΔN in asso-
ciative areas and, to a minor extent, in primary visual regions (Fig. 4C
and SI Fig. S15).

Specifically, we observed significant correlations in regions known to
be involved in cognitive aspects of human learning, such as decision
making and memory consolidation (middle-anterior part of the cingulate
gyrus) (Kolling et al., 2016), change detection and shifts in behavior
(posterior-ventral part of the cingulate gyrus) (Pearson et al., 2011), as
well as motion detection and tracking (lingual gyrus) (Waberski et al.,
2008; Kamitani and Tong, 2006). Furthermore, we observed that areas
known to be involved in both mental rotation and working memory (e.g.
orbital part of the inferior frontal gyrus) (Milivojevic et al., 2009; Wilson
et al., 2014; Christophel et al., 2017), were also correlated with BCI
5

scores. No other comparable significant differences were observed in the
other frequency bands (SI Table S6).

In terms of future prediction, we found that only the relative node
strength (ΔN) was significantly correlated with the learning rate, defined
as the relative difference of BCI accuracy between consecutive sessions
(pFDR < 0.025, SI Figs. S15 and SI Table S6). Strongest correlations were
found in α2 and β1, where higher values of ΔN were associated with the a
larger learning amount in the following session.

In these bands, the most predictive cortical areas were the anterior
part of the cingulate gyrus and the orbital part of the inferior frontal
gyrus (Fig. 5), both known to be involved in human learning (Euston
et al., 2012). Significant predictions were also reported for the
fronto-marginal gyrus in the β1 band and for the superior parietal lobule
in the α2 band (SI Fig. S15), which are typically associated with learning
and motor imagery tasks (Stephan et al., 1995; Johnson et al., 2002;
Solodkin et al., 2004).

We obtained similar results from the analysis of EEG source-
reconstructed activity and connectivity SI Tables S6 and SI Fig. S14.
Altogether, these findings demonstrate that the observed dynamic
cortical changes at the network level were intrinsically associated with
successful BCI learning.

4. Discussion

4.1. Neuroplasticity and motor learning

Identifying the large-scale neural mechanisms underlying plasticity is
fundamental to understand human learning (McDougle et al., 2016; H�etu



Fig. 3. Cortical connectivity changes during BCI training. Task-related connectivity networks obtained with MEG-source reconstructed signals in the α2 and β1 band
are represented on a circular graph. The nodes correspond to different regions of interest (ROIs) and the links code the statistical values resulting from a paired t-test
performed between the motor-imagery and rest conditions performed at the group level. Only significant links (pFDR < 0.005) are illustrated for the sake of simplicity.
The color of each node, corresponds to a specific macro-area as provided by the Destrieux atlas. Similar results were obtained with EEG signals.

Fig. 4. Correlation between activity/connectivity changes and BCI performance. The first row shows the results obtained in the α2 band. The second row shows the
results obtained in the β1 band. (A) Scatter plots with cluster sizes CS and the BCI scores of all the subjects. Colors identify the values obtained for the same individual
across sessions. (B) Correlation values between the relative power ΔP and the BCI scores of all the subjects. Same color conventions as in (A). (C) Correlation values
between the relative node strengths ΔN and the BCI scores in the same session. All correlations values (r) are calculated through a repeated-measures correlation
coefficient, with a statistical threshold (pFDR < 0.025). For a detailed account of these results, see SI Table S6 and Fig. S15. Similar results were obtained with
EEG signals.
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et al., 2013; Hardwick et al., 2018; Dayan and Cohen, 2011). The ability
to voluntarily modulate neural activity to control a BCI appears to be a
learned skill. Investigators have repeatedly documented that task per-
formance typically increases over the course of practice (Ganguly and
Carmena, 2009; Moritz et al., 2008), while BCI users often report tran-
sitioning from a deliberate cognitive strategy (e.g. MI) to a nearly auto-
matic goal-directed approach focused directly on effector control. This
evidence is indicative of a learning process taking place in the brain that
is consistent with procedural motor learning. Efforts in understanding the
neural dynamics underlying BCI skill acquisition have been made by
using neuroimaging techniques in primates (Ganguly and Carmena,
2009; Carmena et al., 2003) as well as in humans (Pichiorri et al., 2011;
Wander et al., 2013). These works suggest that even if the use of a BCI
only requires the modulation of activity in a motor-related brain area, a
dynamic and distributed network of remote cortical areas is involved in
the early acquisition of BCI proficiency. However, how such network
reorganizes over time and which are the connectivity mechanisms sub-
serving BCI learning is still largely unknown.

