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Sobolev’s inequality under a curvature-dimension condition

Louis Dupaigne, Ivan Gentil, Simon Zugmeyer

November 17, 2020

Abstract

In this note we present a new proof of Sobolev’s inequality under a uniform lower bound
of the Ricci curvature. This result was initially obtained in 1983 by Ilias. Our goal is to
present a very short proof, to give a review of the famous inequality and to explain how our
method, relying on a gradient-flow interpretation, is simple and robust. In particular, we
elucidate computations used in numerous previous works, starting with Bidaut-Véron and
Véron’s 1991 classical work.

1 Introduction

Given d ∈ N, d ≥ 2, and p ∈ [1, d), let p∗ ∈ [1,+∞) denote Sobolev’s exponent, that is

1

p∗
=

1

p
−

1

d
.

According to Sobolev’s inequality, there exists a constant A > 0 such that for every ϕ ∈ C∞
c (Rd),

‖ϕ‖Lp∗(Rd) ≤ A‖∇ϕ‖Lp(Rd),

see [Sob38], as well as [Gag58, Nir59] for the case p = 1, [Rod66, Aub76b, Tal76] for the value of
the sharp constant A and the expression of the extremals, [Lie83] for a more direct proof using
rearrangements and [CGS89] for the classification of all positive solutions to the associated Euler-
Lagrange equation. In the special case p = 2, using the stereographic projection (see e.g. [LP87]),
the sharp Sobolev inequality in Rd is equivalent to

1

q − 2

(

||v||2Lq(Sd) − ||v||2L2(Sd)

)

≤
1

d
||∇v||2L2(Sd),

where q = 2∗, v ∈ C∞(Sd), Sd is the standard sphere equipped with its normalized∗ measure.
The inequality is again sharp and the extremals are known, see [Aub76a], as well as Theorem 5.1
p. 121 in [Heb00]. In fact, the inequality is true for every q ∈ [1, 2∗], q 6= 2, see [BV91, Bec93], as
well as [Dem05], Section 3.11 for the case q ∈ [1, 2). Also note that letting q → 2, one recovers
the sharp log-Sobolev inequality. In [Ili83], Sobolev’s inequality has been generalized as follows to
any compact Riemannian manifold (M, g) with positive Ricci curvature.

∗in other words, the normalized measure ν is proportional to the Riemannian volume and ν(Sd) = 1
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Theorem A ([Ili83]) Let (M, g) be a smooth connected, compact, d-dimensional Riemannian
manifold, d ≥ 3. Assume that the Ricci curvature of M is uniformly bounded from below by a
constant ρ > 0. Let q = 2∗ = 2d

d−2
. Then, for all v ∈ C∞(M),

1

q − 2

(

||v||2Lq(M) − ||v||2L2(M)

)

≤
1

d

d− 1

ρ
||∇v||2L2(M), (1)

where M is equipped with its normalized measure.

Remark 1.1 It is not necessary to assume thatM is compact, as follows from Myer’s theorem (see
e.g. [Heb00] p. 100 for a geometric proof, or combine Theorems 3.2.7, 6.6.1 and 6.8.1 in [BGL14]
for an analytic proof).

Many proofs of Theorem A are available. The approach in [Ili83] relies on symmetrization
arguments and the Lévy-Gromov isoperimetric inequality [Gro07], the rigorous proof of which
seems involved, see e.g. [Vil19]. The proof of [BV91] clarifies computations of [GS81], but does
not elucidate them. The latter paper presumably took inspiration from Obata’s work [Oba62]
(also described in [BGM71], pp. 179–185). In [BL96] (see Theorem 6.10 p. 107 in [Bak94] for
the actual proof, as well as Chapter 6 in [BGL14] for a more recent and thorough account), the
inequality is generalized to any Markov generator satisfying the curvature-dimension condition
CD(ρ, n), ρ > 0, n > 2. Among other tools, their proof makes use of the Bakry-Émery method
(or Γ-calculus) and a rather unintuitive change of unknown which was already present in the afore-
mentioned litterature. The proof of Fontenas [Fon97] provides a sharper version of the inequality
in terms of the generator’s best Poincaré constant in the case q ∈ [2, 2∗). His computations, in-
spired by [Rot86], use again the Γ-formalism and recast the proof in a yet simpler form, but still
fail short of making it transparent. In [DD02], Sobolev’s inequality in Rd appears as a limiting
case of a family of optimal Gagliardo-Nirenberg inequalities. This paper puts forward two impor-
tant tools for our purposes: the classification of solutions to the associated Euler-Lagrange, based
here on the symmetry result of [GNN81] and, more importantly, the connection between Sobolev’s
inequality and the convergence to equilibrium of solutions to the fast-diffusion equation, or rather
to a Fokker-Planck-type equation obtained by rescaling. The fast-diffusion and porous medium
equations had just been reformulated in [Ott01] as a gradient flow in Wasserstein space, leading the
way to the reinterpretation of Sobolev’s inequality (and more generally the Gagliardo-Nirenberg
inequalities studied by del Pino and Dolbeault) as a simple convexity inequality along a flow, in
other words as an entropy-entropy production inequality. This latter point of view was taken
in [CT00], [CJM+01] and [CV03] to establish Sobolev-type inequalities in Rd and more recently
simplified and generalized to convex euclidean domains in [Zug20]. Soon after, [CNV04] gave a
short proof using optimal transport, but valid in the euclidean setting only. The extension of the
Bakry-Émery method to nonlinear flows was further cleverly extended in the Riemannian setting
in [Dem08], although without Otto’s geometric insight, but with a twist: the use of two distinct
entropy functionals, the evolutions of which can be related through a simple differential inequal-
ity. Other recent generalizations include the cases of RCD∗(ρ, n)-spaces [Pro15] and Riemannian
manifolds with boundary [IS18]. Going back to the euclidean setting, but with weights, [DEL16]
extended the method to prove the sharp Caffarelli-Kohn-Nirenberg inequalities and the associated
Liouville-type results.

