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We present a full derivation of capillary fluid equations from the kinetic theory of dense gases. These equations
involve van der Waals’ gradient energy, Korteweg’s tensor, and Dunn and Serrin’s heat flux as well as viscous
and heat dissipative fluxes. Starting from macroscopic equations obtained from the kinetic theory of dense gases,
we use a second-order expansion of the pair distribution function in order to derive the diffuse interface model.
The capillary extra terms and the capillarity coefficient are then associated with intermolecular forces and the
pair interaction potential.
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I. INTRODUCTION

Diffuse interface methods describe liquid-gas interfaces as
transition zones with smooth variations of physical properties.
Second gradient diffuse interface fluid models, also termed
capillary fluids, have been successfully used to describe
liquid-vapor interfaces, capillary waves, near-critical points,
and three-phase contact lines, as well as droplets formation
and nucleation [1–7]. The second gradient theory has been
extended to binary fluids by Cahn and Hilliard allowing the
modeling of spinodal decomposition [8]. Diffuse interface
models may likewise be used in the supercritical domain
allowing a smooth transition from supercritical to subcritical
conditions [9]. These models are also compatible with the
limiting free boundary problem when the interface thickness
goes to zero [5].

The thermodynamics of diffuse interface models has been
built by van der Waals [1] using a gradient squared term in
the free energy, and the corresponding capillary tensor has
been derived by Korteweg [2]. The proper heat flux has been
obtained by Dunn and Serrin in the framework of rational ther-
modynamics [10]. These equations have alternatively been
obtained from Hamiltonian considerations by Gavrilyuk and
Shugrin [11], and their mathematical properties are discussed
by Gavrilyuk and Gouin [12], Benzoni et al. [13], and Bresch
et al. [14].

Aside from mechanical, thermodynamical, or mathemati-
cal arguments, it is also important to investigate capillary flu-
ids at the molecular level. Statistical mechanics of equilibrium
systems that are highly inhomogeneous on the scale of length
of intermolecular forces has notably been used to investigate
liquid-gas interfaces by Ono and Kondo [15], Evans [16],
and Rowlinson and Widom [3]. The links between capillary
phenomena and intermolecular forces have been deepened,
and this has led to expressions for the interfacial energy,
the capillary pressure tensor, and the capillary coefficient
[3,15,16].

*vincent.giovangigli@polytechnique.fr

Focusing on nonequilibrium models, the kinetic theory of
gases has been used in various contexts in order to inves-
tigate phase transition as presented in the review paper by
Frezzotti and Barbante [17]. Phase changes have notably been
investigated by employing linearized Boltzmann equations
with condensation-evaporation boundary conditions [18–20].
Boltzmann-Vlasov- and Enskog-Vlasov-type equations have
been used to investigate more deeply spatial aspects of phase
transition [21–32], as well as particulate flows [33]. Detailed
molecular dynamics of Lennard-Jones fluids have further
been performed by Frezzotti and Barbante and compared to
capillary fluid models with a general very good agreement [7].

Focusing on the derivation of capillary fluids equations
from the kinetic theory, a notable achievement was that of
Rocard, who derived the capillary force acting locally in a
fluid using a Taylor expansion of the two-point distribution
function [34,35]. Rocard then recovered the Korteweg tensor
and the capillary coefficient. Piechór has also investigated
the links between kinetic nonlocal stresses and Korteweg’s
tensor using an Enskog-Vlasov equation [25]. A minimum
BGK-Vlasov model has also been introduced by Takata and
Noguchi [27] with a nonideal effect mediated through a
nonlocal self-consistent force term and collisions acting as a
thermal bath. A gradient-type energy has been obtained in the
continuum limit as well as a Cahn-Hillard-type equation in an
isothermal framework. To the best of the author’s knowledge,
however, a full derivation of nonisothermal capillary fluid
equations from the kinetic theory of dense gases is still
missing and is the object of this work.

The kinetic theory of dense gases is based on a gener-
alized Boltzmann equation for the one-particle distribution
function [36–42]. Such a Boltzmann-type equation is derived
from the two first equations of the BBGKY hierarchy using
cluster expansions and Bogoliubov’s functional property. A
key point in the generalized Boltzmann equation, allowing
the derivation of capillary fluids, is that the distribution func-
tions are evaluated at different spatial positions. In particular,
models starting from the classical Boltzmann equation may
lead to Burnett-type contributions but not to capillary fluids.
The macroscopic equations are then obtained in the kinetic
framework through an asymptotic expansion in terms of a uni-
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formity parameter analogous to that of the Chapman-Enskog
method. The resulting macroscopic equations are found to
be of the Navier-Stokes-Fourier type with density-dependent
transport coefficients [36–42].

An examination of the asymptotic expansions then indi-
cates that second-order corrections arising from the pair distri-
bution function should be taken into account. A second-order
expansion of the pair distribution function is then introduced
and leads to the capillary fluid equations. The capillary energy,
the Korteweg tensor, and the Dunn and Serrin heat flux are
exactly recovered after lengthy calculations as well as an
expression of the capillary coefficient due to van der Waals
and Rayleigh. The capillary terms as well as the capillarity
coefficient are related with intermolecular forces and the pair
interaction potential.

The equations governing capillary fluids are presented in
Sec. II. The kinetic theory of dense gases and the associated
new asymptotics are described in Sec. III. A full derivation of
capillary fluid equations from the kinetic theory is then given
in Sec. IV.

II. DIFFUSE INTERFACE FLUIDS

We summarize in this section the equations governing
fluids with diffuse interfaces also termed capillary fluids.
These equations involve van der Waals’ energy [1], Ko-
rteweg’s tensor [2], and Dunn and Serrin’s heat flux [10].
Incidentally, there exists another type of diffuse interface
models of more empirical nature, namely, multifluids, typi-
cally obtained through averaging processes, that lie outside
the scope of this work. We further discuss the ambiguity of
rational themodynamics—the thermodynamics of irreversible
processes—for such nonlinear systems of equations gov-
erning capillarity fluids, with the apparition of a gradients’
product term in the rate of entropy production leading to an
artificial alternative for the expression of transport fluxes.

A. Van der Waals free energy

The free energy per unit volume A in a second gradient
theory is in the form

A = A0 + 1
2 κ|∇ρ|2, (1)

where A0 denotes the bulk free energy per unit volume,
ρ the mass density, ∇ the usual differential operator, and
κ the capillary coefficient. The superscript “0” is used to
denote standard bulk phase thermodynamic properties that do
not involve gradients. The free energy A0 depends only on
the densities ρ and the absolute temperature T , whereas the
gradient squared term 1

2 κ|∇ρ|2 in A represents the excess
free energy of the interfacial region [1–3,8]. We will assume
in the following that the capillarity coefficient κ is constant
for the sake of simplicity.

Denoting by a = A/ρ the free energy per unit mass, T
the absolute temperature, s the entropy per unit mass, p the
pressure, and ν = 1/ρ the volume per unit mass, we have
the classical thermodynamic relation da0 = −s0dT − p0dν.
Differentiating (1), we then obtain

da = −s0dT −
(

p0 − 1

2
κ|∇ρ|2

)
dν + κ∇ρ·d∇ρ

ρ
, (2)

where d denotes the differentiation operator. This shows that
the entropy s and the pressure p are given by

s = s0, p = p0 − 1
2 κ|∇ρ|2. (3)

The equality of the entropy s with the bulk entropy s0 is in
agreement with the van der Waals derivation [1–3,8]. Denot-
ing by e the energy per unit mass and using the thermody-
namic relation e = a + T s we also get

e = e0 + 1

2

κ

ρ
|∇ρ|2, (4)

and we denote by E = ρe the energy per unit volume and
EC = 1

2 κ|∇ρ|2 its capillary part. The generalized Gibbs re-
lation is finally in the form

T ds = de − p

ρ2
dρ − 1

ρ
κ∇ρ·d∇ρ. (5)

We will deduce from (5) an entropy balance equation and next
discuss entropy production and the structure of the momentum
and energy fluxes.

