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network for phenotype prediction based 
on gene expression
Blaise Hanczar*† , Farida Zehraoui†, Tina Issa and Mathieu Arles

Background
Precision medicine consists of using genetic characteristics of patients in order to guide 
and improve clinical decision making such as diagnosis, prognosis, choosing the most 
appropriate treatment, etc. It has the potential to change medical practices profoundly. 
“Omics” technologies, such as genomics, transcriptomics (sequencing, microarrays) 
and proteomics (protein chips, tissue arrays), have significantly altered the scale of data 
and provided massive amounts of genomic data collected from patients. The variation 
in gene expression allows the study of complex pathologies. The use of classifiers, con-
structed from gene expression profiles in clinical research to assist decision making, is 

Abstract 

Background: The use of predictive gene signatures to assist clinical decision is 
becoming more and more important. Deep learning has a huge potential in the 
prediction of phenotype from gene expression profiles. However, neural networks are 
viewed as black boxes, where accurate predictions are provided without any expla-
nation. The requirements for these models to become interpretable are increasing, 
especially in the medical field.

Results: We focus on explaining the predictions of a deep neural network model built 
from gene expression data. The most important neurons and genes influencing the 
predictions are identified and linked to biological knowledge. Our experiments on can-
cer prediction show that: (1) deep learning approach outperforms classical machine 
learning methods on large training sets; (2) our approach produces interpretations 
more coherent with biology than the state-of-the-art based approaches; (3) we can 
provide a comprehensive explanation of the predictions for biologists and physicians.

Conclusion: We propose an original approach for biological interpretation of deep 
learning models for phenotype prediction from gene expression data. Since the model 
can find relationships between the phenotype and gene expression, we may assume 
that there is a link between the identified genes and the phenotype. The interpretation 
can, therefore, lead to new biological hypotheses to be investigated by biologists.
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becoming more and more important. Machine learning methods including support vec-
tor machine, random forest and boosting are among the main tools used in making bio-
logical discoveries from the huge amount of available gene expression data [1].

Among the various machine learning approaches, deep learning has become one of 
the most powerful methods [2]. Its primary domain of application is image recognition 
and speech recognition where it has beaten other machine-learning techniques records. 
Deep learning algorithms are promising in many other domains of science, especially 
in precision medicine and genomics data analysis since it is very good at discovering 
intricate structures in high-dimensional data. However deep learning methods are still 
very new in the bioinformatics community, and few works have been published on its 
application to gene expression based classification [3]. Unlike images or text data, gene 
expression data has no structure that can be exploited in the architecture of a neural 
network. The architecture used for prediction from gene expression data is therefore the 
multilayer perceptron [4, 5]. The autoencoder is another architecture commonly used to 
reduce the dimensionality of the gene expression data, like the denoising autoencoders 
[6, 7] or variational autoencoders [8] . The idea is to use the middle layer of the autoen-
coder as a compact representation of the gene expression profiles that captures the use-
ful biological information for the prediction task. Fakoor et al. [6] used both a stacked 
autoencoder and principal component analysis (PCA) in order to reduce the dimension 
of the data before constructing a neural network for cancer prediction. Dincer et al. [9] 
first use PCA then, a variational autoencoder for the dimensionality reduction and a 
LASSO to predict drug response to leukemia. Hanczar et al. [10] use a multi-layer per-
ceptron to predict cancers and pretrain each layer with a denoising autoencoder and a 
large unlabelled dataset.

One of the main concerns of deep learning in medical applications is its lack of inter-
pretability. Neural networks can be viewed as black boxes, where the gene expression 
profile of a patient is put to its input layer and a prediction is obtained from its out-
put layer without providing any explanation on the decision process. The need for mak-
ing deep neuronal networks more interpretable is therefore increasing, especially in the 
medical field for mainly two reasons. Firstly, it is important to ensure that a neural net-
work bases its predictions on reliable representations and is not focusing on an artifact 
of the data. Without the interpretability criterion met, physicians cannot trust the deci-
sion of the neural network and patients’ lives may be at stake. It is crucial to be able to 
identify which neurons, genes and related biological processes are involved in the pre-
diction and decision making process. Secondly, a neural network with high prediction 
performances may have identified patterns in the gene expression that could lead to new 
biological hypotheses. To investigate these patterns it is crucial to understand what is 
the biological meaning of the hidden layers of the network.

