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Dynamic crack propagation in elastomer membranes is investigated; the focus is laid on cracks reaching the speed of

shear waves in the material. The specific experimental set-up developed to measure crack speed is presented in

details. The protocol consists in (1) stretching an elastomer membrane under planar tension loading conditions, then

(2) initiating a small crack on one side of the membrane. The crack speed is measured all along the crack path in both

reference and actual configurations, including both acceleration and deceleration phases, i.e. non steady-state crack

propagation phases. The influence of the prescribed stretch ratio on crack speed is analysed in the light of both these

new experiments and the few previously published studies. Conclusions previously drawn for steady-state crack

growth are extended to non steady-state conditions: stretch perpendicular to the crack path governs crack speed in

intersonic crack propagation regime, and the role of the stretch in crack direction is minor.

Keywords dynamic fracture, elastomer, finite strain, non steady-state crack growth, intersonic regime.

1 Introduction

High speed fracture of elastomer membranes is a rather unusual problem for both fracture mechanics and

elastomer engineering communities, mainly because of the narrow range of application and the complex

context of both large strain and dynamics. Indeed, to our knowledge, only a dozen experimental studies on

cracks combine large strain (> 100 %) and high speed propagation (close to the shear wave speed of5

the material) since the pioneering work of Treloar (1944). Peculiar features of such cracks have been

highlighted, from wavy crack path (Stevenson et al. 1979; Deegan et al. 2001) to the role of strain-induced

crystallisation in natural rubber (Zhang et al. 2009). The crack speed is naturally the mostly studied

parameter of the problem. Thus, following the extension of the Griffith theory of fracture to elastomers

by Rivlin et al. (1953), the relationship between crack speed and energy release rate is measured (Lake10

et al. 2000; Morishita et al. 2016). Alongside with this energetic approach, the precise role of strain in

the membrane is investigated with both inflated (Stevenson et al. 1979; Moulinet et al. 2015) or plane

(Gent et al. 1982b; Petersan et al. 2004) sheets of elastomer. In very recent works, the detailed strain field

around the moving crack has been analysed with more recent full field measurement techniques (Corre

et al. 2020; Mai et al. 2020). As a major result, it is established that crack speed increases with membrane15

deformation, ultimately reaching a limit which is assumed to be the velocity of the longitudinal waves

in the material Moulinet et al. (2015). As common in fracture mechanics, the velocity of mechanical

waves in the material is then used as a scaling factor. Because of the non-linear mechanical response of

elastomers, such velocities are not easily computed: most of the authors propose empirical studies of

wave propagation in parallel with their fracture experiments Gent et al. (1982a); Petersan et al. (2004).20

With direct measurements, Petersan et al. (2004) show that cracks can grow faster than shear waves in

the stretched material, defining a crack propagation regime referred to as intersonic. Following the first

observations of Gent et al. (1982b) and the theoretical derivation of Marder (2006), Chen et al. (2011)

experimentally confirm that crack speed in intersonic regime no longer scales with the energy release rate

in the sample but with the stretch ratio; such results highly deviates from the standard linear fracture25

mechanics ones. In this regime, there is enough stored energy in the neighbourhood of the crack tip to

maintain its propagation (Bouchbinder et al. 2010).

These studies on elastomer fracture attest the change in the mechanical quantity that drives crack

growth at high speed but they exclusively concern steady-state propagation. From a more general point of

view, the scrutiny of fast cracks with curved trajectories or changing speed is necessary to propose a30

predictive model for intersonic crack kinematics. It remains an experimental challenge for large strain

problems. In this paper we propose a first step in this direction with a thorough analysis of the kinematics

of a non-steady crack propagation. The classical pure shear sample is used but the propagation close to its

edges, usually ignored, allows to observe accelerating and decelerating cracks with a straight crack path.

