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A conformal geometric point of view on the Caffarelli-Kohn-Nirenberg

inequality

L. Dupaigne, I. Gentil and S. Zugmeyer

December 19, 2023

Abstract

We are interested in the Caffarelli-Kohn-Nirenberg inequality (CKN in short), introduced by these authors
in 1984. We explain why the CKN inequality can be viewed as a Sobolev inequality on a weighted Riemannian
manifold. More precisely, we prove that the CKN inequality can be interpreted in this way on three different
and equivalent models, obtained as weighted versions of the standard Euclidean space, round sphere and
hyperbolic space. This result can be viewed as an extension of conformal invariance to the weighted setting.
Since the spherical CKN model we introduce has finite measure, the Γ-calculus introduced by Bakry and
Émery provides a way to prove the Sobolev inequalities. This method allows us to recover the optimality
of the region of parameters describing symmetry-breaking of minimizers of the CKN inequality, introduced
by Felli and Schneider and proved by Dolbeault, Esteban and Loss in 2016. Finally, we develop the notion
of n-conformal invariants, exhibiting a way to extend the notion of scalar curvature to weighted manifolds
such as the CKN models.

1 Introduction and main results

1.1 The CKN Euclidean space

In their seminal paper [CKN84], Caffarelli, Kohn and Nirenberg found the optimal range of real parameters
a, b, p for which the following inequality holds true:(∫

Rd

|v|p

|x|bp
dx

)2/p

≤ Ca,b
∫
Rd

|∇v|2

|x|2a
dx, v ∈ C∞c (Rd \ {0}). (1)

Here, | · | is the Euclidean norm in Rd, d ∈ N∗ and Ca,b denotes the optimal constant, depending on a, b and
d only. Note that the case a = b = 0 (and p = 2d/(d − 2)) corresponds to Sobolev’s inequality, while the case
b = a+ 1 (and p = 2) is Hardy’s inequality, so that (1) is sometimes called the Hardy-Sobolev inequality. Note
also that the inequality is achieved in the former case, while it is not in the latter.
Let us consider the measure

dµE(x) = |x|−bpdx. (2)

Then, the left-hand side of (1) is simply the Lp-norm of v with respect to the measure µE (squared). In addition,
if we consider the metric1 on the manifold M = Rd \ {0} given by

gE
ij = |x|bp−2aδij , (3)

then (1) takes the simpler form (∫
|v|pdµE

)2/p

≤ Ca,b
∫
|∇gE

v|2gE
dµE.

1If (M, g) is d-dimensional Riemannian manifold whose metric g is represented in a local system of coordinates at a point x ∈M
by the matrix G(x) = (gij(x))1≤i,j≤d, we use the letter g to denote the bilinear form on the cotangent space of M represented by
the inverse matrix G(x)−1 = (gij(x))1≤i,j≤d
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By a standard scaling argument2, the following relation is necessary for the inequality to hold true:

p =
2d

d− 2 + 2(b− a)
=

d

ac − a+ b
, (4)

where ac = d−2
2 . Through the property of modified inversion symmetry (see Theorem 1.4(ii) in [CW01]), we

may always assume that a < ac = d−2
2 since the case a > ac is dual to it and the inequality fails to be true if

a = ac (see [CKN84]). For simplicity, we also focus on the case d ≥ 4 and refer to [DEL14] for the remaining
cases d ∈ {1, 2, 3}. Then, (1) holds true if and only if

a ≤ b ≤ a+ 1

For simplicity, we do not consider the limiting case b = a+ 1 (Hardy’s inequality) and we define accordingly the
set

Θ = {(a, b) ∈ R2, a ≤ b < a+ 1, a < ac} (5)

so that the CKN inequality (1) is valid whenever (a, b) ∈ Θ (see Section A.3).
Observe that for (a, b) ∈ Θ, p ≤ 2d

d−2 and so p can be rewritten as the critical Sobolev exponent associated to
an intrinsic dimension n ∈ [d,+∞) through the relations

p =
2n

n− 2
, n =

d

1 + a− b
. (6)

The fact that n is a meaningful number, entering in the classical Bakry-Emery curvature-dimension condition,
will become transparent in a moment. To summarize, one can view inequality (1) exactly as Sobolev’s inequality
stated on the weighted Riemannian manifold3 that we introduce now.

Definition 1.1 (The Euclidean CKN space). The Euclidean CKN space is the triple (M, gE, µE), where the
manifold is M = Rd \ {0}, the metric4 is gE

ij = |x|2(1−α)δij and where the measure µE is given by (2). The
corresponding Riemannian volume is given by dVgE

= |x|d(α−1)dx, the weight WE, verifying dµE = e−WEdVgE
,

is given by WE = −α(n−d)
2 log |x|2 and the generator5 is given by LE = ∆gE

− ∇gEWE · ∇ = |x|2(1−α)(∆ −
a∇ log |x|2 · ∇).

For notational convenience, we introduced above the parameter6:

α = 1 + a− pb

2
, (7)

where (a, b) ∈ Θ (defined in (5)) and p is the critical exponent given by (4). In other words, returning to the
parameters a, b, d (and ac = (d− 2)/2),

α =
(ac − a)(a+ 1− b)

ac − a+ b
.

Note that for any (a, b) ∈ Θ, we have α ≥ 0, see Section A.3 and Figure 1 for more information about parameters.
Equivalently, and this is the notation adopted in this paper7, one can see the Euclidean CKN space as a Markov
triple (M,µE,ΓE), where µE verifies (2) and the carré du champ operator is given by

ΓE(v) = |∇gE
v|2gE

= |x|bp−2a|∇v|2 = |x|2(1−α)|∇v|2

Its associated bilinear form is denoted by ΓE(u, v) = |x|2(1−α)∇u · ∇v for u, v ∈ C∞c (Rd \ {0}). Inequality (1)
now reads (∫

|v|pdµE

)2/p

≤ Ca,b
∫

ΓE(v)dµE, v ∈ C∞c (Rd \ {0}).
2To see this, apply (1) to the function x 7→ v(λx) where λ > 0 and let λ→ 0+ and λ→ +∞
3the words ”smooth metric measure space” and ”manifold with density” are also employed in the literature to designate the

same object.
4The given expression of gE is just a rewriting of (3)
5i.e. the operator such that −

∫
uLEv dµE =

∫
(∇gEu ·g ∇gEv)dµE for u, v ∈ C∞c (Rd \ {0})

6The reader may check that α turns out to be the same parameter as the one introduced in [DEL14] (for different reasons).
7See [BGL14] for an introduction to Γ-calculus.
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1.2 Conformal invariance

As noticed earlier, when a = b = 0 (α = 1), we recover the standard Sobolev inequality on the standard
Euclidean space. In that case, since the metric of the d-dimensional sphere Sd and the metric of the d-
dimensional hyperbolic space Hd are both conformally equivalent to the Euclidean metric, Sobolev’s inequality
takes equivalent forms on these three model spaces. More precisely, the Euclidean Sobolev inequality applied

to the function ϕ
2−d
2 v, where ϕ(x) = 1+|x|2

2 (respectively ϕ(x) = 1−|x|2
2 ) and v ∈ C∞c (Rd) (resp. v ∈ C∞c (B))

yields (∫
|v|pdVg

)2/p

≤ C
[∫
|∇gv|2g dVg +

∫
Sgv

2dVg

]
, (8)

where g is the round metric on the sphere Sd expressed in stereographic cooordinates (resp. the metric of

the hyperbolic space in the Poincaré ball model), dVg the associated Riemannian volume, Sg = d(d−2)
4 (resp.

Sg = −d(d−2)
4 ) and C = 4

d(d−2) |S
d|− 2

d the best constant in the standard Euclidean Sobolev inequality. By

analogy, we can extend the conformal invariance property to the setting of weighted manifolds as described
next.

The spherical CKN and the hyperbolic CKN spaces

Recall that the metric and reference measure of the Euclidean CKN space read

gE
ij = |x|2(1−α)δij and dµE = |x|−bpdx.

Keeping in mind the expression of the standard stereographic projection, we define next the spherical and
hyperbolic CKN spaces as follows.

Definition 1.2 (The spherical and the hyperbolic CKN spaces).

• The spherical CKN space is the triple (M, gS, µS), where M = Rd \ {0},

gS
ij = |x|2(1−α)

(
1 + |x|2α

2

)2

δij and dµS = |x|−bp
(

2

1 + |x|2α

)n
dx.

Associated objects are given by the following formulae:

– Riemannian volume: dVgS
= 2d |x|

d(α−1)

(1+|x|2α)2 dx,

– weight: WS = (n− d) log(1 + |x|2α)− α(n−d)
2 log |x|2,

– Carré du champ operator: ΓS(v) = |∇gS
v|2gS

= |x|2(1−α) (1+|x|2α)2

4 |∇v|2,

– generator: LS(f) = |x|2(1−α) (1+|x|2α)2

4

[
∆f − a∇f · ∇ log |x|2 − (n− 2)∇f · ∇ log(1 + |x|2α)

]
.

• The CKN hyperbolic space is the triple (B \ {0}, gH, µH), where B is the open unit ball in Rd,

gH
ij = |x|2(1−α)

(
1− |x|2α

2

)2

δij and dµH = |x|−bp
(

2

1− |x|2α

)n
dx.

Associated objects to this triple are given by the following formulae

– Riemannian volume: dVgH
= 2d |x|

d(α−1)

(1−|x|2α)d
dx,

– weight: WH = (n− d) log(1− |x|2α)− α(n−d)
2 log |x|2,

– Carré du champ operator: ΓH(v) = |∇gH
v|2gS

= |x|2(1−α) (1−|x|2α)2

4 |∇v|2,

– generator: LH(f) = |x|2(1−α) (1−|x|2α)2

4

[
∆f − a∇f · ∇ log |x|2 − (n− 2)∇f · ∇ log(1− |x|2α)

]
.
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Remark 1.3. • Note that in the case α = 1 (which is achieved in Θ only when a = b = 0, see Lemma 1.9),
the CKN sphere is the standard round sphere (punctured at both of its poles) viewed in the stereographic
projection chart. Similarily, for α = 1, the CKN hyperbolic space is the (punctured) hyperbolic space.

• Note that, letting ϕ(x) = 1+|x|2α
2 , we have ΓS = ϕ2ΓE and µS = ϕ−nµE. We shall say that the CKN

Euclidean and spherical spaces belong to the same n-conformal class (n not necessarily being equal to the

topological dimension). Similarly, with ψ(x) = 1−|x|2α
2 , we have ΓH = ψ2ΓE and µH = ψ−nµE, so that

the hyperbolic CKN space also belongs to the same n-conformal class.

• When (a, b) ∈ Θ, µS has finite mass (see Remark A.10 in Section A.3). In this Section, we prefer not to
normalize the measure µS, a choice which makes the conformal invariance of Sobolev’s inequality more
transparent.

With these definitions at hand, we prove

Theorem 1.4 (Conformal invariance of the three model spaces). Let C > 0 be an arbitrary constant. The three
following Sobolev inequalities associated to each CKN model are equivalent:

(i) ∀v ∈ C∞c (Rd \ {0}),
(∫
|v|pdµE

)2/p

≤ C
∫

ΓE(v)dµE, (9)

(ii) ∀v ∈ C∞c (Rd \ {0}),
(∫
|v|pdµS

)2/p

≤ C
(∫

ΓS(v)dµS +
n(n− 2)

4
α2

∫
v2dµS

)
, (10)

(iii) ∀v ∈ C∞c (B \ {0}),
(∫
|v|pdµH

)2/p

≤ C
(∫

ΓH(v)dµH −
n(n− 2)

4
α2

∫
v2dµH

)
. (11)

Remark 1.5. • Inequality (9) is valid for some constant C = Ca,b if and only if (a, b) ∈ Θ as proved in
[CKN84]. Hence, so are (10) and (11).

• As we shall see, the value of the optimal constant C is known only in a restricted range of parameters, see
Theorem 1.7 below.

