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Abstract—We consider the classical One-Dimensional Bin
Packing Problem (1D-BPP), an NP-hard optimization problem,
where, a set of weighted items has to be packed into one or
more identical capacitated bins. We give an experimental study
on using symmetry breaking constraints for strengthening the
classical integer linear programming proposed to optimally solve
this problem. Our computational experiments are conducted on
the data-sets found in BPPLib and the results have confirmed
the theoretical results.

I. INTRODUCTION

T
HE one-dimensional Bin Packing Problem, noted 1D-

BPP from here on, has been widely studied in the

literature both for its theoretical interest and its many practical

applications. Several variants were considered as well as

different approaches for its solution were proposed. The 1D-

BPP can be informally defined as follows: n items have to

be packed each into one of n available bins. Each item i
has a non-negative weight wi (i = 1, . . . , n) and all bins

have the same positive integer capacity C. The objective is

to find a packing with a minimum number of bins such that

the total weights of the items in each bin does not exceed the

capacity C.

To illustrate these concepts, we consider the following

example: give one instance of the 1D-BPP with a set of bins

with capacity C equal to 6 and a set of items, indexed by i,
with the weights wi given in Table I.

TABLE I: An example of data, with 8 items

Items i 1 2 3 4 5 6 7 8

Weights wi 2 2 5 1 2 3 2 4

An example of a feasible solution as well as an optimal

solution, respectively, with 8 bins and 4 bins, are given in

Figure 1.

A central theme for this study is the computational effect

of the removal of symmetric solutions. To the best of our

knowledge, no numerical studies have been published to as-

certain the performance gain of symmetry breaking constraints

for 1D-BPP. So we conducted such a study, including a new

inequalities to strengthen its basic mathematical model.
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(b) An optimal solution: 4 bins

Fig. 1: Solutions for the 1D-BPP

The remainder of this paper is organized as follows. Sec-

tion II formally introduces the basic mathematical model and

briefly mentions the exact solution methods considered in

the literature of 1D-BPP. Section III gives a brief review on

symmetries in ILP formulations. Sections IV — VII describe

some classes of symmetry breaking constraints. Computational

results are reported and analyzed in Section VIII. Finally, the

main conclusions of this work as well as some future research

directions are drawn.

II. BASIC MATHEMATICAL MODELS FOR THE 1D-BPP

A. Assignment-based models

The compact ILP formulation for 1D-BPP, which Martello

and Toth attribute to Kantorovich (see [19]), is the following,

by introducing two types of binary decision variables for

all i ∈ {1, . . . , n} and j ∈ {1, . . . , n}.

• yj

{

1 if bin j is used in the packing

0 otherwise

• xij

{

1 if item i is packed into bin j
0 otherwise

The full model, hereafter denoted as ILP-0, is:

ILP− 0 : min
n
∑

j=1

yj
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n
∑

j=1

xij = 1 ∀i ∈ {1, . . . , n} (1)
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n
∑

i=1

wi ∗ xij ≤ C ∗ yj∀j ∈ {1, . . . , n} (2)

xij ∈ {0, 1}∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n}(3)

yj ∈ {0, 1}∀j ∈ {1, . . . , n} (4)

In this model, constraints (1) ensure that each item is packed

into exactly one bin, constraints (2) impose that the capacity of

any used bin is not exceeded and both constraints (3) and (4)

define the variable domains.

An obvious lower bound for the 1D-BPP, computable in

O(n) time, is the optimal value of the continuous relaxation

of ILP-0. Denoted by L1 in the literature, this lower bound

is given by the following equality:

L1 =

⌈

n
∑

j=1

wi/C

⌉

(5)

It is easily seen that the worst-case performance ratio of L1

is equal to 1
2 (see, e.g., [20]).

The reader is referred to [11], which is a first survey on

linear programming models for the 1D-BPP and its general-

ization, the Cutting Stock Problem (CSP).

B. Other methods for optimally solving the 1D-BPP

Among other methods for solving 1D-BPP exactly, we

can find the branching algorithms and the pseudo-polynomial

ILP formulations coming from a graph representation of the

solution space.

The reader is referred to [15] for a recent survey on math-

ematical models and exact algorithms for both 1D-BPP and

CSP and to [15] for a library, named BPPLIB and available

at http://or.dei.unibo.it/library/bpplib. The BPPLIB provides

a collection of computer codes of different types for the

exact solution of the 1D-BPP and the CSP as well as a

benchmark instance. It also includes a BibTeX file of more

than 150 references on this topic and an interactive visual tool

to manually solve both 1D-BPP and CSP.

An overview of these methods can be summarized as

follows:

1) Enumeration algorithms, basically:

• the branch-and-bound, in which three approaches

are proposed: MTP (see [19]), BISON (see [1]) and

CVRPSEP (see [9]).