Even in this rather simple context, careful assumptions have to be made to measure the instantaneous35

crack speed in both deformed and reference configurations. Several techniques coexist in the literature to

estimate the shear wave speed, but they do not always clearly state the mechanical configuration to which
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it relates. In this study we propose the use of the little-known work of Boulanger et al. (1992) to clarify this

computation. These kinematic assumptions and methods are detailed in Section 2 and put into practice

with polyurethane samples in Section 3. In particular, results for intersonic cracks are discussed with40

respect to previous studies in Sections 3.3 and 3.4 to shed some new light on this phenomenon.

2 Methods

2.1 Observing cracks: experimental set-up

For brevity, only the main features of the experimental set-up developed to monitor dynamic crack growth

are presented; for more details the interested reader can refer to Corre et al. (2020) and extensive set of45

data are available Coret et al. (2017).

“Pure shear" samples are considered: they are rectangular membranes with dimensions 200×40×3 mm
3
.

They are hold in a tensile machine along their longest sides (thanks to molded bulges) in order to prescribe

a vertical stretch ratio denoted 𝜆𝑦 . Practically, an experiment consists in the two steps presented in

Figure 1(a):50

• the sample is quasi-statically stretched (20 mm/min) until reaching the prescribed stretch ratio, it

takes between 5 and 10 min;

• the crack is initiated by a small cut in one of the free edges of the sample, then it freely grows

through the sample. The order of magnitude of propagation duration is 10 ms. The beginning of

free crack propagation is defined by the moment when the crack tip moves faster than the blade55

(≈ 0.6 m/s).

Blade

Grip

Sample

Quasi static loading

Rail

Crack growth

a b

c
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Crack growth
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Grip
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Figure 1: (a) The two step procedure. (b) Crack shape 0.6 ms after initiation (frame rate: 25000 fps, shutter speed :

1/200000 s). Prescribed stretch ratio 𝜆𝑦 = 3.35. (c) Strain field (·𝑥𝑥 component of Green-Lagrange strain tensor) before

crack growth. Prescribed stretch ratio 𝜆𝑦 = 1.94.

The first step is recorded with a high-resolution camera (29 Mpx) while the second step is recorded

with a high-speed camera of which frame rate ranges between 7000 fps to 25000 fps. Fig. 1(b) shows

an example of a picture taken during the crack growth step. The black speckle on the sample allows

digital image correlation analysis during both steps. In particular, displacement and strain fields before60

crack propagation are measured, as illustrated in Fig 1(c). Pure shear samples are often used to observe

steady-state crack propagation in the middle area of the sample where deformation is homogeneous (Gent

et al. 1982a; Lake et al. 2000; Morishita et al. 2016). Here, we investigate the entire kinematics of the crack;

it requires at least to know the strain state in the whole membrane.

2



T. Corre et al. Non steady-state intersonic cracks in elastomers

2.2 Measuring crack speed65

2.2.1 Definition of crack speed

In the seminal fracture theory of Griffith (1921), the propagation of a crack consists in dissipating energy

by creation of new surfaces inside the material. These surfaces are usually considered in the reference

configuration and the corresponding energetic driving quantities, classically the energy release rate, are

defined with respect to the crack surface measured in this configuration Rivlin et al. (1953). Then, from70

this energetic point of view, the relevant crack speed is the rate at which these new surfaces are created.

However, observing experimentally the rate of surface creation in largely deformed structures is not

straightforward and we detail our method in the following.

The traditional approach to dynamics fracture considers geometric simplification to obtain a 2-

dimensional description of the problem. The crack front is then reduced to a point, located at the

material point denoted ®𝑍 (𝑡) in the reference configuration that corresponds to the current time 𝑡 , i.e. the

undeformed sample which contains a crack, the length of which is defined at time 𝑡 . The crack speed in

the reference configuration can be defined as the speed of the crack tip ®𝑤0 (𝑡):

®𝑤0 (𝑡) =
𝑑 ®𝑍 (𝑡)
𝑑𝑡

, (1)

keeping a direct relationship with the rate of surface creation if the local width of the sample is known.