The interpretation of machine learning algorithms is still an emerging field of 
research especially for deep learning models [11, 12]. Two types of interpretation may 
be identified [13, 14]: prediction interpretation and model interpretation. The predic-
tion interpretation consists of explaining the prediction of a specific input, whereas 
model interpretation explains the logic behind the model when predicting the dif-
ferent outputs on the whole population. Both are important for medical applica-
tions. The interpretation of neural networks built from gene expression has not been 
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thoroughly studied. The majority of the published works focuses on the identification 
of the genes that impacted the prediction but does not investigate the representation 
of the gene expression learned in the hidden layer. For example, Danaee and Ghaeinix 
[15] identified relevant genes for the diagnosis of breast cancer using stacked denois-
ing autoencoders. The relevant genes are those with a strongly propagated influence 
on the reduced dimension of the network and are analyzed using the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The aim of all these 
studies is to identify potentially interesting genes related to the disease of interest. 
However, they do not explain what the network does, or what represents a neuron, or 
what representation of the patient is constructed in the hidden layers. Very few works 
tried to interpret the hidden neurons and almost all of them are based on the analysis 
of the values or the distribution of connection weights of the learned neural network 
[16]. Way et  al. [8] analyzed the decoder’s connections of their variational autoen-
coder and associate each neuron to the set of genes with the highest absolute values 
of weight. Based on these gene sets, they applied an enrichment analysis to identify 
overrepresented pathways and GO biological process terms to each neuron. In [16], 
authors built denoising autoencoders and stacked denoising autoencoders to extract 
important genes from cancer gene expression dataset. The importance of genes is 
defined as the sum of their outgoing connections. A subset of the most important 
genes is selected and then analyzed by performing a functional annotation analysis. 
Sharifi et al. [7] studied the distribution of the output weights of each neuron in order 
to estimate their significance for the prediction of the metastatic tumor.

Recent works in the machine learning community show that the use of gradient meth-
ods produces better interpretations of a neural network than an analysis of their weights 
[17]. The principle of gradient methods is to backpropagate the activation of the output 
neuron through the network and to estimate for each layer the impact of the neurons 
and the connections on the output. Several gradient methods were proposed in the lit-
erature including layerwise relevance propagation (LRP) [18, 19], integrated gradients 
[20] and DeepLift [21]. In [22], the authors presented a unified framework for inter-
preting predictions by analyzing several gradient interpretation models from theoreti-
cal and practical perspectives. They showed that these methods are strongly related and 
equivalent under certain conditions. Lundberg and Lee [23] showed that among gradient 
models DeepLift and LRP are better aligned with human intuition as measured by stud-
ies since they satisfy some desirable properties. To our knowledge, only one paper used 
the integrated gradient method to identify the most important genes related to a low-
dimensional representation space (LDR) learned using a variational autoencoder [9]. The 
main objective of our work is to open the black box of a deep neural network built from 
gene expression data by linking the neurons with biological knowledge. Our approach 
adapts gradient based approaches of neural network interpretation in order to identify 
the important neurons i.e. the most involved in the predictions. Then all these important 
neurons are associated with genes, biological functions and metabolic pathways. Our 
experiments on cancer prediction show that our approach produces more relevant inter-
pretation than the state of the art based on weight analysis. Although the main purpose 
of this paper is not on the classification performance, we show that for large training 
sets, deep learning outperforms classical machine learning methods.
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Results
Gene expression dataset

We applied our method to a cancer diagnosis problem extracted from microarray data. 
The used data comes from a study of cross-experiment compiling the gene expression 
profile from about 40,000 publicly available Affymetrix HG-U133Plus2 arrays [24]. 
Combining different expression datasets gives a global gene expression map that con-
tains variability related to the type of tissues and the experimental protocols. This allows 
us to address new questions and to make original studies that may lead to new biological 
discoveries. After quality control and normalization, the dataset contains the expression 
of 54675 probes from 27887 tissues of which 9450 are healthy and 18437 are cancer. The 
dataset is accessible via the ArrayExpress database (accession number E-MTAB-3732). 
We divided this dataset into a training set (14750 cancer, 7560 non-cancer) and a test set 
(3687 cancer,1890 non-cancer). Because of the exceptionally large size of this dataset, it 
is not necessary to reduce its dimension by an autoencoder or a gene selection method.

Neural network model

We constructed a deep multilayer perceptron with an input layer of 54675 neurons, three 
hidden layers of 500, 200, 50 neurons respectively and an output layer of two neurons 
corresponding to the non-cancer and cancer classes. To reduce the problem of overfit-
ting, the dropout is used in the output of the first and second hidden layers ( pdrop is the 
probability to drop a neuron) and a L1 penalization term is added to the cross-entropy 
loss function ( � is the hyperparameter controlling the weight of the penalization). The 
network is learned using the adam optimizer with a learning rate lr. The end of the train-
ing is controlled by an early stopping procedure with a maximum of 500 epochs. The 
hyperparameters are optimized on a validation set containing 10% of the training set. 
Table 1 gives the list of the hyperparameters, the range of tested values and the selected 
values. The experiment has been implemented using Tensorflow 1.12 and computations 
launched on a GPU Geforce TitanX.

