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Abstract. In this article, we address the classical One-Dimensional Bin
Packing Problem (1D-BPP), an NP-hard combinatorial optimization
problem. We propose a new formulation of integer linear programming for
the problem, which reduces the search space compared to those described
in the literature, as well as two families of cutting planes. Computational
experiments are conducted on the data-set found in BPPLib and the
results show that it is possible to solve more instances and to decrease
the computation time by using our new formulation.
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1 Introduction

The one-dimensional Bin Packing Problem, noted 1D-BPP from here on, is a
well studied combinatorial optimization problem, with a rich literature detailing
different approaches for its solution. It can be informally defined as follows:
n items have to be packed each into one of n available bins. Each item i has
a non-negative weight wi (i = 1, . . . , n) and all bins have the same positive
integer capacity C. The objective is to find a packing with a minimum number
of bins such that the total weights of the items in each bin does not exceed the
capacity C.

We consider the following example, using a set of bins with capacity C = 6, a
set of items i = 1, 2, . . . , 8, with weights wi (given in Table 1). A feasible solution
as well as an optimal solution, respectively, with 8 bins and 4 bins, are given in
Fig. 1.

A central theme for this study is the computational effect of the removal of
symmetric solutions. To the best of our knowledge, no numerical studies have
been published to ascertain the performance gain of symmetry breaking con-
straints for 1D-BPP.
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Table 1. An example of data, with 8 items

Items i 1 2 3 4 5 6 7 8

Weights wi 2 2 5 1 2 3 2 4

1

b1

2

b2

3

b3

4

b4

5

b5

6

b6

7

b7

8

b8

A feasible solution, with 8 bins

6

2

4

b1

1

5

b2

3

b3

7

8

b4

An optimal solution, with 4 bins

Fig. 1. Solutions for the 1D-BPP

This article presents our study of a new symmetry-less formulation for 1D-
BPP without and with adding cutting planes, and a comparative study of the
performances of these two kinds of approaches.

The remainder of this paper is structured as follows. In the next section,
we briefly review the exact solution methods for 1D-BPP which rely on integer
linear programming. In Sect. 3, we present the new symmetry-less ILP formula-
tion. Sect. 4 is devoted to cutting planes for that formulation. Finally, in Sect. 5,
we present computational results obtained by running the proposed formula-
tions on a number of benchmark instances for the 1D-BPP and discuss their
performances. Conclusion and perspectives follow in Sect. 6.

2 Previous Work on ILP Formulations for 1D-BPP

2.1 Assignment-Based Models

The compact ILP formulation for 1D-BPP, which Martello and Toth attribute
to Kantorovich (see [8]), is the following. Let yj be a decision variable equal to 1
if bin j is used in the packing, and 0 otherwise, for all j ∈ {1, . . . , n}. Similarly,
let xij be a decision variable equal to 1 if item i is packed into bin j, and 0
otherwise, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , n}.

The full model, hereafter denoted as ILP-0, is:

ILP − 0 : min
n∑

j=1

yj (1)
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n∑

j=1

xij = 1 ∀ i ∈ {1, . . . , n} (2)

s.t.






n∑

i=1

wi ∗ xij ≤ C ∗ yj ∀ j ∈ {1, . . . , n} (3)

xij ∈ {0, 1} ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , n} (4)
yj ∈ {0, 1} ∀ j ∈ {1, . . . , n} (5)

In this formulation, constraints (2) ensure that each item is packed into
exactly one bin, constraints (3) impose that the capacity of any used bin is not
exceeded and both constraints (4) and (5) define the variable domains.

An obvious lower bound for the 1D-BPP, computable in O(n) time, is the
optimal value of the continuous relaxation of ILP-0. This lower bound, usually
denoted L1 in the literature, can be computed by:

L1 =

⌈
n∑

j=1

wi/C

⌉
(6)

It is easily seen that the worst-case performance ratio of L1 is equal to 1
2 (see,

e.g., [9]).

2.2 Other Methods for Optimally Solving the 1D-BPP

Among other methods for solving 1D-BPP exactly, we can find the pseudo-
polynomial ILP formulations coming from a graph representation of the solution
space and the branching algorithms. An overview of these methods is given in
Table 2. More detailed information is provided below.