Nevertheless, dynamic cracks are observed in deformed structures, thus the naked eye “sees” the crack

speed in the deformed configuration. Let denote ®𝜒 the mapping that transforms the position ®𝑋 of a material

point in the reference configuration to its position in the actual deformed configuration ®𝑥 (𝑡) = ®𝜒 ( ®𝑋, 𝑡). At
each time, the crack tip location in the deformed configuration is

®𝑧 (𝑡) = ®𝜒 ( ®𝑍, 𝑡), (2)

and its time derivative is

𝑑®𝑧 (𝑡)
𝑑𝑡

=
𝜕 ®𝜒 ( ®𝑍, 𝑡)

𝜕 ®𝑍
𝑑 ®𝑍 (𝑡)
𝑑𝑡

+ 𝜕 ®𝜒 ( ®𝑍, 𝑡)
𝜕𝑡

, (3)

where

F( ®𝑍, 𝑡) = 𝜕 ®𝜒 ( ®𝑍, 𝑡)
𝜕 ®𝑍

and ®𝑣 ( ®𝑍, 𝑡) = 𝜕 ®𝜒 ( ®𝑍, 𝑡)
𝜕𝑡

(4)

are the deformation gradient and the material velocity at crack tip, respectively. Thus, the relation between

the crack speed in the deformed configuration ®𝑤 and the crack speed in the reference configuration is:

®𝑤 = F ®𝑤0 + ®𝑣 . (5)

For crack growth problems, the kinematic relationship Eq. (5) is applied to the successive locations

of the crack tip, but it is to note that it is also valid for any sequence of location of a moving front in75

the material, such as a wave front as discussed in Section 2.3. In the most general case however, this

formula is of little practical use to measure the crack speed as it requires precise measurements at crack

tip to compute F( ®𝑍, 𝑡) and ®𝑣 ( ®𝑍, 𝑡). Having chosen to monitor the whole sample, our set-up provide no

measurements at less than about 2 mm from the crack tip (depending on the picture), as illustrated in

Figure 2. Eq. (5) is then bounded to be used when these quantities are assumed a priori, that is to say when80

®𝑣 ( ®𝑍, 𝑡) = 0 (static membrane) and F( ®𝑍, 𝑡) is constant (homogeneous strain field).

2.2.2 Practical computation of the crack speed

A possible way to overcome the above-mentioned lack of data consists in decomposing the displacement

vector of the crack tip. For every material point ®𝑋 of the sample, we note ®𝑥0 its position in the configuration

at the end of the quasi-static loading step (without crack) and we recall that ®𝑥 is its position in the cracked

sample. Then the total displacement of ®𝑋 is the sum of the displacement at the end of the quasi-static

loading step, denoted ®𝑢𝑙 , and the displacement during the second step, denoted ®𝑢𝑐 . Adopting the Eulerian

point of view,

®𝑢𝑙 ( ®𝑥) = ®𝑥0 − ®𝑋 and ®𝑢𝑐 ( ®𝑥) = ®𝑥 − ®𝑥0. (6)

Considering the particular case of the crack tip position ®𝑧 (𝑡), it leads to

®𝑧 (𝑡) = ®𝑍 (𝑡) + ®𝑢𝑙 (®𝑧 (𝑡)) + ®𝑢𝑐 (®𝑧 (𝑡)) . (7)

During the second step, the propagation of the crack induces (measurable) movements of the material in

its neighbourhood: in particular, the material situated in front of the crack tip moves toward it, as shown

3
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10 mm

m.s-1

Figure 2: Horizontal velocity field during crack growth. The negative velocity in front of the tip indicates that the

material is moving toward the crack tip. Some data are missing close to the tip because of the large shear strain and

high velocities (image locally blurred) in this area. Prescribed stretch ratio: 2.41 ; crack speed: 45 m/s.