The performances of the neural network (NN) are compared with the state-of-the-
art of supervised learning methods i.e. support vector machine (SVM), least absolute 
shrinkage and selection operator (LASSO), random forest (RF) and XGboost (XGB) by 
varying the number of available training examples n. We randomly selected subsets of 
the training set of different sizes by conserving the same proportion of the classes. For 
each training subset, classifiers have been constructed with different learning algorithms. 
Figure 1 illustrates the accuracy of the different classifiers depending on the training set 

Table 1 List of the hyperparameters optimized during the learning procedure

Hyperparameters Selected values Tested values

# hidden layers 3 1,2,3,4,5,6

# neurons 500/200/50 [20,1000]

pdrop 0.3 [0.1, 0.5]

� 10−3 [10−2, 10−5]

lr 10−4 [10−2, 10−5]

batch size 16 [8, 256]
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size. We show that for small training set size ( n < 1000 ) the state-of-the-art algorithms 
provide higher accuracy than NN, for moderate training set size ( 2000 < n < 10000 ), 
the accuracy of NN is similar to the accuracy of the other methods, for large training set 
size ( n > 15000 ) the NN significantly outperforms the other methods. When the whole 
training dataset is used, the accuracy of the NN is estimated at 95.7% on the test set. 
Among the 238 prediction errors, 115 are non-cancer patients predicted as cancer and 
123 are cancer patients predicted as non-cancer. This model will be analyzed in detail in 
the rest of the paper. We note that the performances of SVM, LASSO, RF and XGB reach 
their maximum for n ∈ [10000, 15000] examples, adding new training examples does not 
improve the accuracy. The accuracy of NN is still increasing for p = 20000 , we could 
reasonably assume that its accuracy will continue to improve if more training exam-
ples are available. These results are coherent with the results of NN from other domains 
(image analysis, NLP,...) i.e. NN are especially good when the training set is large. Cur-
rently, gene expression datasets are small, they contain generally hundreds of examples. 
This explains why today NN has not made a breakthrough in gene expression based clas-
sification yet. In the next years, with the increasing production of transcriptomic data, it 
is clear that NN will play a major role in these problems. That is why the interpretation 
of these models should be studied from now.

Shallow supervised machine learning methods like RF, SVM and XGB can be explained 
using approaches that extract the most important input features for the predictions. In 
this work, we focus on the interpretation of deep learning models by identifying the rel-
evant input and high level features learned by the model.

Relevance scores analysis

In order to interpret the learned model, the relevance vector of each example in the test 
set is computed. The relevance vector of an example contains the relevance score, com-
puted by LRP, of all neurons of the network. Note that LRP is applied from the output 
neuron corresponding to the predicted class. A relevance vector represents therefore 
which part of the network is the most responsible for the prediction of a given example. 

Fig. 1 Accuracy of the different learning algorithms in function of the training set size
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An analysis of these individual relevance vectors shows that, for almost all of the exam-
ples, only a small set of neurons is important, i.e. have a high relevance score. However, 
the important neurons associated to two examples may be very different, even if the 
model assigns them the same class. For each class, we can identify different groups of 
relevance vectors, meaning that different parts of the network are specialized to predict 
from different groups of examples even if these examples belong to the same class.

Figure  2 shows the hierarchical clustering of the test examples predicted as cancer 
based on their relevance vectors. The first colored bar in the bottom gives the prediction 
result: green means that the corresponding test example is well classified and red means 
it is a prediction error. The nest colored bars gives the type of tissues. From this dendro-
gram, we see clusters of test examples with different relevance profiles. It’s worth noting 
that the clustering based on the relevance vectors does not overlap with the clustering 
based on the gene expression profiles. Examples with different expression profiles may 
use the same neurons for their predictions whereas examples with similar expression 
profile do not necessary have similar relevance vectors.

An interesting observation is that the prediction errors tend to be grouped in some 
clusters. This means that the error of predictions often comes from the same set of 
neurons. Therefore, the network contains some paths of propagation that lead to less 
confident predictions. If we look at the distribution of the examples on the dendrogram 
according to the type of tissue, we do not observe any particular pattern. The examples 
from the same tissue are not located in the same cluster. This means the way an example 
is propagated through the network does not depend on the tissue. Two explanations are 
possible. The first one is that the network has discovered a general signature of cancer 
for any type of tissue. We know that the different types of cancer have different biological 
causes, but a part of the information contained in the gene expression may be common 
to all cancers. The second explanation is that the network found different signatures for 
the different tissues but these signatures are merged into the same set of neurons. In this 
case, it could be interesting to modify the architecture of the network by adding auxil-
iary outputs predicting the tissue type from hidden layers, such that the different tissues 
use different neurons in the hidden layer. This idea will be investigated in future works.