Table 2. An overview of exact solutions for the 1D-BPP: pseudo-polynomial models
& branching algorithms

Methods Type Reference Supported ILP solver

MTP B&B Martello and Toth (1990) Not required

BISON B&B Scholl et al. (1997) Not required

CVRPSEP B&B Lysgaard et al. (2004) Not required

SCIP-BP B&P Ryan and Foster (1981) SCIPa

ONECUT ILP Dyckhoff (1981) CPLEXb

DPFLOW ILP Cambazard and O’Sullivan (2010) CPLEX, SCIP

SchedILP ILP Arbib et al. (2017) CPLEX
aSCIP: Solving Constraint Integer Programs
bCPLEX: https://www.ibm.com/analytics/cplex-optimizer

As shown in Table 2, the first four rows describe a set of four enumer-
ation algorithms. Three of them are branch-and-bound algorithms proposed

https://www.ibm.com/analytics/cplex-optimizer
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by [8,11] and [7], respectively. The last one is a branch-and-price algorithm
in [10]. In the same way, the last two rows give the two algorithms based on
a pseudo-polynomial formulations solved through an ILP solver (like CPLEX,
SCIP, GUROBI). The first one uses the model proposed by [5]. The second
one uses the model proposed by [2]. The third one uses the model proposed
by [1]. According to the results discussed in [3], among the approaches based on
pseudo-polynomial models, the DPFLOW has mainly theoretical interest, but
has the advantage of being easily understandable. In the same way, among the
enumeration algorithms, the SCIP-BP is effective only on small-size instances
(n ≤ 100).

Computer codes of these methods can be found in the BPPLIB, a library
dedicated to Bin Packing and Cutting Stock Problems, available at
http://or.dei.unibo.it/library/bpplib [4].

3 A Symmetry-less ILP for the 1D-BPP

The study of the topic of symmetry breaking constraints for the classical for-
mulation ILP-0 has led us to the consideration of an alternative encoding, and
thus an alternate formulation for the 1D-BPP.

Instead of having variables encoding the membership of items in bins, this
alternate encoding directly encodes a partition of the set of items. Indeed, a
solution with k bins to an instance of the 1D-BPP can be seen as a partition of
the n items into k parts. The actual parts of the partition are referenced by their
smallest-indexed item. Only one set of doubly-indexed variables is necessary for
this: in contrast to the ILP-0 formulation, no variable is used to represent the
bins.

More precisely, the variable zij is set to 1 if the lowest-indexed item sharing
the same bin as item i is item j, and 0 otherwise, for all i ∈ {1, . . . , n} and j ∈
{1, . . . , i}. Then zii = 1 if and only if i is the smallest-indexed item in its bin. One
can think of bins as labeled by their smallest-indexed item. Hence, counting bins
can be achieved by summing the diagonal variables zjj . The set of constraints
for this formulation includes all constraints of the classical formulation; only yj
has to be replaced by zjj . We denote by ILP-1 the resulting formulation.

ILP − 1 : min
n∑

j=1

zjj (7)

i∑

j=1

zij = 1 ∀ i ∈ {1, . . . , n} (8)

s.t.






n∑

i=j

wi ∗ zij ≤ C ∗ zjj ∀ j ∈ {1, . . . , n} (9)

zij ∈ {0, 1} ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , i} (10)

http://or.dei.unibo.it/library/bpplib
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We now argue that this formulation admits no symmetry at all.

Theorem 1. There is a one-to-one correspondence between the encodings of
feasible solutions for ILP-1, and partitions of the items.

Proof. Given an encoding z = (zij)i,j of a feasible solution, we can recover the
parts of the associated partition in this manner: there are as many parts as
indices j for which zjj = 1 and the set of these parts is Sj = {i ∈ {j, . . . , n} |
zij = 1}.
Given a partition P = (Sj)j∈I of {1, . . . , n}, the associated encoding is the one
described in an earlier part of this section. !

Using the same example given in Sect. 1, the optimal solution to ILP-0 given
in Fig. 1 can be encoded as a solution to the formulation ILP-1, as shown in
Fig. 2. In this solution, items 5 and 1 are packed in bin 1; items 2, 4 and 6 are
packed in bin 2; item 3 is packed in bin 3 and finally items 7 and 8 are packed
in bin 7.