We probably forgot to cite important contributions and judging by the extent of the bibliogra-
phy, one may wonder why we intend to give here yet another proof of Sobolev’s inequality. From
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our point of view, the proof presented below, inspired by [DEL16], has the advantage of being
short, transparent and hopefully robust. In particular, with no extra work, our proof yields the
following generalization† of Theorem A, due to [BL96].

Theorem B ([BL96]) Let α ∈ (0, 1). Assume that (M, g) is a C2,α, compact, connected, d-
dimensional Riemannian manifold, d ≥ 1. Let W ∈ C2(M ;R) and L = ∆ − ∇W · ∇ satisfy
the CD(ρ, n) condition for some ρ > 0 and n ∈ [d,+∞), n > 2. Let q = 2n

n−2
. Then, for all

v ∈ C∞(M),
1

q − 2

(

||v||2Lq(M) − ||v||2L2(M)

)

≤
1

n

n− 1

ρ
||∇v||2L2(M),

where M is equipped with the measure dν = e−W

Z
dVolg, with Z ∈ R∗

+ chosen so that ν(M) = 1.

Remark 1.2 Again, it is not necessary to assume that M is compact, as follows from the gener-
alized Myer’s theorem proved in [BL96].

As another by-product of our proof, we obtain the following rigidity result, improving previous
results given in [GS81, BV91, LV95, LV98, BL96, Fon97, DEKL14, DEL14], which, as stated,
seems new.

Theorem 1.3 Assume that (M, g) is a C2, compact, connected, d-dimensional Riemannian man-
ifold, d ≥ 1. Let W ∈ C2(M ;R) and L = ∆ −∇W · ∇ satisfy the CD(ρ, n) condition for some
ρ > 0 and n ∈ [d,+∞), n > 2. Let q = 2n

n−2
. Assume that v ∈ C2(M), v > 0, is a nonconstant

solution to

− ALv + v = vq−1f(v) in M, (2)

where A > 0 and f ∈ C1,α(R∗
+;R

∗
+), α ∈ (0, 1) and f is nonincreasing. Let A∗ = 4(n−1)

n(n−2)ρ
. Then,

A ≤ A∗. In addition, if A = A∗, then f is constant on [0, ‖v‖∞].

Remark 1.4 If equality holds in Sobolev’s inequality (1) for some nonconstant function v, then
v solves the associated Euler-Lagrange (equation (2) with n = d, A = A∗, L = ∆ and f constant).

As follows from the proof of Theorem 1.3, the function Φ = v−
4

d−2 solves the equation ∇2Φ = ∆Φ
d
g

in M . This in turn implies that (M, g) is conformally diffeomorphic to the round sphere, see
e.g. Lemme 6.4.3 in [Heb97]. If we assume in addition that (M, g) is Einstein, letting dg denote
its Riemannian distance, we have in fact that (M, g) is isometric to the round sphere and that

v(x) = (β − cos(dg(x0, x))
− d−2

2 for some β > 1 and x0 ∈M , see e.g. Theorem 5.1 in [Heb00] and
its proof.