Fig. 2 Hierarchical clustering of the test examples predicted as cancer based on their relevance vectors. In 
the first colored bar, red represents prediction errors and green corresponds to good predictions. The other 
colored bars show the type of tissue
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Comparison with WM interpretation

In the majority of NN interpretation works for gene expression, the evaluation of the 
impact of a neuron (input or hidden) is based on the weight average of their output con-
nections (WM). However, in many situations, the WM score does not represent the real 
contribution of an input or neuron to the prediction.

Figure 3 represents a toy example illustrating the difference between the WM and 
LRP methods. We have a neural network with three layers containing three inputs 
(i1,i2,i3), two hidden neurons (h1,h2) and one output. The black arrows represent 
the connections with their weight. The blue numbers show the propagation of an 
example from the input ([2,  0.1,  2]) to the output ([9.44]). The importance of the 
input and hidden neurons is computed by WM method and represented in the figure 
in black. The LRP is also applied in order to back-propagate the activation of the 
output through the network and is represented by the red arrows. The red scores 
represent the relevances computed for each input and hidden neurons. This example 
points out the difference of interpretation obtained by the WM scores and LRP rel-
evance. It shows that the WM values are not a good evaluation of the impact of the 
neurons on the output. According to the the WM values, i2 is the most important 
input because its connection weights are high. However, since the activation of i2 
is low, its impact on the output is actually small. The WM value of i1 is 75% of the 
WM value of i2, leading to the conclusion that this input has a significant impact 
on the output. i1 is highly activated and this activation is propagated through h1 
and h2. Since the weight of the connection i1-h2 is small, this path does not have a 
high impact on the output. The weight of the connection i1-h1 is leading to a high 
activation of h1. However, the weight of the connection h1-output is small, there-
fore h1 weakly activates the output. The impact of the input i1 on the output is thus 
small because its activation is not well-propagated to the output. The input i3 has 
the smallest WM value, we could conclude that its impact on the output is not sig-
nificant. However i3 is highly activated and this activation is well propagated to the 
output thanks to the connections i3-h2 and h2-output that have high weight. In fact, 
the activation of the output comes mainly from i3. The relevance of i3 is very high 
and the relevance of i1 and i2 are small. The LRP relevances can be considered as 
a better representation of the real impact of the input on the output than the WM 

Fig. 3 Comparison of LRP and WM on a toy example
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values since the latter is independent from the input data. By definition WM values 
are computed only from the weights of the connections. These values could repre-
sent the importance of the inputs if the variables were independent and uniformly 
distributed. However, this is not the case in the context of gene expression data. The 
interpretation must depend on the distribution of the data that are provided to the 
network.

We propose an experiment to compare the quality of biological interpretation pro-
duced by WM and the LRP on our gene expression dataset. In this experiment, we meas-
ure the consistency of the LRP and WM interpretations of our cancer prediction network 
with known biological knowledge. We use all the test examples predicted as cancer by 
our network to compute the average of the LRP relevance scores of the input neurons. 
The WM values of each input neuron are also computed. These results give, for each 
method, a ranking of the genes that have the most impact on the predictions of cancer 
in our network. Based on these rankings, the k best genes are selected ( k ∈ [100, 5000] ). 
Then, an enrichment analysis is performed in the same way as described in section 2.3, 
in order to identify the over-represented diseases from DisGeNET associated with the 
selected genes. DisGeNET is one of the largest public collections of gene-disease asso-
ciations. Figure 4 (top) shows the p-values of the cancer annotation obtained from these 
analyses depending on k. We see that the p-values obtained from the LRP selection are 
much smaller than the p-values given by WM selections. The obtained values are around 
0.05, except for k = 300, 500 . This shows that there is an over-representation of the 
genes linked to cancer in the set of genes with the highest impact on the prediction of 
cancer. In other words, these results show that our network mainly uses genes, that are 
known to be related to cancer, to make cancer predictions. The fact that the behavior of 
our network is coherent with the biological knowledge, tends to improve the confidence 
given to its predictions. The WM values do not lead to the same conclusions, the p-value 
of cancer is below 0.1 for only k = 700 . The other graphics of Fig. 4 show the results of 
the same experiments restricted to patients affected by breast cancer (middle) and leu-
kemia (bottom). These results show that the LRP produces more relevant interpretation 
than WM, the LRP p-values are much lower than the WM p-values. WM is data inde-
pendent, the produced interpretation is therefore very general. Since LRP computes a 
relevance score for each example, it leads to more relevant interpretations.