• Since its set of test functions is smaller, inequality (11) need not be optimal even though (9) and (10)
are. For example, in the absence of weights, C = 4

d(d−2)|Sd|2/d is the optimal constant in (9) and (10)

and extremals exist (and are classified), see Theorem 1.7 below. In contrast, inequality (11) holds with

the same constant C = 4
d(d−2)|Sd|2/d but when n = d = 3 (and again α = 1), the constant −n(n−2)

4 can

be improved to − (n−1)2

4 , see [BFL08]. Using this fact and the proof of Theorem 1.4, it follows that the
standard Sobolev inequality in R3 improves to(∫

R3

|v|6dx
)1/3

≤ 1

3

(
2

π

)4/3(∫
R3

|∇v|2dx−
∫
R3

v2

(1− |x|2)2
dx

)
,

when restricted to functions v ∈ H1
0 (B). When d ≥ 4 (and α = 1), inequality (11) is again optimal, but

contrary to (9) and (10), the inequality is never attained8. We have not yet investigated the optimality
of (11) in the general case.

1.3 Curvature-dimension conditions on the spherical CKN space

We just saw that the CKN inequality takes the forms (9), (10), (11) on the three CKN spaces. But what is the
value of the best constant C ? To answer this question, let us first recall the following classical definition and
result: a smooth weighted manifold (M, g, µ) is said to satisfy the CD(ρ, n) condition if for every f ∈ C∞(M),

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2,

8If it were, then (9) would also be attained by a compactly supported function.
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where (ρ, n) ∈ R× (R∪{+∞}), dµ = e−W dVg for some W ∈ C∞(M), Γ(f, h) = 〈∇gf,∇gh〉g, Γ(f) = Γ(f, f) =
|∇gf |2g, Lf = ∆gf − Γ(W, f) and Γ2(f) = 1

2L(Γ(f))− Γ(f, Lf), for smooth functions f, g on M . The following
theorem, generalizing the earlier work [BV91], holds true:

Theorem A. ([BL96] and [BGL14, Thm. 6.8.3]) Let (M, g, µ) be a smooth weighted manifold satisfying the
CD(ρ, n) condition with ρ > 0, n > d = dim(M) (n > 2). Assume in addition that the associated operator L is
essentially self-adjoint in L2(µ). Let p = 2n

n−2 and normalize the measure µ so that µ(M) = 1. Then,(∫
|v|pdµ

)2/p

≤ 4

n(n− 2)

n− 1

ρ

∫
Γ(v)dµ+

∫
v2dµ, v ∈ C∞c (M). (12)

Let us remark that this theorem can also be stated in the more general context of full Markov triples as
proposed in [BGL14] and also on metric measure spaces as proved in [Pro15]. Thanks to Theorem A, it suffices
to determine whether the CKN sphere is a smooth weighted manifold satisfying the CD(ρ, n) condition and
that the associated operator is essentially self-adjoint, in order to obtain an explicit value (which turns out to
be optimal in our case) for the constant C in (10). This is what we do next.

Proposition 1.6 (Curvature-dimension condition for the spherical CKN space). Let (a, b) ∈ Θ and

ρ = α2(n− 1). (13)

Then, the spherical CKN space satisfies the curvature-dimension condition CD(ρ, n) if and only if

α2 ≤ d− 2

n− 2
. (14)

One implication of this proposition has been proved in [Ket15, Thm. 3.9]. The proof proposed here is different
and based on tensors, which is a useful method to prove the equivalence between the two conditions. Note that
(Rd \ {0}, gS, µS) is a smooth weighted manifold and that its operator is essentially self-adjoint if and only if
n ≥ 3, see [Ket15, Thm. 3.12], whence Sobolev’s inequality (10) holds under the condition (14). In fact, more
can be said. Revisiting the proofs of Theorem A given in [DGZ20, BGL14], we find that if the following weaker
integrated form of the curvature-dimension condition∫ (

ΓS
2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndµS ≥ 0 (15)

holds for functions f ∈ C∞(Rd \ {0}) such that inf f > 0 and sup f < +∞, then the sharp Sobolev inequality
is valid on the CKN sphere. More precisely, letting H1

0 (µS) denote the closure of C∞c (Rd \ {0}) with respect to
the norm

‖f‖2H1
0 (µS) =

∫
(ΓS(f) + f2) dµS.

Theorem 1.7 (Sobolev inequality for the spherical CKN space). Let (a, b) ∈ Θ. Whenever

0 < α < 1, (16)

the following optimal Sobolev inequality holds(∫
vpdµ

)2/p

≤ 4

n(n− 2)α2

∫
ΓS(v)dµ+

∫
v2dµ, (17)

for any v ∈ H1
0 (µS), where µ = 1

ZµS and Z is a normalization constant9 such that µ is a probability measure.
That is, inequality (10) is valid with optimal constant

C =
4

n(n− 2)α2Z
2
n

.

9Z = µS(Rd \ {0}) = 2
α
|Sd−1|

∫+∞
0 (cosh t)−ndt

5



In addition, equality holds in (17) if and only if

v(x) = (λ+ γ tanh(αs))−
n−2
2 , s = log |x|,

where λ, γ are arbitrary constants such that λ > |γ|. In particular optimal functions for both inequalities (1)
and (17) are radial.

Remark 1.8. • Note that ϕ1(x) = tanh(αs) is a radial eigenfunction of LS associated to the eigenvalue
λ = α2n. So, except for the round sphere (corresponding to the case α = 1), the extremals of Sobolev’s
inequality are obtained as a linear combination of radial extremals of Poincaré’s inequality (20) (raised to
the power −n−2

2 ), provided this combination is bounded below by a positive constant.

• As we shall prove in Lemma 1.9, condition (16) is equivalent to α2 ≤ d−1
n−1 . In the limiting case α2 = d−1

n−1 ,
extremals of Sobolev’s inequality are radial, while extremals of Poincaré’s inequality need not be, see
Proposition 1.10 below.

• The extremals of Sobolev’s inequality on the round sphere (i.e. the limiting case α = 1) were discovered
by T. Aubin, see e.g. Theorem 5.1 in [Heb00]. They are more often written as constant multiples of

v = (β − cos(r))−
d−2
2 ,

where β > 1 and r is the geodesic distance to an arbitrary point ω0 ∈ Sd. With our notations, they take
the form

v = (λ+ γϕ1,d)
− d−2

2 ,

where ϕ1,d is any eigenfunction of −LS = −∆Sd associated to the first nonzero eigenvalue λ1 = d and λ, γ
are arbitrary constants such that λ > |γ|‖ϕ1,d‖∞.

Our notation puts forward the connection between the extremals of Sobolev’s inequality and the extremals
of Poincaré’s inequality in Proposition 1.10: the former are obtained as a linear combination of the latter
(raised to the power −d−2

2 ), provided this combination is bounded below by a positive constant.

• Hardy’s inequality (i.e. the case α = 0 in (9)) is optimal for the constant

C = lim
α→0+

4

n(n− 2)α2Z
2
n

=

(
2

d− 2− 2a

)2

,

but equality is never achieved.

• It follows from Theorem 1.4 and Theorem 1.7 that for α ∈ (0, 1), extremal functions for Sobolev’s inequality
on the Euclidean CKN space take the form

v(x) =

(
1 + |x|2α

2

)−n−2
2

,

up to normalization and dilation, providing thereby an alternative proof of the main result in [DEL14].

Condition (16) is strictly weaker than condition (14). It turns out to be equivalent to

α2 ≤ d− 1

n− 1
.

More precisely, consider the following Felli-Schneider region

ΘFS = {(a, b) ∈ Θ, b ≥ bFS(a) if b ≤ 0}, where bFS(a) =
d(ac − a)

2
√

(ac − a)2 + d− 1
− (ac − a) (18)

Let as well ΘDGZ ⊂ Θ be the domain where Proposition 1.6 is valid (condition (14)):

ΘDGZ = {(a, b) ∈ Θ, BDGZ ≥ 0} ,

where
BDGZ = (d− 2)− (n− 2)α2. (19)

Then, we prove that the region ΘFS corresponds exactly to the domain where Theorem 1.7 is valid:

6



Lemma 1.9 (Comparison of the two regions).

ΘFS =

{
(a, b) ∈ Θ, BDGZ +

n− d
n− 1

≥ 0

}
=

{
(a, b) ∈ Θ, α2 ≤ d− 1

n− 1

}
= {(a, b) ∈ Θ, α ∈ (0, 1]} .

Hence, ΘDGZ  ΘFS. Moreover, for any (a, b) ∈ Θ, α = 1 if and only if a = b = 0 (that is the standard
Euclidean case).

The two regions are represented in Figure 1 with d = 4. The condition θ ∈ ΘFS is known in the litterature as

1.0 0.5 0.5 1.0
a

1.0

0.5

0.5

1.0

1.5

2.0
b

ac = 1

a FS

a DGZ

Figure 1: bFS(a) (dashed style in red) and the curve BDGZ = 0 (dotted style in blue) with d = 4.

the Felli-Schneider condition. Felli and Schneider [FS03], building on the work of Catrina and Wang [CW01]
initially proved that extremal functions for the optimal CKN inequality (1) cannot be radial whenever (16)
fails. Conversely, in their work [DEL14], Dolbeault, Esteban and Loss computed the optimal constant in (1)
and proved that extremals for the optimal CKN inequality (1) are radial and explicit whenever (16) holds.
Combining Theorem 1.7 with Theorem 1.4 gives an immediate alternative proof of these latter facts. Our point
of view may further clarify why the Felli-Schneider condition is optimal. Indeed, it is well-known that a tight
Sobolev inequality implies a Poincaré inequality: precisely, applying (17) with v = 1 + εf and letting ε → 0
leads to ∫

f2dµ−
(∫

fdµ

)2

≤ 1

nα2

∫
ΓS(f)dµ. (20)

We prove the following.

Proposition 1.10 (Poincaré inequality for the spherical CKN space). Let (a, b) ∈ Θ. The Poincaré inequal-
ity (20) holds with optimal constant C = 1

nα2 if and only if the Felli-Schneider condition (16) holds. In addition,
equality holds in (20) if and only if f is an eigenfunction associated to the first nonzero eigenvalue of LS,

• if 0 < α < d−1
n−1 ,

f(x) = λ+ γ tanh(αs), where s = log |x|,
for some constants (λ, γ) ∈ R2.

• otherwise, if α = d−1
n−1 ,

f(x) = λ+ γ tanh(αs) + ν
ϕ1,d−1(ω)

cosh(αs)
, where s = log |x| and ω =

x

|x|
,

with (λ, γ, ν) ∈ R3 and some eigenfunction ϕ1,d−1 associated to the first nonzero eigenvalue λ1 = d− 1 of
−∆Sd−1 .

7



So, the Felli-Schneider condition cannot be improved in the statement of Theorem 1.7 and it is in fact equivalent
to both Sobolev’s and Poincaré’s inequality with the given optimal constants on the spherical CKN space. In
addition, Poincaré’s inequality with constant C = n−1

ρn is in fact equivalent to the following integrated CD(ρ, n)
condition, where ρ, n > 0: ∫ (

ΓS
2 (f)− ρΓS(f)− 1

n
(LSf)2

)
dµ ≥ 0,

see Proposition 4.8.3, Theorem 4.8.4 and their proofs in [BGL14]. Hence, the Felli-Schneider condition (16) can
be interpreted as a curvature-dimension condition in integral form.
Let us also point out that if Sobolev’s inequality (10) holds on a d-dimensional smooth manifold (M, g) without
weight with optimal constant C = 4

d(d−2)|Sd|2/d , then (M, g) must be isometric to the round sphere, as very

recently demonstrated in [NV21].

1.4 The n-conformal invariants

In this last introductory paragraph, we expand on the conformal invariance of Sobolev’s inequality in the setting
of weighted manifolds and provide a deeper reason for why the three CKN model spaces satisfy equivalent
conformal forms of the Sobolev inequality.
For the inequality (8) without weights, it turns out that Sg = d−2

4(d−1)scg is a constant multiple of the scalar

curvature of g (see Propositions 3.6.20, 3.6.21 and 6.2.2, as well as the second displayed formula on p. 63
in [Heb97] or [BGL14, Sec. 6.9.2] for proofs of this classical result). In other words, inequality (8) is valid on
the whole conformal class of the round sphere, including the Euclidean (where Sg = 0) and hyperbolic (where
Sg = − d−2

4(d−1)scg ) spaces.

For weighted manifolds, the notion of scalar curvature can be generalized as follows. As proposed in [BGL14,
Sec. 6.9] (see also [CGY06] and [Cas12] for earlier perspectives10), given a d-dimensional (d ≥ 2) weighted
Riemannian manifold (M, g, µ) with reference measure

dµ = e−W dVg,

where W : M → R is a given weight and dVg the Riemannian volume, let

Γ(f) = |∇gf |2g

denote the associated carré du champ operator, so that (M,µ,Γ) is a Markov triple.