2 Proofs of Theorem A, Theorem B and Theorem 1.3

2.1 Proof of Theorem A

Fix q ∈ [1, 2∗). By the (non-sharp but tight) Sobolev inequality, there holds

‖v‖2q ≤ A‖∇v‖22 + ‖v‖22, (3)

†For convenience of the reader, in Section 2, we recall the definition of the CD(ρ, n) condition used in Theorem B.
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for some A ∈ R∗
+ and every v ∈ H1(M), apply e.g. [Heb00], Corollary 2.1 and [BGL14], Proposition

6.2.2. Given A ∈ R∗
+, consider the minimization problem

I(A) = inf
{

A||∇v||22 + ||v||22 : v ∈ H1(M) , ||v||q = 1
}

.

Then, (3) holds if I(A) = 1. Thanks to the Banach-Alaoglu-Bourbaki and Rellich-Kondrakov
compactness theorems (see e.g. [Bre11] Theorem 3.16 and [Heb00] Theorem 2.9), there exists a
minimizer v ∈ H1(M) s.t. ||v||q = 1. By Stampacchia’s theorem [Sta66], |v| is also a minimizer,
so we may assume that v ≥ 0 a.e. in M . In addition, a constant multiple of v (abusively denoted
the same below) is a weak solution to

− A∆v + v = vq−1 in M. (4)

By standard elliptic regularity (see e.g. [Heb97], proof of Theorem 6.2.1, p. 248) v ∈ C3(M) and
by the strong maximum principle (see e.g. [Heb97], Theorem 5.7.2), v > 0 in M .

Define the pressure function Φ = v−
q−2

2 . Then, Φ solves

Φ∆Φ −
d′

2
|∇Φ|2 = −λ(Φ2 − 1) in M , (5)

where d′ = 2q
q−2

and λ = q−2
2A

= 2
(d′−2)A

. Multiply equation (5) by ∆Φ1−d′ and integrate. For the
right-hand-side we find,

∫

λ(Φ2 − 1)∆Φ1−d′ = λ

∫

Φ2∆Φ1−d′ = −λ

∫

∇Φ2 · ∇Φ1−d′

= 2λ(d′ − 1)

∫

|∇Φ|2Φ1−d′ = c

∫

Γ(Φ)Φ1−d′

where we expressed the carré du champ operator Γ(Φ) = |∇Φ|2 and where c = 2λ(d′−1) = 4 d′−1
(d′−2)A

.
For the left-hand side, we obtain

∫
(

Φ∆Φ−
d′

2
|∇Φ|2

)

∆Φ1−d′ =

∫

∆

(

Φ∆Φ−
d′

2
|∇Φ|2

)

Φ1−d′

=

∫
[

(∆Φ)2 + Φ∆2Φ + 2∇Φ · ∇∆Φ−
d′

2
∆|∇Φ|2

]

Φ1−d′

= −

∫

(

d′Γ2(Φ)− (∆Φ)2
)

Φ1−d′ ,

where we expressed the iterated carré du champ Γ2(Φ) =
1
2
∆|∇Φ|2−∇Φ ·∇∆Φ and used the fact

that
∫

Φ2−d′∆2Φ = (d′ − 2)

∫

(∇Φ · ∇∆Φ)Φ1−d′ .

Collecting the left and right-hand sides and dividing by d′, we find
∫

(

Γ2(Φ)−
1

d′
(∆Φ)2 −

c

d′
Γ(Φ)

)

Φ1−d′ = 0. (6)

The celebrated Bochner-Lichnerowicz formula states‡ that

Γ2(Φ) = ‖∇2Φ‖2H.S + Ricg(∇Φ,∇Φ),

‡and motivates the definition of Γ2

4



where ∇2Φ denotes the Hessian of Φ, ‖∇2Φ‖2H.S the square of its Hilbert-Schmidt norm (the sum
of the squares of its components) and Ricg the Ricci tensor of the Riemannian manifold (M, g).
Using the Cauchy-Schwarz inequality on the one hand and the assumption Ric ≥ ρg on the other
hand, we find

Γ2(Φ) ≥
1

d
(∆Φ)2 + ρΓ(Φ)

and so
(

1

d
−

1

d′

)
∫

(∆Φ)2Φ1−d′ +
(

ρ−
c

d′

)

∫

Γ(Φ)Φ1−d′ ≤ 0.

Since q < 2∗, we have d < d′ and so, if ρ ≥ c
d′

i.e.

A ≥
4(d′ − 1)

d′(d′ − 2)ρ
,

we deduce that ∆Φ = 0 in M . Integrating against Φ, Φ is constant. Hence v = 1, I(A) = 1,

and (3) holds for A = 4(d′−1)
d′(d′−2)ρ

. Let q ր 2∗. Then d′ ց d and (1) follows.