In order to illustrate the impact of the van der Waals
capillary energy, consider an equilibrium planar liquid-gas
interface. The structure of the interface may be obtained by
extremalizing the integral of entropy while energy and mass
are conserved [1,3,6]. Denoting by l and g the indices of
the liquid and its vapor at equilibrium, we have Tl = Tg,
pl = pg, and gl = gg, where g is the Gibbs function g =
a + p/ρ. Denoting by z the normal coordinate, the interface
is found to be isothermal and such that 1

2 κ( dρ/ dz)2 = A −
Ag − gg(ρ − ρg), and the density ρ(z) may then be obtained
by numerical integration [1,3,43]. The function A − Ag −
gg(ρ − ρg) is the difference between A and its bitangent line,
since A l = Ag − gg(ρl − ρg) from the equality of pressures
and since ∂ρA = g at constant temperature. Approximating
the excess function A − Ag − gg(ρ − ρg) as A(ρ − ρl )2(ρ −
ρg)2, where A is a constant, the density is found in the form
ρ(z) = 1

2 (ρl + ρg) + 1
2 (ρl − ρg) tanh(z/2z) with the charac-

teristic length z = (κ/2A)
1/2

/(ρl − ρg). Detailed numerical
simulations have also shown that the error function erf yields
accurate fits to actual density profiles [44].

B. Equations of capillary fluids

Using the pressure p and the energy per unit mass e given
by (3) and (4), the equations governing capillary fluids may
be written [5,6]

∂tρ + ∇·(ρv) = 0, (6)

∂t (ρv) + ∇·(ρv⊗v) + ∇·P = 0, (7)

∂t

[
ρ
(
e + 1

2 |v|2)] + ∇·[ρv
(
e + 1

2 |v|2)]
+ ∇·(Q + P·v) = 0, (8)

where ∂t denotes the time derivative operator, v the fluid
velocity, P the pressure tensor, and Q the total heat flux. The
transport fluxes P and Q contain capillary and dissipative
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terms

P = pI + κ∇ρ⊗∇ρ − κρ�ρI + PNS, (9)

Q = κρ∇·v ∇ρ + QNS, (10)

where I denotes the three-dimensional unit tensor, PNS the
viscous pressure tensor, � = ∇·∇ the Laplacian operator,
and QNS the Fourier heat flux [5,6]. The dissipative fluxes PNS

and QNS are classically of the Navier-Stokes and Fourier type
[40,41,45–47]

PNS = −v∇·v I − η
(∇v + ∇vt − 2

3∇·v I
)
, (11)

QNS = −λ∇T, (12)

where v denotes the volume viscosity, η the shear viscosity,
and λ the thermal conductivity.

We may decompose the total pressure tensor P and heat
flux Q in the form P = p0I + PNS + PC and Q = QNS +
QC so that the Korteweg’s pressure tensor PC and the Dunn
and Serrin’s heat flux QC solely arise from capillarity

PC = − 1
2 κ|∇ρ|2I + κ∇ρ⊗∇ρ − κρ�ρI, (13)

QC = κρ∇·v ∇ρ. (14)

The capillary part of the pressure pC = − 1
2 κ|∇ρ|2 has been

included in the Korteweg tensor (13). Both capillary fluxes
(13) and (14) will have to be recovered from the kinetic
theory as well as the capillary energy per unit volume EC.
Such capillary fluids models have been successfully used for
the study of many phase change problems including complex
liquid-gas interfaces with topological changes [4–7,9].

C. Ambiguity of rational thermodynamics

Using Gibbs relation (5) and the governing equations (6)–
(8), the rate of entropy production may be written after some
algebra

ρ(∂t s + v·∇s) + ∇·
(Q

T
− κρ∇·v∇ρ

T

)

= − 1

T
(P − pI − κ∇ρ⊗∇ρ + κρ�ρI):∇v

− (Q − κρ∇·v∇ρ)·∇T

T 2
, (15)

where v:w denotes the full contraction between any two
tensors v and w. Proceeding as in the thermodynamics of
irreversible processes [5,6,48], also termed rational thermo-
dynamics, and using the Curie principle, we recover from
(15) that P − p0I − PC is given by (11) and similarly that
Q − QC is given by (12), and we have recovered the ex-
pressions (9) and (10) of both fluxes P and Q. Note also
the absence of cross-effects because of the Curie principle
[48]. The complete equations governing capillary fluids have
thus been derived from rational thermodynamics by using the
expression (15) for the rate of entropy production. Such a
derivation has been presented in particular by Dunn and Serrin
[10], Anderson et al. [5], and Jamet [6].

However, the situation is more complex than it may appear
since there is a term in (15) involving the product of two

gradients,

1

T 2
κρ∇·v ∇ρ·∇T . (16)

Considering this term as a temperature gradient term and
regrouping it in −(Q − ρ∇·v κ∇ρ)·∇T/T 2, as in (15), we
have recovered Korteweg’s tensor and Dunn and Serrin’s heat
flux. However, using ∇·v = ∇v:I, this gradients’ product
term (16) could also be considered as a velocity derivative
term. With such an interpretation, one may rewrite the rate of
entropy production as

ρ(∂t s + v·∇s) + ∇·
(Q

T
− κρ∇·v∇ρ

T

)

= −Q·∇T

T 2
− 1

T
(P − pI − κ∇ρ⊗∇ρ + κρ�ρ I

− κρ∇ρ·∇ log T I):∇v. (17)

Note that the temperature gradient arising from ∇(1/T ) then
plays two different roles, as a gradient in Q·∇T and as part of
a flux in κρ∇ρ·∇ log T I. Writing again the proportionality
of fluxes and gradients with (17) we obtain different fluxes in
an alternative unphysical form

P ′ = pI + κ∇ρ⊗∇ρ − κρ�ρ I

+ κρ∇ρ·∇ log T I + PNS, (18)

Q′ = QNS. (19)

Therefore, depending on the expression of the rate of entropy
production (15) or (17), one may either obtain the correct
fluxes (9) and (10) or the alternative fluxes (18) and (19).
These alternative fluxes (18) and (19) have notably been
proposed by Freistühler and Kotschote [49], Heida and Málek
who obtained both sets of fluxes [50], and Souček et al. [51],
who have introduced a linear combination of both fluxes.

Rational thermodynamics, which is usually a faithful tool
for linear-like problems, is here unable to determine un-
ambiguously the proper transport fluxes. As quoted by de
Groot and Mazur, the methods of rational thermodynamics
are essentially valid for linear relations between fluxes and
gradients [48]. For nonlinear systems like capillary fluids,
there is a failure of rational thermodynamics in the sense that
a simple algebraic reordering of the entropy production rate
from (15) into (17) seems to lead to different physical fluxes
(9) and (10) or (18) and (19) and thus to different physics.
We thus conclude that only finer physical theories may de-
termine unambiguously the proper fluxes and equations. The
correct fluxes (9) and (10) have been obtained in particular
by Gavrilyuk and Shugrin [11] from Hamilton’s principle,
they have important mathematical properties [12,13] and are
obtained from the kinetic theory of dense gases in this work,
thereby resolving the alternative. The alternative fluxes (18)
and (19) finally appear to be unphysical as was overlooked
in the literature [49–51] because of the ambiguity of rational
mechanics.

III. A DENSE GAS KINETIC MODEL

A kinetic theory describing moderately dense gases is
summarized in this section as well as the corresponding
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macroscopic dense fluid equations. The traditional first-order
expansion in terms of a uniformity parameter is presented and
a second-order expansion of the pair distribution function is
introduced, as required by the capillary terms.