in Fig. 2. More precisely, the horizontal component of ®𝑢𝑐 (®𝑧 (𝑡)) is negative and its vertical component

is null when the crack grows along the middle line of the sample; its magnitude is unknown a priori
but Goldman Boué et al. (2015) observe that it depends on the prescribed stretch ratio. In the following

derivation, it is assumed that the displacement ®𝑢𝑐 (®𝑧 (𝑡)) is only due to the influence of the crack and does

not include any large scale movement (oscillation, rigid body motion...). Moreover, if the crack does not

cross a highly inhomogeneous displacement field (nor abrupt change in the thickness of the membrane),

the effect of the displacement ®𝑢𝑐 (®𝑧 (𝑡)) on the successive crack tip positions ®𝑧 (𝑡) can be neglected in

Eq. (7). Thus, introducing ®𝑧0 the position of the material point ®𝑍 at the end of the loading step, we have

®𝑧 (𝑡) ≈ ®𝑧0 (𝑡) and the crack tip position in the reference configuration can be measured as follow

®𝑍 (𝑡) ≈ ®𝑧 (𝑡) − ®𝑢𝑙 (®𝑧0 (𝑡)). (8)

Indeed, ®𝑧 (𝑡) is directly observable on pictures, and ®𝑢𝑙 (®𝑧0 (𝑡)) is obtained by projecting the successive

locations of the crack tip ®𝑧 (𝑡) onto the displacement field at crack initiation, which approximately

corresponds to the first image of the high speed camera recording.85

As a summary, the previous method consists in measuring the propagation of the crack tip neigh-

bourhood, without considering the small movement of the crack tip in it. In the case of steady state

propagation, the crack speed can be measured without this approximation: similar between two frames, ®𝑢𝑐
has no influence. Note that it is no more the case for curved crack paths.

2.2.3 Application to our experiments90

Eq. (8) is now applied to our measurements. An example of such results is proposed in Figure 3(a), and

Fig. 3(b) compares the horizontal positions of the crack tip in both configurations during the experiment.
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Figure 3: (a) Successive locations of the crack tip ®𝑧 (𝑡) (black points) projected on the horizontal component of the

displacement field ®𝑢𝑙 (®𝑧0 (𝑡)) at the crack initiation moment. (b) Horizontal coordinate of the crack tip in both reference

( ®𝑍 (𝑡)) and deformed (®𝑧 (𝑡)) configurations. The first observable position of the crack tip is set to 0. Prescribed stretch

ratio: 1.94

The time derivatives of ®𝑍 (𝑡) and ®𝑧 (𝑡) provide the crack speed in both configurations. As the crack tip

positions are measured at more or less 1 pixel (±0.2 mm) and with a high temporal resolution, a standard

finite difference scheme would lead to noisy results. Then these derivatives are computed thanks to a local95

polynomial interpolation of order 2, over 7 time steps. It is to note that the crack speed in the reference

4
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configuration cannot be computed at the end of the propagation: the right-hand side free edge largely

moves when it enters in the neighbourhood of the crack, as shown in Figure 4. Then, the underlying

a b

Figure 4: Deformation of the cracked sample; the red line represents the position of the free edge before crack

initiation. (a) The shape of the free edge is not affected by the presence of the crack. (b) The shape of the free edge is

highly modified. Prescribed stretch ratio: 1.94.

hypotheses of Eq. (8) no longer hold. Practically, pictures in which this phenomenon is noticeable (free

edge moving toward the tip) are not taken into account during results analysis, as illustrated by the100

unfinished dotted line in Fig. 3(a).

2.3 Shear wave speed in the material

The speed of mechanical waves plays a major role in dynamic fracture mechanics, as a limiting speed for

cracks (Mott 1948) or as a scaling parameter (Dally 1979). The studies of cracks in elastomers illustrate this

close connection between fracture and acoustics: Stevenson et al. (1979) propose an analytical study of105

wave propagation in their paper on bursting balloons, and Gent et al. (1982a); Gent et al. (1982b) study

both fracture and waves in rubbers. More recently, Petersan et al. (2004) compare direct measurements of

both cracks and plane waves speed in natural rubber sheets, and Marder (2006) theoretically explains these

observation, thanks to the Mooney-Rivlin constitutive equation.

