N
N

N

HAL

open science

Scheduling High Multiplicity Coupled Tasks
Wojciech Wojciechowicz, Michaél Gabay

» To cite this version:

Wojciech Wojciechowicz, Michaél Gabay. Scheduling High Multiplicity Coupled Tasks. Foundations
of computing and decision sciences, 2020, 45 (1), pp.47-61. 10.2478 /fcds-2020-0004 . hal-03006125

HAL Id: hal-03006125
https://hal.science/hal-03006125
Submitted on 15 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03006125
https://hal.archives-ouvertes.fr

FOUNDATIONSOF COMPUTING AND DECISION SCIENCES

Vol. 45 (2020) No. 1
ISSN 0867-6356
: DOI: 10.2478/fcds-2020-0004 e-ISSN 2300-3405

§ sciendo

Scheduling High Multiplicity Coupled Tasks

Wojciech Wojciechowicz *, Michaél Gabay T

Abstract. The coupled tasks scheduling problem is class of scheduling problems,
where each task consists of two operations and a separation gap between them. The
high-multiplicity is a compact encoding, where identical tasks are grouped together,
and the group is specified instead of each individual task. Consequently the encoding
of a problem instance is decreased significantly. In this article we derive a lower bound
for the problem variant as well as propose an asymptotically optimal algorithm. The
theoretical results are complemented with computational experiment, where a new
algorithm is compared with three other algorithms implemented.

Keywords: Coupled tasks, scheduling, complexity theory, asymptotically optimal
algorithms, high multiplicity

1. Introduction

The coupled tasks scheduling problem was introduced by Shapiro in [10]. A task @
is called coupled if it is a two operations job: there is a first operation of duration
a; and a second operation of duration b;. Those two operations are separated by a
fixed duration L; (see Figure 1 for an example of coupled task). Obviously, operations
cannot overlap, however, other operations can be processed during the idle time L;.
Shapiro in [10] proved that the coupled tasks scheduling problem is N"P-complete. In
the problem considered in this work all tasks have to be scheduled on a single machine
and the objective is to minimize the makespan.

L
Qg : b;

Figure 1: A single coupled task

*Institute of Computing Science, Poznan University of Technology, Poznan, woj-
ciech.wojciechowicz@cs.put.poznan.pl
tUniversity Grenoble Alpes, CNRS, G-SCOP, 38000 Grenoble, France

48 W. Wojciechowicz, M. Gabay

The coupled tasks scheduling problem was originally introduced for beam steering
software for sophisticated radar devices [10]. In those systems, the first operation is to
send a beam, and the second is to receive reflected pulse. In the mean time, the device
is idle (which correspond to gap) and can be used to process other beam. The popu-
larity of phased array radars for non-military purposes grows in the last years; such
devices are more affordable on the market since modernisations in army provided still
functional second-hand devices [3]. Notable example of such usage is monitoring of
violent weather phenomena, e.g. hurricanes and tornadoes [7]. The High multiplicity
scheduling problems could be found at repetitive manufacturing environments [4]. In
this article we consider the case, where all tasks can be partitioned into small groups
sharing the same properties. We assume, that the only difference between families is
the gap size (where Vi|L;| = L, and L1 < Lo <--- < L;, for ease of presentation). An
example of such constraints can be found in mass production system, e.g. in paint
shop where products can be grouped by color. The times needed to paint a car with
chosen color is constant, but the waiting time between placing two layers depends on
the color chosen.

1.1. Notation

The «|B]vy notation is commonly used to describe the coupled tasks scheduling prob-
lem, as introduced by Graham et al. [6] and further extended by Blazewicz et al. [2].
The a characterized processors in system. In this work we consider a single machine
system, thus a = 1.

The [describes the set of tasks and additional resources. In this work the case
(p, Li,p) is considered:

e p - the processing time of first and second operation,
e L; - the length of the i*" coupled tasks gap,

And the « field describes the optimality criterion. This work focused on the Cjpqq
criterion - schedule length or makespan, which is the completion time of last processed
operation in schedule.