Biological interpretation of the model

In this section, we illustrate the interest of our method by providing a biological inter-
pretation of the neural network predicting cancer from the previous section. For each 
class, the important neurons of each layer are identified from the mean vector of the 
relevance scores by using the method described in section 5.3.1. We identified 20, 7 and 
3 important neurons in hidden layers 1,2 and 3 respectively for cancer prediction and 
26, 14 and 4 important neurons in hidden layers 1, 2 and 3 respectively for non-can-
cer prediction. With the same approach, we identified the most important connections 
(connections with the highest absolute value of relevance). Figure 5 shows the important 
neurons and connections in the network for cancer prediction (see the Additional file  1 
for the non cancer prediction). We also identified more than 1000 important probes that 
can not be represented in the figure. For each of the important neurons, a list of genes, 
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biological functions GO, metabolic pathways KEGG and diseases in DOLite is associ-
ated using the procedure described in 5.3.2 and 5.3.3. We now provide a biological inter-
pretation of the important neurons and discuss their importance in the differentiation 

Fig. 4 p-values of the terms: cancer, breast cancer and leukemia from subsets of genes selected by LRP and 
WM
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between cancer and non cancer patients. We opted to focus on few neurons of the rel-
evance network, a more complete interpretation of an extracted subnetwork from the 
relevance network can be found in the Additional file  1.

The important neurons of layer 1 can be grouped into subgroups depending on the 
functions enriched among the important genes they contain. Overall, the enriched func-
tions belonged to three main categories which are the cell cycle, metabolic processes, 
morphogenesis even though the three are linked. The cell cycle pathway is linked to 
cell polarity as well as to cell structure pathways in a complex system which is what 
was reproduced through our neural network. The first category which is the cell cycle 
category contains neuron 26. Neurons 26 is the only neuron that focuses solely on cell 
cycle pathways. It is associated with a list of 593 genes. The most enriched GO terms 
are mitotic cell cycle process, GO:1903047, and mitotic cell cycle, GO:0000278 with 
the other important enriched GO terms in this neuron all belonging to mitotic division 
and DNA replication. This neuron hence specialized in detecting genes in relation to 
cell proliferation, an essential element in cancer as cancer originates from uncontrol-
lable growth of abnormal, mutated cells. The KEGG enrichment analysis of this neuron 
showed that among the most enriched metabolic pathways are the ones in which mitosis 
and DNA replication are involved such as cell cycle, which is the cell division cycle in 
general and the focal adhesion pathway which regulates the cell cycle pathway. In fact, 
in cancer, especially in the metastasis stage, the cancerous cells show alteration in their 
focal adhesion dynamics as cancerous cells will want to detach from their fixation site 

Fig. 5 Significant neurons in the network for prediction of cancer
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and move through the Extra-Cellular Matrix (ECM) to the blood and lymphatic vessels 
[25]. Other enriched pathways that are known to be important in cancer and linked to 
cell proliferation were also found enriched in this neuron such as PPAR signaling path-
way [26], adipocytokine signaling pathway [27], p53 signaling pathway [28], homologous 
recombination and DNA replication. In order to go further in the analysis, we performed 
a DOLite analysis which consists of associating a disease to the genes that were linked to 
significant GO terms. We found 40 genes associated with cancer and 3 genes associated 
with advanced cancer. Among the 43 genes, we found some that are already known to be 
linked to multiple cancer types. The LEP gene, which is the gene responsible for making 
Leptin, was found to be linked to many cancers mainly breast cancer, colorectal can-
cer, hepatocellular cancer and thyroid cancer [29]. Another gene we found was BRCA1 
which is already known to be one of the genes that can cause breast and ovarian cancer 
when mutated and that is now being linked to other types of cancer such as melanoma 
[30]. Included in the list are also the RAD51 and PCNA genes. The RAD51 gene is a piv-
otal homologous recombination gene and has already been found to be overexpressed 
in the following tumors: cervical cancer, non-small cell lung cancer, breast cancer, ovar-
ian cancers, pancreatic cancer, melanoma and glioblastoma [31]. As for the PCNA gene, 
which has an important role in controlling DNA replication, it was found to be involved 
in many cancer types: in breast cancer, for example, PCNA methylation was found to be 
cancer specific [32].