1 2 3 4 5 6 7 8
1 1 × × × × × × ×
2 0 1 × × × × × ×
3 0 0 1 × × × × ×
4 0 1 0 0 × × × ×
5 1 0 0 0 0 × × ×
6 0 1 0 0 0 0 × ×
7 0 0 0 0 0 0 1 ×
8 0 0 0 0 0 0 1 0





Fig. 2. A corresponding encoding for the optimal solution to ILP-0 using ILP-1

Since the ILP-1 admits no symmetry, one can expect that the solution of
ILP-1 instances has better performance than equivalent ILP-0 instances of
1D-BPP. An empirical evaluation of that statement is actually part of the study
that we report on in Sect. 5.

Another quality of formulation ILP-1 is that it is a strict ILP formulation,
and it is compact. Hence, wherever an ILP formulation P includes a BPP-like set
of constraints, akin to those found in ILP-0, these constraints can be replaced by
those in ILP-1 while retaining other constraints, resulting in a new formation P ′.
Wherever ILP-1 improves upon ILP-0, such a reformulated P ′ may supposedly
improve upon the original P .

This quality is not shared by other 1D-BPP reformulations as ILP such as are
the state of the art today, since they depart further from the original encoding
ILP-0, and also have a number of inequalities that is not polynomially bounded
in the number of items.
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4 Cutting Plane Constraints for the ILP-1 Formulation

We now introduce two families of constraints:

zjk + zij ≤ 1 ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , i − 1}, k ∈ {1, . . . , j − 1} (C1)

j−1∑

k=1

zjk + zij ≤ 1 ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , i − 1} (C2)

We will now prove in several steps that these two sets of inequalities are
actually cutting planes for the ILP-1 formulation.

Proposition 1. The inequalities (C2) are valid for the ILP-1 formulation.

Proof. Consider a feasible solution x for ILP-1, and let i in {1, . . . , n}, and k in
{i+ 1, . . . , n}. We distinguish two cases according to the value of zij .

– First we consider the case zij = 0. Then
j−1∑

k=1

zjk ≤
j∑

k=1

zjk = 1, as a

consequence of constraint (8). So
j−1∑

k=1

zjk ≤ 1, and also
j−1∑

k=1

zjk + zij ≤ 1.

– In the case where zij = 1, we will first prove that zjk = 0 for all k < j.
Since zij = 1, the constraint (10) forces zjj to equal 1. But then, according

to constraint (9), all the zjk for k < j must equal 0. So
j−1∑

k=1

zjk = 0, and

hence
j−1∑

k=1

zjk + zij ≤ 1.
!

Proposition 2. Let i be in {1, . . . , n}, j be in {1, . . . , i − 1}, and k be in
{1, . . . , j − 1}. The inequality (C2) is stronger than the inequality (C1), when
considered as reinforcements to the formulation ILP-1.

Proof. In order to prove the statement, we will derive inequality (C1) from (C2).
Assume (C2) holds, then:

zjk + zij ≤
j−1∑

l=1

zjl + zij ≤ 1

where the first inequality holds, because in ILP-1, all variables are assumed to
be positive. !

Proposition 3. The inequality (C1) is a valid inequality for the ILP-1 formu-
lation.

Proof. This is the consequence of Propositions 1 and 2. !
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Proposition 4. There exist fractional solutions of ILP-1 that are separated by
inequalities (C1) and (C2).

Proof. We need to consider an instance of 1D-BPP such that there exists α with
1/2 < α < 1 and w1 + αw2 ≤ C.

Then the following is a feasible solution of the relaxation of ILP-1: set z21 =
z32 = α; z22 = z33 = 1− α; zii = 1 for all i in {1, 4, 5, . . . , n}; and zij = 0 for all
other variables of the formulation.

This solution is represented in Fig. 3. Please note that the meaningful values
all lie in the first three rows.





1 2 3 4 . . . n

1 1 × × × . . . ×
2 α 1 − α × × . . . ×
3 0 α 1 − α × . . . ×
4 0 0 0 1 . . . ×
...

...
...

...
...

. . . ×
n 0 0 . . . . . . 0 1





Fig. 3. A feasible solution to the relaxation of ILP-1 that is cut by (C1)

Equations (8) are obviously satisfied by z. The inequality (8) holds because
of the hypothesis we made for the case j = 1; because (1 − α)w2 + αw3 ≤
max(w2, w3) ≤ C for the case j = 2; and trivially holds for all the other cases.