Bellow is a brief summary of the notation used in this work:

e 1 - the number of coupled tasks,
e i - the index used to represent the it” coupled task,

e k - the number of coupled tasks families,

q - the index used to represent the ¢*" family,
e m - the number of idle operations in schedule,

e block - a subsequence of operations starting with aé- and finishing with b, where
a;‘ is the last operation a finishing before b; starts (included).

Scheduling High Multiplicity Coupled Tasks 49

allv|bl|la?]o a?b}abl?aab??

Y
~~

J
Figure 2: A complete block

e complete block - a block containing maximum number of operations (namely
2| L;] 42 operations when V;|L;| =L, a=b=1)

e window - a subsequence of operations starting with a;'. and finishing with bé»

31 pt 3
a]bia al a bJ

Y
~

Figure 3: A window

e complete window - a window containing maximum number of operations (namely
| L;] +2 operations)

1.2. Problem formulation

We consider the problem where all coupled tasks have identical processing times
(Vi a; = b; = p). Using Graham notations, we can denote the problem as
1|(p, Li,p)-coupled, exact gap|Cpmaz, as proposed in [1].

Orman and Potts [9] proved that the problem 1|(p, L;,p)-coupled, exact gap|Cmax
is A"P-hard in the strong sense whereas 1|(p, L, p)-coupled, exact gap|Cpqz is polyno-
mial.

In our problem, there are k families { f;}4=1,.. & of coupled-tasks. Each family f,
contains n, identical tasks with the same separation gap L,;. Remark that as a,4’s
and b,’s are all fixed and equal to p, the only characteristic that differs between the
tasks families is L.

The problem 1|(p, L;, p)-coupled, exact gap, families|Cyqq considered in this work
can be stated as follows:

e there is a single processor in the system

e all tasks are coupled,

e all tasks within family are identical,

e all gaps are exact,

e processing time of each operation is equal to p,
e there are k = 2 families of tasks,

e all gaps within family are identical,

50 W. Wojciechowicz, M. Gabay

all gaps have the same floor value,

e there is no precedence constraints,

e preemptions are not allowed,

e the optimisation criteria is C),4, minimisation.

We can state the corresponding decision problem as follows:

Input: C, p and k pairs (Lg,nq), Lqg € Q4 and ng € N .
Output: YES and a certificate if there exists a solution to the problem
1|(p, Li,p)-coupled, exact gap, families|Cypqr with makespan < C. NO otherwise.

Let M = max(maxgy(Lg), maxq(ng)) and n = Z’;Zlnq. Remark that the size of this
problem is O(klog(M)), which — in most cases — is o(n). Hence a whole schedule
cannot be given as a certificate because its size is an O(n) which is exponential in
klog(M). Such a problem is called a high multiplicity scheduling problem (see [8, 4, 5])
and even proving that such problems belong to NP is very challenging.

Note that 1|(p, L, p)-coupled, exact gap|Cyp,qz is a high multiplicity scheduling problem
too. Yet, Orman and Potts [9] proved optimal placement and the optimal makespan
of such an instance can easily be computed through a few simple operations.

1(p, Li,p)-coupled, exact gap|Cpq. can be modeled as 1|(p, L;,p)-coupled, ex-
act gap, families|Cyq, using n families. Hence, we know that this problem is N'P-
hard in the strong sense for the general case. Yet, when there is a small number of
families, this is a whole different problem and we can derive results for such cases.

If we admit rational values of L;’s, we can divide all L;’s, a;’s and b;’s by p and
our problem is now 1|(1, L}, 1)-coupled, exact gap, families|Cy,qe with rational values
of L;’s. For the ease and clarity of presentation in this article we will assume that
p =1, since both problems are equivalent.