A. Kinetic framework

We consider a single dense gas and the associated BBGKY
hierarchy governing multiple-particle distribution functions as
presented in Chapman and Cowling [40], Ferziger and Kaper
[41], and Lifshitz and Pitaevskii [52]. Assuming for the sake
of simplicity that there are no external forces acting on the
particles, the two first equations of the BBGKY hierarchy are
in the form

∂t f1 + c1 ·∇r1 f1 =
∫

θ12 f2 dx2, (20)

∂t f2 + c1 ·∇r1 f2 + c2 ·∇r2 f2 − θ12 f2

=
∫

(θ13 + θ23) f3 dx3, (21)

where ∂t denotes the time derivative operator, ri the spatial
coordinates of the ith particle, ci the velocity of the ith parti-
cle, fk the k particle(s) distribution function, ∇ri the derivative
operator with respect to the spatial coordinate ri, and ∇ci the
derivative operator with respect to the velocity ci. We denote
for short by xi the pair of vectors xi = (ri, ci ) and by dxi the
volume element dri dci. When there is no ambiguity, we will
also denote by r and c the vectors r1 and c1 and by ∇ the
differential operator ∇r1 . The differential operator θi j is given
by

θi j = 1

m
∇riϕi j·∇ci + 1

m
∇r j ϕi j·∇c j , (22)

where m denotes the particle mass and ϕi j the interaction
potential between the ith and jth particles that depends only
on the intermolecular distance ri j = |r j − ri|. The traditional
one-particle distribution function is then f1 = f1(x1, t ) =
f1(r1, c1, t ), and the particle pair distribution function f2 =
f2(x1, x2, t ) is also symmetric f2(x1, x2, t ) = f2(x2, x1, t ).
The triplet particle distribution function f3 is assumed to be
zero in this work for the sake of simplicity. These equa-
tions are the two first equations of the BBGKY hierarchy
that has been derived independently by Bogoliubov [53],
Born and Green [54], and Kirkwood [55] and introduced by
Yvon [56], and we refer to the literature [40,41,52] for more
details.

The aim of this work being the derivation of the macro-
scopic equations governing diffuse interface fluids, we use
only a simplified version of the kinetic theory of moderately
dense gases. In particular, triple collisions are not taken into
account, although they may indeed be included in the model,
and some of the difficulties associated with dense gases are
not detailed like bound states, divergences with quadruple
collisions in three dimensions, H theorems, or long-time tails
for time correlation functions, and we refer to the literature
[36–42,52–57].

B. Macroscopic equations

The gas number density n1 is given by

n1(r1, t ) =
∫

f1(r1, c1, t ) dc1 (23)

and will also be denoted by n when there is no ambiguity, and
the pair number density n2 reads

n2(r1, r2, t ) =
∫

f2(r1, c1, r2, c2, t ) dc1 dc2. (24)

The mass density is ρ = mn, and the gas velocity v reads

ρv(r1, t ) =
∫

mc1 f1(r1, c1, t ) dc1. (25)

The internal energy per unit mass of the fluid is decom-
posed into

e = eK + eP, (26)

where eK is the kinetic part that originates from the peculiar
motion of the particles, whereas eP is the potential part due
to the pair interaction potential [40,41]. We will denote by
E = ρe and EP = ρeP the corresponding energy densities per
unit volume. The internal energy density eK and the potential
part eP may be written

ρeK =
∫

1

2
m|c1 − v|2 f1(r1, c1, t ) dc1, (27)

ρeP =
∫

1

2
ϕ12(r12)n2(r1, r2, t ) dr2, (28)

where the interaction potential ϕ12 depends only on r12 =
|r2 − r1|.

The general macroscopic equations in unclosed form are
further obtained by taking appropriate moments of (20) and
(21). The mass conservation equation is obtained by integrat-
ing (20) with respect to c1 and reads

∂tρ + ∇·(ρv) = 0. (29)

The momentum equation, obtained by multiplying (20) by
mc1 and integrating with respect to c1, is found in the form

∂t (ρv) + ∇·(ρv⊗v) + ∇·(PK + PP) = 0, (30)

where PK is the traditional kinetic part of the pressure tensor

PK(r1, t ) =
∫

m(c1 − v)⊗(c1 − v) f1(r1, c1, t ) dc1, (31)

whereas PP is the potential part

PP(r1, t ) = −1

2

∫
ϕ′

12(r12)

r12
r12⊗r12 n2[r1 − (1 − α)r12,

r1 + αr12, t] dα dr12, (32)

where the scalar α must be integrated over (0,1). The tensor
PK corresponds to the transfer of momentum due to the flow
of particles and PP to the transfer of momentum between
particles due to intermolecular forces [40,41].

The energy conservation equation is next derived in several
steps. One first multiplies (20) by 1

2 m|c1 − v|2 and integrates
with respect to c1 in order to obtain a balance equation for the
kinetic part eK of the internal energy. The balance equation
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for the potential part of the energy eP is then obtained by
multiplying the two-point distribution function equation (21)
by the potential energy 1

2ϕ12(r12) and integrating with respect
to c1, c2, and r12 = r2 − r1. A balance equation for the kinetic
energy 1

2 |v|2 is also obtained by taking the scalar product
of (30) by v and added to the previous equations. After
lengthy calculations, the governing equation for e + 1

2 |v|2 =
eK + eP + 1

2 |v|2 is found in the form

∂t

[
ρ
(
e + 1

2 |v|2)] + ∇·[ρ(
e + 1

2 |v|2)]
+ ∇·[QK + QP + (PK + PP)·v] = 0, (33)

where

QK(r1, t ) = 1

2

∫
m|c1 − v|2(c1 − v) f1(r1, c1, t ) dc1 (34)

and QP = QP
1 + QP

2 with

QP
1(r1, t ) = 1

2

∫
ϕ12(r12)(c1 − v) f2(r1, c1, r2, c2, t )

× dc1 dr2 dc2, (35)

QP
2(r1, t ) = − 1

4

∫
ϕ′

12(r12)

r12
r12 r12·(c1 − v + c2 − v)

× f2[r1 − (1 − α)r12, c1, r1 + αr12, c2, t]

× dα dc1 dr12 dc2, (36)

and the scalar α must be integrated over (0,1). The heat flow
vector QK is similar to that of a dilute gas and represents the
transfer of thermal energy due to the flow of molecules. The
first potential part QP

1 represents the flow of potential energy
carried by the molecules, and QP

2 represents the flux of energy
associated with long-range forces and thermal agitation. More
specifically, the scalar product of QP

2 with a normal vector
to a surface element represents the work per unit time done
on molecules on one side, which move with their peculiar
motion, by the molecules on the other side, and both fluxes
QP

1 and QP
2 depend only on the peculiar velocities c1 − v and

c2 − v.

C. Generalized Boltzmann equation

The kinetic theory of dense gases involves a generalized
Boltzmann equation for the one-particle distribution function
f1 that may be derived by using cluster expansions and
Bogoliubov’s method [36–42]. To this aim, the two-point
distribution function f2 is written in the form

f2 = S12 f1(x1, t ) f1(x2, t ), (37)

where the combined streaming operator S12 is given by

S12 = exp (−tH12) exp (tH1) exp (tH2). (38)

The operator Hi denotes the Hamiltonian operator of the ith
particle alone, Hi = ci·∇ri , whereas

H12 = c1·∇r1 + c2·∇r2 − θ12

denotes the Hamiltonian operator for the particle pair. In the
expression (37) the contribution arising from triple distribu-
tion products or more [38,41] has been neglected for the
sake of simplicity. The streaming operators exp (tHs) form

Abelian one-parameter groups of operators and correspond to
the streaming of systems of s particles under the influence
of the Hamiltonian Hs. It has also been assumed that the
initial distribution is a product of uncorrelated distributions
f2(x1, x2, 0) = f1(x1, 0) f1(x2, 0). A fundamental assumption
in the model is that the operator S12(x1, x2, t ) as a finite limit
S∞

12(x1, x2) as t is large with respect to the collision time;
we refer to Choh and Uhlenbeck [36], Andrews [37], García
Colín et al.[38], Ferziger and Kaper [41], and Dorfman and
van Beijeren [42] for more details.

The generalized Boltzmann equation governing the one-
particle distribution function f1 is then in the form

∂t f1 + c1 ·∇r1 f1 = J ( f1, f1), (39)

where

J ( f1, f1) =
∫

θ12S
∞
12 f1(x1, t ) f1(x2, t ) dx2. (40)

A key point in (39) is that the particles are taken at different
positions r1 and r2, and Taylor expansion will be required in
order to localize the collision operator.