In the second hidden layer of the network, we had 7 important neurons. Among them 
is neuron 183 which is one of the most significant neurons of layer 2. It was found to 
have an important link with neuron 26 of the first hidden layer. When looking at the GO 
terms enriched at this level, we see that the most enriched one is regulation of chromo-
some segregation, GO:0051983, which regulates the separation of the genetic material. 
Other enriched GO terms are also linked to chromosome segregation and cell division. 
As such, we can say that this neuron also specialized in cell division and the GO terms 
of this neuron are co-occurring with the terms of the neuron of the previous layer. How-
ever, when we look at the KEGG enriched pathways, we can see that only one pathway, 
which is the base excision repair pathway, was enriched. This pathway, as the name sug-
gests, repairs any DNA damage that occurs during the cell cycle. Thus, we can say that 
this neuron is more specific than the one in the first layer. Mutations in the base exci-
sion repair pathway were found to be linked to cancer mainly prostate and lung cancer 
[33, 34]. For this neuron, we looked into the enriched genes using DOlite as we did with 
previous neurons in order to determine to which diseases they are associated. Among 
the 24 genes found to be involved in cancer, we found MSH6, which is a DNA mismatch 
repair gene, and ECT2, which is a gene guanine nucleotide exchange factor whom pre-
vious study showed that, along with other co-expressed genes, this gene is potentially 
involved in the base excision pathway. DOlite analysis also showed that there are 4 genes 
involved in esophageal cancer enriched in this neuron.

In the third and final hidden layer of the model, we had only three significant neu-
rons. Neuron 47 has mainly GO terms linked to RNA processing enriched. However, 
it is more specific as among the GO terms enriched are the ncRNA processing and 
rRNA processing. The KEGG enrichment analysis is in concordance with this, as the 
most enriched pathway is the RNA transport pathway. In summary, we can say that the 
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important neurons we identified, focused mainly around the cell cycle and the pathways 
that co-occurs with it such as metabolic and RNA splicing processes. The first layer was 
the most general layer with little specializing. As we advanced in the layers, each neuron 
tended to specialize in an element of the cell cycle with the last layer having a neuron 
specific to non coding RNA processing (see Fig.  6).

Discussion
We point out that the goal of the interpretation is to explain how the model works and 
not how biology works. Sometimes, there is no obvious relation between the biologi-
cal functions or metabolic pathways, returned by the interpretation, and the predicted 
phenotype. This does not necessarily mean that the predictions are not reliable. Recall 
that a model looks for correlations between the output and the input and not for causali-
ties. When a biological function, that is not related to the phenotype, is identified in the 
important neurons, it is possible that this function either has an indirect correlation or is 
linked by an unknown causality relation with the phenotype. Moreover, let us not forget 
that the biological databases used are not a perfect description of biology, but just a rep-
resentation of current knowledge of biology. In these databases, a lot of information is 
missing because it is unknown and some available information may be incorrect.

We finish by giving the different types of conclusions that we can draw from a bio-
logical interpretation of a model. We identify three cases based on the results of the 
interpretation. In the first case, the majority of the elements provided by the biologi-
cal interpretation are related to the predicted phenotype. This means that the model 
bases its predictions on elements consistent with the biological knowledge. This should 
improve the trust in the model in addition to its prediction performance. The second 
case is the opposite. Most parts of the elements provided by the biological interpreta-
tion are known to be unrelated to the predicted phenotype. Since the predictions are 
based on elements inconsistent with the current biological knowledge, the reliability of 
the model must be questioned. The model may overfit or be misled by a bias in the train-
ing set. In the last case, the biological interpretation mostly provides elements that may 
or may not be related to the predicted phenotype. Interpretation does not help to evalu-
ate the trust that we can place in the model. However, in this case, we can use the inter-
pretation as a tool for biological discovery. Since the model finds a relationship between 
the phenotype and gene expression based on the elements identified by the interpre-
tation, we can assume that there is a link between these elements and the phenotype. 

Fig. 6 A simplified network showing the enriched pathways in each layer
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Interpretation can therefore lead to new biological hypotheses to be investigated by 
biologists.

Conclusion
In this paper, we propose an original approach for biological interpretation of deep 
learning models for phenotype prediction from gene expression data. Our main objec-
tive is to identify the neurons and inputs of the NN that contribute to the predictions 
and to link them to biological knowledge. The model is reduced to a sub-network con-
taining the relevant connections and neurons involved in the prediction. These neurons 
are then associated with a list of genes and the corresponding biological knowledge (GO, 
KEGG, and DOLite). Our experiments, based on cancer prediction, show that (1) deep 
learning approach outperforms classic machine learning methods on large training data-
sets, (2) our approach produces interpretations more coherent with biology than the 
state-of-the-art based on WM approach, (3) we can provide a comprehensive explana-
tion of the predictions for biologists and physicians. Ongoing work concerns additional 
biological analysis, comparison and validation that are necessary to get a comprehen-
sive picture of the logic behind the neural network predictions. Future work concerns 
the introduction of biological knowledge inside the neural network in order to guide the 
learning phase of the model. This allows to learn known biological concepts and may 
lead to biological discoveries.