For linear elastic problems, well-established formulas provide analytical values for shear and longitudinal110

plane waves. However, for non-linear elastic problems, the speed of waves depends on the mechanical

response of the material, but also on the strain level and the propagation direction. Number of specific

problems have been investigated for the 60’s (Saccomandi 2007). Among them, we retain the work of

Boulanger et al. (1992), who derive an analytical formula for the shear wave speed in a pre-strained

Mooney-Rivlin material. In this study, authors consider finite amplitude waves, which differs from number115

of other works in which only small strain waves superimposed on finite homogeneous strain are studied.

As this result is little known in the elastomer community, it is briefly recalled in the following.

Boulanger et al. (1992) consider an incompressible isotropic hyperelastic Mooney-Rivlin material; the

corresponding strain energy density𝑊 per unit of undeformed volume is

𝑊 (𝐼1, 𝐼2) = 𝐶10 (𝐼1 − 3) +𝐶01 (𝐼2 − 3), (9)

where 𝐶10 and 𝐶01 are the material parameters, and 𝐼1 and 𝐼2 are the first principal invariants of the left

Cauchy-Green tensor B = FF
𝑇
:

𝐼1 = tr(B) ; 𝐼2 =
1

2

(
tr(B)2 − tr(B2)

)
. (10)

The corresponding Cauchy stress tensor 𝝈 is

𝝈 = −𝑝I + 2𝐶10B − 2𝐶01B
−1, (11)

where 𝑝 is an (arbitrary) hydrostatic pressure due to the incompressibility assumption. As mentioned

above, the authors derive the response of a pre-stretch membrane with superimposed finite amplitude

waves; their results are as follow.120

• For incompressible material, there are only shear waves (no longitudinal wave).

• For a shear wave that propagates in direction ®𝑛 and is polarized in direction ®𝑎, a solution exists if

(®𝑛 × ®𝑎) · B−1 ®𝑎 = 0. (12)

• Then, the corresponding shear wave speed in the deformed configuration is given by

1

2

𝜌𝑐2𝑠 = 𝐶10 ®𝑛 · B®𝑛 +𝐶01 ®𝑎 · B−1 ®𝑎. (13)

5
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This equation relates the characteristics of the wave (®𝑛, ®𝑎, and 𝑐𝑠 ), the material parameters (𝜌 , 𝐶10,

𝐶01), and the strain B.

Finally, the corresponding wave speed in the reference configuration can be calculated with

®𝐶𝑠 = F−1𝑐𝑠 ®𝑛, (14)

where ®𝐶𝑠 is the shear wave vector in the reference configuration. Thus, the wave speed is given by

1

2

𝜌𝐶2

𝑠 = ®𝑛 · B−1®𝑛
(
𝐶10 ®𝑛 · B®𝑛 +𝐶01 ®𝑎 · B−1 ®𝑎

)
. (15)

Note, that the density 𝜌 is the same in both configurations because the material is incompressible. This

result provides an anisotropic wave speed in both reference and deformed configuration. This contradicts125

some expressions used in previous studies (Petersan et al. 2004; Mai et al. 2020).

3 Results and discussion

3.1 Preliminaries

3.1.1 Material

The material is an unfilled polyurethane elastomer, its density 𝜌 is 1044 kg/m
3
. Mooney-Rivlin parameters130

are determined with uniaxial tension experimental data: 𝐶10 = 0.39 MPa and 𝐶01 = 0.97 MPa. The

corresponding results are depicted in Figure 5.
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Figure 5: Quasi-static uniaxial tension of the material (strain rate: 0.001 s
−1
).

