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Abstract

The paper proposes a method for structured state-feedback controllers design

for linear time-invariant systems. A necessary and sufficient condition for struc-

tured state-feedback stabilizability of linear systems, making an appeal to the

linear-quadratic (LQ) regulator theory, is first proposed. The latter is presented

in the form of a nonlinear matrix equation. Then, it is recast as a nonsmooth

unconstrained equation using projection onto the positive semi-definite matrices

cone. Thereby, a nonsmooth Newton’s iterative algorithm, based on the Clarke

generalized Jacobian of said projection, is proposed. This method has a guaran-

teed local convergence. Finally, numerical examples illustrate the effectiveness

of the proposed method.

Keywords: Structured control, LQ theory, Clarke generalized Jacobian,

Nonsmooth Newton.

1. Introduction

State feedback control subject to structural constraints achieving asymptotic

stability is a topic that, although it has been studied extensively ([1], [2], [3], [4],

[5], [6], [7], [8], [9] and references therein) still remains a challenge to the control

community. It is still a problem of major importance from a practical point5

of view [10]. This prominent control problem has many applications, including
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sparse feedback design, decentralized control, distributed and networked control

systems, overlapping control, etc.

It is customary to obtain stabilizing controllers for a wide class of systems

by solving convex optimization problems under (standard or extended/dilated)10

Linear Matrix Inequality (LMI) constraints [11], [12]. However, when a struc-

tured set of interconnected subsystems is considered the design requires the

introduction of information constraints leading to non-convex and even NP-

hard problems [13]. The key drawback in the context of the LMI approach lies

in the fact that the feedback gain matrix cannot be explicitly isolated (see [2],15

[14] and references therein). LMI relaxations can then be considered in this

instance. From most to least conservative, these methods hinge on imposing

a specific structure either directly to the Lyapunov matrix or indirectly to a

slack matrix variable [10]. These computationally efficient methods, however,

are often conservative and may even not lead to feasible designs.20

Another approach consists in enforcing the controller gain to belong to a par-

ticular set, such as quadratically invariant sets with respect to the considered

system, ensuring thus the convexity of the problem [15], [16]. This approach

concerns only some particular classes of system-structure pairs. Furthermore,

the separation of the Lyapunov matrix and the controller gain can also be en-25

sured by alternating projections or reflections like optimization algorithms (see

for instance [17]). Such splitting methods, frequently employed for finding ze-

ros of sums of maximally monotone operators have an outstanding success in

the context of closed convex non-empty sets. However, when one of the sets is

non-convex their convergence is only observed in practice [18].30

There is, however, a different line of research which makes an appeal to

the LQ control theory [19], [20], [21]. This approach stems from the key idea

that every stabilizing static state feedback minimizes some quadratic cost func-

tional. The state feedback can be related to some specific algebraic Riccati

equations [22], [23] linked to LQ cost functionals with a cross weighting term.35

Taking advantage of these well-known results and the Finsler’s lemma [24], the

present paper proposes a new necessary and sufficient condition for structured
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feedback stabilizability of linear systems. The latter, presented in the form of

a nonlinear matrix equation, is solved directly and efficiently through a non-

smooth Newton’s iterative method. In more detail, the nonlinear equation is a40

matrix-valued function in a positive definite matrix. Hence, a projection func-

tion onto the cone of positive definite matrices is included. This projection is

a non-smooth matrix-valued function. Hence, a particular Newton’s method,

proposed for instance in [25] and [26] and making use of an explicit form of the

Clarke generalized Jacobian of said projection, is adapted to solve this problem.45