But the inequalities (C1) will cut that point, namely z does not satisfy z21+
z32 ≤ 1, since α + α = 2α > 1.

Since the inequalities (C2) are stronger than (C1), these too are cuts
for ILP-1. !

The number of inequalities in (C1) is O(n3), while it is O(n2) for (C2). Since
(C2) inequalities are both much fewer and stronger than (C1), it seems that their
use for performance improvement should be favored over (C1). In Section 5, we
study empirically the performance benefits of adding one or the other of these
families of inequalities.

5 Computational Experiments and Discussion

In this section, we analyze the performance of the new formulation ILP-1 with-
out and with adding cutting planes. Our experiments were motivated by the
following goals: comparing the number of optimally solved instances and the
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run-time performances of our formulation ILP-1 with the standard formulation
ILP-0 and determining the benefits obtained by including the cutting plane
inequalities described in Sect. 4.

5.1 Setup

We implemented formulations ILP-0, ILP-1 and all its variants in Gurobi Opti-
mizer 7.5.2 using Python 3.6 (https://www.gurobi.com/), running on a PC run-
ning Linux Debian 8.0 (“Jessy”). It has a Core 2 Duo CPU running at 3 GHz,
and 4 GB of RAM. All executions where run within a single thread; only one
core of the CPU was used.

5.2 Data-Sets

In order to test the performances of formulations ILP-0, ILP-1 and ILP-1+Ck
(k ∈ {1, 2}), we considered the data-sets from the literature of the 1D-BPP,
referred to in the following as the BPPLIB and described in [4]. All instances are
downloaded from the web page http://or.dei.unibo.it/library/bpplib. The main
characteristics of the used data-sets are summarized in Table 3. Each data-set
contains a number of tested instances (column #) of the 1D-BPP, characterized
by having the same number of items (column n) and the same bin capacity (col-
umn C). Detailed information about the structure of each of these benchmarks
can be found in [4] or in the BPPLIB web page.

Table 3. Main characteristics of the 9 used data-sets from the literature of the 1D-BPP
(provided by the BPPLIB) considered in the experiments

Data-set Ref. Parameters of the instances

#inst. n C

Falkenauer T [6] 40 {60, 120} 1000

Falkenauer U [6] 40 {120, 250} 150

Scholl 1 [11] 360 {50, 100} {100, 120, 150}
Scholl 2 [11] 240 {50, 100} 1000

Scholl 3 [11] 10 200 100 000

Schwerin 1 [12] 100 100 1000

Schwerin 2 [12] 100 120 1000

Wascher [13] 17 [57 − 239] 10 000

Randomly generated [3] 240 {50, 100} {50, 75, 100, 120,125,
150, 200, 300,
400, 500, 750, 1000}

https://www.gurobi.com/
http://or.dei.unibo.it/library/bpplib
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5.3 Comparison of the ILP Models

In order to evaluate the formulations, ILP-0, ILP-1 and ILP-1+Ck for k in {1, 2},
we first compare its size complexity, which indicates how large a problem is in
terms of binary variables and constraints as a function of n (the number of bins
as well as of items). We note that in these formulations no Big-M constraints
are considered.

The ILP-1 and ILP-1+Ck for k in {1, 2} formulations have a smaller number
of binary variables (n2) than the ILP-0 (n2+n). On the other hand, both ILP-0
and ILP-1 are generally equivalent. They have the same order of number of
constraints: O(n). In contrast, formulation ILP-1+C1 has the largest number
of constraint with an order of O(n3). Hence, the strengthening of formulation
ILP-1 by cutting plane constraints seems to be more favorable for effectively
reducing the search tree.

5.4 Computational Results: Analysis of the Gap and the Solution
Times

In this section, we analyze our results under two main axes:
– Axis 1: ILP-1vs. ILP-0: our goal is to assess the performance of the new

symmetry-less ILP-1 against the standard ILP-0.
– Axis 2: ILP-1+Ck for kin {1, 2}vs. ILP-1: our goal is to evaluate, with

respect to ILP-1, the benefits obtained by including cutting plane inequal-
ities.