Methods
We present the deep neural network architecture used for gene expression data and our 
biological interpretation approach. The gradient method for neural network interpre-
tation is the Layer-wise Relevance Propagation (LRP), which is adapted to identify the 
most important neurons that lead to the prediction as well as the identification of the set 
of genes that activate these important neurons. Finally, the important neurons and genes 
are linked to the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and the Disease Ontology Annotation List (DOLite) in order to propose a bio-
logical interpretation of the neural network model.

Deep multilayer perceptron

Given a classification task with K classes, a classifier is a function that associates a 
class to an input vector: F : x �→ y . In our work x ∈ R

p is a gene expression profile, 
y ∈ {c1, . . . , cK } is the predicted class corresponding to the phenotype and F is a deep 
neural network. In the context of gene expression data, we use a multilayer percep-
tron architecture with L layers. In this architecture, the neurons are organized in lay-
ers where each neuron is connected to all neurons of the previous layer and all 
neurons of the next layer. The input layer receives the gene expression profiles, each 
neuron takes the expression of one probe. The output layer returns the probabilities 
to belong to each class (one neuron for each class). The activation of the i-th neuron 
of the layer l can be expressed as: a(l)i = g

(

∑nl−1

j=1
a
(l−1)
j w

(l)
ji + b

(l)
i

)

 , where w(l)
ji  is the 

weight of the connection from the j-th neuron of the layer ( l − 1 ) to the i-th neuron of 
the layer l, b(l)i  is the bias of the i-th neuron of the layer l and nl the number of neurons 
in the layer l. We denote z(l)i =

∑nl−1

j=1
a
(l−1)
j w

(l)
ji + b

(l)
i  the input of the i-th neuron of 
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the layer l and z(l)ji = a
(l−1)
j w

(l)
ji  the signal going from the j-th neuron of the layer l − 1 

to the i-th neuron of the layer l. The activation function, g , in this work, corresponds 
to the rectified linear unit function (ReLU) g(z) = max{0, z} for the hidden layers and 
the softmax g(z(L))k = exp(z

(L)
k )/

∑K
j=1 exp(z

(L)
j ) , where z(L) = {z

(L)
1

, . . . , z
(L)
K } , for the 

output layer. With these notations, the expression profile representing a patient at the 
input of the network is noted a(0) , the posterior probability of each class ck estimated 
by the network is noted a(L)k = g(z(L))k and the prediction of the neural network is 
F(x) = argmaxk{a

(L)
k }.

Layer‑wise relevance propagation (LRP)

The prediction of a patient’s phenotype is obtained by propagating its gene expres-
sion profile through the network and evaluating the neurons in the feed-forward pass. 
Gradient methods compute the influence of each variable and neuron of the network 
for a given prediction. Among all gradient methods presented in the “Introduction” 
section, we chose the LRP [18] for two reasons: firstly LRP produces results well 
aligned with human intuition [23], secondly it does not need reference inputs. The 
reference input, needed by some gradient based methods, is an input vector with no 
information, for example it corresponds to black pixels in images. For gene expres-
sion data it is difficult to justify the choice of such a reference. In our experiments, we 
noted that the choice of the gradient method does not significantly impact the inter-
pretation since the results from different gradient methods are correlated for gene 
expression data and multilayer perceptron (see the Additional file  1).

The idea of LRP is to backpropagate the signal of the output neuron of interest through 
the network. For a given output neuron, at each layer l, the relevance score of each neu-
ron and each connection is computed from the relevance scores of the layer ( l + 1 ). 
These relevance values represent how the neurons and connections have contributed to 
the activation of the studied output neuron. This method is based on layer-wise conser-
vation principle that forces the preservation of the propagated relevance between layers 
and neurons i.e. the sum of neuron relevance is constant through all layers and for each 
neuron the sum of output connection relevance is equal to the sum of input connection 
relevance. Assume that for a given patient, the network predicts the class ck . To explain 
this prediction, we studied the k-th neuron of the output layer L. Let R(L)

k = z
(L)
k  be the 

relevance of the output neuron to be backpropagated through the network. Note that we 
backpropagate z(L)k  , that is the activation of the output neurons before applying the soft-
max activation function. The relevance of a neuron is propagated through all of its input 
connections (including the bias) proportionally to the signal passing in the connections.

The relevance of the connection from the i-th neuron of the layer l to the j-th neu-
ron of the layer ( l + 1 ) is defined by:

The relevance of a neuron is defined by the sum of the relevances of all its output 
connections:

(1)R
(l)
i←j = R

(l+1)
j

z
(l+1)
ij

z
(l+1)
j
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A drawback of these backpropagation formulas is that for small values zj , relevances Ri 
can take unbounded values. Unboundedness can be overcome by introducing a prede-
fined stabilizer ǫ > 0 as follows:

When using this formula, the conservation principle is relaxed to overcome the numeri-
cal instability. The relevance is backpropagated following these formulas from one layer 
to another until it reaches the input (gene expression) layer.