Here, we showed that a MI-based BCI learning is associated with a
progressive decrease of functional integration of associative cortical re-
gions and with the reinforcement of sensorimotor activity targeted by the
experiment. Together with sensorimotor areas, associative areas play a
crucial role in motor sequence learning as well as in abstract task learning
(McDougle et al., 2016; H�etu et al., 2013; Hardwick et al., 2018; Dayan
and Cohen, 2011). In particular, we showed that MI-based BCI learning is
accompanied by the disconnection of specific areas related to working
memory and decision-making (Fig. 3, SI Figs. S12–S13). Both these
cognitive processes are known to be involved in the supervisory atten-
tional system (van Zomeren and Brouwer, 1994; Wolpert and Landy,
2012), which is an important prerequisite for successful motor learning
(Wulf, 2007; Lohse et al., 2014; Dayan et al., 2000; Gottlieb, 2012) and
also present during MI tasks (Guillot and Collet, 2010). Altogether, we
speculate that the observed progressive disconnection of associative
areas would mainly reflect the attentional effort fading related to the
optimization of the MI strategy to control the BCI and to the gradual skill
7

acquisition.
4.2. Brain network predictors of BCI learning

Forecasting behavior from brain functioning is one of the main
challenges in human neuroscience. In BCI contexts, the identification of
neural features explaining BCI performance will allow to better design
adaptive BCIs. Investigators have recognized the need for adaptive BCI
architectures that accommodate the dynamic nature of the neural fea-
tures used as inputs (Vidaurre et al., 2011). Initial efforts have taken into
account psychological (e.g. anxiety) or demographical items to explain
BCI performance (Benaroch et al., 2019). Other studies have focused on
the use of power spectra within theta, alpha and gamma bands as po-
tential predictors of BCI scores (Ahn et al., 2013a, 2013b; Bamdadian
et al., 2014; Jeunet et al., 2015). In the specific case of the gamma band,
we actually observed a reduced desynchronization effect, more circum-
scribed within motor areas (SI Figs. S4 and S5). However, a significant
correlation with BCI scores has been observed only with the cluster size
(and not with the relative power) within the gamma-band (r ¼ 0.47 and
p ¼ 10�4 for EEG; r ¼ 0.32 and p ¼ 0.012 for MEG), without being
possible to predict the future amount of learning. The effects measured
within the gamma band were less significant and harder to interpret than
those associated to alpha/beta sub-bands. We also notice that in (Jeunet
et al., 2015) the authors failed to replicate results obtained in (Grosse--
Wentrup and Sch€olkopf, 2012), highlighting the difficulty to compare
and to reproduce previous studies. Thus, the role of gamma band in
long-term training appears still controversial.

Only recently, FC-based metrics have been shown to correlate with
the user’s performance suggesting potential strategies for improving MI-
based BCI accuracy (Sugata et al., 2014; Pichiorri et al., 2015; De Vico
Fallani et al., 2013). However, these findings only referred to the same
experimental session and did not inform on the prediction in the future
sessions. In this field, there is a critical need for biologically informed
computational approaches to identify the neural mechanisms of BCI
learning that predict future performance, thereby enabling the
Fig. 5. Prediction of BCI learning rate from regional
connectivity strengths. The first row shows the re-
sults obtained in the α2 band. The second row shows
the results obtained in the β1 band. (A) Colors show
the correlation values for the ROIs with a significant
effect (pFDR < 0.025). (B) Scatter plots show the
values of relative node strengths ΔN and the learning
rates of all the subjects for the most significant ROIs
(pFDR < 0.002). Colors identify the values obtained
for the same individual across sessions. The r values
correspond to the repeated measures correlation co-
efficients. For a detailed account of these results, see
SI Fig. S15. Similar results were obtained with EEG
signals.



M.-C. Corsi et al. NeuroImage 209 (2020) 116500
generalization of these results across subject cohorts, and the optimiza-
tion of BCI architectures for individual users (Perdikis et al., 2014; De
Vico Fallani and Bassett, 2019). Here, we showed for the first time that
the regional connectivity strength of specific associative cortical areas is
not only able to explain the BCI performance in the same session (Fig. 4C)
but can also predict the learning rate in the subsequent session (Fig. 5).
Notably, higher values of relative node strength ΔN were associated with
larger learning rates, indicating that the potential to improve perfor-
mance is higher when the functional disconnection of the associative
areas has not yet started. These findings could be used to inform future
decisions on how to train individuals depending on the current properties
of the functional brain network organization. For example, new adaptive
BCIs could be designed to target the associative ROIs with highest node
strength so to promote the disconnection process associated with
learning.