3.1.2 Shear wave speed for pure shear loading conditions

As stated above, the shear wave speed in the material depends on the strain state. In the middle of the

sample, it corresponds to pure shear: denoting ®𝑒𝑥 the horizontal direction (length of the sample), ®𝑒𝑦 the

vertical direction (height of the sample), and ®𝑒𝑧 the out-of plane direction (thickness of the sample), the

deformation gradient tensor is

F = 1®𝑒𝑥 ⊗ ®𝑒𝑥 + 𝜆𝑦®𝑒𝑦 ⊗ ®𝑒𝑦 +
1

𝜆𝑦
®𝑒𝑧 ⊗ ®𝑒𝑧, (16)

where 𝜆𝑦 is the vertical stretch ratio prescribed during the experiment. Then, the left Cauchy-Green strain

tensor is

B = 1®𝑒𝑥 ⊗ ®𝑒𝑥 + 𝜆2𝑦®𝑒𝑦 ⊗ ®𝑒𝑦 +
1

𝜆2𝑦
®𝑒𝑧 ⊗ ®𝑒𝑧 . (17)

The wave speed depends on the wave propagation ®𝑛 and polarisation ®𝑎 directions. In order to discuss the

crack propagation speed with respect to the shear wave speed, it is relevant to consider the wave that

propagates horizontally (like the crack) and is polarized vertically, i.e.

®𝑛 = ®𝑒𝑥 ; ®𝑎 = ®𝑒𝑦 . (18)

The corresponding shear wave speed in the deformed configuration is denoted 𝑐𝑥𝑦 and given by Eq. (13):

𝑐𝑥𝑦 =

√√√
2

𝜌

(
𝐶10 +𝐶01

1

𝜆2𝑦

)
, (19)

6
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and Eq. (15) states that its counterpart in the reference configuration 𝐶𝑥𝑦 simply reduces to

𝐶𝑥𝑦 = 𝑐𝑥𝑦, (20)

i.e. the shear wave speeds in this direction are the same in both reference and deformed configurations. In

other directions, it is no more the case.135

3.2 Steady-state crack growth

Experimental studies on dynamic fracture generally focus on steady state propagation: the crack speed

measured in the homogeneously deformed part of the sample is plotted against the energy release rate

(Lake et al. 2000; Morishita et al. 2016), against strain (Stevenson et al. 1979; Gent et al. 1982b; Petersan

et al. 2004), or both (Zhang et al. 2009; Chen et al. 2011).140

In the present case of pure shear samples, the crack propagates horizontally at constant speed in the

middle of the sample; it corresponds to the linear part of curves in Fig. 3(b). Note that these steady-state

crack speeds in both reference and deformed configurations are equal: in the middle of the sample,

the strain state is pure shear, i.e. F𝑥𝑥 = 1 and then 𝑤 ®𝑒𝑥 = 𝑤0®𝑒𝑥 . Figure 6 gathers steady state crack

speeds obtained for various samples and different prescribed stretch ratios 𝜆𝑦 ; the shear wave speed in145

corresponding uncracked samples are also plotted.
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Figure 6: Shear wave and steady state crack propagation speeds vs. prescribed stretched ratio. Circles and squares

refer to two different series of experiments (2 batches of the same material). Pictures of crack tip indicates the

experiments that will be analysed in Sec. 3.3.

For small stretch ratios, the crack grows slower than the shear wave; the corresponding regime has

been called “subsonic” (Marder 2006). For sufficiently large stretch ratios, here larger than 2, the crack

grows faster than the shear wave speed as previously observed by Petersan et al. (2004). This regime has

been referred to as “intersonic” because the crack grows faster than the shear wave speed, but slower than150

the potential longitudinal wave speed (for compressible materials). A change in the slope of the crack

speed curve is observed between these two regimes, albeit not as obvious as observed in natural rubber by

Chen et al. (2011). Crack tip profiles also exhibit a progressive change from a parabolic to a wedge-like

shape as previously reported by several authors (Zhang et al. 2009; Morishita et al. 2016).