2.2 Proof of Theorem B

2.2.1 The CD(ρ, n) condition.

Let us quickly explain the definitions and notations used in the theorem. Clearly, a second order
differential operator of the form§L = ∆−∇W · ∇ fails to satisfy the chain rule: if Φ ∈ C2(M) is
not constant, L(Φ2) 6= 2ΦLΦ. The defect is measured by the carré du champ operator defined for
Φ ∈ C2(M) by

Γ(Φ) =
1

2
L(Φ2)− ΦLΦ.

By a simple and direct computation, Γ(Φ) = |∇Φ|2. Abusing notation slightly, we let Γ(Φ,Ψ) =
∇Φ·∇Ψ denote the polar form of Γ. Now, repeat the above consideration by replacing the product
of real numbers, seen as a bilinear form, by the carré du champ operator Γ: again L fails to satisfy
the chain rule and the defect is measured by the iterated carré du champ operator, defined for
Φ ∈ C3(M) by

Γ2(Φ) =
1

2
L(Γ(Φ))− Γ(Φ, LΦ). (7)

Thanks to the Bochner-Lichnerowicz formula, the Γ2 operator can be computed as follows:

Γ2(Φ) = ‖∇2Φ‖2H.S. + (Ricg +∇2W )(∇Φ,∇Φ).

Given, ρ ∈ R and n ∈ R \ (0, d), the operator L is then said to satisfy the CD(ρ, n) condition if
for every Φ ∈ C3(M),

Γ2(Φ) ≥ ρΓ(Φ) +
1

n
(LΦ)2. (8)

Note that when W = 0, LΦ = ∆Φ. By the Cauchy-Schwarz inequality, ‖∇2Φ‖2H.S. ≥
1
d
(∆Φ)2¶ so

that, in this case, the CD(ρ, d) condition is equivalent to the lower bound Ricg ≥ ρg.

§Here ∆ is the Laplace-Beltrami operator on (M, g), the dot product designates the Riemannian metric g and
| · | the associated norm.

¶with equality if and only if ∇2Φ = ∆Φ

d
g.
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2.2.2 Proof of Theorem B

Let us review the proof of Theorem A. We start similarly with the tight but non-sharp Sobolev’s
inequality (3), the proof of which remains unchanged (e.g. adapt [Heb00] Theorem 4.1). Since M
is compact and W continuous, e−W is bounded above and below by positive constants. So, the
Riemannian volume and the measure dν = e−W

Z
dVolg yield the same Sobolev space H1(M, dν) =

H1(M, dVolg). In particular, by the same proof, the quantity I(A) has a nonnegative minimizer
u, which this time solves

−ALv + v = vq−1 in M,

leading to

ΦLΦ−
n′

2
|∇Φ|2 = −λ(Φ2 − 1) in M,

where the definition of Φ is unchanged, n′ = 2q
q−2

and λ = q−2
2A

= 2
(n′−2)A

. Multiply by L(Φ1−n′

)

and integrate. Using the formulas
∫

M
(Lu)v dν =

∫

M
uLv dν = −

∫

M
Γ(u, v) dν, the exact same

computations lead to

∫
(

Γ2(Φ)−
1

n′
(LΦ)2 −

c

n′
Γ(Φ)

)

Φ1−n′

dν = 0,

where c = 2λ(n′ − 1) = 4 n′−1
(n′−2)A

. Now apply the CD(ρ, n) condition to deduce that (3) holds for

A = 4(n′−1)
n′(n′−2)ρ

. Let q ր 2n
n−2

. Then, n′ ց n and the theorem follows.

2.3 Proof of Theorem 1.3

Repeating once again the above computation we arrive at

∫
(

Γ2(Φ)− ρΓ(Φ)−
1

n
(LΦ)2

)

dν +
(

ρ−
c

n

)

∫

Γ(Φ)Φ1−ndν + λ

∫

f ′(v)Φ2∇v · ∇Φ1−ndν = 0,

where c = 2λ(n − 1) = 4 n−1
(n−2)A

and λ = q−2
2A

= 2
(n−2)A

. By the CD(ρ, n) condition, the first
integral is nonnegative. Since f is nonincreasing, the last integral is also nonnegative. Finally, the
coefficient in front of the second integral is strictly positive if A > A∗, so that v must be constant
in that case. If A = A∗, then all the first and third integrals vanish. In particular, f is constant
on [0, ‖v‖∞].

3 Sobolev’s inequality is a convexity inequality for Renyi

entropies in Wasserstein space

In this section, we explain the genesis of our short proof of Theorems A and 1.3. Our strategy
consists in using a gradient flow defined on the set of probability measures over M , equipped with
the Wasserstein distance. If one uses the appropriate functionals, the proof is rather simple. In
the next paragraph, we explain first how a gradient flow in the usual Euclidean space Rm can be
used to derive sharp convexity inequalities. The extension of the method to the Wasserstein space
is next presented in Section 3.2. The computations are not new, but this presentation and this
point of view seem to be new and useful.