D. Chapman-Enskog expansion

The asymptotic method that leads to the macroscopic fluid
equations in the kinetic theory of dense gases is analogous to
that of Chapman-Enskog. The distribution f1 is expanded as
a power series in terms of a uniformity parameter μ, which
is a measure of the gradients of the macroscopic variables.
Such an expansion is valid in the hydrodynamic stage where
f1 depends only on time through the macroscopic variables n,
v, and T . The macroscopic variables, on the other hand, are
governed by the hydrodynamic equations [36–42].

In the Navier-Stokes regime, the one-particle distribution
is expanded in the form

f1 = f (0)
1 + μ f (1)

1 + O(μ2), (41)

in terms of the uniformity parameter μ. The case where μ = 0
corresponds to a local uniform state, and this implies a first-
order expansion for f1(r′

1, c1) around (r1, c1) with δr1 = r′
1 −

r1 in the form

f1(r′
1, c1) = f (0)

1 (r1, c1) + μ
[

f (1)
1 (r1, c1)

+ ∇r1 f (0)
1 (r1, c1)·δr1

] + O(μ2). (42)

The collision operator J acting on a distribution h is similarly
expanded locally as

J (h, h) = J0(h, h) + μJ1
(
h,∇r1 h

) + O(μ2), (43)

where J0 is the usual Boltzmann collision operator and J1

is a bilinear collision operator localized around the local
coordinate r [37,38,41]. Combining (42) and (43) then yields

J ( f1, f1) = J0
(

f (0)
1 , f (0)

1

) + μ
[
J0

(
f (0)
1 , f (1)

1

)
+ J0

(
f (1)
1 , f (0)

1

) + J1
(

f (0)
1 ,∇r1 f (0)

1

)] + O(μ2),
(44)

and the main difference with the classical expansion is the
presence of the extra gradient terms J1( f (0)

1 ,∇r1 f (0)
1 ).
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At zeroth order, it is obtained that J0( f (0)
1 , f (0)

1 ) = 0 and
f (0)
1 is taken to be the local Maxwellian

f (0)
1 = n

(
m

2πkBT

) 3
2

exp

(
−m|c1 − v|2

2kBT

)
, (45)

where n, v, and T are the local number density, fluid velocity,
and temperature, following Enskog’s method of expansion. In
particular, the Maxwellian distribution is such that the local
value of the complete internal energy density is recovered
with f (0)

1 thereby defining the local temperature [38,41]. The
zeroth-order expansion f (0)

2 of the pair distribution function f2

is then in the form [38,41,57]

f (0)
2 (x1, x2, t ) = f (0)

1 (r1, c1, t ) f (0)
1 (r1, c2, t )g2(r12), (46)

where g2 denotes the equilibrium correlation function

g2(r12) = exp

[
−ϕ12(r12)

kBT (r1)

]
, (47)

keeping in mind that the macroscopic unknowns are locally
uniform at zeroth order. At zeroth order, the Euler fluid
equations are then recovered [36–42], using (45) and (46) and
the macroscopic equations of Sec. III B.

At first order, in the Navier-Stokes regime, taking into
account the operator decomposition (44), the integral equation
for the perturbed distribution function f (1)

1 is in the form

∂t f (0)
1 + c1·∇r1 f (0)

1 − J1
(

f (0)
1 ,∇r1 f (0)

1

)
= J0

(
f (0)
1 , f (1)

1

) + J0
(

f (1)
1 , f (0)

1

)
, (48)

and the time derivative is evaluated with Euler equations.
This first-order equation is similar to the classical first-
order equations except that there are extra gradient terms
J1( f (0)

1 ,∇r1 f (0)
1 ) arising from the first-order Taylor expansion

of f2 in the collision operator. The distribution f (0)
1 is then

uniquely determined by imposing Enskog-type constraints so
that the true value of the local macroscopic variables n, v, and
T (or equivalently e) are determined by f (0)

1 alone [38,41].
The resulting macroscopic equations are of the Navier-Stokes-
Fourier type [36–42], with fluxes in the classical form (11) and
(12). The resulting expressions of the transport coefficients in
dense gases are found to be highly complex [36–42].

E. Pressure and internal energy

Using the zeroth-order expressions of the one- and two-
point distribution functions (45) and (46), the pressure is
found in the form

p = nkBT − n2

6

∫
ϕ′

12(r12)r12g2(r12) dr12. (49)

Integrating by part the integral in (49), we obtain that∫
ϕ′

12(r12)r12g2(r12) dr12

= 4π

∫
ϕ′

12(r12)r3
12g2(r12) dr12

= 12πkBT
∫
f12r2

12 dr12 = 3kBT
∫
f12 dr12,

where f12 is the Mayer function

f12 = exp

(
− ϕ12

kBT

)
− 1. (50)

The state law may thus be written

p = nkBT − n2

2
kBT

∫
f12 dr12, (51)

and the internal energy is obtained with similar procedures

e = 3

2
nkBT + 1

2
n2

∫
ϕ12(r12)g2(r12) dr12. (52)

In order to recover the van der Waals equation of state, we
may further assume that the interaction potential ϕ12 is such
that

ϕ12(r12) =
{+∞ if 0 � r12 � σ,

ϕ12(r12) < ∞ if σ < r12,
(53)

for some positive collision diameter σ . One may also assume
that ϕ12 is attractive ϕ12 < 0 for 2σ < r12 and increases
towards zero as r12 → ∞. We may then recover the van der
Waals equation of state by decomposing the integral

∫
f12 dr12

in two zones [58–60]. More specifically, one may write that∫
f12r2

12 dr12 =
∫ 2σ

0
f12r2

12 dr12 +
∫ ∞

2σ

f12r2
12 dr12,

use f12 = −1 over (0, 2σ ), and linearize the Mayer function
f12 ≈ −ϕ12/kBT for 2σ < r12, to get that

2πkBT
∫
f12r2

12 dr12 ≈ −kBT
16πσ 3

3
− 2π

∫ ∞

2σ

ϕ12(r12)r2
12 dr12,

and the corresponding pressure law reads

p = nkBT + n2kBT
16πσ 3

3
+ n22π

∫ ∞

2σ

ϕ12(r12)r2
12 dr12.

Assuming then that the volume occupied by the particles is
small, n 4πσ 3

3 � 1, we obtain the state law

p = nkBT

1 − bn
− an2, (54)

with

b = 4
4πσ 3

3
, a = −2π

∫ ∞

2σ

ϕ12(r12)r2
12 dr12,

where a is positive since the interaction potential is mainly
negative as r increases. The van der Waals equation of state
has thus been recovered using the traditional method of statis-
tical physics [58–60].

F. A second-order expansion

The scaling of the generalized Boltzman equation (39) as-
sociated with the expansion (41) in the hydrodynamic regime
may be written formally as

μ
(
∂t f1 + c1 ·∇r1 f1

) =
∫

θ12 f2 dx2. (55)

This shows that a second-order expansion of f2, which leads
to extra terms of order O(μ2), should formally be taken
into account in the macroscopic governing equations in a
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Navier-Stokes regime, keeping in mind that f1 is developed
with a first-order term O(μ) on the left-hand side. A second-
order expansion of the pair particle distribution f2 is thus
required and will yield the capillary terms in the macroscopic
equations.

In order to obtain a second-order expansion of f2, we first
have to consider the one-point distribution function f1. The
distribution f1 is expanded in the form

f1 = f (0)
1 + μ f (1)

1 + μ2 f (2)
1 , (56)

and this yields an expansion of f1(r′
1, c1) around x1 = (r1, c1)

with δr1 = r′
1 − r1 in the form

f1(r′
1, c1) = f (0)

1 (r1, c1)+μ
[

f (1)
1 (r1, c1) + ∇ f (0)

1 (r1, c1)·δr1
]

+ μ2
[

f (2)
1 (r1, c1) + ∇ f (1)

1 (r1, c1)·δr1

+ 1
2∇2 f (0)

1 (r1, c1):δr1⊗δr1
]
.