In this article we consider a variation of scheduling high-multiplicity coupled tasks
problem, where the gaps have the same floor values, thus:

L] =[Le] == L] =L

1.3. Lower bound

Orman and Potts proved in [9] that problem

1/(a; = b = p,L; = L) — coupled, exact gap|Cyaz is polynomial. The algorithm they
provided construct a schedule constructed from two parts - complete blocks followed
by left-shifted scheduled remaining tasks. The length of the latter part is equivalent
to the length of complete block minus number of tasks missing to construct a complete
block (the time slots for those b operations will remain idle). Consequently, since:

e number of blocks - [LL_H]

e length of a complete block - 2L + 2

Scheduling High Multiplicity Coupled Tasks 51

e number of tasks in complete block - (L +1)

e number of tasks, which remains to schedule after constructing complete blocks
- (n)mod(L+1)

The makespan of such a schedule, as provided by Orman and Potts is:
n
Cmaac = |—L7+1
The length of a left-shifted block is determined by length of both operations,
number of operations and a length of longest gap used to construct a block. A length

of complete block is:

12L+2)—((L+1)—(n)mod(L+1)) (1)

C=a+b+|L]+max(Ly) (2)

where a and b are the length of first and second operation respectively. Since in the
problem considered in this work V;|L;| = L, a = b =1 and the pre-emptions are for-
bidden there are at most L operations to be scheduled during any gap. Otherwise an
operation will collide with operation a or b of the task, which gap is filled. Conse-
quently, the shortest completed block is the one constructed using tasks from family
with smallest L; and the length is:

C =2+ |L]+max(Ly) (3)

Given an instance, we only allow paying smaller gaps, hence all block lengths are
1 and last block’s length is r+ L1 + 1, where r is the number of remaining tasks to
be scheduled. Since there is at least one task 2 to place, at some point an operation
will be missing into a block. Let m be the total number of missing operations in all
blocks. Since a block contains a minimum of 1 operation, the maximum value of m is
L, which can holds up to |L| operations. Otherwise the block is empty or collisions
occur.

To place a Lo within a block of type Ly there is a need to shift tasks by Lo — L,
otherwise at least two operations will collide. Since pre-emptions are not allowed
to achieve this there is a need to use additional Lo — L space on top of operation
lengths, by re-arranging IDLE slots within a block. Because operation length is bigger
than Lo — L1, it is sufficient to use one "‘missing operation"” from incomplete block
to place at most |L —1] La’s. Consequently at most | L —1] m tasks from other than
Ly family can be placed within shorter blocks in any feasible schedule.

To conclude, the lower bound for the problem considered in this work is:

o 4524+ L+ Ly)+ (nmod(L+1)+ L) if f ng <m(L—-1)
et = I—L J(2+L+L1)+(nm0d(L+l)+L)+(L27L1)|—(%<ﬁ_1))-| otherwise

(4)

3

1

+

2. Block Schedule Algorithm

First, we introduce the Block Schedule Algorithm (BSA). The BSA is a very easy
and intiutive asymtotically optimal algorithm. It is based on observation, that any

52 W. Wojciechowicz, M. Gabay

feasible schedule can be built from blocks. The minimum length of block is determined
number of tasks used to construct a block, and length of the longest gap. The number
of tasks with largest gap does not influence the block length - blocks with 1 or L —1
tasks with the largest gap have exactly the same length.

The BSA algorithm groups tasks in families (based on the length of gap) and construct
complete blocks in each category (using L+ 1 tasks). Consequently at most L tasks
of each family remains (otherwise it would be possible to construct a complete block,
using L+ 1 tasks). Since we have two families, the remaining tasks can be arranged
into at most two blocks, which we does in the last step, using remaining tasks. In
case there are sufficient idle time slots, both block of type "a" is constructed, where
type "b" tasks are fitted using idle slots. An example of such construction is given in
the following figure.

al a? | a? || a? bl a2 | 02| v |02]al]b? bl

Y

Figure 4: Last blocks

Using above properties we proposed the Block Schedule Algorithm. We define the
Block Schedule as the schedule created by Algorithm 1.

The Block Schedule Algorithm only uses simple arithmetic, its complexity is
O(nlogn).