6



Many of our considerations will be formal: although this can be done, we do not try to make
all arguments rigorous. Instead, we ask the reader to keep in mind that we only want to give a
guideline to the rigorous proofs presented previously.

3.1 A review of gradient flows in Euclidean space

Let m ≥ 1 and F : Rm 7→ R any C2 function, that we call entropy in what follows. Assume that
F is strictly convex and coercive i.e. lim|x|→+∞ F (x) = +∞. Then, F has unique critical point x∗.
In addition,

F (x∗) = inf
x∈Rm

F (x).

In order to locate the point of minimum x∗, one can start from an arbitrary point x ∈ Rm and
follow the gradient flow associated to F . More precisely, let t 7→ St(x) denote the solution of the
ODE

{

d

dt
St(x) = −∇F (St(x))

S0(x) = x.
(9)

Thanks to the Cauchy-Lipschitz theorem, t 7→ St(x) is well-defined on a maximal interval I con-
taining t = 0. In fact, the solution is bounded, hence global, since F is coercive and nondecreasing
along the flow:

d

dt
F (St(x)) = −|∇F (St(x))|

2 ≤ 0. (10)

In addition, given any x ∈ Rm,
lim
t→∞

St(x) = x∗. (11)

Indeed, since F is bounded below and (10) holds, there exists a sequence tn → +∞ such that
|∇F (Stn(x))| → 0. Since (St(x)) is bounded, up to extraction, (Stn(x)) also converges and by
continuity of |∇F |, its limit must be x∗. Using (10) once more, F (St(x)) ≤ F (Stn(x)) for t ≥ tn
and so F (St(x)) decreases to F (x

∗). (11) follows.
If we further assume that F is strongly convex, i.e. ∇2F ≥ ρ Id for some ρ > 0, then the rate

of convergence of the entropy along its gradient flow can be quantified (as we shall prove shortly):

F (St(x))− F (x∗) ≤ e−2ρt (F (x)− F (x∗)) .

Note that equality holds when t = 0 and so we can differentiate the inequality at t = 0. This
yields the following equivalent convexity inequality

F (x)− F (x∗) ≤
1

2ρ
|∇F (x)|2.

Note that the inequality is sharp in the sense that it is an equality for F (x) = ρ|x|2/2. In fact,
one can be a bit more general and consider the following convexity inequality

G(x∗) ≤
1

2ρ
|∇F (x)|2 +G(x), (12)

which holds true whenever G ∈ C2(Rm) and F satisfy the following convex condition: there exits
ρ > 0 such that uniformly in Rm,

∇F · ∇2F ∇F > −ρ∇F · ∇G. (13)

We provide three proofs of this fact, ending with the most robust.
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1. A direct proof based on the gradient flow. Differentiating (9) once more, gives, for any
x ∈ Rm,

d2

dt2
F (St(x)) = 2∇F (St(x)) · ∇

2F (St(x))∇F (St(x)) >

− 2ρ∇F (St(x)) · ∇G(St(x)) = 2ρ
d

dt
G(St(x)).

Integrating over [0,∞] the previous inequality becomes,
∫ ∞

0

d2

dt2
F (St(x))dt > 2ρ

∫ ∞

0

d

dt
G(St(x))dt.

Since
lim
t→∞

|∇F (St(x))| = 0, (14)

we have

−
d

dt
F (St(x))

∣

∣

t=0
> 2ρ(G(x∗)−G(x)).

Since − d
dt
F (St(x))|t=0 = |∇F (x)|2, we proved the inequality (12), under the condition (13).

As we can see, inequality (12) is just a clever convex inequality under the convex condition (13).
As we shall see, when generalizing this proof to an infinite-dimensional setting, we are faced
with two problems: proving rigorously the existence of the gradient flow (St)t>0 and proving
the two limits (11) and (14).

2. A proof based on a minimization problem and the gradient flow. To prove (12), we
fix a constant A > 0, compute the quantity

I(A) := inf
x∈Rm

[

A|∇F (x)|2 +G(x)
]

and show that for A > 1
2ρ
, G(x∗) ≤ I(A). Letting A ց 1

2ρ
, (12) will then follow. If G is

coercive, which we assume in this approach, then there exits x̄ ∈ Rm such that

inf
x∈Rm

[

A|∇F (x)|2 +G(x)
]

= A|∇F (x̄)|2 +G(x̄). (15)

We now consider (St(x̄))t>0, the gradient flow starting from x̄. Then, since x̄ is a minimizer,
we have

d

dt

[

A|∇F (St(x̄))|
2 +G(St(x̄))

]

∣

∣

∣

t=0
> 0.

