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1 Introduction

Designing embedded vision systems involves various optimization problems as schedul-
ing image processing. The limited resources of the devices implies to reduce drastically
the computation time, the energy consumption and the memory cost. In (Hadj Salem et.
al. 2018), a image processing scheduling problem is modelized as a variant of the Job Se-
quencing and tool Switching Problem (SSP). Furthermore, first results was presented about
minimizing the makespan and minimizing the number of switches. However, the buffer min-
imization is only mentioned and remains unstudied. The SSP is a NP-hard problems that
arises from computer and manufacturing systems, see (Catanzaro et. al. 2015). This prob-
lem involves sequencing a finite set of jobs on a single machine and loading restricted subset
of tools to a magazine with a limited capacity such that the total number of tool switches
is kept to a minimum. In our context, the magazine size is the available memory and the
number of switch correspond to the energy consumption.

In this paper, we tackle the buffer minimization as a new extension of the SSP. This di-
mensioning problem is called Prefetch-Constrained Minimum Buffers Problem (P-C-MBP).
Our study provides first results, an ILP modelization and a CP approach. We compare these
two methods on instances from the literature of SSP and real-world ones. The preliminary
results are quite promising and show that the CP is performs better than the ILP.

2 The P-C-MBP Statement

The P-C-MBP involves scheduling a number of output tiles (jobs) on a single machine,
under a limited number of prefetches (number of tool switches), such that the resulting
number of buffers (magazine slots) is kept to a minimum. This can be formalized as follows:
let a P-C-MBP instance be represented by a 4-tuple, I = (X,Y,Ry, N) where:

– X = {1, . . . , X} is the set of X input tiles to be prefetched from the external memory
to the internal buffers;

– Y = {1, . . . , Y } is a set of Y independent non-preemptive output tiles (also called
tasks) to be computed;

– (Ry)y∈Y is the X-dimensional column vector, where Ry ⊆ X , which defines the set of
required input tiles (called prerequisites or tools). These Ry tiles have to be prefetched
from the external memory and must be present in the buffers during the whole corre-
sponding computation step.
In the same way, we denote by (Rx)x∈X the Y -dimensional row vector, where Rx ⊆ Y,
which defines the set of used output tiles for each input tile x.
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– N is an integer non-negative number of prefetches, i.e., each input tile can be loaded
more than one time. It is assumed that X <

∑
y∈Y
|Ry|, otherwise the problem is trivial.

The solution to such an instance is a sequence y1, . . . , yY determining the order in which
the output tiles are computed (executed), and a sequence (x, z)1, . . . , (x, z)N of prefetch
configurations determining which input tiles are pretched (loaded) in which buffers (maga-
zine slots) at a certain time. The function objective of P-C-MBP is to minimize the number
of buffers, denoted by Z.

We proved that the P-C-BMP problem is NP-hard by showing that if an algorithm
exists for solving the P-C-BMP, it can be called iteratively a polynomial number of times
to solve the SSP problem. As a consequence, if P-C-BMP was polynomial, so would SSP.

3 A position-based Integer Linear Programming

Due to the relation between the P-C-BMP and the SSP, we can draw inspiration from
the existing SSP’s ILPs. In fact, (Catanzaro et. al. 2015) proposed and compared several
ILPs with different categories. In our study, we focused on a position-based ILP, which is
very similar to the standard one given by (Tang and Denardo 1987), to which strengthening
equalities/inequalities are added.

For all y ∈ Y, j ∈ Y and x ∈ X , we define three sets of binary variables: cyj is equal
to 1 if output tile y is computed at position j and 0 otherwise. Similarly, exj equal to 1 if
input tile x exists in buffer at position j (is already loaded) and 0 otherwise. Finally, pxj
is equal to 1if input tile x has just been prefetched at position j and 0 if it was already
loaded. Then, a valid formulation for the P-C-BMP is the following:

min Z

Subject to ∑
j∈Y

cyj = 1,∀ y ∈ Y (1)

∑
y∈Y

cyj = 1,∀ j ∈ Y (2)

∑
x∈Ry

exj ≥ |Ry| ∗ cyj ,∀ y ∈ Y, j ∈ Y (3)

px1 = ex1,∀ x ∈ X (4)
pxj ≤ exj ,∀ x ∈ X , j ∈ Y\{1} (5)

pxj ≤ 1− exj−1,∀ x ∈ X , j ∈ Y\{1} (6)
pxj ≥ exj − exj−1,∀ x ∈ X , j ∈ Y\{1} (7)∑

x∈X

∑
j∈Y

pxj ≤ N (8)

∑
x∈X

∑
j∈Y

pxj ≥ |X | (9)

∑
j∈Y

pxj ≥ 1,∀ x ∈ X (10)

∑
j∈Y

pxj ≤ |Rx|,∀ x ∈ X (11)

Z ≥
∑
x∈X

exj ,∀ j ∈ Y (12)

Z ≥ max
y∈Y
|Ry|,∀ y ∈ Y (13)

Z ≤ |X | (14)
cyj ∈ {0, 1},∀ y ∈ Y, j ∈ Y (15)

exj , pxj ∈ {0, 1},∀ x ∈ X , j ∈ Y (16)

The objective function minimizes the number of buffers defined by Z, under constraints (1)
— (16). Constraints (1) — (2) are a set of standard assignment constraints. Constraints (3)
are the requirement constraints which define the relation between prefetches and compu-
tations steps. Similarly, constraints (4) — (7) define the relation between the loading and
prefetching of input tiles. Constraint sets (8) — (9) and (10) — (11) give bounds on
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prefetches number and on prefetches number for each input tile x, ∀x ∈ X , respectively. In
the same way, constraints (12) compute a lower bound of Z in relation to the prefetches
number for each computation position j,∀j ∈ Y, while constraints (13) — (14) give an
upper/lower bounds on buffers number. Finally, constraints (15) — (16) set the ranges of
the variables.