We now remark that both f (2)
1 and ∇ f (1)

1 are Burnett-type
terms and should be discarded in a Navier-Stokes regime.
Keeping only the ∇2 f (0)

1 second-order terms, we obtain a
second-order expansion of f1,

f1(r′
1, c1) = f (0)

1 (r1, c1)+μ
[

f (1)
1 (r1, c1) + ∇ f (0)

1 (r1, c1)·δr1
]

+ μ2 1
2∇2 f (0)

1 (r1, c1):δr1⊗δr1, (57)

that does not contain Burnett-type terms in the classical sense.
The second-order expansion of f2 is then obtained from that
of f1 (57) with the nonequilibrium expression

f2(x1, x2, t ) = f (0)
1 (x1, t ) f (0)

1 (x2, t )g2(r12), (58)

where g2(r12) is the correlation function. In order to derive
the modified macroscopic equations, the new expansion of
f2 must then be used with the general balance equations
established in Sec. III B. Note that only the extra terms arising
from the second-order terms of f2 must be taken into account,
and this is the object of the next section.

Although a nonequilibrium correlation function g2 could
in principle also be used, and could eventually depend on
T (r2), we will nevertheless use the correlation function (47)
as if the temperature is locally uniform. There is indeed no
clear expression for a nonequilibrium correlation function at
interfaces, and many solutions have been proposed, e.g., using
an average temperature, the center-of-mass temperature, or
solving integral equations [3,61,62]. In addition, temperature
variations during phase change are modest at variance with
large density variations. Using a locally uniform correlation
function g2 will imply that the capillary coefficient is indepen-
dent of temperature in agreement with the van der Waals and
Rayleigh expressions obtained in the following and further
corresponds to the simplified model presented in Sec. II.

IV. DERIVATION OF CAPILLARY FLUID EQUATIONS

In this section, we derive the capillary fluid equations from
the dense gas kinetic theory described in Sec. III. The method
combines the dense fluid macroscopic equations obtained in
Sec. III B as well as the second-order expansion of f2. The
second-order terms in f2 are obtained from (58) and (57)
and will yield the extra terms associated with capillarity.
This method has intuitively been introduced by Rocard, who

determined the force resulting from intermolecular potentials
and deduced the Korteweg pressure tensor [34,35]. It is used
systematically in this work for nonisothermal flows in order
to derive the complete diffuse interface fluid equations.

A. The Korteweg pressure tensor

We consider the tensor PP arising from the interac-
tion potential (32) and look for the extra terms with
two spatial derivatives Pex arising from the second-
order expansion of the distribution function f2(x1, x2, t ) =
f (0)
1 (x1, t ) f (0)

1 (x2, t )g2(r12). We use Taylor expansions and
keep only the extra terms associated with two derivatives in
the governing equations. The relevant integrand factor in (32)
is expanded in the form

n2[r1 − (1 − α)r12, r1 + αr12, t]

≈ [
n(r1) − (1 − α)∇n(r1)·r12

+ 1
2 (1 − α)2∇2n(r1):(r12⊗r12)

]
× [

n(r1) + α∇n(r1)·r12

+ 1
2α2∇2n(r1):(r12⊗r12)

] × g2(r12).

Extracting the terms with two derivatives, the relevant inte-
grands involves the factors

− α(1 − α)[∇n(r1)·r12)]2

+ 1
2 [(1 − α)2 + α2]n(r1)∇2n(r1):(r12⊗r12).

Incidentally, the n2 term is already taken into account in the
state law (49), and the odd terms yield zero contributions in
Pex but contribute in the dissipative fluxes [38,41].

Focusing on the first integrand, we note that

[∇n(r1)·r12)]2 = ∇n(r1)⊗∇n(r1):(r12⊗r12),

and using
∫ 1

0 α(1 − α) dα = 1
6 we obtain a first extra contri-

bution p1 to the pressure tensor in the form

p1 = 1

12

∫
ϕ′

12(r12)

r12
r12⊗r12 [∇n⊗∇n:(r12⊗r12)] dr12.

We may now use the identity (A3) from the Appendix in order
to perform the integrations over r12 ∈ R3, and we obtain that

p1 = κ

6
(2∇n⊗∇n + |∇n|2I),

where the capillarity coefficient is defined as

κ = 1

30

∫
ϕ′

12(r12)g2(r12)r3
12 dr12,

= 2π

15

∫
ϕ′

12(r12)g2(r12)r5
12 dr12. (59)

Focusing next on the integrands, involving the Hessian
matrix ∇2n and using

∫ 1
0 α2 dα = ∫ 1

0 (1 − α)2 dα = 1
3 , we

obtain a second extra contribution p2 to the pressure tensor
in the form

p2 = −n

6

∫
ϕ′

12(r12)

r12
r12⊗r12 [∇2n:(r12⊗r12)] dr12.
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Using again the identity (A3) in order to perform the integra-
tions over r12 ∈ R3, we obtain that

p2 = −κ

3
(2n∇2n + n�nI).

Collecting previous results, the extra pressure tensor Pex

is found in the form

Pex = κ

6
(2∇n⊗∇n + |∇n|2I − 4n∇2n − 2n�nI).

We may then simplify Pex with an equivalent expression Pex
;

that is, we seek Pex
such that

∇·Pex = ∇·Pex
.

Expressing the divergence of the Hessian matrix contribution
n∇2n with the help of differential identity (A5), we indeed
obtain the simplified pressure tensor

Pex = κ

(∇n⊗∇n − 1
2 |∇n|2I − n�nI

)
. (60)

Introducing the mass based capillary coefficient κm = κ/m2

and using ρ = mn we may rewrite the extra pressure tensor
∇·Pex

as

Pex = κm
(∇ρ⊗∇ρ − 1

2 |∇ρ|2I − ρ�ρI
)
, (61)

which coincides with the Korteweg tensor Pex = PC given
in (13).

B. The capillarity coefficient

The capillary coefficient has been found in the form (59),
where g2(r12) = exp(−ϕ12/kBT ). We may integrate by part the
integral in (59) to get that

κ = 1

6
kBT

∫
f12r2

12 dr12 = 2π

3
kBT

∫
f12r4

12 dr12, (62)

where f12 is the Mayer function (50).
We may now simplify (62) in order to recover the van der

Waals and Rayleigh capillarity coefficient. To this aim, we
assume that the interaction potential is like (53). We simplify
then the integral in (62) by neglecting the integral over (0, σ )
and by linearizing f12 into f12 ≈ −ϕ12/kBT for r12 > σ , and
we obtain that

κ = −1

6

∫
r12>σ

ϕ12r2
12 dr12, (63)

which coincides with the expression of van der Waals and
Rayleigh [3]. Incidentally, considering, for instance, the at-
tractive part of a Lennard-Jones potential 4ε(σ/r12)6, where ε

is the potential well depth, the integral over (0, σ ) is kBT σ 5/5
and that over (σ,+∞) is 4εσ 5, and their ratio is kBT/ε20 � 1
since kBT/ε is typically of order unity.

We will use in the following the van der Waals and
Rayleigh expression of the capillarity coefficient (63), which
is independent of temperature and number density.

C. The energy density

We first investigate the extra terms Eex arising from the
energy density EP of potential origin (28) that involves an in-
tegral of the two-point distribution function f2. Expanding the
two-point distribution function f2 = f1(x1, t ) f1(x2, t )g2(r12)

around r2 = r1 + r12, the relevant extra term involving two
derivatives is in the form

Eex = 1

2

∫
ϕ12(r12)n(r1)

1

2
∇2n(r1):(r12⊗r12) dr12.

After some algebra, using the van der Waals and Rayleigh
expression (63) for the capillarity coefficient, the resulting
extra volumetric energy density Eex is found to be

Eex = − 1
2 κn�n. (64)

This type of energy density has been obtained in particular
by Van der Waals [1] and Cahn and Hilliard [8]. In order to
simplify (64) we may then use the identity

Eex = − 1
2 κn�n = 1

2 κ|∇n|2 − 1
2∇·(κn∇n),

in order to recover an energy density in the form

Eex = 1
2 κ|∇n|2,

which has also been obtained by Van der Waals [1] and
Cahn and Hilliard [8], provided we take into account the
residual− 1

2∇·(κn∇n). By changing the energy density from

Eex = − 1
2 κn�n into Eex = 1

2 κ|∇n|2 we have indeed to add
an extra corrector term to the energy equation in the form

� = − 1
2 {∂t∇·(κn∇n) + ∇·[∇·(κn∇n)v]}.