Definition 1.11. Take a real number n ∈ [d,+∞], which is not necessarily an integer. The n-conformal class
of the triple (M,µ,Γ) is the set of all Markov triples (M, c−nµ, c2Γ), where c : M 7→ (0,∞) is any smooth and
positive function. An n-conformal invariant is a map S defined on the n-conformal class of (M,µ,Γ) with values
in the set of functions over M , such that for any positive smooth function c = eτ ,

S(c−nµ, c2Γ) = c2
[
S(µ,Γ) +

n− 2

2

(
Lτ − n− 2

2
Γ(τ)

)]
, (21)

where
L = ∆g − Γ(W, ·).

It is important to notice that the operator L is uniquely determined by the carré du champ operator Γ and the
measure µ only. This is indeed the case since the operator ∆g depends on the metric g (which itself is uniquely
determined by Γ) and since W is related to the measure µ and the metric g through the Riemannian measure

dVg. Also observe that setting u = c−
n−2
2 , s = S(µ,Γ), s̃ = S(c−nµ, c2Γ), then (21) can be reformulated as the

following Yamabe-type equation:

−Lu+ su = s̃u
n+2
n−2 in M .

Note that the case where n = d, L = ∆g, s = d−2
4(d−1)scg and s̃ constant, is the standard Yamabe equation.

10which correspond to the special case γ = −2 in Proposition 1.12 below.
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By a rather direct computation, see [BGL14, Prop. 6.9.2], whenever S = S(µ,Γ) is an n-conformal invariant,
the Sobolev inequality (∫

|v|pdµ
)2/p

≤ C
(∫

Γ(v)dµ+

∫
Sv2dµ

)
, (22)

(with given constant C > 0 and p = 2n
n−2 ) is invariant in the n-conformal class of the triple (M,µ,Γ). In other

words, if the Sobolev inequality (22) holds for some constant C, then it also holds with the same constant C
for all triples (M, c−nµ, c2Γ) where c is any smooth and positive function.

Rephrasing what we said earlier, in the absence of weight, Sg = d−2
4(d−1)scg is an example of a d-conformal invariant

(where in this case n = d). The case of weighted Riemannian manifolds is a little bit more complicated and
contains interesting examples. Let us recall Proposition 6.9.6 of [BGL14] (we will also provide a proof since the
one in [BGL14] contains some mistakes as well as the statement).

Proposition 1.12 (n-conformal invariant in a weighted manifold). Let γ ∈ R and n > d. Then,

Sγ(µ,Γ) = θn(γ)[scg − γ∆gW + βn(γ)Γ(W )] (23)

is an n-conformal invariant if

βn(γ) =
γ(n− 2d+ 2)− 2(d− 1)

2(n− d)
and θn(γ) =

n− 2

4(d− 1)− 2γ(n− d)
.

This being recalled, a natural question arises in the context of the Euclidean CKN space we introduced in
Definition 1.1: does there exist a (unique) real number γ0 ∈ R such that this space satisfies

Sγ0(µE,ΓE) = 0 ?

This is indeed the case, as we are about to see. By Theorem 1.4, without any further computation, we deduce

that for the same value of the parameter γ = γ0, Sγ0(µS,ΓS) = n(n−2)
4 α2 > 0 is constant for the CKN sphere

and Sγ0(µH,ΓH) = −n(n−2)
4 α2 for the CKN hyperbolic space.

Proposition 1.13. Let n > d and

γ0 = − 2(d− 1)

α2(n− d)(n− 2)
BDGZ , (24)

where BDGZ has been defined in (19).

Then, Sγ0(µE,ΓE) = 0, Sγ0(µS,ΓS) = n(n−2)
4 α2 and Sγ0(µH,ΓH) = −n(n−2)

4 α2.

As an immediate collorary of the CKN inequality (1) and the above lemma, we recover the validity of Sobolev’s
inequality on our three model spaces, stated in Theorem 1.4 above.

Remark 1.14. In a forthcoming report, we will further explain how a weighted version of Otto’s calculus can be
introduced in order to prove a wider class of optimal CKN inequalities, by working directly on the Euclidean
CKN space, rather than the CKN sphere.

The rest of the paper is organized as follow. In Section 2 below, we prove the conformal invariance of Sobolev’s
inequality in the CKN spaces (Theorem 1.4). Section 3 is dedicated to the characterization of the region of
parameter ΘDGZ (resp. ΘFS) for which the classical curvature-dimension condition (resp. the integrated form
(15)) holds, from which Sobolev’s inequality follows (Proposition 1.6 and Theorem 1.7). In Section 4, we prove
all results pertaining to n-conformal invariance for general weighted manifolds (Propositions 1.12 and 1.13). At
last, an appendix contains lists of known formulas and constants, proofs of the numerology relating them as
well as rigorous justification of the integrations by parts implicitly used in the proof of Sobolev’s inequality.

2 Conformal invariance of Sobolev type inequalities for CKN models

Proof of Theorem 1.4
C As in the unweighted case, the proof reduces to a simple change of unknown, once the proper notion of
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conformal invariance has been introduced. First we prove that the Sobolev inequality in the CKN Euclidean
space is equivalent to the Sobolev inequality in the spherical CKN space.
Recall that for

ϕ(x) =
1 + |x|2α

2
, x ∈ Rd, (25)

and that
ΓS = ϕ2ΓE and µS = ϕ−nµE.

Apply (1) to the function f = ϕ
2−n
2 g. On the one hand, we have∫

fpdµE =

∫
f

2n
n−2 dµE =

∫
gpdµS.

On the other hand, letting V = logϕ,

ΓE(f) = ΓE(ϕ
2−n
2 g) = ϕ2−nΓE(g) + 2ϕ

2−n
2 gΓE(ϕ

2−n
2 , g) + ΓE(ϕ

2−n
2 )g2

= ϕ2−n
(

ΓE(g)− n− 2

2
ΓE(g2, V ) +

(n− 2)2

4
ΓE(V )g2

)
.

An integration by parts with respect to µE yields∫
ΓE(g2, V )ϕ2−ndµE +

∫
ΓE(ϕ2−n, V )g2dµE = −

∫
LEV g

2ϕ2−ndµE,

so that we get∫
ΓE(f)dµE =

∫
ΓS(g)dµS −

n− 2

2

∫
ΓE(g2, V )ϕ2−ndµE +

(n− 2)2

4

∫
ΓE(V )g2ϕ2dµS

=

∫
ΓS(g)dµS +

n− 2

2

∫ (
LE(V )− n− 2

2
ΓE(V )

)
g2ϕ2dµS,

The CKN inequality (1) becomes(∫
gpdµS

)2/p

≤ C
(∫

ΓS(g)dµS +
(n− 2)

2

∫ (
LE(V )− n− 2

2
ΓE(V )

)
ϕ2g2dµS

)
,

and it is enough to compute the quantity

LE(V )− n− 2

2
ΓE(V ).

To that end, recall that LE is given by

LE = |x|2(1−α)
[
∆− a∇ log |x|2 · ∇

]
. (26)

Since V = logϕ, we have

LE(V )− n− 2

2
ΓE(V ) =

LE(ϕ)

ϕ
− ΓE(ϕ)

ϕ2
− n− 2

2

ΓE(ϕ)

ϕ2
=
LE(ϕ)

ϕ
− n

2

ΓE(ϕ)

ϕ2
.

Recalling the definition of ϕ given in (25), we find that

ΓE(ϕ)

ϕ2
=
α2|x|2α

ϕ2
,

and
LE(ϕ)

ϕ
=
|x|2(1−α)

[
∆ϕ− a∇ log |x|2 · ∇ϕ

]
ϕ

= α
d+ 2(α− 1)− 2a

ϕ
=
α2n

ϕ
.
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So finally,

LE(V )− n− 2

2
ΓE(V ) =

α2n

2ϕ2
,

and the CKN inequality (1) takes the form (10), as announced.

Next, we prove that Sobolev’s inequality in the CKN Euclidean space implies the Sobolev inequality on the
CKN hyperbolic space. We mimic the previous proof. Define the function ψ on the punctured open unit ball
B \ {0} ⊂ Rd by

ψ(x) =
1− |x|2α

2
, x ∈ B \ {0}.

Then, on B \ {0},
ΓH = ψ2ΓE and µH = ψ−nµE.

Apply the CKN inequality (1) to the function f = ψ
2−n
2 h, where h ∈ C∞c (B \ {0}). Again, we get∫

fpdµE =

∫
f

2n
n−2 dµE =

∫
hpdµH.

and (1) becomes, with U = logψ,(∫
hpdµH

)2/p

≤ C
(∫

ΓH(h)dµH +
n− 2

2

∫ (
LE(U)− n− 2

2
ΓE(U)

)
ψ2h2dµH

)
.

We obtain

LE(U)− n− 2

2
ΓE(U) = −α

2n

2ψ2
,

and so (11), as claimed. B

3 Sobolev’s inequality for the spherical CKN model

This section is devoted to the proof of the optimal Sobolev inequality for the spherical CKN space (Theorem 1.7)
under the Felli-Schneider condition (16). It is convenient to introduce spherical coordinates Rd \ {0} 3 x = rθ
with r > 0 and θ ∈ Sd−1. The Sobolev inequality on the CKN sphere (17) then takes the form

(∫
(0,∞)×Sd−1

|v|p rd−1−pb

(1 + r2α)n
drdVSd−1

)2/p

≤ C
∫

(0,∞)×Sd−1

[
(∂rv)2 +

1

r2
|∇θv|2

]
r2(α−1)+d−1−pb

(1 + r2α)n−2
drdVSd−1

+ 4Z−
2
n

∫
(0,∞)×Sd−1

v2 rd−1−pb

(1 + r2α)n
drdVSd−1 ,

where |∇θv| is the Riemannian length of the Riemannian gradient ∇θv on Sd−1 and dVSd−1 is the associated
Riemannian volume. Using the change of variable (0,∞) 3 r = es, with s ∈ R, the inequality becomes (with a
different constant C),

(∫
R×Sd−1

|v|p cosh(αs)−ndsdVSd−1

)2/p

≤

C

∫
R×Sd−1

[
(∂sv)2 + |∇θv|2

]
cosh(αs)2−ndsdVSd−1 + Z−

2
n

∫
R×Sd−1

v2 cosh(αs)−ndsdVSd−1 , (27)

where we used the fact that d − nα − pb = 0, see (75). This new chart is often called the Emden-Fowler
transformation, as suggested in [CW01, DEL16]. In other words, in the cylindrical chart (s, θ) ∈ R× Sd−1, the
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spherical CKN space takes a new and nice form. Notice that the space remains the same, it is only written in
a new chart. More precisely, letting

ϕ(s) = cosh(αs), s ∈ R, (28)

the metric becomes (with the upper indices)

gS = ϕ2h = e2τSh, (29)

where τS = logϕ and h is the standard product metric11 on (0,∞) × Sd−1, represented by the d-dimensional
matrix (

1 0
0 Gθ

)
,

where Gθ is the matrix of gθ in the chart (s, θ), and gθ is the round metric of Sd−1. For convenience, in
Lemma 3.2 and its proof, as well as the proof of Proposition 1.6, we will abuse the notations and identify the
tensors with their coordinates in the chart (s, θ), since it will be the only chart used in all the calculations. The
carré du champ operator takes the form

ΓS(f) = ϕ2
[
(∂sf)2 + |∇θf |2

]
= ϕ2

[
(∂sf)2 + Γθ(f)

]
,

where Γθ(f) = |∇θf |2 is the carré du champ operator associated to the the Laplace-Beltrami operator ∆θ

on Sd−1. The Riemannian volume becomes dVgS
= ϕ−ddsdVSd−1 and the reference measure (not normalized

measure)
dµS = ϕ−ndsdVSd−1 .

The corresponding weight WS is defined by dµS = e−WSdVgS
, so that

WS = (n− d) logϕ.

Finally, the associated generator takes the pleasant form

LS(f) = ϕ2
[
∂ssf + (2− n)

ϕ′

ϕ
∂sf + ∆θf

]
.

Taking advantage of this chart, let us begin by proving that the spherical CKN space satisfies the CD(ρ, n)
condition whenever condition (14) holds:
Proof of Proposition 1.6
C From [BGL14, Sec. C6], the generator LS satisfies a CD(ρ, n) condition (with n > d) if and only if, as a
symmetric tensor (with lower indices),

Ric(LS)− ρgS ≥
1

n− d
∇gSWS ⊗∇gSWS.