Finally, authors draw attention to some notable differences with the well-

known non-smooth optimization based methods such those in [27] or [28]. These

methods generally deal with a min-max optimization of the closed-loop matrix

spectral abscissa (which is a non-smooth function). Hence, they optimize di-

rectly the gain matrix without searching for any Lyapunov matrix. In contrast,50

the proposed non-smooth Newton’s method search for the matrix gain indirectly

through the Lyapunov matrix. It is, however, easily implementable, modified

at will and suitable for Riccati-like equations which represents a potential ad-

vantage in the case of large scale systems. Local convergence is established in

both cases.55

Notations:. The following notations are used in this paper. Zij are all (i, j)th en-

tries, Z> the transpose and Z† an outer inverse (such as Moore-Penrose inverse)

of a given real matrix Z ∈ Rn×m. Z > 0 (Z ≥) means that Z is a positive-

definite (positive semi-definite) matrix. vec(Z) denotes the vec-operator that

stacks the columns of Z into a vector. ‖Z‖ = (
∑
i,j Z

2
ij)

1
2 designates the Frobe-60

nius norm. Sn the space of real symmetric matrices of dimensions n×n and S+
n

(S+∗
n ) is the cone of real symmetric positive semi-definite (respectively definite)

matrices of dimensions n×n. � denotes the Hadamard product (or direct prod-

uct) of matrices. The matrix diag(Z1, Z2, . . . , Zq) represents the block-diagonal

matrix with matrices Z1, Z2, . . . , Zq as diagonal blocks. For a symmetric matrix65

represented block-wise, off-diagonal blocks are abbreviated with •. Finally, In

(0n) designates, henceforth, the identity (zero) matrix of dimensions n× n.
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2. Structured stabilizability

Let us consider a linear system

ẋ = Ax+Bu, x(0) = x0, x ∈ Rn, u ∈ Rm (1)

and a static state feedback

u = Kx (2)

One of the most fundamental problems in control theory is the so-called infinite

horizon LQ problem of finding a control law (2) such that the closed-loop system

Ac := A+BK is asymptotically stable and minimizes a cost functional

J :=

∫ ∞

0

(x>Qx+ 2uTLx+ u>Ru)dt (3)

with R ∈ S+∗
n , (Q − LR−1L>) ∈ S+

n , x(0) = x0. In such a case, we cannot

dispense with the standing assumptions that the pair (A,B) is stabilizable and

the pair (A,Q) is detectable. The solution is then given by

K = −R−1(B>P + L) (4)

where the P ∈ S+∗
n is the solution of the algebraic Riccati equation

A>P + PA− (B>P + L)>R−1(B>P + L) +Q = 0 (5)

Our aim is to propose a parametrization of all structured stabilizing state

feedback gains. Since the standard Riccati equation (5) involves products be-70

tween the Lyapunov matrix P and the cross weighting matrix L, the emphasis

is placed on a different LQ cost function. Admittedly, this new cost function is

with a more complex form than (3) (we will see that it includes bilinear products

of K and the cross weighting matrix L), but it leads to a matrix equation with

no product between P and L.75

As a first step, Theorem 1 presents a necessary and sufficient condition for

the parametrization of stabilizing state feedback gains.

Theorem 1 Suppose that (A,B) is stabilizable.

K = −B>P + L (6)
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is a state feedback that stabilizes system (1) if and only if there exist a parameter

matrix L ∈ Rm×n and a matrix P ∈ S+
n such that for a given matrix Q ∈ S+

n

the following equation holds

A>P + PA− PBB>P +Q+ L>L = 0 (7)

Proof (Necessity) Suppose that, for a given state feedback K, Ac = A + BK

is stable. Since In +K>K is a positive semi-definite matrix, then, according to

[29] Lemma 12.1, there exists a unique matrix P ∈ S+ such that

(A+BK)>P + P (A+BK) + In +K>K = 0 (8)

rearranging the last equation, we obtain

A>P + PA− PBB>P + In + (K +B>P )>(K +B>P ) = 0 (9)

Hence, setting L = K +B>P and Q = In implies that (7) holds.

(Sufficiency) Suppose that (6) and (7) hold. It follows that

A>P + PA− PBB>P +Q+ (K +B>P )>(K +B>P ) = 0 (10)

which means that

(A+BK)>P + P (A+BK) +Q+K>K = 0. (11)

for some matrix P ∈ S+. (11) leads to the stability of Ac.