We may rewrite this corrector as the divergence of a corrector
flux by using the mass conservation equation ∂t n = −∇(nv)
and that the capillarity κ is constant. After some algebra, the
corrector term � is rewritten as � = ∇·q0 where

q0 = 1
2 κ∇[n∇·(nv)] − 1

2 κ∇·(n∇n)v. (65)

Therefore, the extra flux q0 must be taken into account, in
addition to the extra terms involving two spatial derivatives
that will arise from QP

1 and QP
2. For future use in the next

section, we may further develop the extra flux q0 in the form

q0 = κn∇·v∇n + 1
2 κn2∇(∇·v) + 1

2 κn(∇v)t ·∇n

+ 1
2 κ(∇n⊗∇n + n∇2n − |∇n|2I − n�nI)v. (66)

The change of energy density from Eex = − 1
2 κn�n into

Eex = 1
2 κ|∇n|2 has not been discussed in a satisfactory way

in the literature. It has been advocated in previous work that
Eex may be transformed into Eex

by integrating by part over
“a large volume” with boundary conditions ensuring a null
contribution of boundary terms. This is unsatisfactory since
an energy density must be a local quantity, not defined over
“a large volume” or else under the nonlocal influence of a
far boundary with unclear definition and unclear boundary
conditions. At variance, in this work, by properly taking into
account the correction heat flux q0, we clarify the local change
of energy density from Eex to Eex

.

D. The Dunn and Serrin heat flux

In order to evaluate the extra heat flux Qex arising from the
second-order expansion of f2 in QP

1 and QP
2 and using (58),

we need to evaluate the gradients of f (0)
1 . After some algebra

we note that
∇ f (0)

1

f (0)
1

= m

kBT
(c1 − v)·∇v + ∇n

n
−

[
3

2
− m|c1 − v|2

2kBT

]∇T

T
,
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where all gradients are of course evaluated at r1 and similarly that

∇2 f (0)
1

f (0)
1

=∇ f (0)
1 ⊗∇ f (0)

1(
f (0)
1

)2 − m

kBT
∇v·∇v + m

kBT
(c1 − v)·∇2v + ∇2n

n
− ∇n⊗∇n

n2
− m

kBT 2

[
(c1 − v)·∇v

]⊗∇T

− m

kBT 2
∇T ⊗[(c1 − v)·∇v] −

(
3

2
− m|c1 − v|2

2kBT

)∇2T

T
+

(
3

2
− m|c1 − v|2

kBT

)∇T ⊗∇T

T 2
.

With QP
1 given by (35), we need to select integrands obtained

from a Taylor expansion of f (0)
1 (x1) f (0)

1 (x2) that involve the
peculiar velocity of the first particle c1 − v as well as two
spatial derivatives and that are even in r12. It appears, however,
that there are not such terms in the Taylor expansion of
f (0)
1 (r1, c1, t ) f (0)

1 (r2, c2, t ) in such a way that there is no extra
capillary heat flux arising from QP

1.
On the other hand, with QP

2 given by (36), from the
isotropy of space and velocity space, we need to select the
integrands in the Taylor expansion of

f (0)
1 [r1 − (1 − α)r12, c1, t] f (0)

1 (r1 + αr12, c2, t ),

which involve two derivatives, are even with respect to r12,
and are odd with respect to either c1 − v or c2 − v. We first
focus of integrands having such properties arising from the
cross products of two first-order derivatives of f (0)

1 at different
points. These integrands are

− α(1 − α)
m

kBT
(c1 − v)·∇v·r12

∇n·r12

n

− α(1 − α)
m

kBT
(c2 − v)·∇v·r12

∇n·r12

n
,

as well as other integrands still including the factor α(1 − α)
and proportional to

m

kBT
(c1 − v)·∇v·r12

(
3

2
− m|c2 − v|2

2kBT

)∇T ·r12

T

+ m

kBT
(c2 − v)·∇v·r12

(
3

2
− m|c1 − v|2

2kBT

)∇T ·r12

T
.

These later integrands yield vanishing contributions since
∫ (

3

2
− m|c1 − v|2

2kBT

)
f (0)
1 dc1 = 0.

Using then
∫ 1

0 α(1 − α) dα = 1
6 as well as the isotropy of

the velocity space and elementary symmetries, we next obtain
from the two former integrands a contribution q1 for the heat
flux in the form

q1 = 1

12

∫
ϕ′

12(r12)

r12
r12 r12·(c1 − v)

m

kBT
(c1 − v)·∇v·r12

× ∇n·r12

n
f (0)
1 (r1, c1) f (0)

1 (r1, c2)g2(r12) dc1 dr12 dc2.

The integration over c2 is trivial and yields a factor n, the
integration over c1 is performed using the reduced velocity
(c1 − v)(m/2kBT )1/2 and (A1) from the Appendix, and this

yields

q1 = n

12

∫
ϕ′

12(r12)

r12
r12⊗r12[∇v:(r12⊗r12)]g2(r12) dr12 ∇n.

Using the differential identity (A3) we then obtain that q1 is
in the form

q1 = κ

6
n(∇v + (∇v)t + ∇·vI)∇n, (67)

with the capillary coefficient given by (59).
We now focus on contributions arising from the second-

order derivatives ∇2 f (0)
1 in the Taylor expansion of f (0)

1 [r1 −
(1 − α)r12, c1, t] f (0)

1 (r1 + αr12, c2, t ). The relevant inte-
grands are those even with respect to r12 and odd with respect
to either c1 − v or c2 − v. These integrands are first

α2 2m

kBT
(c1 − v)·∇v·r12

∇n·r12

n

+ (1 − α)2 2m

kBT
(c2 − v)·∇v·r12

∇n·r12

n

+ α2 m

kBT
(c1 − v)·∇2v:(r12⊗r12)

+ (1 − α)2 m

kBT
(c2 − v)·∇2v:(r12⊗r12).

The two first integrands yield a contribution q2 similar to q1
but with the coefficient − 1

3 instead on 1
6 ,

q2 = −κ

3
n(∇v + (∇v)t + ∇·vI)∇n. (68)

Using the isotropy of space and elementary symmetries, the
integrands associated with ∇2v further yield the contribution

q3 = − 1

12

∫
ϕ′

12(r12)

r12
r12 r12·(c1 − v)

× m

kBT
(c1 − v)·∇2v:(r12⊗r12) f (0)

1 (r1, c1) f (0)
1 (r1, c2)

× g2(r12) dc1 dr12 dc2.

The integration over c2 yield a factor n, the integration over c1

is obtained with (A1) from the Appendix so that

q3 = − n2

12

∫
ϕ′

12(r12)

r12
r12r12·∇2v:(r12⊗r12)g2(r12) dr12.

We may then use (A4) with ∇2v:̇(r12⊗r12⊗r12) =
r12·∇2v:(r12⊗r12) to deduce that

q3 = −n2 κ

6
[�v + 2∇(∇·v)]. (69)
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Finally, there are also integrands associated with temperature
gradients in the combined form

− 2m

kBT
(c1 − v)·∇v·r12

(
5

2
− m|c1 − v|2

2kBT

)∇T ·r12

T

with a similar expression in terms of (c2 − v), but these terms
yield vanishing contributions since

∫
(c1 − v)

(
5

2
− m|c1 − v|2

2kBT

)
f (0)
1 dc1 = 0.

and ∫
|c1 − v|2

(
5

2
− m|c1 − v|2

2kBT

)
f (0)
1 dc1 = 0.

Collecting previous results, we have obtained an extra total
energy flux Qex + Pex·v in the form

Qex + Pex·v = q0 + q1 + q2 + q3 + Pex·v,

where q0 arise from the change of energy density. The extra
total energy flux Qex + Pex·v thus first reads

Qex + Pex·v = κn∇·v∇n + 1

2
κn2∇(∇·v) + 1

2
κn(∇v)t ·∇n + 1

2
κ(∇n⊗∇n + n∇2n − |∇n|2I − n�n)v

− κ

6
n[∇v + (∇v)t + ∇·vI]∇n − κ

6
n2[�v + 2∇(∇·v)] + κ

6
(2∇n⊗∇n + |∇n|2I − 4n∇2n − 2n�nI)·v.