Let us remark that, since gS = ϕ2h (with upper indices), the corresponding metric tensors (with lower indices)
satisfy

gS =
h

ϕ2
.

Compute first the r.h.s. of the above inequality. From the definition of WS, we have

∇gSWS ⊗∇gSWS

n− d
= (n− d)

(
ϕ′

ϕ

)2

J,

where J is the d-dimensional matrix with all entries equal to zero but the first i.e. Jij = δi1δj1 or more visually,
letting H (resp. Gθ) be the matrix representing the standard product metric h (resp. gθ) in the coordinates
(s, θ) (resp. θ),

J =

(
1 0
0 0

)
= H −

(
0 0
0 Gθ

)
. (30)

11on the cotangent space of (0,∞)× Sd−1, where Sd−1 is viewed in a given chart
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Now, applying formula (33) in Lemma 3.2 below, we get

Ric(LS)− ρgS −
1

n− d
∇gSWS ⊗∇gSWS = −(n− d)α2H + (d− 2)(1− α2)(H − J) + (n− d)α2J,

where, again, we conflate tensors and their matrices in the chart (s, θ). Hence,

Ric(LS)− ρgS −
1

n− d
∇gSWS ⊗∇gSWS = BDGZ

(
0 0
0 Gθ

)
with the constant BDGZ is defined given in (19), and so, LS satisfies the curvature-dimension condition CD(ρ, n)
if and only if BDGZ ≥ 0. B

Remark 3.1. Since the matrix H − J depends only on the variable θ, when we restrict to functions depending
on the variable s only, the corresponding model always satisfies the CD(ρ, n) condition, regardless of the sign
of BDGZ .

In the above proof, we made strong use of the following lemma.

Lemma 3.2 (Computation of Ric(LS)). We have the following formulae

RicgS =
(d− 1)α2

ϕ2

(
1 0
0 0

)
+

1

ϕ2

[
(d− 2)(1− α2)ϕ2 + (d− 1)α2

](0 0
0 Gθ

)
, (31)

and

∇∇gS WS = (n− d)α2

(
1 0
0 0

)
+ (n− d)α2 1− ϕ2

ϕ2

(
0 0
0 Gθ

)
, (32)

where Gθ is the matrix of round metric on the sphere Sd−1. With the constant BDGZ (given in (19)), we obtain

Ric(LS) = RicgS +∇∇gSWS =
α2

ϕ2

[
d− 1 + ϕ2(n− d)

](1 0
0 0

)
+

1

ϕ2

[
α2(n− 1) + ϕ2BDGZ

](0 0
0 Gθ

)
. (33)

Proof
C Let us start with RicgS , which is simply the Ricci tensor of the metric gS. Since gS = e2τSh is conformal to
h, we may apply (63) in the appendix to get (with lower indices)

RicgS = Rich + (∆hτS)h+ (d− 2)(∇∇hτS +∇hτS �h ∇hτS −∇hτS ·h ∇hτS h). (34)

Since Ricgθ = (d− 2)gθ, we have

Rich = (d− 2)(H − J) = (d− 2)

(
0 0
0 Gθ

)
.

Since ϕ depends only on the variable s, we have

∆h(τS) = τ ′′S =
ϕ′′

ϕ
−
(
ϕ′

ϕ

)2

= α2 −
(
ϕ′

ϕ

)2

,

∇hτS �h ∇hτS =

(
ϕ′

ϕ

)2

J,

∇hτS =
ϕ′

ϕ

(
1
0

)
,

and

(∇hτS ·h ∇hτS)h =

(
ϕ′

ϕ

)2

H.
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Collecting the four terms and using (34), we get

Ricg = H

[
d− 2 + α2 − (d− 1)

(
ϕ′

ϕ

)2
]

+ J(d− 2)(α2 − 1).

Since ϕ′2 = α2(ϕ2 − 1), the equation can be written,

Ricg = H
(d− 1)α2

ϕ2
+ (H − J)(d− 2)(1− α2),

which is the desired result.
Let us now compute ∇∇gSWS, the Hessian with respect to the metric gS. We have (see (61)),

∇∇gS WS = ∇∇hWS + 2∇WS �h ∇hτS − (∇hWS ·h ∇hτS)h.

Since WS depends only on the variable s, we easily get that

∇∇gS WS = J(n− d)

[
α2 −

(
ϕ′

ϕ

)2
]

+ 2J(n− d)

(
ϕ′

ϕ

)2

−H(n− d)

(
ϕ′

ϕ

)2

,

which is the expected result. B

Remark 3.3. As an immediate consequence of Proposition 1.6, the fact that LS is essentially self-adjoint when
n ≥ 3 (see [Ket15, Thm. 3.12]) and Theorem A, we see that Sobolev’s inequality (17) holds (and so Poincaré’s

inequality (20) too), as soon as (14) holds. Also note that f = ϕ′

ϕ , seen as a function of the first of the cylindrical

coordinates (s, θ), solves
−LSf = nα2f

and so equality in Poincaré’s inequality (20) is achieved by f . In particular, the constant in Sobolev’s inequal-
ity (17) is optimal.

In fact, one can do better and prove optimal inequalities in the optimal range of parameters given by the
Felli-Schneider condition, as we describe next. The first crucial step consists in proving the following weaker
integrated forms of the curvature-dimension condition (15).

Proposition 3.4. Let (a, b) ∈ ΘFS. In cylindrical coordinates (s, θ), for any s ∈ (0,∞) and any smooth positive
function f on (0,∞)× Sd−1, there holds∫ (

ΓS
2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndVSd−1 ≥ 0 (35)

and ∫ (
ΓS

2 (f)− ρΓS(f)− 1

n
(LSf)2

)
dVSd−1 ≥ 0, (36)

where dVSd−1 is the standard volume on the sphere Sd−1.

We establish Proposition 3.4 through a series of lemmas. First,

Lemma 3.5 (ΓS
2 in the cylindrical chart). Let (a, b) ∈ Θ. In cylindrical coordinates, we have for any smooth

function f on (0,∞)× Sd−1

ΓS
2 (f)

ϕ4
= (∂ssf)2 + ||∇∇θf ||2 + 2Γθ(∂sf) + 2

ϕ′

ϕ
∂ssf∂sf + 4

ϕ′

ϕ
Γθ(∂sf, f)− 2

ϕ′

ϕ
∂sf∆θf

(∂sf)2

[
d

(
ϕ′

ϕ

)2

+ α2

(
d− 1

ϕ2
+ n− d

)]
+ Γθ(f)

(
2

(
ϕ′

ϕ

)2

+ α2n− 1

ϕ2
+ BDGZ

)
, (37)

where ||∇∇θf ||2 is the Hilbert-Schmidt norm with respect to the variable θ, Γθ(f) = |∇θf |2 the carré du champ
operator associated to ∆θ and the function ϕ has been defined in (28).
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Proof
C We can use the definition of the Γ2 operator to prove (37). But, since the Ricci curvature of LS has been
computed in Lemma 3.2, we prefer to use the following Bochner-Lichnerowicz formula,

ΓS
2 (f) = Ric(LS)(∇f,∇f) + ||∇∇gSf ||2, (38)

where ||∇∇gSf ||2 is the Hilbert-Schmidt norm of the Hessian of f with respect to the metric gS (see for
instance [BGL14, P. 71]). From Lemma 3.2, equation (33), we have first

Ric(LS)(∇f,∇f)

ϕ4
=

(∂sf)2

ϕ2
α2
[
d− 1 + ϕ2(n− d)

]
+

Γθ(f)

ϕ2

[
α2(n− 1) + ϕ2BDGZ

]
.

It remains to compute ||∇∇gSf ||2. From (29) we have gS = ϕ2h = e2τSh and so we may apply formula (62) to
get

||∇∇gSf ||2

ϕ4
= ||∇∇hf ||2 + 2Γh(τS,Γ

g(f)) + 2Γh(f)Γh(τS) + (d− 2)Γh(f, τS)2 − 2∆hfΓh(f, τS).

Since h is the standard metric product and τ depends only on the variable s, we have

||∇∇hf ||2 = (∂ssf)2 + ||∇∇θf ||2 + 2Γθ(∂sf),

Γh(τS,Γ
g(f)) = 2

ϕ′

ϕ
∂ssf∂sf + 2

ϕ′

ϕ
Γθ(∂sf, f),

Γh(f) = (∂sf)2 + Γθ(f), Γh(τS) =
(
ϕ′

ϕ

)2

, Γh(f, τS) = ϕ′

ϕ ∂sf and ∆hf = ∂ssf + ∆θf .

Collecting all the terms, we get

||∇∇gSf ||2

ϕ4
= (∂ssf)2 + ||∇∇θf ||2 + 2Γθ(∂sf) + 4

ϕ′

ϕ
∂ssf∂sf + 4

ϕ′

ϕ
Γθ(∂sf, f)

+ 2

(
ϕ′

ϕ

)2[
(∂sf)2 + Γθ(f)

]
+ (d− 2)

(
ϕ′

ϕ

)2

(∂sf)2 − 2(∂ssf + ∆θf)
ϕ′

ϕ
∂sf,

that is

||∇∇gSf ||2

ϕ4
= (∂ssf)2 + ||∇∇θf ||2 + 2Γθ(∂sf) + 2

ϕ′

ϕ
∂ssf∂sf + 4

ϕ′

ϕ
Γθ(∂sf, f)

+ 2

(
ϕ′

ϕ

)2

Γθ(f) + d

(
ϕ′

ϕ

)2

(∂sf)2 − 2∆θf
ϕ′

ϕ
∂sf.

Finally, by using (38), we get the expected formula (37). B
We restate the above lemma in the following more compact formulation.

Lemma 3.6. In the cylindrical chart, for any smooth function f on (0,∞)× Sd−1,

1

ϕ4

(
ΓS

2 (f)− ρΓS(f)− 1

n
(LSf)2

)
=
n− 1

n

(
∂ssf + 2

ϕ′

ϕ
∂sf −

1

n− 1
∆θf

)2

+ ||∇∇θf ||2 − 1

n− 1
(∆θf)2

+ 2Γθ
(
∂sf +

ϕ′

ϕ
f
)

+ Γθ(f)BDGZ . (39)

Proof
C In the cylindrical chart, the generator takes the following form, for a smooth function f :

LS(f) = ϕ2
[
∂ssf + (2− n)

ϕ′

ϕ
∂sf + ∆θf

]
,

15



and from Lemma 3.5 (formula (37)), we obtain

1

ϕ4

[
ΓS

2 (f)− ρΓS(f)− 1

n
(LSf)2

]
=
n− 1

n
(∂ssf)2 + ||∇∇θf ||2 −

1

n
(∆θf)2 + 4

ϕ′

ϕ

n− 1

n
∂ssf∂sf −

4

n

ϕ′

ϕ
∂sf∆θf

− 2

n
∂ssf∆θf + 2Γθ(∂sf) + 4

ϕ′

ϕ
Γθ(∂sf, f)

+ (∂sf)2

[(
ϕ′

ϕ

)2(
d− (n− 2)2

n

)
+ (n− d)α2ϕ

2 − 1

ϕ2

]
+ Γθ(f)

(
2

(
ϕ′

ϕ

)2

+ BDGZ

)
.

Since ϕ′2 = α2(ϕ2 − 1), we get

1

ϕ4

[
ΓS

2 (f)− ρΓS(f)− 1

n
(LSf)2

]
=
n− 1

n
(∂ssf)2 + ||∇∇θf ||2 −

1

n
(∆θf)2 + 4

ϕ′

ϕ

n− 1

n
∂ssf∂sf −

4

n

ϕ′

ϕ
∂sf∆θf

+ 4
n− 1

n

(
ϕ′

ϕ

)2

(∂sf)2 − 2

n
∂ssf∆θf + Γθ(f)

(
2

(
ϕ′

ϕ

)2

+ BDGZ

)
+ 2Γθ(∂sf) + 4

ϕ′

ϕ
Γθ(∂sf, f).

Formula (39) follows then easily since ϕ depends only on the variable s. B

Remark 3.7. By the Cauchy-Schwarz inequality,

||∇∇θf ||2 ≥
1

d− 1
(∆θf)2,

and so

||∇∇θf ||2 −
1

n− 1
(∆θf)2 ≥ n− d

(d− 1)(n− 1)
(∆θf)2 ≥ 0

since n ≥ d. We recover from (39) that, under the condition BDGZ ≥ 0, the generator LS satisfies the CD(ρ, n)
curvature-dimension condition.