Remark 1 At first glance the result in Theorem 1 may seem to be more or less80

similar to the results in [23] and [30]. Both cases, however, do not share the

same weighting matrices as in (7) that is Q is free and R is fixed to identity.

Note that the condition (7) implies that the state-feedback gain (6) mini-

mizes the non-standard cost functional

J̄ =

∫ ∞

0

(x>(Q+K>L+ L>K)x− 2u>Lx+ u>u)dt (12)

This cost functional has a notable difference with (3) since it leads to equation

(7) with a separation between the parameter L and the Lyapunov matrix P

which is not the case in (5).85
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Remark 2 Another perceived advantage of the cost functional (12), when com-

pared to (3), is that only the weighting matrix Q has to be chosen. For this

purpose, clearly the best alternative is to reduce this choice to a single tuning

positive scalar. In [31], the following pertinent choice Q := (τGc(τ))−1 where

Gc(τ) is the partial controllability Gramian associated to the pair (A,B), is90

proposed.

On another note, a zero-nonzero structure constraint is introduced by a

matrix S ∈ Rm×n, Sij ∈ {0, 1} and the Hadamard product of matrices such

that:

K � S = 0 (13)

For easier reading, a specific notation for structured matrices will be used. For

a given matrix Z ∈ Rm×n,

(Z)S = Z � S, (Z)S̄ = Z � S̄ := Z � (Ω− S) (14)

where Ωij = 1, i = 1, . . . ,m, j = 1, . . . , n.

Let us recall an excerpt of the well-known Finsler’s lemma which is originally

attributed to (Finsler, 1937) [32].

Lemma 1 Let Φ = Φ> ∈ Rn×n and Γ ∈ Rn×n such that rank(Γ) < n. The95

following statements are equivalent

• ∃µ ∈ R+∗ : Φ− µΓ>Γ < 0

• ∃Ψ ∈ Rn×m : Φ + ΨΓ + Γ>Ψ> < 0

Lemma 1 has many available proofs in the literature as, for instance, in [24].

Now we are ready to introduce a new necessary and sufficient condition for100

the parametrization of structured stabilizing state-feedback gains.

Theorem 2 Assume that the pair (A,B) is stabilizable. System (1) admits a

stabilizing structured state-feedback, with respect to a structure matrix S, given

by

K = −B>P + (B>P )S (15)
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if and only if there exist matrices Q ∈ S+
n , P ∈ S+∗

n such that

A>P + PA− PBB>P +Q+ (B>P )>S (B>P )S = 0 (16)

Proof (Sufficiency) Suppose that (16) holds. According to Theorem 1, K =

−B>P + L with L := (B>P )S is a state feedback that stabilizes system (1).

(Necessity) Suppose that K = −B>P + (B>P )S is stabilizing for system (16).

Then according to Theorem 1, since K is stabilizing there exist matrices L ∈
Rm×n and P̄ ∈ S+∗

n such that for a given matrix Q̄ ∈ S+
n the following equation

holds,

A>P̄ + P̄A− P̄BB>P̄ + Q̄+ L>L = 0 (17)

with K = (−B>P̄+L). Moreover, K is supposed to be structured with respect to

S. Thus, K�S = 0 which means that (L)S = (B>P̄ )S. Since L = (L)S +(L)S̄,

(17) writes

A>P̄ + P̄A− P̄BB>P̄ + Q̄+ (L)S
>

(L)S + (L)>S̄ (L)S̄

+(L)>S (L)S̄ + (L)>S̄ (L)S = 0
(18)

Hence, for a sufficiently small ε > 0

A>P̄ + P̄A− P̄BB>P̄ + Q̄+ (L)S
>

(L)S + (L)>S̄ (L)S̄

+(L)>S (L)S̄ + (L)>S̄ (L)S − εIn < 0
(19)

which is equivalent, in virtue of Finsler’s lemma 1, to

A>P̄ + P̄A− P̄BB>P̄ + Q̄+ (L)S
>

(L)S + (L)>S̄ (L)S̄

−µ(L)>S̄ (L)S̄ − εIn < 0
(20)

for some µ ∈ R+∗. Since the terms (L)>
S̄

(L)S̄, µ(L)>
S̄

(L)S̄ and εIn are all

semi-definite positive, it is always possible to choose Q̄ verifying the following

inequality:

Q̄+ (L)>S̄ (L)S̄ ≥ µ(L)>S̄ (L)S̄ + εIn. (21)

Let Q̃ := Q̄+ (1− µ)(L)>
S̄

(L)S̄ − εIn ≥ 0. The latter along with inequality (20)

ensure the existence of a positive definite matrix Q̂ ∈ S+∗
n such that

A>P̄ + P̄A− P̄BB>P̄ + (L)S
>

(L)S + Q̃ = −Q̂
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Hence, taking Q = Q̃+Q̂ ≥ 0 leads to (16). According to Theorem 1, this means

also that K∗ = −B>P̄ + (B>P̄ )S is stabilizing and verifies K∗ � S = 0. This

ends the proof.

3. A nonsmooth Newton’s method105

Let us first consider the following notation

F (P ) := A>P + PA− PBB>P +Q+ (B>P )>S (B>P )S

F (P ) = 0, P ∈ S+
n

(22)

where F : Sn → Sn is a continuously differentiable function and P+ : Sn → S+
n

denotes the orthogonal projection of symmetric real matrices on the cone S+
n .

Equation (22) can be addressed through the following equations in P ∈ Sn:




F (P ) = 0 (i)

G(P ) := P+(P )− P = 0 (ii)
(23)

Therefore, some properties of the function P+(·) should be recalled.

3.1. Differentiability of the projection

Let X = TΛT> be a spectral decomposition of X ∈ Sn where Λ is the

diagonal matrix of eigenvalues of X and T is a corresponding orthogonal matrix

of orthonormal eigenvectors. The said projection is given by

P+(X) = TΛ+T
> (24)

where Λ+ is a diagonal matrix whose diagonal entries are the nonnegative parts

of the respective diagonal entries of Λ that is

(Λ+)ij := max(Λij , 0).

Hence, the function P+(·) is non-smooth. Leveraging on these facts, a par-

ticular Newton’s like method based on an explicit form of the Clarke generalized

Jacobian of the projection P+(·), proposed for instance in [33], [25] or [26], is110

used hereafter to solve equation (23).
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Proposition 1 [34], [35] P+(·) is Fréchet differentiable at X in Sn if and only

if X is non-singular. Moreover, P+(·) is directionally differentiable everywhere

in Sn.

Furthermore, [33], [36] (for instance) gave inter alia an explicit formula for115

the Clarke’s generalized Jacobian ∂P+ of P+(·). Based on this a directional

derivative of P+(·) at X for a given direction D, denoted henceforth P ′+ (X,D),

can be obtained. The computation of said derivative is summarized briefly in

what follows.

Consider the spectral decomposition (24) of a given matrix X ∈ Sn. Let λk

be the eigenvalues of X. Subsequently, define three sets of positive, zero and

negative eigenvalues of X as follows:

λp := {k : λk > 0}, λ0 := {k : λk = 0}, λn := {k : λk < 0}. (25)

On the basis of this decomposition one can write

Λ = diag(Λλp , 0,Λλn), T = [Tλp , Tλ0 , Tλn ] (26)

Let us also define the matrix U ∈ Sn with

Uij :=
max(λi, 0) +max(λj , 0)

|λi|+ |λj |
, i, j = 1, . . . , n. (27)

Hence, a directional derivative is given by

P ′+ (X,D) : = TD+T
>

D+ :=




D̃λpλp D̃λpλ0 Uλpλn � D̃λpλn

• P+

(
D̃λpλ0

)
0

• • 0




(28)

where D̃ := T>DT .120

Remark 3 The projection P+

(
D̃λpλ0

)
in (28) can be efficiently computed us-

ing a Schur decomposition or a matrix sign based method.