In addition,

d

dt

[

A|∇F (St(x̄))|
2 +G(St(x̄))

]

∣

∣

∣

t=0
= −2A∇F (x̄) · ∇2F (x̄)∇F (x̄)−∇G(x̄) · ∇F (x̄) =

[

−
1

ρ
∇F (x̄) · ∇2F (x̄)∇F (x̄)−∇G(x̄) · ∇F (x̄)

]

−

(

2A−
1

ρ

)

∇F (x̄) · ∇2F (x̄)∇F (x̄). (16)

Since F is strictly convex and (13) holds, if A > 1
2ρ
, we see that if x̄ 6= x∗, ∇F (x) 6= 0 and so

d

dt

[

A |∇F (St(x̄))|
2 +G(St(x̄))

]

∣

∣

∣

t=0
< 0,

8



which is impossible since x̄ is a minimizer. Hence, x̄ = x∗ and the following inequality holds,

G(x∗) ≤ A|∇F (x)|2 +G(x),

for any x ∈ Rd and A > 1
2ρ
. This proves the desired inequality (12), by letting A → 1

2ρ
. Note

that in this approach, we no longer need to prove the asymptotic behavior of the gradient flow
(St)t>0 but we still need to know its existence.

3. A proof based on the minimization problem only. As in the previous proof, let x̄ given
by equation (15), with A > 1

2ρ
. Then, x̄ solves the Euler-Lagrange equation

2A∇2F (x̄)∇F (x̄) +∇G(x̄) = 0.

Multiply the previous equality by ∇F (x̄), to conclude again, as in (16), that x̄ = x∗. Again,
this implies inequality (12).

This last proof is quite interesting since we completely avoid using the gradient flow. Moreover,
methods based on optimization problems are often robust.

3.2 Gradient flows in the space of probability measures

In this section, we reproduce the three methods of Section 3.1, this time in the space of probability
measures over M . Before doing so, we need to introduced Otto’s calculus, the main point of our
method. For simplicity, all computations are given on a d-dimensional smooth, connected and
compact Riemannian manifold (M, g). But they can be easily generalized to the setting of weighted
Riemannian manifold under the CD(ρ, n) condition (8), as in Theorem 1.3 or Theorem B.

3.2.1 Otto’s calculus

Otto’s calculus, so called by C. Villani in his book [Vil09], is a very efficient tool to compute
the second derivative of a functional along its probability gradient flow. This calculus has been
developed in the seminal papers [JKO98, Ott01, OV00]. It allows to view the space of probability
measures on a manifold, at least formally, as an infinite dimensional Riemannian manifold. Our
presentation is based on [GLR20], to which we refer for more details (see also [Gen20] for an
informal presentation in French). The calculus can be viewed as a heuristic guideline but all the
results can be turned into rigorous statements, see the monograph [Gig12].

Let P2(M) denote the space of probability measures onM admitting a second moment‖. Equip
P2(M) with the Wasserstein distance, defined as follows: for every µ, ν ∈ P2(M),

W2(µ, ν) = inf

√

∫∫

d(x, y)2dπ(x, y),

where the infimum is taken over all transportation plans π ∈ P(M ×M) with marginals µ and ν
and where d is the Riemannian distance of M .

‖Since we assumed for simplicity that M is compact, all probability measures admit a second moment and so
P2(M) = P(M) in this case.
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Following the presentation of [AGS08, Chap. 1], a path [0, 1] ∋ t 7→ νt ∈ P2(M) is absolutely
continuous with respect to the Wasserstein distance if

|ν̇t| := lim sup
s→t

W2(νt, νs)

|t− s|
∈ L1([0, 1]).

It turns out that given any absolutely continuous path (νt)t∈[0,1], there exists a unique vector field
(t, x) 7→ Vt(x) in M , such that

∫

|Vt|
2dνt <∞ and |ν̇t|

2 =
∫

|Vt|
2dνt a.e. in [0, 1], see [AGS08]. In

addition, the vector field Vt is the limit in L2(νt) of gradients of compactly supported functions in
M and the continuity equation holds in the sense of distributions:

∂tνt +∇ · (νtVt) = 0 in D′(M × (0, 1)). (17)

Conversely, given any such vector field Vt, there exists an absolutely continuous path (νt)t∈[0,1]
such that the continuity equation (17) holds. In other words, for almost every t ∈ [0, 1], we may
see Vt as a tangent vector along the path (νt)t∈[0,1]. So, we denote

ν̇t := Vt (18)

and call ν̇t the velocity of the path (νt)t∈[0,1] at time t. The tangent space at a point µ ∈ P2(M)
can then be defined by

TµP2(M) = {∇ϕ, ϕ :M 7→ R, ϕ ∈ C∞(M)}
L2(µ)

and a natural Riemannian metric can be defined via the scalar product in L2(µ) by

〈∇ϕ,∇ψ〉µ =

∫

∇ϕ · ∇ψ dµ =

∫

Γ(ϕ, ψ)dµ, for ∇ϕ,∇ψ ∈ TµP2(M).