To strengthen the ILP given before, we provide two valid inequalities (17) — (18), in
which constraint (17) ensures that the first computation must takes place during the first
half of the possible position, while constraints (18) gives a lower bound on the number of
times in which input tiles must exist in the buffer.

|Y|/2∑
j=1

c1j = 1 (17)

∑
x∈X

∑
j∈Y

exj ≥
∑
y∈Y
|Ry| (18)

4 A Constraint Programming Approach

To the best of our knowledge, it appears that constraint programming paradigm (CP)
has been little considered in the SSP’s literature. Thus, we introduce here a new CP model
for the P-C-MBP using concepts present in IBM ILOG CP Optimizer.

We first define two sets of variables as follows:

– Iy: the interval variable for each output tile (task) y ∈ Y.
– Ix,j : the interval variable for each input tile (prerequisite) x ∈ X , and for each interval

number j ∈ {1, . . . , jmax}, where jmax = N−|X |+1. If j = 1 this variable is mandatory,
while for j > 0 the interval is optional. This means that an input tile x is loaded at
least once, and possibly more.

We also use the following Cumul functions:

– nbXScheduled =
∑

x∈X ,j∈{1,...,jmax}

StepAtStart(Ix,j , 1);

– nbOverlap =
∑

x∈X ,j∈{1,...,jmax}

Pulse(Ix,j , 1);

– necessaryTiles [y] =
∑

x∈Ry,j∈{1,...,jmax}

Pulse(Ix,j , 1),∀y ∈ Y.

The objective is to minimize the buffers number Z, subject to the following constraints:

noOverlap(Iy) ∀ y ∈ Y (19)
nbOverlap(Ix,j) ∀ x ∈ X ,∀j ∈ {1, .., jmax} (20)

nbXScheduled ≤ N (21)
nbOverlap ≤ Z (22)

alwaysIn(necessaryTiles[y], Iy, |Ry|, |Ry|) ∀y ∈ Y (23)

5 Computational Experiments

To evaluate the different approaches, we present first numerical results. All experiments
were performed on a Intel Core i5 processor, 2.67 GHz machine, equipped with 4 GB of
RAM and operating system Windows. The ILP is solved by CPLEX and the CP approach
is implemented using IBM ILOG CP Optimizer. The CPU time limit for each run on each
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problem instance is 300 seconds. The number of prefetches N is set to |X |, which is its
smallest possible value.

Experiments were made using two kind of data-sets possessing different characteristics.
We first considered a collection of 16 data-sets for the well-known SSP, downloadable at
http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm. We then considered a set of 10 bench-
marks from real-life non-linear image processing kernels for MMOpt software already used
in (Mancini and Rousseau 2012) and (Hadj Salem et. al. 2018). These instances are re-
duced by using a dominance property, which removes each output tile that needs a subset
of input tiles, which is already used at least once by another output tile.

In our preliminary tests on SSP data-sets (instances goes from size 9× 10 to 40× 60),
both ILP and CP models were able to optimally solve within the time limit only instances
with (X,Y ) under (15, 10) input/output tiles. In contrast, for the other instances, they
give similar results, except for few ones for which the CP is a bit better.
In the case of bigger instances of MMOpt (greater than 64×64 input/output tiles), Table 1
gives the detailed numerical results of ILP and CP models. In this table, the Gap(%) is
computed as follow: 100 ∗ (ZILP − ZCP)/ZCP.

Table 1. Numerical results for ILP & CP using MMOpt instances

Instance X Y ZILP timeILP ZCP timeCP Gap(%)
test_2D_0 256 64 4 101.39 4 0.09 0
test_2D_1 64 256 1 2,5 1 0,11 0
test_polaire_0 146 90 146 300 68 300 114.7
test_polaire_1 80 60 80 – 46 – 73.91
test_polaire_2 244 82 244 – 142 – 71.83
test_fisheye_0 176 103 176 – 109 – 61.46
test_fisheye_1 224 103 224 – 139 – 61.15
test_fisheye_2 360 103 360 – 230 – 56.52
test_fd_0 429 300 429 – 349 – 22.92
test_fd_1 2272 206 2272 – 2081 – 9.17

As illustrated in Table 1, we can see that both ILP and CP models can solve only the
first two instances. For the rest, the CP model is definitely better than ILP and provide
relatively good upper bounds.

Overall, ILP model fails to find good bounds, specifically in the case of MMOpt in-
stances. In the other hand, CP model seems to be able to handle well this kind of problem.
Nonetheless, extensive tests, some improvements and comparison with other mat-heuristics
should be considered.
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