Remark 4 Note that in [33], for instance, it is stated that either the iden-

tity or the zero mappings can replace the projection P+

(
D̃λpλ0

)
in (28). This

simplifies the computation of the directional derivative (28).125
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As noted in Remark 4, the derivative can be expressed as a linear mapping

in D̃ using Hadamard product as follows

T>(P ′+ (X,D))T = D̃ � Γ1 + Uλpλn � D̃ � Γ2 (29)

where

Γ1 := diag(Λλpλ0 , 0λn), Γ2 :=




0λp 0 Λλn

0 0λ0 0

0 0 0λn


 .

3.2. A modified Newton’s method

The goal henceforth is to find a symmetric matrix P verifying (23). For

this purpose, the use of a Newton’s method is intended. Hence, one has first to

compute the Fréchet derivative at P of F (·).
Definition 1 The Fréchet derivative of function F : Sn → Sn at a matrix

X ∈ Sn is a linear mapping:

Sn → Sn

∆ → LF (X,∆)

such that for all ∆ ∈ Sn

F (X + ∆)− F (X)− LF (X,∆) = O(‖∆‖) (30)

The Fréchet derivative therefore describes the first order effect on F of pertur-

bations in X. For the equation (i) in (23), this derivative is given by:

F ′(P )∆ = LF (P,∆)

F ′(P )∆ = (A−BB>P )>∆ + ∆(A−BB>P )

+(B>P )>S (B>∆)S + (B>∆)>S (B>P )S .

(31)

In Newton’s method, the next iterate can be obtained by solving the equation

F ′(Pi)∆i = −F (Pi) (32)

and updating by

Pi+1 = Pi + ∆i (33)
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Following the same lines, for the equation (ii) in (23), a directional derivative

is given by:

(T>(G(Pi))T )′∆ = T>(P ′+ (Pi,∆)− I)T (34)

On the strength of these results a generalized non-smooth Newton type algo-130

rithm for solving (23) is proposed.

Remark 5 Note that for some δ > 0, if F (P ) + δG(P ) = 0 for P ∈ Sn+ then

(16) holds for some matrix Q′ = Q + δG(P ) ∈ Sn+ and P ∈ Sn+. Based on this

observation, Algorithm 1 solves the equation F (P ) + δG(P ) = 0 instead of the

matrix equation system (23).135

Algorithm 1 Non-smooth Newton Algorithm

1: Initialization : For a predefined δ > 0, choose P1 ∈ Sn and ε a sufficiently

small positive real.

2: Determine solutions ∆1
i ∈ Sn, ∆2

i ∈ Sn of the following linear matrix equa-

tions

F ′(Pi)∆
1
i = −F (Pi)

T>(P ′+
(
Pi,∆

2
i

)
− I)T∆2

i = −T>(G(Pi))T.
(35)

3: Update

Pi+1 = Pi + (∆1
i + δ∆2

i ) (36)

4: If ‖Pi+1 − Pi‖ > ε, set i = i+ 1 and return to Step 2 else Stop.. return P ∗

Theorem 3 Algorithm 1 is quadratically convergent in a neighborhood of a local

minimizer P ∗.

Proof The local convergence properties of Algorithm 1 are formulated by ana-

lyzing smoothness properties of the functions F and G. On one side, the map

F (·) is differentiable and has a Lipschitz continuous derivative. On the other140

side, it is stated in [36] that G(·) is a strongly semi-smooth matrix function

(interested readers can find the definition of this property in [25]). Hence,

F (·) + δG(·), δ > 0 is a strongly semi-smooth function. The latter property

11



ensures the quadratic convergence, in a neighborhood of a local minimizer, ac-

cording to [25].145

Remark 6 A part from the LMI based method in [10] which proves to be rather

powerful and has the ability to eliminate the rigid block-diagonal structural

constraints on the Lyapunov matrix, the proposed non-smooth Newton’s ap-

proach has many advantages when compared to LMI based methods. One can

quote, without claiming to be exhaustive, the fact that it relies on an original150

parametrization of all structured stabilizing state-feedbacks using a Riccati-like

equation (which is potentially suitable for large scale systems) and it does not

need neither initialization point nor relaxations (that allow to deal with a convex

problem instead of the original non-convex one).