We shall write |∇ϕ|2µ =
∫

Γ(ϕ)dµ the corresponding Riemannian length. Such a metric is often
referred to as the Otto metric. In addition, thanks to the Benamou-Brenier formulation, the
Wasserstein distance is the Riemannian distance associated to the Otto metric.

3.2.2 Differentiating twice Renyi’s entropy using Otto’s calculus

To lighten notations and formulas, we identify henceforth measures and densities. Our presen-
tation is heuristic and all the measures considered in this section are supposed to be smooth
and absolutely continuous with respect to the Riemannian measure on M . Unless specified, all
integrals are viewed with respect to the normalized Riemannian measure.

Now, we consider our main flow (µt)t>0, started from a probability measure µ0 = µ and solving
the following nonlinear diffusion equation

∂tµt =
1

α
∆µα

t = ∇ ·

(

µt

1

α− 1
∇µα−1

t

)

, (19)

where α > 0, α 6= 1. Then, according to the continuity equation (17), the velocity of this flow is
given by

µ̇t = −
1

α − 1
∇µα−1

t ∈ Tµt
P2(M) (20)
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Consider now the Rényi entropy (of order α > 0 with α 6= 1),

Rα(µ) =
1

α(α− 1)

∫

µα, µ ∈ P2(M), (21)

which is the main functional used in this article. Then the gradient of Rα is given by

gradµRα :=
1

α− 1
∇µα−1 ∈ TµP2(M), (22)

see for instance [GLR20, Sec. 3.2]. So, if (µt)t>0 is a solution of (19), then

µ̇t = −gradµt
Rα.

In other words, (19) is the gradient flow of the Rényi entropy with respect to the Otto metric.
This was proved rigorously in [Ott01]. Furthermore, the Riemannian structure given to P2(M)
allows us to define the covariant derivatives and the Hessian of a functional. A remarkable fact
is that the Hessian of Rényi’s entropy in the sense of Otto’s calculus has an explicit formulation:
for any µ ∈ P2(M) and ∇ϕ ∈ TµP2(M),

HessµRα(∇ϕ,∇ϕ) =
1

α

∫

[

(α− 1)(∆ϕ)2 + Γ2(ϕ)
]

µα, (23)

where the operator Γ2 has been defined in (7) (see [Ott01] or [GLR20, Sec. 3.3]).

Let us now turn to our three methods to prove inequality (1), under a lower bound of the Ricci
curvature.

3.2.3 Method based on a convex inequality for the Rényi entropy

We mimic the first proof proposed in Section 3.1 by using the Rényi entropy and the fast diffusion
flow. Replace the entropy F of Section 3.1 by Rα, with α = 1− 1

d
and G by −Rβ , with β = 1− 2

d
.

Then, letting Φ = 1
α−1

µα−1, it follows from (22), (23) and the CD(ρ, d) condition that

HessµRα(gradµRα, gradµRα) =
1

α

∫

[

(α− 1)(∆Φ)2 + Γ2(Φ)
]

µα ≥
ρ

α

∫

Γ(Φ)µα

while, since β − 3 = 2α− 4,

−〈gradµRα, gradµ(−Rβ)〉µ =
1

(α− 1)(β − 1)

∫

∇µα−1∇µβ−1dµ =

∫

µα+β−3|∇µ|2 =

∫

Γ(Φ)µα

and so we have the exact analogue of (13), that is.

HessµRα(gradµRα, gradµRα) ≥ −
ρ

α
〈gradµRα, gradµ(−Rβ)〉µ. (24)

Since µ∗ = 1 is the unique critical point of Rα, using a rather delicate analysis that we don’t
develop here, one can prove that the following limits







lim
t→∞

µt = 1,

lim
t→∞

d

dt
Rα(µt) = 0

(25)
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hold. Hence, by the very same proof of Section 3.1, we arrive at the exact analogue of (12), that
is:

−Rβ(µ
∗) ≤

α

2ρ
|gradµRα|

2
µ −Rβ(µ).