The next ingredient is the following inequality valid on the sphere Sd−1 (or any smooth weighted manifold
satisfying the CD(d− 2, d− 1) condition).

Lemma 3.8. For any smooth positive function f on Sd−1,∫
Γθ2(f)f1−ndVSd−1 ≥ (d− 1)

∫
Γθ(f)f1−ndVSd−1 +A

∫
Γθ(f)2

f2
f1−ndVSd−1 , (40)

where

A =
n− 1

4(d+ 1)2
(n(4d− 5) + 3(4d+ 7)). (41)

In particular, ∫
Γθ2(f)f1−ndVSd−1 ≥ (d− 1)

∫
Γθ(f)f1−ndVSd−1 . (42)

Proof
C The operator ∆θ is the Laplace-Beltrami operator on the (d − 1)-dimensional sphere, therefore, it satisfies
the CD(d− 2, d− 1) condition. Moreover, Ricgθ (the Ricci tensor of ∆θ) satisfies

Ricgθ (∇θf,∇θf) = (d− 2)Γθ(f). (43)

In [GZ21, p. 767], it is proved that under the CD(K,m) condition, for a general operator L associated to the
measure µ, and the operators Γ and Γ2, one has for any real parameters q, χ,∫

hqΓ2(h)dµ ≥ Km

m− 1

∫
hqΓ(h)dµ+

∫ [
Ahq−2Γ(h)2 +Bhq−1Γ(h,Γ(h))

]
dµ
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where 
A =

q(q − 1)

m− 1
− χ2 − 2χ

q − 1

m− 1
,

B =
1

m− 1

(
3q

2
− χ(m+ 2)

)
.

Apply the previous inequality to our operator ∆θ with parameters q = 1 − n, K = d − 2, m = d − 1 and
χ = 3q

2(m+2) so that B = 0. We obtain∫
Γθ2(f)f1−ndVSd−1 ≥ (d− 1)

∫
Sd−1

Γθ(f)f1−ndVSd−1 +A

∫
Sd−1

Γθ(f)2

f2
f1−ndVSd−1

where A is given by (41) after a straightforward computation. In particular, A ≥ 0 and the estimate (42)
follows. B
We can now turn to the Proof of Proposition 3.4
C From Lemma 3.6, we have∫ (

ΓS
2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndVSd−1 ≥ ϕ4

∫ (
||∇∇θf ||2 − 1

n− 1
(∆θf)2 + Γθ(f)BDGZ

)
f1−ndVSd−1 .

Now,

||∇∇θf ||2 −
1

n− 1
(∆θf)2 =

n− d
n− 1

||∇∇θf ||2 +
d− 1

n− 1
||∇∇θf ||2 −

1

n− 1
(∆θf)2 ≥ n− d

n− 1
||∇∇θf ||2,

where we used the Cauchy-Schwarz inequality to infer that

||∇∇θf ||2 ≥
1

d− 1
(∆θf)2. (44)

So, ∫ (
ΓS

2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndVSd−1 ≥ ϕ4

∫ (
n− d
n− 1

||∇∇θf ||2 + Γθ(f)BDGZ

)
f1−ndVSd−1 .

Since, from (38) and (43),

||∇∇θf ||2 = Γθ2(f)−RicSd−1(∇θf,∇θf) = Γθ2(f)− (d− 2)Γθ(f),

the inequality becomes

ϕ−4

∫ (
ΓS

2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndVSd−1 ≥

n− d
n− 1

∫
Γθ2(f)f1−ndV d−1

S +

[
n− d
n− 1

(d− 2) + BDGZ

] ∫
Γθ(f)f1−ndVSd−1 .

Using the estimate (42) in Lemma 3.8, we get

ϕ−4

∫ (
ΓS

2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndVSd−1 ≥

[
n− d
n− 1

+ BDGZ

] ∫
Γθ(f)f1−ndVSd−1 . (45)

That is,
n− d
n− 1

+ BDGZ ≥ 0 (46)

implies (35). The proof of inequality (36) is almost identical, except that instead of (40), one uses∫
Γθ2(f)dVSd−1 ≥ (d− 1)

∫
Γθ(f)dVSd−1 ,
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which itself holds thanks to the Cauchy-Schwarz inequality (44), Bochner’s formula (38) and the identity∫
Γθ2(f)dVSd−1 =

∫
(∆θf)2dVSd−1 . B

Now that the integrated curvature-dimension is established, we can turn to the proof of Sobolev’s inequality.
Proof of Theorem 1.7
C Fix q ∈ [1, p). By the Caffarelli-Kohn-Nirenberg inequality (1) and Theorem 1.4, Sobolev’s inequality holds
on the CKN spherical space in the form (10). By Proposition 6.2.2 in [BGL14], (10) and Poincaré’s inequality
(A.5) imply the following tight form of Sobolev’s inequality:(∫

|v|qdµ
)2/q

≤ A
∫

ΓS(v)dµ+

∫
v2dµ, (47)

for some A ∈ R∗+ where µ = 1
ZµS is the normalized measure and v ∈ H1

0 (µS). Given A ∈ R∗+, consider the
minimization problem

I(A) = inf

{
A

∫
ΓS(v)dµ+

∫
v2dµ : v ∈ H1

0 (µS) , ||v||Lq(µ) = 1

}
.

Using v = 1 as a test function, we see that I(A) ≤ 1. Thus, (47) holds if and only if I(A) = 1. Thanks to
the Banach-Alaoglu-Bourbaki and Lemma A.4, there exists a minimizer v ∈ H1

0 (µS) s.t. ||v||Lq(µ) = 1. By
Stampacchia’s theorem [Sta66], |v| is also a minimizer, so we may assume that v ≥ 0 a.e. In addition, a constant
multiple of v (abusively denoted the same below) is a weak solution to

−ALSv + v = vq−1 in Rd \ {0}. (48)

By standard elliptic regularity (see e.g. [Heb97], proof of Theorem 6.2.1, p. 248) v ∈ C3(Rd \ {0}) and by the
strong maximum principle (see e.g. [Heb97], Theorem 5.7.2), v > 0 in Rd \ {0}. In addition,

C ≥ v ≥ c > 0 and ΓS(v) ≤ C (49)

for some constants C, c > 0. The upper bound on v is obtained by standard Moser iteration (i.e. by multiply-
ing (48) by the test function min(v, k)2α−1, where k ∈ N∗ and α ≥ 1 and making use of Sobolev’s inequality (69)
inductively). For the lower bound on v, we apply Proposition 6.3.4 in [BGL14] and repeat the considerations
of p. 312 in the same reference. The upper bound on ΓS(v) is more delicate and proved in Lemma A.7.

Define the pressure function Φ = v−
q−2
2 . Then, Φ solves

ΦLSΦ− ν

2
ΓS(Φ) = −λ(Φ2 − 1) in Rd \ {0}, (50)

where ν = 2q
q−2 and λ = q−2

2A = 2
(ν−2)A . Since v is bounded above and below by positive constants and since

ΓS(v) is bounded, equation (50) implies that for every a ∈ R

Φa ∈ D(LS) (51)

Multiply equation (50) by LS(Φ1−ν) and integrate. Thanks to the integration by parts formula (65), we find
for the right-hand-side ∫

λ(Φ2 − 1)LS(Φ1−ν) = λ

∫
Φ2LS(Φ1−ν) = −λ

∫
ΓS(Φ2,Φ1−ν)

= c

∫
ΓS(Φ)Φ1−ν

where c = 2λ(ν − 1) = 4 ν−1
(ν−2)A and where integration is understood with respect to the reference measure µ =

1
ZµS. For the left-hand side, integrations by parts must be dealt with more carefully. By Lemma A.2 (or since LS

is essentially self-adjoint by [Ket15, Thm. 3.12]), there exists a sequence of radial functions ζk ∈ C∞c (Rd \ {0})
such that ζk → 1 in D(LS). By equation (50), ΦLSΦ− ν

2 ΓS(Φ) is bounded. By (51), LS(Φ1−ν) ∈ L2(µS). So,
by dominated convergence, as k → +∞,∫

(LS(Φ1−ν))(ΦLSΦ− ν

2
ΓS(Φ)) =

∫
(LS(Φ1−ν))(ΦLSΦ− ν

2
ΓS(Φ))ζk + o(1)
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Since ζk is compactly supported, we may integrate by parts and deduce that∫
(LS(Φ1−ν))(ΦLSΦ− ν

2
ΓS(Φ))ζk = −

∫
ΓS((ΦLSΦ− ν

2
ΓS(Φ))ζk,Φ

1−ν) + o(1)

= −
∫

ΓS((ΦLSΦ)ζk,Φ
1−ν) +

ν

2

∫
ΓS(ΓS(Φ))ζk,Φ

1−ν) + o(1)

=: I + II + o(1) (52)

Using the product rule to expand derivatives in the first integral, we find

I = −
∫
ζkLSΦΓS(Φ,Φ1−ν)−

∫
ζkΦΓS(LSΦ,Φ1−ν)−

∫
(ΦLSΦ)ΓS(ζk,Φ

1−ν) =: I1 + I2 + I3

Using (50) and the boundedness of Φ and ΓS(Φ), we find

I3 ≤ C
(∫

ΓS(ζk)

)1/2

= o(1) (53)

Next, we deal with I1. Thanks to the product rule for derivatives, we find

I1 = −
∫

ΓS(Φ,Φ1−νLSΦζk) +

∫
Φ1−νζkΓS(Φ, LSΦ) +

∫
Φ1−νLSΦΓS(Φ, ζk)

= −
∫

ΓS(Φ,Φ1−νLSΦζk) +

∫
Φ1−νζkΓS(Φ, LSΦ) + o(1)

Since ζk has compact support, we may integrate by parts to find that

I1 = −
∫

Φ1−ν(LSΦ)2ζk +

∫
Φ1−νζkΓS(Φ, LSΦ) + o(1). (54)

For I2 at last, the chain rule simply implies that

I2 = (ν − 1)

∫
Φ1−νζkΓS(Φ, LSΦ). (55)

Now we turn to II and apply the product rule.

2

ν
II =

∫
ζkΓS(ΓS(Φ),Φ1−ν) +

∫
ΓS(Φ)ΓS(ζk,Φ

1−ν) =

∫
ζkΓS(ΓS(Φ),Φ1−ν) + o(1).

Thanks to the product rule again and integration by parts, it follows that

2

ν
II =

∫
ΓS(ΓS(Φ), ζkΦ1−ν) +

∫
Φ1−νΓS(ΓS(Φ), ζk) =∫

ΓS(ΓS(Φ), ζkΦ1−ν)−
∫

ΓS(Φ)ΓS(Φ1−ν , ζk)−
∫

ΓS(Φ)Φ1−νLSζk.

And so, since ζk → 1 in D(LS) and Φ,ΓS(Φ) are bounded,

2

ν
II =

∫
ΓS(ΓS(Φ), ζkΦ1−ν) + o(1) = −

∫
LS(ΓS(Φ))ζkΦ1−ν + o(1). (56)

Plugging (53), (54), (55), (56) in (52), we find∫ (
ΓS

2 (Φ)− 1

ν
(LSΦ)2 − c

ν
ΓS(Φ)

)
Φ1−νζk = o(1).

Since Φ ∈ D(LS), thanks to Lemma A.9, we may pass to the limit as k → +∞ and deduce that∫ (
ΓS

2 (Φ)− 1

ν
(LSΦ)2 − c

ν
ΓS(Φ)

)
Φ1−ν = 0. (57)
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By the integrated curvature-dimension condition (35), we deduce that(
1

n
− 1

ν

)∫
(LSΦ)2Φ1−ν +

(
ρ− c

ν

)∫
ΓS(Φ)Φ1−ν ≤ 0.

Since q < p, we have n < ν and so, if ρ ≥ c
ν i.e.

A ≥ 4(ν − 1)

ν(ν − 2)ρ
,

we deduce that LSΦ = 0. Integrating against Φ, Φ is constant. Hence v = 1, I(A) = 1, and (47) holds for

A = 4(ν−1)
ν(ν−2)ρ . Let q ↗ 2∗. Then ν ↘ n and the sharp inequality (17) follows.