4. Numerical examples155

For all the following examples, the weighting matrix Q is fixed, according to

Remark 2, such as Q := (τGc(τ))−1 with τ = 1.

4.1. Example 1

This numerical example is borrowed from [4]. Let us consider a system of

the form (1) where

A =




−1.75 1.5 0 0 0 0

0.25 −0.25 0.5 0.5 −0.25 0.5

1 1.5 −2.75 0 0 0

0 0 0 −0.75 −2 0

0.5 0.5 −0.25 −0.25 −2.75 −1

0 0 0 3 −3 −3.75




, B =




0 0

0 0

1 0

0 0

0 0

0 1




.

(37)

Matrix A has a pair of unstable eigenvalues {0.268±0.577i}. Our objective is to

design a stabilizing state-feedback (2) with a matrix gain subject to the specific

nonzero pattern

K =


 0 ∗ 0 0 0 ∗

0 ∗ ∗ ∗ ∗ 0


 (38)
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corresponding to a structure matrix S of the form :

S =


 1 0 1 1 1 0

1 0 0 0 0 1


 (39)

Algorithm 1 is applied with δ = 1, ε = 10−10. Moreover, P1 is fixed with all

entries chosen randomly in
]
−103, 103

[
. P1 has eigenvalues with positive and

negative real parts 103{−1.4217,−0.7813, 0.0475, 1.5205, 2.9206, 3.9483}. 26 it-

erations are needed to obtain a positive definite solution P ∗ with eigenvalues

103{0.0059, 0.0062, 0.2173, 0.4250, 1.5610, 4.8641} and a stabilizing structured

feedback gain :

K∗ = −B>P ∗ + (B>P ∗)S =

 0 36.3395 0 0 0 0.6041

0 11.4518 0.6041 12.4612 −11.6747 0




(40)

The closed-loop matrix Ac = A − BK∗ has stable eigenvalues {−2.0005 ±
4.8587i,−1.7356± 1.7773i,−1.6656,−2.8622}.160

4.2. Example 2

The following example is borrowed from [2] and also considered in [10]. It

deals with the control with overlapping information structure constraints for a

system of the form (1) with the following data

A =




1 4 0

1 2 2

0 −2 3


 , B =


 1 0 0

0 0 1



>

. (41)

The objective is to design a stabilizing state feedback gain subject to the nonzero

pattern

K =


 ∗ ∗ 0

0 ∗ ∗


 (42)

corresponding to a structure matrix S of the form :

S =


 0 0 1

1 0 0


 (43)
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For this aim, Algorithm 1 is applied with δ = 1, ε = 10−10 and initialization

matrix P1 with all entries chosen randomly in
]
−103, 103

[

P1 = 103




−0.4116 −0.3805 −1.7158

• −1.6339 0.3758

• • 1.1589


 .

P1 has eigenvalues with positive and negative real parts

σ(P1) = 103{−1.7578,−1.4582, 2.3294}.

After 28 iterations, one gets a positive definite solution P ∗

P ∗ =




6.0749 11.8611 2.8537

• 49.1367 0.1159

• • 10.1896




with eigenvalues {3.0195, 7.5410, 54.8407} from which a stabilizing structured

state feedback gain is obtained:

K∗ =


 6.0749 11.8611 0

0 10.5042 10.1896


 . (44)

The closed-loop matrixAc = A−BK∗ has stable eigenvalues {−5.8242,−2.2202±
3.7466i}.

4.3. Example 3

The following feedback control under structure information case is borrowed

from [37]. Consider the system (1) with the following data

A =




−4 0 −2 0 0

0 −2 0 2 0

0 0 −2 0 −1

0 −2 0 −1 0

3 0 −2 0 −1




, B =




1 0 0

1 0 0

0 0 0

0 1 0

0 0 1
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The objective is to design a stabilizing state feedback gain subject to the nonzero

pattern

K =




∗ 0 0 0 0

0 ∗ 0 0 0

0 0 0 0 ∗


 (45)

corresponding to a structure matrix S of the form :

S =




0 1 1 1 1

1 0 1 1 1

1 1 1 1 0


 (46)

This structured case corresponds to a decentralized output feedback case where

y = Cx with

C =




1 0 0 0 0

0 1 0 0 0

0 0 0 0 1


 .