In order to simplify this expression we seek an equivalent
expressionQex

of Qex; that is, we seek a flux Qex
such that

∇·(Qex + Pex·v) = ∇·(Qex + Pex·v).

This will indeed allow the simultaneous use of the simplified
heat flux Qex

and simplified pressure tensor Pex
. In order

to simplify the divergence of Qex + Pex·v, the first term
κn∇·v∇n is left unchanged since it corresponds to the Dunn
and Serrin heat flux, all terms proportional to v are regrouped,
and the differential identity (A6) is used to transform the
divergence of the term − 1

6 κn∇·v∇n in the second line that
originates from q1 + q2. After some lengthy algebra this
yields the expression

∇·(Qex + Pex·v) =∇·[κn∇·v∇n − 1
3 κn∇v·∇n

+ 1
3 κn(∇v)t ·∇n − 1

6 n2�v

+ 1
6 n2∇(∇·v) + κ

(∇n⊗∇n

− 1
2 |∇n|2I − n�nI

)·v]
.

Using then the differential identity (A7), the divergence of
the second to fifth terms (four terms) in the right hand side
miraculously vanishes, and we obtain

∇·(Qex + Pex·v) = ∇·[κn∇·v∇n + κ

(∇n⊗∇n

− 1
2 |∇n|2I − n�nI

)·v]
,

so that the equivalent heat flux Qex
is given by

Qex = κn∇·v∇n. (70)

Using the mass-based capillarity coefficient κm = κ/m2, we
thus obtain that the extra flux Qex

coincides with the Dunn
and Serrin heat flux Qex = QC. The full capillary fluid equa-
tions (6)–(8) with the capillary fluxes (13) and (14) and the
energy density (4) have finally been recovered. A key point in
the simplification of the capillary heat flux was notably the use
of the modified density energy Eex

in order to compensate the
complex corrections arising from QP

2 by similar terms arising
from q0.

V. DISCUSSION

We have presented in the previous sections a molecular
derivation of the complete diffuse interface fluid equations
in the framework of the kinetic theory of dense gases. This
derivation notably includes the van der Waals gradient energy,
the Korteweg tensor (9), the Dunn and Serrin heat flux (10),
the van der Waals capillarity coefficient, and the van der Waals
equation of state. In this derivation, we have evaluated the
transport fluxes Pex and Qex from the kinetic theory and next
their simplified versions Qex

and Pex
, although one could also

alternatively investigate directly the force ∇·Pex and the heat
release ∇·Qex. We now address the validity domain of the
derivation from the kinetic theory, discuss various alternative
models, and address some previous work.

The derivation of the van der Waals equation of state
from statistical mechanics first requires us to obtain a pres-
sure law in the form (51). It then uses an expansion of
the second virial coefficient

∫
f12 dr12, involving the Mayer

function and the full potential f12 = exp(− ϕ12

kBT ) − 1, in the

form 1
2 kBT

∫
f12 dr12 = kBT b − a. This expansion is closely

associated with an estimate of the full potential as in (53).
It next classically requires that the volume ratio nb is small
nb � 1 and makes use of the identity (1 − nb)−1 ≈ 1 + nb
[58–60]. An alternative derivation of the Van der Waals equa-
tion of state is discussed below. The domain of validity of
the van der Waals equation of state, however, is much larger
than that of the hypotheses made in the derivation and notably
includes liquids where the volume ratio nb is of order unity.

Similarly, the capillary fluid equations have been derived
within the kinetic theory of moderately dense gases essentially
assuming that r0 � λK � �, where r0 is the typical range of
the interaction molecular potential, λK the mean-free path, and
� a hydrodynamic length. However, these capillary equation
also apply to liquids where r0 ≈ λK. Therefore, as for the
van der Waals equation of state, the domain of validity of
the resulting equations is much larger than that of the kinetic
theory of moderately dense gases. In the same vein, even
though the second-order corrections have been included in
a Navier-Stokes regime, the resulting equation may also be
simplified by removing all dissipative terms, and we then
recover the inviscid capillary fluid equations. The importance
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of these equations in conjunction with Hilbert’s sixth problem
has notably been emphasized by Gorban and Karlin [63,64]
and Slemrod [65].

The derivation from the kinetic theory has been performed
by simplifying the capillarity coefficient κ so that it is inde-
pendent of T and n. The temperature dependence of the capil-
lary coefficients could still be investigated by using a nonequi-
librium correlation function g2. Since there is no clear expres-
sion for a nonequilibrium correlation function at interfaces,
g2 should be chosen carefully [3,61,62]. Preliminary analyses
using the temperature at the center of mass lead to highly
complex analytical calculations and new extra terms that do
not reduce to the traditional thermodynamic models with vari-
able capillarity coefficients. The dependence on n may also
be investigated but would require us to take into account the
triplet distribution f3 and to take into account triple collisions.
Equations of states like the Redlich-Kwong equation of state
[66,67] could eventually be derived from a kinetic theory
including triple collisions. Such equations of state, which are
variants of that of van der Waals’, and their corresponding
thermodynamics [67] yield accurate results over the range of
pressure, temperature, and mixture states of interest of many
phenomena like supercritical combustion [9,68].

A key argument in the derivation has been the use of a
generalized Boltzmann equation with distribution functions
that are evaluated at different spatial positions. In particu-
lar, analyses starting from the classical localized Boltzmann
equation, however deep and interesting, can recover only
Burnett-type terms but not the capillary terms. As notably
pointed out by Gorban and Karlin [63], “terms which look
similar to Korteweg’s stress tensor have been recognized in the
Chapman-Enskog many times” and “Everyone can compare
the Korteweg stress with Burnett’s equations.” However, these
Burnett-type terms traditionally involve pressure gradients
or temperature gradients and are not capillary terms that
require a nonlocal collision operator. In their prominent
work, Gorban and Karlin have notably obtained the Burnett
and super-Burnett as well as an infinitely accurate reduced
hydrodynamic model starting from a linearized version of
the 10-moment Grad fluid model [63]. Nevertheless, however
deep and original these results are per se, they do not lead to
the capillary fluid equations. In the same vein, Huang et al.
[70] have obtained Burnett-type terms conducting a difficult
mathematical analysis. Some of the resulting temperature
gradients terms in their limiting macroscopic equations are
still incorrectly interpreted as Korteweg-type terms. All these
studies starting from the traditional Boltzmann equation are
indeed missing the key tool of a nonlocal collision operator or
a nonlocal force.

The Enskog-Vlasov and Boltzmann-Vlasov models, on the
other hand, include a nonlocal force term and an Enskog-like
or Boltzmann-like collision kernel. Such models have been
used successfully to investigate phase change problems in a
kinetic framework [21–32]. These models may be derived
from the BBGKY hierarchy by decomposing the interaction
full potential ϕ12 in the form ϕ12 = ϕatt

12 + ϕ
rep
12 where ϕatt

12 is
a long-range weak attractive potential and ϕ

rep
12 a strongly

repulsive hard core potential [21]. The weak potential ϕatt
12

is usually assumed to have a range much greater than the
interparticle distance and yields a Vlasov-type force when

using the mean field approximation [21]. On the other hand,
the repulsive potential operator term may be reduced into a
collision term as in the derivation of Boltzmann operator from
the hierarchy [21,30,41,71]. The correlation function in the
Enskog collision term grep

2 is generally taken as the Heaviside
function grep

2 = H(r12 > σ ) approximating exp (−ϕ12/kBT ) ≈
exp (−ϕ

rep
12 /kBT ), and the correlation function in the Vlasov

term gatt
2 is generally arbitrary selected. Important issues are

irreversibility and the H theorem as notably investigated by
Beijeren and Ernst [72] and Grmela and García-Colín [73],
as well as energy conservation as investigated by Benilov and
Benilov [74]. In comparison with the hierarchy, information
has been lost when transforming the collision term associated
with the repulsive potential, when transforming the correlation
function involving the full potential, and the second equation
of the hierarchy governing f2 is not available anymore for a ki-
netic derivation of the equation governing the potential inter-
nal energy eP. Nevertheless, Enskog-Vlasov and Boltzmann-
Vlasov have many advantages like satisfying a H theorem,
involving a nonlocal force, and being more convenient for
analytical, numerical, or mathematical investigations while
still keeping the main physical aspects of dense fluids [21–32].