4.3. BCI “illiteracy” and performance assessment

BCIs are increasingly used for control and communication as well as
for the treatment of neurological diseases (Daly and Wolpaw, 2008).
However, a non-negligible portion of users (between 15% and 30%)
exhibit an inability to interact accurately with a BCI (Allison et al., 2010).
This is a well-known phenomenon that is informally referred as to “BCI
illiteracy”. Critically, it affects the usability of BCIs in the user’s daily life
but the reasons (Blankertz et al., 2010; Jeunet et al., 2015) and even the
definition for such inability (Thompson, 2018) is still under debate. It has
been suggested that typical accuracy metrics, based on behavioral per-
formance, could be affected by decoder recalibration (Perdikis et al.,
2016), re-parameterizations of the BCI, and the adoption of different
mental strategies (Kober et al., 2013; Perdikis et al., 2014).

However, our results indicate that the behavioral performance (i.e.
number of hit targets) was significantly correlatedwith themodulation of
sensorimotor power spectra (Fig. 4). This separation between mental
states has been previously adopted as a potentially more appropriate
indicator of performance in MI-based BCIs (Wander et al., 2013; Perdikis
et al., 2018). Thus, at least in our study, we believe that the behavioral
performance can be used to measure subject’s performance.

It is important to state that our findings do not represent in any way a
general and definitive answer to the underlying causes of BCI illiteracy.
Instead, the reported spatiotemporal cortical and functional connectivity
changes supporting BCI skill acquisition, may give complementary in-
sights into the understanding of the neural processes behind the BCI il-
literacy. Eventually, these results could open the way to the definition of
more robust perfomance metrics, integrating both behavior and func-
tional brain changes associated with individual learning (Perdikis et al.,
2018).

4.4. Caveats and limitations

The temporal window of two weeks considered in our experiment
prevents us from observing behavioral and neural changes over longer
timescales and therefore, might not be sufficient to observe the full
learning process (Yin et al., 2009). Here, BCI skill acquisition was par-
alleled by a progressive focused activity over the sensorimotor areas
together with a loss of large-scale connectivity, which altogether indicate
the initiation of an automaticity process typical of procedural motor
learning (Seger and Miller, 2010). Future studies are necessary to assess
whether and how the observed cortical patterns will evolve with longer
BCI training.

While the BCI accuracy was highly variable across individuals, the
group-averaged performance at the end of the training is in line with the
state-of-the-art (Vidaurre and Blankertz, 2010). It is important to
mention that the main goal of the present work was not to maximize the
performance but to study the neural mechanisms underlying BCI
learning. In this respect, all our experimental subjects were BCI-naive and
exhibited on average an increase of performance reflecting a successful
8

BCI skill acquisition.
While EEG and MEG results presented the same trends, some differ-

ences can be appreciated as well. MEG-ERD tended to be more localized
in parietal and occipital areas while central and frontal areas were more
involved in EEG-ERD, especially within the α band (see SI Figs. S4 and
S5). Also, the number of ROIs significantly correlated with BCI scores (or
with the learning rate) was larger in MEG than EEG (see Figs. S14 and
S15). This could be explained by the fact that EEG signals, attenuated by
tissues that present a difference in terms of conductivity (Puce and
H€am€al€ainen, 2017), are sensitive to both tangential and radial compo-
nents of dipolar sources whereas MEG presents a better spatial resolution
and its signals are mainly sensitive to the tangential components (Ahlfors
et al., 2010). Thus, EEG and MEG do not necessarily capture the same
information. In addition, the subjects were instructed to lean their head
back within the MEG helmet. As a result, MEG sensors closer to the
parietal/occipital areas could better capture the posterior activity than
those located above the frontal areas.

From this work alone, we are unable to determine whether or not
learning is the only possible modulator of the observed cortical changes.
While no correlation has been found with behavioral factors (i.e. anxi-
ety), complementary experiments could be designed to test whether the
observed cortical changes are also modulated by fatigue or exogenous
stimulants to increase motor excitability (i.e., transcranial direct current
stimulation, tDCS (Nitsche et al., 2003)).

5. Conclusion

Consistent with our hypothesis, we have identified specific cortical
network changes that characterize dynamic brain reorganization during
BCI training. We found that the progressive functional disconnection of
associative areas is crucial for the BCI skill acquisition process. These
network signatures varied over individuals and, more importantly, were
significant predictors of the BCI learning rate. Taken together, our results
offer new insights into the crucial role of brain network reconfiguration
in the prediction of human learning.
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