By applying Algorithm 1 with δ = 1, ε = 10−10 and an initialization matrix

P1 = 103.




0.1002 −0.9869 0.9581 −0.3222 0.3648

• −0.9785 −1.6319 0.3626 0.6498

• • 1.6844 1.0932 0.5852

• • • −1.0853 −0.5875

• • • • −0.3238




.

The eigenvalues of P1 has positive and negative real parts

σ(P1) = 103{−2.7906,−1.3115,−0.0142, 0.3667, 3.1467}.

After 40 iterations, one gets a positive-definite solution

P ∗ =




4.7023 −3.4023 0.2574 0.2627 0.8838

• 3.8559 −1.5033 −0.2481 −0.1571

• • 22.9771 0.3788 −1.0026

• • • 1.9112 0.1139

• • • • 2.3128
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with eigenvalues {0.6905, 1.8683, 2.2708, 7.7679, 23.1616} from which a stabiliz-

ing structured state-feedback u = K∗x is obtained such that:

K∗ =




1.3 0 0 0 0

0 −0.2481 0 0 0

0 0 0 0 2.3128


 . (47)

Note that this structured state feedback verifies : K∗ = KDC with KD a

decentralized output feedback u = KDy with:

KD =




1.3 0 0

0 −0.2481 0

0 0 2.3128


 . (48)

The closed-loop matrix Ac = A−BKDC has stable eigenvalues {−4.9454±165

1.0885i,−0.7221,−1.5000± 1.8039i}.

4.4. Example 4

A formation of q = 10 vehicles in a plane is considered. The aim is to keep

constant distances between each two successive vehicles. A well-known model of

these independently actuated vehicles using double-integrators, in both horizon-

tal and vertical directions is given by the following state-space representation

A = diag(A1, . . . , Aq), B = diag(B1, . . . , Bq)

Ai =


 02 I2

02 02


 , Bi =


 02

I2


 , i = 1, . . . , q

(49)

A decentralized state feedback controller subject to the nonzero pattern K ∈
R20×40:

K =





 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 0 0

0
. . . 0

0 0


 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗







(50)
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has to be found. The method presented in Section III is applied with δ = 1,

ε = 10−10 and P1 ∈ S40 with all entries chosen randomly in
]
−103, 103

[
. 19

iterations yield to a decentralized stabilizing state feedback of the form (50)

KD = diag(K∗, . . . ,K∗) with

K∗ =


 1 0 1.7321 0

0 1 0 1.7321


.

The closed-loop is stable with 20 complex conjugate pairs −0.866± 0.5i.

5. CONCLUSION

In this paper, the design of structured stabilizing state feedback gains for170

LTI systems is considered. An appeal to the LQ regulator theory is made. A

necessary and sufficient condition for stabilizability subject to a fixed pattern

is given by means of a nonlinear matrix equation. The latter is recast as a

non-smooth unconstrained equation using orthogonal projection onto the pos-

itive semi-definite matrices cone. Motivated by the property of strongly semi-175

smoothness of this matrix-valued function, a non-smooth Newton’s algorithm to

find a feasible solution is developed. The proposed approach does not require a

stabilizing controller or a positive definite Riccati equation solution to initialize

the iterative procedure and its utility is illustrated by several examples.

Although the focus is put on stability, in our ongoing efforts we shall en-180

deavor to extended the method to the H∞ case using the parametrization of all

stabilizing H∞ state feedbacks.
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[37] J. Rubió-Massegú, J. Rossell, H. Karimi, F. Palacios-Quinonero, Static

output-feedback control under information structure constraints, Automat-270

ica 49 (1) (2013) 313 – 316.

21