By using the very definitions of Rα, Rβ , α, β and Φ we obtain

1 ≤
4(d− 1)

ρd(d− 2)

∫

Γ(µ
d−2

2d ) +

∫

µ
d−2

d ,

for any probability measure µ. Letting |f | = µ
d−2

2d in the previous inequality, we obtain

1 ≤
4(d− 1)

ρd(d− 2)

∫

Γ(f) +

∫

f 2,

under the normalization ‖f‖2∗ = 1 (so that µ is a probability measure). This is precisely Sobolev’s
inequality (1). This proof was first proposed by J. Demange in [Dem08]. This method is important
since it shows that Sobolev’s inequality under a lower bound on the Ricci tensor is just a convex
inequality applied to a functional (the Rényi entropy) along its gradient flow (the fast diffusion
equation). The drawback of this method is that it is not so easy to prove the existence of a smooth
global solution of the nonlinear diffusion equation (19) and the two limits (25).

3.2.4 Method based a minimization problem associated with the fast diffusion equa-
tion

Now, let us mimic the second proof of Section 3.1. Given A > 0, we consider the minimization
problem

I(A) := inf
µ∈P2(M)

[

A|∇Rα(µ)|
2 −Rβ(µ)

]

(26)

And we prove that for any A > α
2ρ
, −Rβ(µ

∗) ≤ I(A), where µ∗ = 1. Then, Sobolev’s inequality
follows as discussed in the previous section. The first delicate point consists in proving that the
infimum I(A) is attained by some measure µ, which we admit here. This being said, once we have
a well-defined global smooth solution of the gradient flow (19), and once we’ve observed the strict
convexity of Rα, which follows from (23) and the CD(ρ, d) condition, then all computations done
in Section 3.1 remain unchanged, leading to µ = µ∗ = 1 and the desired inequality is proved. The
main advantage of this method, compared to the previous one, is that it is no longer necessary
to prove the two delicate limits of the fast diffusion equation (25). However, one needs to prove
the existence of the minimizer µ as well as the existence of a smooth solution of the fast diffusion
equation (19). The method proposed in the proof of Theorem A avoids both problems by working
in a subcritical setting and by using the limit case, that is, the elliptic equation.

3.2.5 Method based only on the minimization problem

Indeed, mimic the third proof of Section 3.1. We consider again the minimization problem (26).
Assume that there exists a probability measure µ minimizing I(A). Then, µ satisfies the corre-
sponding Euler-Lagrange equation, given by

TµP2(M) ∋ 2AHessµRα(gradµRα, ·)− gradµRβ = 0, (27)

12



thanks to Otto’s calculus. Apply the equality to the test function gradµRα, to get

2AHessµRα(gradµRα, gradµRα)− 〈gradµRβ , gradµRα〉µ = 0,

Using again the strict convexity of Rα and (24), we conclude that µ = 1.

The proof proposed in Section 2.1 is inspired from this one. The only difference is that we
work here on the space of probability measures, whereas in Section 2.1, to prove the existence
of a minimizer, we work on the space of functions v such that ||v||q = 1, where q ∈ [1, 2∗) is
subcritical. The elliptic equation (4) is, up to a change of functions, the equation (27) whereas
when we multiply by ∆Φ1−d′ and integrate in the proof of Section 2.1 is exactly applying (27) to
gradµRα.
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[CJM+01] J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, and A. Unterreiter. Entropy
dissipation methods for degenerate parabolic problems and generalized Sobolev inequal-
ities. Monatsh. Math., 133(1):1–82, 2001.

[CNV04] D. Cordero-Erausquin, B. Nazaret, and C. Villani. A mass-transportation approach to
sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math., 182(2):307–332, 2004.

[CT00] J. A. Carrillo and G. Toscani. Asymptotic L1-decay of solutions of the porous medium
equation to self-similarity. Indiana Univ. Math. J., 49(1):113–142, 2000.

[CV03] J. A. Carrillo and J. L. Vázquez. Fine asymptotics for fast diffusion equations. Commun.
Partial Differ. Equations, 28(5-6):1023–1056, 2003.

[DD02] M. Del Pino and J. Dolbeault. Best constants for Gagliardo-Nirenberg inequalities and
applications to nonlinear diffusions. J. Math. Pures Appl. (9), 81(9):847–875, 2002.

[DEKL14] J. Dolbeault, M. J. Esteban, M. Kowalczyk, and M. Loss. Sharp interpolation inequal-
ities on the sphere: new methods and consequences. In Partial differential equations.
Theory, control and approximation., pages 225–242. Springer, 2014.

[DEL14] J. Dolbeault, M. J. Esteban, and M. Loss. Nonlinear flows and rigidity results on
compact manifolds. J. Funct. Anal., 267(5):1338–1363, 2014.

[DEL16] J. Dolbeault, M. J. Esteban, and M. Loss. Rigidity versus symmetry breaking via
nonlinear flows on cylinders and Euclidean spaces. Invent. Math., 206(2):397–440, 2016.
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