Axis 1: ILP-1 vs. ILP-0. Table 4 gives the number of instances optimally
solved in one CPU minute by the formulation ILP-0, respectively the formulation
ILP-1. From these results, we can make the following observations:

– Formulation ILP-1 generally performs better than the formulation ILP-0,
both when activating and deactivating the Gurobi Optimizer proprietary
cuts. It was able to optimally solve within the time limit (60 s) in total
804 and 908 instances (in 5.7 and 4.5 s on average), respectively. Yet, the
formulation ILP-0 was able to optimally solve within the time limit and
in total only 597 and 584 instances (in 11 and 7.6 seconds on average),
respectively.

– Formulation ILP-1 was able to solve within the time limit all the instances
in the data-sets FalkT(60,1000), FalkT(120,150) and Scho1(50,150), either
when activating or deactivating Gurobi proprietary cuts (see Table 4).
In contrast, the formulation ILP-0 was unable to solve any instance in
the data-set FalkT(60,1000) and able to optimally solve only 8 instances in
the data-set FalkT(120,150) and 47 instances in the data-set Scho1(50,150)

(in 30 or 16.8 and 1.7 or 1 s on average, respectively) when activating or
deactivating the Gurobi proprietary cuts.

– Formulation ILP-0 provides the highest number of optimally solved
instances only in both Scho2(100,1000) and Schw1(100,1000) data-sets (when
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activating and deactivating the Gurobi proprietary cuts) and in the data-
set Schw2(120,1000) (when deactivating the Gurobi proprietary cuts).
In addition, it was able to optimally solve a single instance in the data-set
Wae([57−239],10000).

Table 4. Number of instances solved in less than one minute (average CPU time in
seconds), for formulations ILP-0 and ILP-1

Data-set #inst. ILP-0 ILP-1
No GC With GC No GC With GC

FalkT(60,1000) 20 0 (60.0) 0 (60.0) 20 (0.9) 20 (1.3)
FalkT(120,1000) 20 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0)
FalkU(120,150) 20 8 (30.0) 8 (16.8) 16 (8.3) 20 (6.8)
FalkU(250,150) 20 0 (60.0) - (60.0) 9 (12.7) - (60.0)
Scho1(50,100) 60 18 (1.3) 19 (0.8) 48 (0.2) 59 (0.04)
Scho1(50,120) 60 17 (2.2) 19 (2.9) 45 (0.1) 59 (0.1)
Scho1(50,150) 60 47 (1.7) 47 (1.0) 54 (0.7) 60 (0.1)
Scho1(100,100) 60 8 (12.9) 7 (4.3) 42 (0.3) 59 (0.3)
Scho1(100,120) 60 3 (15.0) 6 (23.4) 42 (2.8) 55 (1.4)
Scho1(100,150) 60 29 (11.5) 17 (11.3) 50 (6.7) 56 (2.7)
Scho2(50,1000) 120 111 (0.7) 113 (0.9) 112 (1.0) 118 (1.2)
Scho2(100,1000) 120 103 (1.5) 101 (1.7) 94 (3.0) 97 (4.6)
Scho3(200,100000) 10 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0)
Schw1(100,1000) 100 52 (8.4) 48 (10.3) 39 (18.8) 32 (16.9)
Schw2(120,1000) 100 49 (8.8) 38 (9.8) 40 (20.3) 39 (20.9)
Wae([57−239],10000) 10 1 (40.6) - (60.0) 0 (60.0) - (60.0)
RG 240 151 (8.1) 161 (8.1) 193 (4.4) 234 (2.0)
Total (average) 1140 597 (11.0) 584 (7.6) 804 (5.7) 908 (4.5)

Table 4 confirms the clear superiority of the formulation ILP-1 over the
formulation ILP-0. This means that the new symmetry-less ILP for the 1D-BPP
performs better.

Axis 2: ILP-1+Ck for k in {1, 2} vs. ILP-1. Table 5 gives the number of
instances solved in one CPU minute, by, respectively, the ILP-1 and ILP-1+Ck
for k in {1, 2} formulations. From these results, we can see that both formulations
ILP-1+Ck for k in {1, 2} generally have a similar performance, in particular they
perform better than the formulation ILP-1, both when activating and deactivat-
ing the Gurobi Optimizer proprietary cuts. They were able to optimally solve
within the time limit and when activating the Gurobi proprietary cuts in total
928 and 927 instances (in 6.5 and 5.1 s on average), respectively. Yet, the for-
mulation ILP-1 was able to optimally solve within the time limit and in total
only 908 instances in 4.5 s on average.