2.1. Worst case analysis

As shown in 1.3 the lower bound for the problem is:

o B [TJ(2+L+L1) (nmod(L+1)+1L) if f ng <m(L—1)
T |2) (24 L+ Ly) + (nmod(L+1) + L) + (La — L1) [(na — "$5510)] otherwise
(5)
The GBSA constructs schedule from blocks, by grouping them into blocks and
mixing the remainding part to opitmise the use of IDLE time slots. Since it is a
heuristics it don’t guarantee the optimiality of IDLE slots usage. There exists sched-
ules, where GBSA uses longer blocks even if shortest were feasible. An example of
such a case is given in 5. The upper schedule was constructed using GBSA algorithm
while the lower one is the optimal schedule.

mnn-mmnl- - - - -1 - - - |
I B DR B TR B

Figure 5: BSA - worst case example

Scheduling High Multiplicity Coupled Tasks 53

Algorithm 1 Block Schedule
Input: k families of tasks (n;,L;) such that Vi |L;] = L and L; < Ly
Output: The makespan of the Block Schedule

1:
2: C = 0 {Initialize makespan}
3: fori=1—kdo
4: h + LL% J
5: ni<—ni—h(L+l)
6: C+ C+h(L+L;+2) {Make h complete blocks of tasks i}
7. end for
8:
9: num <0
10: fori=1—k do
11: if n; =0 then
12: continue
13: end if
14: num = num -+ n;
15: if num > L+ 1 then
16: {Creates a complete blocks, left shifted, with some of the remaining tasks}
17: C+—C+(L+L;+2)
18: num < num — (L+1)
19: end if
20: end for
21: if num # 0 then

NN

{Creates an uncomplete blocks, left shifted, with the remaining tasks}
C+ C+ (num—+L;+2)
end if

SN

return C

N
@

54 W. Wojciechowicz, M. Gabay

As we have shown in 1.3, at most | L —1|m tasks from longer family can be placed

within schedule constructed from shorter blocks only (by using m tasks from shorter
m(L—1)
LF1

and no shorter (since m < L), while the optimal schedule have all fm(ﬁ_ 1)1 blocks
from shorter family. Since m < L then maximum number of ny which can be hidden
in shorter schedule is L? — L.

Let’s denote Cpsa as a makespan of BSA and C,p; the optimal makespan and
consider the worst-case (where ng = L? — L and ny = L):

Cpsa = [VE21(2+ L+ Lo) + ((na +na)mod(L+1) + L)

family). In such a case, the GBSA algorithm will construct a | | longer blocks

while

Copt = ["H121(24 L+ L1) + ((n1 + n2)mod(L+1) + L)
Consequently

Cpsa—Copt < (L2 — L1)[3421

Since ny = L2 — L and ny = L we have:
L4L%—L

Cpsa—Copt < (Lo — L1)[FHE+]

and

Csa—Copt < (L2 — L) (LJFJ

It is worth to mention, that the difference between optimal solution and the one
produced by BSA does not depend on n but on the L which is not a part of instance
size. Consequently, with the instance size going to infinity the BSA makespan goes
to the optimality.

3. Computational experiment

In this section the results of computational experiment are provided. The analysis
focus on two aspects the makespan and time needed to construct a schedule.

3.1. Test environment

The experiments were conducted on a platform with 8GB DDR3 RAM and Intel Core
i5-3230M CPU (2.6 GHz), but only one core was used in computation. All algorithms
were implemented in Java.

The test data was generated using custom task generator. Instances have two
families with from 2 up to 99 tasks. To test various segment shapes, for each instance
size (thus number of tasks from both families) all possible combination of n; and ne
were generated multiple times. In total, 24480 test sets were examined.

3.2. ‘Algorithm 2’ by Orman and Potts

Orman and Potts in [9] proved, that the problem
1|ai =bi=p,L;= L|Cmaw

Scheduling High Multiplicity Coupled Tasks 55

is polynomial. They proposed an algorithm, which generates optimal schedule in
O(nlogn) time. Since in the problem considered in this work |L;| = L we found rea-
sonable to customize Orman and Potts Algorithm 2 and applied it to our problem.
The algorithm divides schedule into two parts first constructed using complete blocks,
then remaining tasks scheduled contiguously. The algorithm we applied creates com-
plete blocks from each family. Remaining tasks are sorted ascending, and scheduled
contiguously. In case more than one family is scheduled (which holds in the problem
considered in this work), this algorithm does not guarantee schedule optimality, but
still construct schedule in O(nlogn) time.