It remains to study the case of equality. If v ∈ H1
0 (µS) is an extremal function for (17), then repeating the

above considerations, the function f = v−
p−2
2 satisfies∫ (

ΓS
2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndµS = 0,

In particular, if the parameters are such that inequality (46) is strict, it follows from (45) that f must be a
function of s only. If n−dn−1 +BDGZ = 0, then the estimate (40) in Lemma 3.8 provides the following improvement
of (45):∫ (

ΓS
2 (f)− ρΓS(f)− 1

n
(LSf)2

)
f1−ndµS ≥

[
n− d
n− 1

+ BDGZ

] ∫
Γθ(f)ϕ4f1−ndµS

+
n− d
n− 1

A

∫
Γθ(f)2

f2
ϕ4f1−ndµS.

And so again, f is a function of s only, provided n > d. Using this information in (39), we deduce that if n > d,

∂ssf + 2
ϕ′

ϕ
∂sf = 0,

while for n = d there must exist some function R : R→ R s.t.

∂ssf + 2
ϕ′

ϕ
∂sf −

1

d− 1
∆θf = 0 and ∂sf +

ϕ′

ϕ
f = R(s). (58)

In the former case, this means that f(s) = λ + γ tanh(αs), for some constants λ, γ ∈ R such that λ > |γ|,
since f is bounded below by a positive constant. In the latter case, the second equation in (58) implies that f

can be written as f = f1(θ)
ϕ(s) + f2(s). Plugging this in the first equation implies that f1 + ∆θf1

d−1 is constant i.e.

f1 = A1 +B1ψ2(θ), where A1, B1 are constants and ψ2 is any eigenfunction of −∆θ associated to the eigenvalue
d − 1. This implies in turn that f2 takes the form f2 = − A1

ϕ(s) + A3 + A4 tanh(s). Summarizing, we have just

proved that f = λ + γϕ1,d for some constants λ, γ and some eigenfunction ϕ1,d of −∆Sd associated to the
eigenvalue d (and written in cylindrical coordinates). Again, we must have λ > |γ|‖ϕ1,d‖∞ since f is bounded
below by a positive constant.

Conversely, we need to check that f−
n−2
2 where f(s) = λ+γ tanh(αs) with λ > |γ| if n > d (resp. f = λ+γϕ1,d,

λ > |γ|‖ϕ1,d‖∞ if n = d) is indeed an extremal function for Sobolev’s inequality. Multiplying f by a constant if
necessary, we may assume that

∫
f−ndµ = 1, where µ is the normalized measure on the CKN sphere. By direct

computation, recalling that tanh(αs) if n > d (resp. ϕ1,d if n = d) is an eigenfunction for the operator −LS

associated to the eigenvalue nα2, we find that

fLSf −
n

2
ΓS(f) =

nα2

2
(1− f2)

This implies in turn that v = f−
n−2
2 satisfies

∫
vpdµ = 1 and solves

− 4

n(n− 2)α2
LSv + v = vp−1
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Multiplying by v and integrating by parts, the result follows. B

Proof of Proposition 1.10
C As explained in the introduction, Poincaré’s inequality (with constant C = n−1

ρn = 1
nα2 ) follows from Sobolev’s

inequality by linearization i.e. by applying (17) with v = 1 + εf and letting ε→ 0. Also, Poincaré’s inequality
(with the same constant C) is equivalent to the following integrated curvature-dimension condition∫ (

ΓS
2 (f)− ρΓS(f)− 1

n
(LSf)2

)
dµS ≥ 0.

Equality holds in Poincaré’s inequality for some function f if and only if equality holds in the above inequality.
So, extremals are characterized exactly as in the case of Sobolev’s inequality except in the case α2 = d−1

n−1 , in
which we can no longer use (40) to deduce that f is radial. Still, we deduce from (39) that

∂ssf + 2
ϕ′

ϕ
∂sf −

1

n− 1
∆θf = 0 and ∂sf +

ϕ′

ϕ
f = R(s)

The second equation in (58) implies that f can be written as f = f1(θ)
ϕ(s) +f2(s). Plugging this in the first equation

implies that α2f1 + ∆θf1
n−1 is constant i.e. f1 = A1 +B1ϕ1,d−1(ω), where A1, B1 are constants and ϕ1,d−1 is any

eigenfunction of −∆θ associated to the eigenvalue α2(n−1) = d−1. This implies in turn that f2 takes the form
f2 = − A1

ϕ(s) +A3 +A4 tanh(αs). Summarizing, we have just proved that extremals of Poincaré’s inequality take

the form f = λ+ γ tanh(αs) + ν
ϕ1,d−1(ω)
cosh(αs) for some constants λ, γ, ν and some eigenfunction ϕ1,d−1 of −∆Sd−1 ,

as desired. B

Remark 3.9. Up to our knowledge, the CKN sphere is the first example where the optimal constants for both the
Sobolev and the Poincaré inequalities are explicit functions of (ρ, n) yet the usual curvature-dimension condition
doesn’t hold, although the integral version (15) remains true. Beware though that the integrated curvature-
dimension needed for (and equivalent to) Poincaré’s inequality, i.e. inequality (15) without the weight f1−n, is
in general much weaker, as evidenced by any space for which the Poincaré inequality holds but not the Sobolev
inequality, such as, for instance, the Euclidean space equipped with the Gaussian measure.

4 The n-conformal invariant

4.1 The n-conformal invariant on a weighted manifold

We begin this section by proving Proposition 1.12, which constructs a one-parameter family of n-conformal
invariants on any given weighted manifold, thereby generalizing the notion of scalar curvature to this setting.
Proof of Proposition 1.12
C We want to check that Sγ(µ,Γ) satisfies condition (21). Let c be a positive and smooth function on M ,
τ = log c and γ ∈ R. We are looking for the expression of the two numbers θn(γ) and βn(γ) in the definition of
Sγ(µ,Γ) which are such that

Sγ(c−nµ, c2Γ) = c2
[
Sγ(µ,Γ) +

n− 2

2

(
Lτ − n− 2

2
Γ(τ)

)]
.

The measure µ is transformed into µ̆ = c−nµ, and the carré du champ Γ into Γ̆ = c2Γ.
From (64), scg becomes

s̆cg = c2[scg + (d− 1)(2∆gτ − (d− 2)Γ(τ))],

the weight W = − log dµ
dVg

becomes

W̆ = − log
dµ̆

dV̆g
= − log

c−ndµ

c−ddVg
= − log

(
cd−n

dµ

dVg

)
= W + (n− d)τ,
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and finally, from (60), ∆g becomes

∆̆g = c2[∆g − (d− 2)Γ(τ, ·)].

So,

Sγ(c−nµ, c2Γ) = c2θn(γ)
[
scg + (d− 1)(2∆g(τ)− (d− 2)Γ(τ))

− γ[∆g(W + (n− d)τ)− (d− 2)Γ(τ,W + (n− d)τ)] + βn(γ)Γ(W + (n− d)τ)
]

that is

Sγ(c−nµ, c2Γ) = c2θn(γ)
[
scg + [2(d− 1)− γ(n− d)]∆g(τ)

+ [βn(γ)(n− d)2 − (d− 1)(d− 2) + γ(d− 2)(n− d)]Γ(τ)

− γ∆g(W ) + [γ(d− 2) + 2βn(γ)(n− d)]Γ(τ,W ) + βn(γ)Γ(W )
]
.

It has to be equal to

c2
[
Sγ(µ,Γ) +

n− 2

2

(
∆g(τ)− Γ(W, τ)− n− 2

2
Γ(τ)

)]
=

c2
[
θn(γ)[scg − γ∆g(W ) + βn(γ)Γ(W )] +

n− 2

2

(
∆g(τ)− Γ(W, τ)− n− 2

2
Γ(τ)

)]
,

that is 
θn(γ)[2(d− 1)− γ(n− d)] =

n− 2

2

θn(γ)[βn(γ)(n− d)2 − (d− 1)(d− 2) + γ(d− 2)(n− d)] = − (n− 2)2

4

θn(γ)[γ(d− 2) + 2βn(γ)(n− d)] = −n− 2

2

(59)

which imples that 
θn(γ) =

n− 2

4(d− 1)− 2γ(n− d)

βn(γ) =
γ(n− 2d+ 2)− 2(d− 1)

2(n− d)
.

Let us notice that the second equation in (59) is automatically valid for this choice of parameters θn(γ) and
βn(γ) and so we are done. B

Remark 4.1. As explained in the introduction, when W = 0 the d-conformal invariant is, up to a multiplicative
constant, the scalar curvature. In a weighted Riemannian manifold, the n-conformal invariant is given by (23)
and is a way to extend the definition of the scalar curvature in the weighted case.

4.2 The n-conformal invariant for the CKN spaces

In this section, we would like to prove that the three CKN spaces enjoy, for some γ ∈ R, a constant n-conformal
invariant. By construction, the three CKN models (Euclidean, spherical and hyperbolic) belong to the same
n-conformal class. So, in virtue of Theorem 1.4 and Proposition 1.12, it suffices to prove that there exits a
unique γ ∈ R such that Sγ = 0 for the Euclidean CKN space in order to prove Proposition 1.13.
Proof of Proposition 1.13
C Let γ ∈ R. Then,

Sγ(µE,ΓE) = θn(γ)
(
scgE

− γ∆gE
WE + βn(γ)ΓE(WE)

)
.

So, we need to find γ such that scgE
− γ∆gE

WE + βn(γ)ΓE(WE) = 0.
• Computation of the scalar curvature. From the identity (64) with ΓE = cEΓ and τE = log cE,

scgE
= |x|2(1−α)(0 + (d− 1)(2∆τE − (d− 2)|∇τE|2),
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hence,

scgE
= |x|−2α(d− 1)(d− 2)(1− α2).

• Computation of ∆gE
WE. First, from the identity (60),

∆gE
WE = |x|2(1−α)κ(∆WE − (d− 2)∇τE · ∇WE),

so

∆gE
WE = |x|−2α(d− 2)α2(n− d).

• Computation of ΓE(WE). We have

ΓE(WE) = |x|−2ααha2(n− d)2.

So, in the end,

Sγ(µ,Γ) = θn(γ)|x|−2α
(
(d− 1)(d− 2)(1− α2) + γα2(n− d)(d− 2) + βn(γ)α2(n− d)2

)
,

and we need to find γ ∈ R such that

(d− 1)(d− 2)(1− α2) + γα2(n− d)(d− 2) + βn(γ)α2(n− d)2 = 0.

Since

βn(γ) =
γ(n− 2d+ 2)− 2(d− 1)

2(n− d)

we have

γ = 2
(d− 1)(d− 2 + α2(2− n))

α2(n− d)(2− n)
.

or by using the constant BDGZ ,

γ =
2(d− 1)

α2(n− d)(2− n)
BDGZ .

B

Remark 4.2. It is interesting to notice that the n-conformal invariant for the CKN spaces does not depend on
the sign of BDGZ or the Felli-Schneider region.

A Appendix

A.1 Some Riemannian formulas

We recall here some general formulas on conformal transformations of a d-dimensional Riemannian manifold
(M, g). All formulas can be found for example in [BGL14, Sec. 6.9]12. We transform the metric (with upper
indices) gij into the conformal metric hij = c2gij , where c is any positive and smooth function. We let τ = log c.
Then,

• The carré du champ operator is given by

Γh = c2Γg.

• The Laplace-Beltrami operator is given by

∆h = c2(∆g − (d− 2)Γg(τ, ·)). (60)

12and also here https://en.wikipedia.org/wiki/List of formulas in Riemannian geometry
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• For any smooth function ψ, the Hessian of ψ with respect to the metric h, denoted ∇∇hψ is given by

∇∇hψ = ∇∇gψ + 2∇gψ �g ∇gτ − Γg(ψ, τ)g, (61)

Here and below, ∇∇gψ is the Hessian of ψ with respect to g and ∇gψ �g ∇gτ is the symmetric tensor
product, that is for any functions f, g,

(∇gψ �g ∇gτ)(∇gf,∇gg) =
1

2

[
Γg(f, ψ)Γg(g, τ) + Γg(f, τ)Γg(g, ψ)

]
.