3.3 Crack speed in the reference configuration155

Figure 7 shows the instantaneous crack speed measured during crack growth in both reference and

deformed configurations: for various prescribed stretch ratios, crack speed is plotted as a function of the

distance travelled by the crack through the sample, namely the difference between initial and current

positions of the crack tip in the considered configuration. The curves that correspond to the deformed

configuration (blue circles in Fig. 7) reflects what is directly visible on high speed camera films: the160

crack accelerates, then reaches a steady state propagation regime in the middle of the sample, and finally

decelerates close to the free edge. Similar patterns are observed whatever the prescribed stretch ratio.
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Figure 7: Instantaneous crack speed vs. distance travelled by the crack tip (in the reference configuration) for various

prescribed stretch ratios.

However, observations in the reference configuration (red triangles in Fig. 7) sometimes reveals a different

behaviour: for some prescribed stretch ratios (the highest ones), the crack velocity remains constant close

to the free edge, i.e. far from the homogeneously strained (pure shear) part of the sample. Note that even if165

the crack seems to decelerate at to the extremity of the sample, it must be considered with caution because

of the difficulty to measure near the free edge (see §.2.2.3). So, in the reference configuration, the evolution

of crack speed during propagation depends on the prescribed stretch ratio. For low stretch ratios, the

deceleration of the crack is the same in both configurations. The longest steady state crack growth plateau

becomes clear for high stretch ratios, it can be considered as a loss of influence of the free edge on crack170

speed. If one refers to the previous Fig. 6, the first two cases (𝜆𝑦 = 1.65 and 𝜆𝑦 = 1.94) correspond to the

subsonic propagation regime, while the other cases correspond to the intersonic propagation regime.

3.4 Discussion on the driving force of propagation regimes

In the previous sections, two novel (to the knowledge of the authors) results have been established: the use

of the formula of Boulanger and Hayes for finite amplitude shear wave speeds, and the ability to measure175

the instantaneous speed of a crack in heterogeneous strain fields. Here, we intend to discuss these results

with respect to previous works on dynamic fracture of elastomers, and to highlight some aspects of the

problem which remain questionable.

Chen et al. (2011) argue that the change from a subsonic to an intersonic crack growth regime induces

a change in the scaling regime. With pure shear samples and measuring steady-state crack growth, they180

observe that in the subsonic regime (low crack speeds) the energy release rate is the driving quantity (as

expected from standard fracture mechanics), and that in the intersonic regime the crack speed scales

with the prescribed stretch ratio. Their observations on steady-state crack growth can also explain

our non-steady speed measurements. Indeed, the homogeneous pure shear strain state in the sample

corresponds to a constant energy release rate (Rivlin et al. 1953). However, when the crack reaches the185

neighbourhood of the right-hand side free edge, the strain state is more complex (no more homogeneous,

it varies from pure shear to uniaxial tension) and the energy release rate changes with the crack tip

position. Then, in the subsonic regime, the energy release rate changes when the crack tip approaches the

free edge (see experiments with 𝜆𝑦 = 1.65 and 𝜆𝑦 = 1.94 in Fig. 7). On the contrary, in the intersonic

regime, the crack speed is governed by the local stretch ratio (perpendicular to the crack direction): as it is190

constant along the centreline of the sample, the crack speed is maintained to its steady-state value up to

the close-edge area (see experiments with 𝜆 from 2.89 to 3.83 in Fig. 7).

From a historical point of view, Gent et al. (1982b) were the first to observe that strain governs high

speed crack growth. Thanks to our investigation, it is possible to revisit their seminal results. Gent et al.

(1982b) investigated the growth of a crack in biaxially strained membranes. Their samples are similar to195

ours, and they measured the crack speed in the deformed configuration for various horizontal (direction of

the crack) and vertical (normal to the crack direction) stretch levels. Two materials were studied: an

unfilled and a carbon black-filled natural rubbers. In the following, only the results for the unfilled rubber
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are considered because, as stated by the authors, “relatively slow crack growth was observed for [the filled

rubber]” and “the crack velocity was anomalously low”. Moreover, thanks to two other papers (Gent et al.200

1978; Gent et al. 1982a), it has been possible to roughly fit Mooney-Rivlin parameters for this unfilled

rubber; considering their data the model is valid up to stretch ratio of 3. The corresponding values, i.e.