3.3. Greedy Algorithm

The Greedy Algorithm is a quick and intuitive algorithm. It assigns each task to
first suitable position at schedule. Since there is no expensive calculation in this
algorithm, it is very quick (runs in On time) but obviously does not guarantee the
solution optimality.

3.4. Full Search Algorithm

The Full Search Algorithm is an exact algorithm, which guarantees the optimality
of the schedule by checking all potentially optimal (e.g. don’t start with and idle,
which obviously is unnecessary) feasible schedules. We construct the Full Search
Algorithm based on a fact, that any feasible schedule can be represented as a sequence
of tasks and idle times. Our implementation of Full Search Algorithm treats IDLE
as a third family of tasks (just one operation) and permutes all tasks to construct a
schedule. The usage of idle times provided means of reaching all feasible schedules.
Consequently the search space is limited not only by the number of tasks, but also
number of idle operations permuted.

A challenge we faced was to calculate the number of both number of idle time slots
as well as idle time slot size. Since starting times might get any rational value we
introduce intervals to classify values into equivalence classes. The goal is to establish
points which have potential to change a schedule shape.

A schedule might be divided into slots. A slot size is a greatest common divisor of
all entities lengths used in schedule. In our case, it is length of first operation, length
of second operation and lengths of both first and second family gaps.

The number of idle slots (I) in a feasible schedule can be easily computed, e.g.
based on makespan of Modified Orman and Potts’ algorithm #2

I =Chaz—2%n (6)

To further reduce the search space we can divide the search space into slots as
proposed above. Since Orman and Potts in [9] proved, that a makespan and its
reverse problem are equivalent it is sufficient to consider only half of the slots in Full
Search Algorithm’s permutation.

56 W. Wojciechowicz, M. Gabay

4. Computational results

In this section the experimental results are presented. Two factors were analysed -
the makespan, and the time needed to construct a schedule. We have followed the
same approach as in [3]

4.1. Makespan

First, we focus on makespan. The Table 1 summarizes the average makespan per
number of tasks.

Table 1: Average makespan

n GBSA oP GA FSA
2 7,50 7,50 7,50 7,50
3 8,50 8,50 8,65 8,50
4 9,50 9,50 9,67 9,50
5 10,50 10,50 13,53 10,50
6 16,60 16,90 16,97 16,10
7 17,50 17,83 18,02 17,33
8 18,64 18,79 19,16 18,50
9 19,69 19,75 21,27 19,69
11 26,85 27,15 27,55 26,15
12 27,77 28,09 28,65 27,41
13 28,88 29,04 29,95 28,71
14 29,92 30,00 32,65 29,92
15 30,96 30,96 35,01 30,96
16 37,10 37,40 38,05 36,20
17 37,91 38,34 39,55 37,59
18 39,12 39,29 41,25 38,92
19 40,17 40,25 43,87 40,17
20 41,21 41,21 45,90 41,21
25 51,46 51,46 56,97 NA
30 61,71 61,71 67,89 NA
35 71,96 71,96 78,86 NA
40 82,21 82,21 89,58 NA
45 92,45 92,45 100,86 NA
50 102,70 102,70 111,48 NA
55 112,95 112,95 122,72 NA
60 123,20 123,20 133,57 NA
65 133,45 133,45 144,41 NA
70 143,70 143,70 155,45 NA
75 153,95 153,95 166,67 NA
80 164,20 164,20 177,70 NA
85 174,45 174,45 188,22 NA
90 184,70 184,70 198,97 NA
95 194,95 194,95 210,21 NA
99 204,15 204,25 219,05 NA

The figure 6 illustrates the average makespans.