In contrast, the formulation ILP-1+C2 performs clearly better, when deacti-
vating the Gurobi proprietary cuts, than the other two ILPs. In fact, it was able
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to solve within the time limit in total 860 instances (in 5 s on average). Yet,
both formulations ILP-1 and ILP-1+C1 were able to optimally solve within the
time limit and in total only 804 and 835 instances (in 5.7 and 4.2 s on average),
respectively. This means that the formulation ILP-1+C1 performs also better
than the formulation ILP-1.

Table 5. Number of instances solved in less than one minute (average CPU time in
seconds), for formulations ILP-1 and ILP-1+Ck for k in {1, 2}

Data-set #inst. ILP-1 ILP-1+C1 ILP-1+C2
No GC With GC No GC With GC No GC With GC

FalkT(60,1000) 20 20 (0.9) 20 (1.3) 20 (2.0) 20 (2.7) 20 (1.9) 20 (2.5)
FalkT(120,1000) 20 0 (60.0) 0 (60.0) 0 (60.0) 1 (37.9) 0 (60.0) 0 (60.0)
FalkU(120,150) 20 16 (8.3) 20 (6.8) 19 (9.4) 20 (7.6) 18 (9.2) 20 (6.8)
FalkU(250,150) 20 9 (12.7) - (60.0) - (60.0) - (60.0) - (60.0) - (60.0)
Scho1(50,100) 60 48 (0.2) 59 (0.04) 54 (0.6) 60 (0.1) 55 (0.5) 60 (0.07)
Scho1(50,120) 60 45 (0.1) 59 (0.1) 50 (0.1) 60 (0.2) 54 (0.2) 60 (0.1)
Scho1(50,150) 60 54 (0.7) 60 (0.1) 56 (1.2) 60 (0.6) 57 (0.6) 60 (0.7)
Scho1(100,100) 60 42 (0.3) 59 (0.3) 45 (0.6) 59 (0.8) 47 (0.7) 59 (0.8)
Scho1(100,120) 60 42 (2.8) 55 (1.4) 43 (1.3) 57 (1.7) 45 (1.8) 56 (1.0)
Scho1(100,150) 60 50 (6.7) 56 (2.7) 50 (4.0) 57 (4.2) 52 (4.5) 55 (2.3)
Scho2(50,1000) 120 112 (1.0) 118 (1.2) 113 (1.0) 118 (0.4) 116 (1.6) 118 (0.6)
Scho2(100,1000) 120 94 (3.0) 97 (4.6) 96 (3.2) 99 (3.6) 95 (3.3) 104 (2.9)
Scho3(200,100000) 10 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0)
Schw1(100,1000) 100 39 (18.8) 32 (16.9) 40 (12.4) 40 (13.2) 48 (18.4) 43 (21.7)
Schw2(120,1000) 100 40 (20.3) 39 (20.9) 36 (13.9) 40 (16.8) 37 (18.2) 34 (24.7)
Wae([57−239],10000) 10 0 (60.0) - (60.0) - (60.0) - (60.0) - (60.0) - (60.0)
RG 240 193 (4.4) 234 (2.0) 213 (4.5) 237 (1.8) 216 (3.8) 238 (1.8)
Total (average) 1140 804 (5.7) 908 (4.5) 835 (4.2) 928 (6.5) 860 (5.0) 927 (5.1)

Table 5 clearly confirms the benefits obtained by including cutting plane
inequalities to the new symmetry-less ILP formulation ILP-1. This means
that formulations ILP-1+Ck for k in {1, 2} were slightly better than the new
symmetry-less ILP formulation ILP-1.

6 Conclusion and Future Work

We have presented a study of how a new symmetry-less formulation can improve
the resolution performance of Integer Linear Formulations for the 1-dimensional
bin packing problem. Our study includes a folklore symmetry-less formulation
and 2 series of cuts for this formulation. This folklore formulation encodes par-
titions directly, removing the need for variables to encode the use of bins.

One exciting perspective of this work would be to investigate the impact of
reusing the concept of that folklore formulation, i.e. encoding partitions of sets,
on the solution of other optimization problem ILP formulations, i.e. Bin Packing
with Conflicts, Cutting Stock Problem, etc.
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