In particular, one can deduce the Hilbert-Schmidt norm of ∇∇hψ with respect to the new metric h:

||∇∇hψ||2 = c4
[
||∇∇gψ||2 + 2Γg(τ,Γg(ψ)) + 2Γg(ψ)Γg(τ) + (d− 2)Γg(ψ, τ)2 − 2(∆gψ)Γg(ψ, τ)

]
. (62)

• The Ricci curvature reads

Rich = Ricg + (∆gτ)g + (d− 2)(∇∇gτ +∇τ �g ∇τ − Γg(τ)g) (63)

• At last, the scalar curvature is given by

sch = c2
[
scg + (d− 1) (2∆gτ − (d− 2)Γg(τ))

]
. (64)

A.2 Integration by parts and elliptic theory on the CKN spherical space

Let H1
0 (µS) denote the closure of C∞c (Rd \ {0}) with respect to the norm

‖u‖2H1
0 (µS) =

∫
(ΓS(u) + u2) dµS

Let u ∈ L2(µS). Then, |x|1−α 1+|x|2α
2 ∇u and LSu are well-defined distributions on Rd \ {0} and we may ask

whether they are actual functions in L2(µS), that is, we may consider LS as an unbounded operator in L2(µS)
with domain

D(LS) = {u ∈ H1
0 (µS) : LSu ∈ L2(µS)},

equipped with the norm

‖u‖2 = ‖u‖2L2(µS) + ‖LSu‖2L2(µS) =

∫ (
u2 + (LSu)2

)
dµS.

Since
∫

ΓS(u) dµS = −
∫
uLSu dµS for u ∈ C∞c (Rd \ {0}), it easily follows that LS is a closed operator. In

addition, the integration by parts formula holds on its domain:

Lemma A.1. Let u, v ∈ D(LS). Then,∫
−LSu v dµS =

∫
ΓS(u, v)dµS (65)

Proof
C Assume first that u, v ∈ C∞c (Rd \ {0}). Then, (65) follows by standard integration by parts. Next, if
u ∈ D(LS) and v ∈ C∞c (Rd \ {0}), take un ∈ C∞c (Rd \ {0}) s.t. un → u in H1

0 (µ). Using successively the
definition of distributional derivatives, the convergence un → u in L2(µS), standard integration by parts and
the convergence un → u in H1

0 (µ), we find∫
−LSu v dµS =

∫
u (−LSv) dµS = lim

n→+∞

∫
un (−LSv) dµS = lim

n→+∞

∫
ΓS(un, v)dµS =

∫
ΓS(u, v)dµS

Finally, if u ∈ D(LS) and if v ∈ D(LS), take vn ∈ C∞c (Rd \ {0}) s.t. vn → v in H1
0 (µ). Then, according to what

we just proved,∫
−LSu v dµS = lim

n→+∞

∫
−LSu vn dµS = lim

n→+∞

∫
ΓS(u, vn)dµS =

∫
ΓS(u, v)dµS

B
The following approximation lemma will be useful to integrate by parts in more delicate settings than the above
lemma.
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Lemma A.2. Assume n > 4. Let u ∈ D(LS) be such that u,ΓS(u) are bounded. Then, there exists uk ∈
C∞c (Rd \ {0}) such that uk → u in DLS

.

Remark A.3. The assumptions n > 4 and u,ΓS(u) bounded can be removed and replaced by n ≥ 3, but the
proof is more involved (see [Ket15, Thm. 3.12]).

Proof
C In Section 3, the model given in (27) is written with the variables (s, θ) ∈ R × Sd−1. Choosing now
s = 1

αArgch(1/ sin(t)) the model becomes with the variables (t, θ) ∈ (0, π)× Sd−1,

LS(f) = α2(∂ttf + c′(t)∂tf) +
1

sin2(t)
∆θf, (66)

for any smooth function f defined in (0, π)×Sd−1, where c(t) = (n−1) log(sin(t)). The carré du champ operator
becomes

ΓS(f) = α2(∂tf)2 +
1

sin2(t)
Γθ(f) (67)

and invariant measure

dµS(t, θ) =
1

Z
ec(t)dtdVSd−1 =

1

Z
(sin t)n−1dtdVSd−1 , (68)

where Z is a normalization constant and dVSd−1 is the volume in Sd−1.

Let now ζk ∈ C∞c (0, π) denote a standard cut-off function such that 0 ≤ ζk ≤ 1, ζk = 0 in (0, 1/k)∪ (π−1/k, π),
ζk = 1 in (2/k, π − 2/k) and |ζ ′k| ≤ 2k, |ζ ′′k | ≤ 2k2. Setting uk = uζk, we find∫

(LS(u− uk))2dµS ≤ 2

∫
(LSu)2(ζk − 1)2dµS + 4

∫
ΓS(u, ζk)2dµS + 2

∫
u2(LSζk)2dµS =: I1 + I2 + I3

By dominated convergence, I1 → 0 as k → +∞. For I2, thanks to (67) and (68),

I2 ≤ C‖ΓS(u)‖2∞k2−n → 0

Similarily, thanks to (66) and (68),

I3 ≤ C‖u‖2∞k4−n → 0.

B

Our next tool is the following version of the Rellich-Kondrachov compactness theorem.

Lemma A.4. Let (M, g, µ) be a smooth connected weighted d-dimensional Riemannian manifold s.t. d ≥ 3,

µ(M) < +∞ and Sobolev’s inequality holds i.e. there exist constants A,B ≥ 0, p ∈
[
2, 2d

d−2

]
such that for every

v ∈ C∞c (M), (∫
|v|pdµ

) 2
p

≤ A
∫

Γ(v)dµ+B

∫
v2dµ (69)

Let H1
0 (µ) be the closure of A0 = C∞c (M) for the norm ‖u‖2

H1
0 (µ)

=
∫

(u2 + Γ(u))dµ and let q ∈ [1, p). Then, the

embedding H1
0 (µ) ↪→ Lq(µ) is compact.

Proof
C Cover M by a countable increasing family of open sets (Ωk)k∈N with compact closure and for each k ∈ N,
let ηk ∈ C∞c (Ωk+1) be such that ηk = 1 in Ωk. Let (um) be a bounded sequence in H1

0 (µ). Since dµ = e−W dVg
and W, g are smooth, the H1

0 (µ) and the standard H1
0 norm are equivalent for functions compactly supported

in a fixed Ωk. By the classical Rellich-Kondrachov theorem, we deduce that for fixed k, the sequence (umηk)m
is compact in Lr(Ωk+1, dµ) for r ∈ (q, p). Since (um) is bounded in the Hilbert space H1

0 (µ), by the Banach-
Alaoglu theorem, (um) is also compact in H1

0 (µ) for the weak topology. By a standard diagonal argument,
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a subsequence of (um) (denoted the same) converges weakly in H1
0 (µ) to some function u ∈ H1

0 (µ) such that
(umηk)m converges to uηk in Lr(µ). Now, using Hölder’s and Sobolev’s inequality we find

‖um − u‖Lq(µ) ≤ ‖(um − u)ηk‖Lq(µ) + ‖(um − u)(1− ηk)‖Lq(µ)

≤ ‖(um − u)ηk‖Lr(µ)µ(M)
1
q−

1
r + ‖um − u‖Lp(µ)µ(M \ Ωk)

1
q−

1
p

≤ C
(
‖(um − u)ηk‖Lr(µ) + µ(M \ Ωk)

) 1
q−

1
p )

Hence,

lim sup
m→+∞

‖um − u‖Lq(µ) ≤ Cµ(M \ Ωk)
1
q−

1
p

Letting k → +∞, the claim follows. B
As an immediate consequence of the above lemma (and a proof by contradiction), we have

Corollary A.5. Make the same assumptions as in Lemma A.4. Assume in addition that constants belong to
H1

0 (µ). Then, Poincaré’s inequality holds i.e. there exists a constant CP > 0 such that∫
v2dµ−

(∫
vdµ

)2

≤ CP
∫

Γ(v)dµ for v ∈ A0 = C∞c (M)

Finally, we state and prove elliptic regularity estimates, which are useful to justify integrations by parts in our
proof of Sobolev’s inequality.

Lemma A.6 (General elliptic estimates). Assume that (a, b) ∈ ΘFS (defined in (18)). Let also h : (0, 1] ×
Sd−1 7→ R be a smooth and bounded function satisfying

∫
Sd−1 hdVSd−1 = 0 and solving the equation

∂tth−
(n− 1)(n− 3)

4

h

t2
+

∆θh

α2 sin2(t)
= R,

where R is a smooth and bounded function on (0, 1]× Sd−1. We assume also that, uniformly on (0, 1]× Sd−1

|h(t, θ)| ≤ Ct
n−1
2 and |R(t, θ)| ≤ Ct

n−1
2 ,

for some constant C > 0. Then, there exists a constant C ′ > 0 s.t. uniformly on (0, 1]× Sd−1,

|h(t, θ)| ≤ C ′t
n+1
2 , Γθ(h)(t, θ) = |∇θh|2(t, θ) ≤ C ′tn+1 and |∂th(t, θ)| ≤ C ′t

n−1
2 .

Proof
C Let (Pk)k≥0 be the orthonormal basis of eigenvectors of the operator −∆θ on Sd−1 associated to the increasing
sequence of eigenvalues (λk)k≥0 (recall that λk ≥ λ1 = d− 1, for k ≥ 1 and λ0 = 0).
We decompose h in the basis (Pk)k≥0,

h(t, θ) =

∞∑
k=1

hk(t)Pk(θ), (t, θ) ∈ (0, π)× Sd−1,

where hk(t) =
∫
Sd−1 Pk(θ)h(t, θ)dVSd−1 (noting that

∫
hP0dVSd−1 =

∫
hdVSd−1 = 0, whence h0 = 0). For each

k ≥ 1, hk satisfies

h′′k −
(n− 1)(n− 3)

4

hk
t2
− λk

α2 sin2(t)
hk = Rk,

where Rk =
∫
Sd−1 RPkdVSd−1 , which satisfies again |Rk(t, θ)| ≤ Ckt

n−1
2 . The equation can be replaced by the

following one

h′′k − a
hk
t2

= R2,k,

where a = (n−1)(n−3)
4 + λk

α2 > 0 and R2,k satisfies the same estimate as Rk.

26



We are now able to solve the ODE. The method of variation of constants gives the explicit solution:

hk(t) = Atγ+ +Btγ− +
tγ+

γ+ − γ−

∫ t

1

R2,k(y)y1−γ+dy − tγ−

γ+ − γ−

∫ t

0

R2,k(y)y1−γ−dy,

where A, B are constants and

γ± =
1±
√

1 + 4a

2
=

1

2
± 1

2

√
(n− 2)2 + 4

λk
α2
,

so that γ+ > 0, γ− < 0. Then, by the estimate satisfied by R2,k we have near 0,∣∣∣ tγ+

γ+ − γ−

∫ t

1

R2,k(y)y1−γ+dy
∣∣∣ ≤ Ctγ+ ∣∣∣ ∫ t

1

y
n+1
2 −γ+dy

∣∣∣ ≤ C(tγ+ + t
n+3
2

)
and ∣∣∣ tγ−

γ+ − γ−

∫ t

0

R2,k(y)y1−γ−dy
∣∣∣ ≤ Ctγ− ∫ t

0

y
n+1
2 −γ−dy ≤ Ct

n+3
2

Since hk is a bounded function, we deduce that B = 0 and

|hk(t)| ≤ C(tγ+ + t
n+3
2 ).

We claim that for k ≥ 1, γ+ ≥ n+1
2 , whence |hk(t)| ≤ Ctn+1

2 . Indeed, by definition of γ+, one can check that the

inequality γ+ ≥ (n+ 1)/2 is equivalent to λk
n−1 ≥ α2. Since λk ≥ d− 1 for any k ≥ 1 and since by Lemma 1.9,

(a, b) ∈ ΘFS if and only if α2 ≤ d−1
n−1 , we indeed have γ+ ≥ (n+ 1)/2.

Next, we prove that the estimate remains valid for the function h. Define

HK =

K∑
k=1

hkPk.

so that h = limK→∞HK pointwise. From the previous computations, we know that, uniformly in (0, 1)×Sd−1,

|HK(t, θ)| ≤ CKt
n+1
2

We prove now that the inequality is uniform in the parameter K. Assume this is not the case i.e.

sup
K≥1
||HK ||(n+1

2 ) = +∞, (70)

where

||HK ||(n+1
2 ) = sup

t∈(0,1],θ∈Sd−1

|HK(t, θ)|
t
n+1
2

.