Scheduling High Multiplicity Coupled Tasks 57

50

45

40

35

30

25

Makespan

20

15

10

2 4 6 B 10 12 14 16 18 20

Number of tasks

Figure 6: Schedules makespan

4.2. Scheduling times

The second aspect on basis of which the algorithms were evaluated was time needed
to construct a schedule. The figure 7 illustrates the average scheduling time in mil-
liseconds per number of tasks.

58 W. Wojciechowicz, M. Gabay

2]
Ln

0 GA
’”
sansus GESA ':".”
_ 15 L
g 4
E ,
F 10 ey,
P
s
o~
St
5 -
L
'.l‘."'
e
I

e vpea— L

2 12 2 32 42 52 62 72 82

[T=]
(=]

Mumber of tasks

Figure 7: Scheduling times

As expected Greedy Algorithm, Orman and Potts’ Algorithm as well as our Block
Schedule Algorithm construct schedules in polynomial time. The BSA is slightly
faster than the remaining algorithms, but the difference is negligible and could be
mitigated by another implementation. The average computational times in seconds
are provided in Table 2.

Scheduling High Multiplicity Coupled Tasks 59

Table 2: Scheduling times [s]

n GBSA oP GA FSA

2 7.2x1077 2.8x 107 2.5x10~7 5.5 % 10~°
3 1.0x 106 6.2x10~7 5.4%x10~7 3.6x10°5
4 1.4%x 106 9.4x10~7 1.1x 106 2.8x10~°
5 4.9%x10°6 1.6 x 106 2.3x10~6 1.0x10°°
6 3.8x10~6 3.6x106 4.1%x10°6 8.6x 1073
7 5.2x10°6 8.0x10°6 7.7%x106 1.1x 1072
8 8.9x10~6 1.1x 105 1.0x 105 9.7x103
9 1.2x 1075 1.2x107° 1.5x107° 7.0x1073
11 35x%x1074 42x10°° 7.5x107° 7.7

12 4.7x 1075 5.0x 1075 7.0x107° 5.0

13 5.3x 1075 4.4%x10°° 6.8x10°° 3.6

14 5.5x%x 1075 5.5%x 1075 6.7x 1075 1.9

15 6.0x10° 7.4%x107° 9.0x 105 5.2x 1071
16 6.9x 1072 8.0x 105 9.4x105 2.4 %103
17 7.5%x 1075 1.0x 1074 1.2x 104 1.0 x 108
18 9.9x 105 1.1x 104 1.4%x 1074 4.9 x 102
19 1.5x 104 1.4x 104 1.5x 10~ 2.3 x 102
20 1.5x 1074 1.5x 1074 1.9x 1074 4.7x 10!
25 2.8x 104 2.8x10~4 3.3x10~4 NA

30 5.0x 104 5.0x 104 5.8x 104 NA

35 82x10~4 82x10~4 9.3x104 NA

40 1.2x 103 1.2x 1073 1.4x10°3 NA

45 1.8x 1073 1.8x 1073 2.0x1073 NA

50 2.5x1073 2.4%x1073 2.8 x 1073 NA

55 3.3x1073 3.3x1073 3.8x1073 NA

60 4.3%x1073 4.3%x1073 4.9x%x10°3 NA

65 5.5 %1073 5.5%x 1073 6.2x1073 NA

70 6.9x 1073 6.9x10°3 7.8x1073 NA

75 8.5x1073 8.5x1073 9.6x1073 NA

80 1.0 x 10~2 1.0 x 102 1.2x 1072 NA

85 1.2x 1072 1.2x 1072 1.4x 1072 NA

90 1.5x 1072 1.5x 1072 1.7 x 102 NA

95 1.7 x 1072 1.7 %1072 2.0x1072 NA

99 2.0x 1072 2.0x 102 2.2%x1072 NA

The average times for Full Search Algorithm are not as trivial as one might ex-
pected. Although the algorithm is exponential, the growth rate is not proportional
to the number of tasks. That is due to the fact, that the search space grows not only
with the number of tasks, but also number of idle slots in schedule (detailed expla-
nation is provided in 3.4). Since adding an idle is less effort-consuming than adding
an task, the task / idle ratio has also an impact on the average scheduling time. The
figure 8 illustrates the growth of FSA’s scheduling time in search space.