Since the potential involved in the Vlasov term for such
models is the attractive part ϕatt

12 , it is not possible anymore to
proceed as in Sec. III E in order to derive the van der Waals
equation of state. An elegant variant derivation is then possible
by directly including a factor (1 − nb)−1 in the correlation
function gatt

2 of the Vlasov term as first suggested by Sobrino
[21]. A more sophisticated variant due to Benilov and Benilov
[74] uses a series expansion in terms of the number density,
and it is also possible to modify gatt

2 in agreement with the
Carnahan-Starling equation of state [69] as introduced by
Frezzotti et al. [24]. This procedure directly yields a factor
(1 − nb)−1 in the repulsive part of the state law. Incidentally,
it would also yield such a factor in capillary terms obtained
from the Vlasov force without further simplifications. In this
work, we have used the exact equilibrium correlation function
g2 given by statistical mechanics (47) and followed the tradi-
tional derivation of the van der Waals equation of state from
statistical mechanics using the full potential [58–60].

Capillary terms may also be obtained from the Vlasov
force term, but only for their attractive part. This is essentially
the result obtained by Rocard, who directly estimated the
attractive force by expanding the distribution function and
next derived the expression of the Korteweg tensor [34,35].
Piechór has also independently shown that the local Korteweg
tensor may be obtained from the nonlocal Vlasov term [25].
Piechór has further investigated rigorously the mathematical
properties of the Enskog-Vlasov kinetic equation and collision
operators [25]. Piechór has then used a first-order expansion
of the distribution function so that only the Navier-Stokes-
Fourier equations have been recovered [25]. The capillary
terms indeed require the second-order expansion of f2 in-
troduced in Sec. III F. In a distinguished study, Takata and
Noguchi have introduced a minimum BGK-Vlasov model in
order to investigate phase transition in a van der Waals fluid
[27]. Takata and Noguchi have investigated the limiting fluid
for small Knudsen numbers in an isothermal framework. They
have notably obtained a Laplacian-like capillary energy per
unit mass, which yields a gradient square term after integra-
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tion by part, as well as a limiting Cahn-Hilliard-type model
[27]. The same framework has next been used by Takata
and coworkers in order to clarify the stability of uniform
equilibrium states in the kinetic regime rather than that in the
continuum limit [29].

Last, but not least, the remarkable numerical simulations
by Barbante and Frezzotti [7] have shown a very good agree-
ment between the solutions of the capillary fluid equations
and that of a particular Enskog-Vlasov kinetic equation. This
very good agreement, except in rarefied regions, is better
understood knowing that the capillary fluid equations are a
limiting model of kinetic equations and suggests new numer-
ical simulations in order to deepen the analysis.

Concerning the numerical simulation of diffuse interface
fluids, the evaluation of capillary coefficients is notably dis-
cussed by Lin et al. [75] and Stephan et al. [76]. These
coefficients may also be directly evaluated from the kinetic
expression or else be evaluated using molecular simulations
[7]. Diffuse interfaces may notably be very thin at ordinary
pressure, like a few nanometers, and it has been found con-
venient to numerically thicken such interfaces by increasing
artificially the capillarity coefficient [6]. More sophisticated
variants involve an increase of the capillarity coefficients in
order to thicken interfaces while keeping constant the sur-
face tension by further modifying the thermodynamics [6].
Energy conservation at the discrete level has also been found
important in order to eliminate parasitic currents [77]. Another
very interesting method is to increase the number of fluid
variables by adding the gradient of density as a new unknown
while discretizing capillary terms in an antisymmetric fashion
[12,78]. Last, but not least, boundary conditions associated
with diffuse interfaces may generally be derived from tra-
ditional variational procedures [4,51,79]. More sophisticated
studies may take into account molecular interactions with a
solid wall [80].

VI. CONCLUSION

We have derived the full diffuse interface fluid equations
from the kinetic theory of dense gases. Investigating more
refined models would be of high scientific interest. This
notably includes dense gas models including triple collisions
so that the capillarity κ would depend on the number density
n. It would also be of high scientific interest to investigate the
situation where the capillarity coefficient κ depends on tem-
perature T using a properly chosen nonequilibrium correlation
function g2. The case of gas mixtures—for which there is also
a failure of rational thermodynamics—could also be investi-
gated using similar methods. Investigating fluctuations at both
the kinetic and the capillary fluid levels would also be of high
interest as well as boundary conditions with three phase lines.
Numerical simulations would also be an outstanding tool for
comparing nonlocal kinetic models and their corresponding
macroscopic diffuse interface equations.
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APPENDIX: TENSORIAL INTEGRAL AND
DIFFERENTIAL IDENTITIES

We summarize in this Appendix various tensorial integral
relations used in the derivation of the capillary fluid equations.
We denote by z ∈ R3 an integration variable that may repre-
sent either the rescaled particle velocity (c − v)(m/2kBT )1/2

or the relative position r12 = r2 − r1.
Letting z = |z| for z ∈ R3, then for any isotropic function

γ (z) of z, we have
∫

z2
i γ (z) dz = 1

3

∫
z2γ (z) dz, 1 � i � 3,

and this implies
∫

z(z·a) γ (z) dz = 1

3

∫
z2γ (z) dz a, (A1)

for any vector a independent of z. Similarly, we have [41]
∫

z⊗z γ (z) dz = 1

3

∫
z2γ (z) dz I, (A2)

where I is the identity tensor in R3 and z⊗z the tensor product
of z with itself having components ziz j for 1 � i, j � 3.

In the same vein, for any isotropic function γ (z) of z we
have [41]

∫
z4

i γ (z) dz = 1

5

∫
z4γ (z) dz, 1 � i � 3,

as well as∫
z2

i z2
jγ (z) dz = 1

15

∫
z4γ (z) dz, 1 � i < j � 3,

As a consequence, for any second rank tensor w independent
of z we have∫

γ (z) z⊗z (z⊗z:w) dz

= 1

15

∫
z4γ (z) dz (w + wt + w:I I), (A3)

where w:v is the full contraction between the two tensors w
and v, so that w:I is the trace of the tensor w, and wt denotes
the transpose of w.

Finally, for any third-order gradient tensor like ∇2v inde-
pendent of z and for any isotropic function γ (z) we have

∫
γ (z)z(∇2v:̇( z⊗z⊗z)) dz

= 1

15

∫
z4γ (z) dz [�v + 2∇(∇·v)], (A4)

where ∇2v:̇z⊗z⊗z is the total contraction of ∇2v with
the tensor product z⊗z⊗z given by ∇2v:̇z⊗z⊗z =∑

i jk ∂r j ∂rk viziz jzk .
We now investigate various differential relations used in

the derivation of the capillary fluid equations. The following
relation is established for a scalar function n(r) of r ∈ R3 after
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integrations by parts:

∇·(n∇2n) = ∇·(n�nI + |∇n|2I − ∇n⊗∇n), (A5)

where ∇n is the gradient of n, �n = ∇·∇n the Laplacian,
and ∇2n the Hessian matrix with components ∂ri∂r j n for 1 �
i, j � 3.

In addition, for any scalar function n(r) and any vector
function v(r) of r ∈ R3 one may establish after a few inte-

gration by parts that

∇·(n∇·v∇n) = ∇·[n∇v·∇n + (|∇n|2I + n�nI

−∇n⊗∇n − n∇2n)·v]. (A6)

where ∇v is the gradient matrix and ∇·v the divergence of v.
Similarly, one may establish the following identity:

1
2∇·[n2∇(∇·v)] = ∇·(n∇v·∇n − n∇vt ·∇n + 1

2 n2�v
)
,

(A7)
where ∇vt denotes the transpose of the gradient matrix.
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