There exist a sequence ((tK , θK))K≥1 in (0, 1]× Sd−1, such that

lim
K→∞

|HK(tK , θK)|

t
n+1
2

K

=∞. (71)

By compactness, one can assume that (tK) (resp. (θK)) converges to t∞ ∈ [0, 1] (resp. θ∞ ∈ Sd−1). There are
two cases, either t∞ > 0 or t∞ = 0. The first case is not possible. Indeed, h is bounded by assumption, whence
HK is bounded by a constant independent of K and so (71) contradicts t∞ > 0. The remaining case t∞ = 0 is
more tricky. Let

GK(z, θ) =
HK(ztK , θ)

t
n+1
2

K ||HK ||(n+1
2 )
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for any z ∈ (0, 1/tK ]. From the equation satisfied by each hk, we have

∂zzGK(z, θ)− (n− 1)(n− 3)

4

GK(z, θ)

z2
+ t2K

∆θGK(z, θ)

α2 sin2(ztK)
=

t2K

t
n+1
2

K ||HK ||(n+1
2 )

K∑
k=1

Rk(ztk)Pk(θ).

By assumption on R, we have

∣∣∣ t2K

t
n+1
2

K ||HK ||(n+1
2 )

K∑
k=1

Rk(ztk)Pk(θ)
∣∣∣ ≤ C tK

||HK ||(n+1
2 )

K→∞−→ 0,

uniformly for z in a compact subset of R∗. By standard elliptic regularity, it follows that the sequence (GK)
converges to G solution on (0,∞)× Sd−1 of the PDE

∂zzG(z, θ)− (n− 1)(n− 3)

4

G(z, θ)

z2
+

∆θG(z, θ)

α2z2
= 0.

Now, using the same argument we have

G =

∞∑
k=0

GkPk.

where again Gk(z) =
∫
Sd−1 G(z, θ)Pk(θ)dVSd−1 . Then for each k ≥ 0, we have Gk(t) = Atγ+ + Btγ− where

γ± are the same constants as before. But, the function Gk, defined on (0,∞), is bounded. This implies that
A = B = 0 and then G = 0. But by its definition, we know that

G(1, θ∞) = 1,

which gives a contradiction: the hypothesis (70) is not valid. We conclude that uniformly in (0, 1] × Sd−1, we
have

|h(t, θ)| ≤ Ct
n+1
2 .

It remains to prove the gradient estimates. Fix t > 0 and for z ∈ (1/4, 2), θ ∈ Sd−1, let this time G(z, θ) =
h(tz, θ) and S(z, θ) = R(tz, θ) so that

∂zzG−
(n− 1)(n− 3)

4

G

z2
+

t2

α2 sin2(tz)
∆θG = t2S in (1/4, 2)× Sd−1

Note that the coefficients of the elliptic operator on the left-hand side are bounded in C2-norm by a constant
independent of t so that, by standard elliptic regularity,

|∂zG|+ |∇θG| ≤ C
(
t2‖S‖L∞((1/4,2)×Sd−1) + ‖G‖L∞((1/4,2)×Sd−1)

)
≤ Ct

n+1
2 in (1/2, 3/2)× Sd−1,

for some constant C > 0 independent of t. The desired estimates on h follow by applying the above estimate at
z = 1. B

Lemma A.7. Whenever (a, b) ∈ ΘFS (defined in (18)), the solution v of the equation (48) has a bounded carré
du champ operator

||ΓS(v)||∞ < +∞.

Proof
C We use the chart and notation introduced in (66). We have to prove that v, solution of (48) has a bounded
carré du champ, that is ||ΓS(v)||∞ < +∞. Letting c(t) = (n−1) log(sin(t)) and h = e

c
2 v, equation (48) becomes

∂tth−
(

2c′′ + c′2

4

)
h+

1

α2 sin2(t)
∆θh = R, (72)
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where

R =
1

α2A

(
h− e

c(2−q)
2 hq−1

)
.

This transformation allows us to deal with a simpler PDE. We know that v = e−
c
2h is bounded and positive.

So, for some constant C (the value of which is allowed to change from line to line),

0 ≤ h ≤ Ce c2 = C sin(t)
n−1
2 .

Thus |R| ≤ C sin(t)
n−1
2 . And then, from the definition of h, the following inequality,(

∂th−
c′

2
h
)2

+
Γθ(h)

α2 sin2(t)
≤ C sin(t)n−1 (73)

is equivalent to ||ΓS(v)||∞ < +∞.
We know that h is a smooth function on (0, π)×Sd−1. So, to prove the previous inequality, it is enough to work
around t = 0 and t = π. By symmetry, it suffices to treat the case t = 0.
By definition of c, equation (72) can be written as follow

∂tth−
(n− 1)(n− 3)

4

h

sin2(t)
+

1

α2 sin2(t)
∆θh = R− (n− 1)(n− 3)

4
h,

or, since we are working around t = 0, we have

∂tth−
(n− 1)(n− 3)

4

h

t2
+

1

α2 sin2(t)
∆θh = R2, (74)

with

R2 = R− (n− 1)(n− 3)

4
h+

(n− 1)(n− 3)

4

(
1

sin2(t)
− 1

t2

)
h,

which satisfies again |R2| ≤ Ct
n−1
2 .

Let us write h = h− h0 + h0 where h0 =
∫
Sd−1 hdVSd−1 . Then, since h0 doesn’t depend on θ,

(
∂th−

c′

2
h
)2

+
Γθ(h)

α2 sin2(t)
≤ 2
(
∂t(h− h0)− c′

2
(h− h0)

)2

+ 2
(
∂th0 −

c′

2
h0

)2

+
Γθ(h− h0)

α2 sin2(t)
.

Then Lemma A.6 insures that |h− h0| ≤ Ct
n+1
2 , |h′ − h′0| ≤ Ct

n−1
2 and Γθ(h− h0) = Γθ(h) ≤ Ctn+1. Hence,

2
(
∂t(h− h0)− c′

2
(h− h0)

)2

+ 2
Γθ(h− h0)

α2 sin2(t)
≤ Ctn−1.

Now, using the same method as in the proof of Lemma A.6, one can check that h0(t) = At
n−1
2 + O(t

n+1
2 ) and

h′0 = At
n−3
2 +O(t

n−1
2 ). Thus, we have

∂th0 −
c′

2
h0 = O(t

n−1
2 )

that is (
∂th0 −

c′

2
h0

)2

≤ Ctn−1.

Finally, inequality (73) is satisfied, which concludes the proof. B

Remark A.8. It is interesting to see that with this method, one can check that the function v has a bounded
carré du champ if and only of (a, b) ∈ ΘFS .

We end this section with the following weaker estimate on higher derivatives of v.
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Lemma A.9. Assume that n > 4 and (a, b) ∈ ΘFS. Let f ∈ D(LS), f ≥ 0. Then, in the variables (t, θ) ∈
(0, π)× Sd−1 introduced in (66), ∫ π

0

∣∣∣∣∫
Sd−1

ΓS
2 (f)dVSd−1

∣∣∣∣ sinn−1(t)dt < +∞

Proof
C Let (ζk)k∈N ∈ C∞c (0, π) denote a standard cut-off function such that 0 ≤ ζk ≤ 1, ζk = 0 in (0, 1/k) ∪ (π −
1/k, π), ζk = 1 in (2/k, π − 2/k) and |ζ ′k| ≤ 2k, |ζ ′′k | ≤ 2k2 and fk = fζk, so that fk → f in D(LS). For
h ∈ C∞c (Rd \ {0}) and t ∈ (0, π), set γ2(h)(t) =

∫
Sd−1 Γ2

S(h)dVSd−1 . Since (a, b) ∈ ΘFS , γ2 is a nonnegative
quadratic form (see Proposition 3.4) and so the Cauchy-Schwarz inequality holds:

|γ2(fk)1/2 − γ2(fl)
1/2|2 ≤ γ2(fk − fl).

Thus, letting dµt = 1
Z sinn−1(t)dt,∫ π

0

|γ2(fk)1/2 − γ2(fl)
1/2|2dµt ≤

∫ π

0

γ2(fk − fl)dµt =

∫
Γ2
S(fk − fl)dµS =

∫
(LS(fk − fl))2dµS.

Hence, (γ2(fk)1/2) is a Cauchy sequence in L2(dµx) and so (γ2(fk)) converges to some function γ in L1(dµt).
In addition, for fixed t, there exists K = Kt such that for all k ≥ K and θ ∈ Sd−1, fk(t, θ) = f(t, θ), whence
γ2(fk)(t)→ γ2(f)(t) for all t ∈ (0, π). Hence, γ = γ2(f) and the lemma follows. B

A.3 List of constants and regions of parameters

We recall in this section the definition of the parameters and also some useful properties. Recall that d ∈ N is
the topological dimension of the considered spaces, and that we assume that d ≥ 3. Recall from the introduction
the definition of the parameter range

Θ = {(a, b) ∈ R2, a ≤ b < a+ 1, a < ac},

where ac = (d − 2)/2. This is the set of parameters (a, b) where the CKN inequality (1) holds for all test
functions v ∈ C∞c (Rd) which need not vanish near the origin (recall that the limit case b = a + 1 has been
removed for simplicity). We also defined the number α = 1 + a− pb

2 , that is

α =
(ac − a)(a+ 1− b)

ac − a+ b
.

Clearly α ≥ 0, for any (a, b) ∈ Θ, including the limiting case a = b = 0 for which α = 1. For any (a, b) ∈ Θ, the
exponent p is given by

p =
d

ac − a+ b
< 2∗ =

2d

d− 2

and

p =
2n

n− 2
,

that is

n = d+
d(b− a)

1 + a− b
=

d

1 + a− b
.

We always have n ≥ d, and we call n the intrinsic dimension of the considered model spaces. From a straight-
forward computation, we have

d− nα− pb = 0 (75)

The constant BDGZ = α2(2 − n) + d − 2 which appears throughout the paper takes the following form with
respect to a and b:

BDGZ = −2
(ac − a)2(1 + a− b)

ac + b− a
+ 2ac

30



Let us also recall the definition of the Felli-Schneider region: for a ≤ 0,

bFS(a) =
d(ac − a)

2
√

(ac − a)2 + d− 1
+ a− ac, and ΘFS = {(a, b) ∈ Θ, b ≥ bFS(a) if a ≤ 0}

Let us prove Lemma 1.9, which simplifies the expression of the Felli-Schneider region and shows its relation to
our region ΘDGZ = {(a, b) ∈ Θ, BDGZ ≥ 0}.
Proof of Lemma 1.9
C Since

BDGZ +
n− d
n− 1

= (n− 2)

(
−α2 +

d− 1

n− 1

)
,

we have {
(a, b) ∈ Θ, BDGZ +

n− d
n− 1

≥ 0

}
=

{
(a, b) ∈ Θ, α2 ≤ d− 1

n− 1

}
.

The fact that

ΘFS =

{
(a, b) ∈ Θ, α2 ≤ d− 1

n− 1

}
is more delicate and is proved in [DEL16, Sec. 3].

Finally, the identity ΘFS = {(a, b) ∈ Θ, α ∈ [0, 1]} is a little trickier. Since (a, b) ∈ Θ, then

0 < α =
(ac − a)(a+ 1− b)

ac − a+ b
≤ 1− a

ac
. (76)

In the case where a ≥ 0 it follows that 0 < α ≤ 1. Assume now that a < 0. By definition of α,

b =
(ac − a)(a+ 1− α)

α+ ac − a
.

Then the inequality b ≥ BFS is equivalent to

1 + ac
α+ ac − a

≥ d

2
√

(ac − a)2 + d− 1
.

Since 1 + ac = d/2, the previous condition becomes

a ≥ α2 + α(d− 2)− d+ 1

2α
=

(α− 1 + d)(α− 1)

2α
.

If α > 1, this inequality implies a > 0, contradicting our assumption. We just proved that

ΘFS ⊂ {(a, b) ∈ Θ, α ∈ (0, 1]} .

Since α = 0 for (a, b) = (0, 1), α = 1 for (a, b) = (0, 0), since Θ is connected and since α depends continuously
on (a, b), we deduce that ΘFS = {(a, b) ∈ Θ, α ∈ (0, 1]}. At last, if α = 1, then, from the previous displayed
inequality, a ≥ 0 and from (76), a ≤ 0. That is, a = b = 0. B

Remark A.10. The normalizing constant Z defined in Theorem 1.7 is finite. Indeed, using (75) and the change
of variable |x| = et, we find

Z =

∫
dµS =

∫
Rd\{0}

(
2

1 + |x|2α

)n
|x|−bpdx =

∫
Rd\{0}

(
2

|x|−α + |x|α

)n
|x|−ddx = |Sd−1|

∫
R

cosh(αt)−ndt <∞.
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