60 W. Wojciechowicz, M. Gabay

o
Sl .

Tt

6000

5000 -

Time [s]

i

U

1000

0 50 D00 000 100 00O 000 150000 Q0O 200000 000 250 0OOODD 300 ODD OO0

Searchspace

Figure 8: Full Search Algorithm - scheduling time vs search space

5. Conclusions

In this work the high multiplicity scheduling problem was considered. The authors
focused on case, where all tasks can be partitioned into small groups sharing the
same properties, thus Vi| L; | = L. The lower bound was provided and a new asymp-
totically optimal algorithm was proposed. The theoretical results was complemented
with computational experiments, where performance (in terms of both computational
times and the makespan) was compared with three other algorithms, namely Full
Search Algorithm, Greedy Algorithm and customised Orman and Potts algorithm.
The GBSA in most cases have found the optimal solution, while the computational
time was polynomial in number of tasks.

Acknowledgments

The authors would like to dedicate their work on the Scheduling High Multiplicity
Coupled Tasks to the memory of Gerd Finke. Professor Finke was a brilliant scien-
tist, a restless researcher and the most patient and benevolent professor. Over his
career, he contributed to numerous topics from theoretical mathematics to operations

Scheduling High Multiplicity Coupled Tasks 61

research and scheduling. He animated the Operations Research community for years
in Grenoble, in France and Europe and had friends and coauthors all over the world.
The second author is grateful to Professor Finke for introducing him to scientific re-
search (starting with the identical coupled tasks scheduling problem) and for giving
him the chance to work with such a great man and learn by his side.

The research has been partially supported by the Polish-French bilateral pro-
gramme POLONIUM (project no '8406/2011’) and by statutory funds of Poznan
University of Technology.

References

[1]

[10]

Blazewicz J., Ecker K., Kis T., Potts C., Tanas M., and Whitehead J. Scheduling
of coupled tasks with unit processing times. Journal of Scheduling, pages 1-9,
2010.

Blazewicz J., Ecker K., Pesch E., Schmidt G., and Weglarz J. Handbook of
Scheduling. From Theory to Applications. Springer Verlag, 2007.

Blazewicz J., Pawlak G., Tanas M., and Wojciechowicz W. New algorithms for
coupled tasks scheduling - A survey. RAIRO - Operations Research - Recherche
Opérationnelle, 46:335-353, 2012.

Brauner N., Crama Y., Grigoriev A., and van de Klundert J. A framework for
the complexity of high-multiplicity scheduling problems. Journal of combinatorial
optimization, 9(3):313-323, 2005.

Clifford J. and Posner M. Parallel machine scheduling with high multiplicity.
Mathematical programming, 89(3):359-383, 2001.

Graham R., Lawler E., Lenstra J., and Kan A. R. Optimization and approxima-
tion in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5:287-326, 1979.

Heinselman P., Preignitz D., anf T.M. Smith K. M., and Adams R. Rapid
sampling of severe storms by the national weather radar testbed phased array
radar. Weather Forecasting, 23:808-824, 2008.

Hochbaum D. and Shamir R. Strongly polynomial algorithms for the high mul-
tiplicity scheduling problem. Operations Research, pages 648-653, 1991.

Orman A. and Potts C. On the complexity of coupled-task scheduling. Discrete
Applied Mathematics, 72(1-2):141-154, 1997.

Shapiro R. Scheduling coupled tasks. Naval Research Logistics Quarterly,
27(3):489-498, 1980.

Received 29.10.2018, Accepted 24.01.2020

	Introduction
	Notation
	Problem formulation
	Lower bound

	Block Schedule Algorithm
	Worst case analysis

	Computational experiment
	Test environment
	`Algorithm 2' by Orman and Potts
	Greedy Algorithm
	Full Search Algorithm

	Computational results
	Makespan
	Scheduling times

	Conclusions