𝐶10 = 0.08 MPa and 𝐶01 = 0.261 MPa, the density of natural rubber, i.e. 𝜌 = 970 kg/m
3
, and Eq. (19) allows

to determine the shear wave speed 𝑐𝑥𝑦 . The raw results of Gent et al. (1982b) are reproduced in Figure 8(a),

with the shear wave speed. Three horizontal (crack direction) stretch are considered: 𝜆𝑥 = 1 corresponds
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Figure 8: (a) Steady-state crack speed observed in unfilled natural rubber stretched membranes (𝜆𝑥 ,𝜆𝑦 ). Reproduction

of Figure 4 from Gent et al. (1982b); dotted lines (not present in the original paper) indicate the corresponding shear

wave speeds up to 𝜆𝑦 = 3. (b) Steady-state crack speed in the reference configuration.

205

to pure shear and 𝜆𝑥 = 2 and 3 correspond to biaxial loading conditions. The crack speed in the reference

configuration is calculated by Eq. (5) assuming a static membrane and homogeneous strain field. The

corresponding results are presented in Fig. 8(b); note that the same scale has been adopted between results

in deformed and reference configurations, and that the shear wave speeds are plotted thanks to Eq. (20).

Plotting data in the reference configuration reveals different features. Roughly speaking, the prescribed210

horizontal stretch ratio has very small effects, especially for 𝜆𝑥 = 2 and 3: the crack speed is governed by

the vertical stretch 𝜆𝑦 and not by the energy release rate which differs with 𝜆𝑥 . Thus, for 𝜆𝑥 ≥ 2, we argue

that the cracks are in their intersonic regime. On the contrary, for 𝜆𝑥 = 1, the crack probably remains in its

subsonic regime.

This interpretation is at least consistent with the results of Petersan et al. (2004) who highlight the215

weak effect of horizontal stretch ratio on crack speed, and with the present results. Indeed, we have shown

that, in the reference configuration, crack speed is constant while the crack goes through sample zones

with different horizontal stretch ratio: it varies from 𝜆𝑥 = 1 in the middle of the sample to 𝜆𝑥 = 1/
√︁
𝜆𝑦 in

the neighbourhood of the right-hand side free edge. In any case, it emphasizes the key role of the reference

configuration in the understanding of crack growth: in our tests, the apparent deceleration of crack220

propagation observed in the deformed configuration corresponds in fact to a crack that propagates at

constant speed in a compressed membrane (𝜆𝑥 < 1).

4 Conclusion

The present study intends to continue the experimental exploration of rapid fracture in elastomer

membranes; its novelty concerns the observation of non-steady crack propagation. The rarely mentioned225

assumptions required to measure properly the crack speed have been detailed. In particular, the set-up

allows to compute the crack speed in both deformed and reference configurations. The method is completed

with the exact formula of Boulanger et al. (1992) to calculate the shear wave speed in deformed samples:

this analytical formula facilitates the kinematic analysis even if it necessitates the use of the Mooney-Rivlin

model which is known to underestimate the large strain response of elastomers. The different behaviour230

observed for cracks between deformed and reference configurations, even in this pure shear sample,

underlines the key role of the latter. This study advocates for the analysis of crack and wave propagation in

the reference configuration, especially when even more complex underlying strain fields will be considered.

Our results confirms the previous observation of intersonic crack propagation, and notably at quite

moderate strain level for industrial elastomers. They are also consistent with the particular scaling regime235
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identified previously: at high speed, the crack speed is governed by the strain in the membrane and

not by the energy release rate (as suggested by the standard theory). The present investigation and the

new look taken to previous works (Gent et al. 1982b; Petersan et al. 2004) also underline the very small

influence of the strain in the crack growth direction on the crack speed. Our observations provide a first

experimental observation of the validity of these two results for a non steady-state propagation. The240

methods introduced here will be useful for the analysis of crack with varying crack speed and direction, in

the pursuit of a model to predict fast crack kinematics in elastomers.
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