Originally, LRP has been developed to interpret the prediction from images i.e. esti-
mate the contribution of each pixel to the prediction of the class of a given image. In this 
work, we adapt and use LRP in the context of gene expression data. Moreover, our work 
focuses on the problem of model interpretation rather than prediction interpretation. 
Our analysis is therefore based on the average of relevances computed from a subset of 
the test sets and not on individual relevance scores. The LRP can also be used to explain 
the individual prediction but this analysis is out of the scope of this paper.

(2)R
(l)
i =

nl+1
∑

j=0

R
(l+1)
i←j =

nl+1
∑

j=0

R
(l+1)
j

z
(l+1)
ij

z
(l+1)
j

(3)R
(l)
i←j = R

(l+1)
j

z
(l+1)
ij

z
(l+1)
j + ǫsign(z

(l+1)
j )

Fig. 7 The biological interpretation of deep neural network approach
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Biological interpretation approach

The objective is to identify the biological functions and metabolic pathways that the 
neural network uses to predict each class. For each class the proposed interpretation 
approach can be decomposed into three steps (see Fig. 7). In the first step, we compute 
the relevance scores through the network and identify the most important neurons that 
allow predicting the class. Then, we associate with each important neuron a list of the 
significant genes affecting the neuron activation. Finally, biological functions, metabolic 
pathways and diseases are associated with each important neuron.

Selection of important neurons for predicted classes

The first step is to identify the neurons that most influence the predictions for each class. 
For this, we compute the relevance scores of all neurons for each prediction using the 
LRP procedure. These relevance scores associated with individual predictions are used 
to compute the model scores for each predicted class.

For each class ck , a set of relevance values (one related to each patient predicted as 
belonging to the class ck ) is associated with each neuron. We call the mean of these rele-
vance scores the average relevance of the neuron i in the layer l for the class ck : R̂(l)

i,k . This 
average relevance score represents the influence of this neuron on the network to pre-
dict the class ck . The most important neurons are the neurons with the highest absolute 
values of their average relevance score. To select the most important neurons, from each 
layer, we ranked the neurons according to their absolute average relevance scores and 
chose the most important ones. In our experiments, we empirically observed that the 
distribution of the average relevance scores is close to a Gaussian distribution centered 
at 0. Assuming that the average relevance scores follow a Gaussian distribution N (0, σ

(l)
k ) 

where σ (l)
k  is the empirical variance of the average relevance scores, we use the two-side 

t-test (p-value at 0.05 with Bonferroni correction) to determine the most extreme aver-
age relevance scores over the observed average relevance scores. We applied this proce-
dure to identify the important neurons in each layer for a given class.

Association neurons‑list of genes

LRP was conceived to associate relevant inputs to the prediction. In this step of our 
approach, we propose to associate with each important neuron the list of the genes that 
influence the activation of the neuron. For a given important neuron i in layer l, its acti-
vation a(l)i  is backpropagated using the LRP procedure in order to compute R(0)

j  , which 
is the relevance score of each input j. We then identify the most important inputs that 
have an impact on the activation of the neuron. As for the identification of important 
neurons, in our experiments, we used a two-side t-test to select the inputs related to 
the neuron since the observed distribution of the input relevance scores is close to a 
Gaussian distribution centered at 0. We can see the activation of a neuron as a non linear 
representation of the expression of the set of its associated genes. In order to associate 
each important neuron to a list of genes, we annotated the input with their GenBank 
accession number.
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Biological interpretation of the neurons

The final step of our approach is to associate each important neuron to biological func-
tions from Gene Ontology (GO), metabolic pathways from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and diseases from Disease Ontology Annotation List 
(DOLite). For each neuron, we identify the over-represented GO functions in the list of 
genes associated to this neuron. We use a hypergeometric test to check if a GO function 
is over-represented in a neuron. Given a function GOi , let NGOi be the number of genes 
related to the function GOi and NG the number of genes present in the dataset. The 
probability of obtaining T genes related to the function GOi from a list of M random 

genes follows a hypergeometric law: p(T ,M,NG ,NGOi) =

(

NGOi

T

)(

NG − NGOi

M − T

)

(

NG

M

)  . The 

probability of obtaining at least T genes related to the function GOi in a random list of 
genes is defined by: P(t ≥ T ) =

∑M
t=T p(t,M,NG ,NGOi) . We considered that a Go func-

tion is over-represented in a list of genes when the probability P(t ≥ T ) < 0.05 . We 
applied the same procedure to identify the over represented metabolic pathway KEGG 
and related disease in a list of genes.
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