• the branch-and-price, in which one approach, called

SCIP-BP (see [3]), is proposed.

2) Pseudo-polynomial formulations solved through an ILP

solver (like CPLEX, SCIP, GUROBI): we can find here

both ONECUT (see [7]) and DPFLOW (see [6]).

According to the results discussed in [14], the SCIP-BP is

effective on small-size instances (n ≤ 100). In the same way,

the DPFLOW has mainly theoretical interest, but has the

advantage of being easily understandable.

III. A BRIEF REVIEW ON SYMMETRIES IN ILP

FORMULATIONS

In a combinatorial optmization, symmetries increase the size

of the search space and therefore, time to visiting symmetric

solutions we will wasted. The most usual way to deal with

symmetries is to add constraints that eliminate symmetric

solutions. We give here a brief review on recent results in

this area, focusing especially on the use of symmetry breaking

constraints in mathematical programming models: LP 1, ILP 2

and MILP 3. Please note that we refer here and after by

the word ILP all variants of the mathematical programming

models mentioned above.

Typical ILP formulations contain binary variables. An ILP

is then symmetric if its variables can be permuted without

changing the structure of the problem. For example, scheduling

jobs on parallel identical machines or packing items into

identical bins involve large symmetry groups.

For example, given a binary variable xij , where xij equal

to one signifies that item i is assigned to bin j or that

job i is assigned to machine j. The x variables can be

interpreted as an 0 − 1 matrix. Symmetry is often present

in these kind of problems since there can be many identical

bins/machines of a certain type. As result, given any feasible

solution x, equivalent solutions can be generated by permuting

the columns of x.

The presence of symmetry can have a significant negative

effect on the performance of branch-and-bound algorithms.

In the same way that it allows multiple equivalent solutions,

symmetry also allows different sub-problems in the branch-

and-bound tree to be equivalent.

First, Margot (2010) gives a survey of some of the ap-

proaches that have been developed for solving symmetric

ILPs. These approaches are classified into four major groups:

perturbation, fixing variables, symmetry breaking inequalities,

and pruning of the enumeration tree. We refer to [5] for further

details.

Similarly, Liberti (2012) gives a review of the most

widespread approaches for breaking symmetries in ILPs to-

gether with a theorical and computational study of symmetries

in the Kissing Number Problem (see [13]). In this paper, he

used a generalization of the definition of formulation group

given by Margot (2010), based on transforming an ILP into a

DAG 4. This allows automatic symmetry detection using graph

isomorphism tools. Symmetries are then broken by means of

static symmetry breaking inequalities.

In the same way, Sherali and Smith (2001) focus on the

description of a natural method to remove symmetries in

the context of the following problems: a synchronous optical

network (SONET) design problem, a minimax noise pollution

problem, and a machine scheduling problem (see [8]). Their

method consists of augmenting the ILP model of that problem

1LP: Linear Programming
2ILP: Integer Linear Programming
3MILP: Mixed-Integer Linear Programming
4DAG: Directed Acyclic Graphs
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with suitable symmetry breaking hierarchical constraints. The

structure of the ILP can then be considerably improved by

reducing the extent of the feasible region that must be explored

by any algorithmic procedure.

Finally, Jans R. (2006) considers the issue of symmetry in

the lot-sizing problems on parallel identical machines litera-

ture (see [18]). To break this symmetry, he simply enhances

the existing ILPs by adding lexicographic ordering constraints.

Other ways can be achieved by ordering the machines ac-

cording to some natural logic (decreasing total setup cost

per machine, decreasing total cost per machine or decreasing

capacity utilization).

In summary, we can say that if symmetry is present in the

ILP problem, it must be dealt with in an effective manner.

There are many strategies that one can use to handle symme-

tries in the solution space. A most usual way is to add symme-

try breaking constraints, as we can see in the next section in

the case of 1D-BPP. In addition, an empirical evaluation of the

impact of including separately or in combination the different

symmetry breaking constraints to the ILP-0 formulation is

presented in Section VIII.

IV. A BASIC SYMMETRY BREAKING CONSTRAINT

Due to the fact that all bins j ∈ {1, . . . , n} are identical (the

same integer capacity C), there is complete symmetry with

respect to bins. Thus, for any solution, an equivalent solution

can be obtained by swapping the sets of items assigned to any

pair of bins. To break this symmetry and limit the number

of mathematical solutions to the actual number of different

allocations of bins, we first add the following constraints:

yj ≥ yj+1 ∀j ∈ {1, . . . , n− 1} (S0)

This constraint reduces the size of the enumeration tree by

imposing that the bins are used in increasing order of index.

As we can see in Figures 2a and 2b, the optimal solution

is defined by four bins. This means that the use of bins

b1, b6, b5, b4 or bins b1, b2, b3, b4 is equivalent.

V. SORTING IN DECREASING ORDER OF BIN LOAD

The symmetry can be partially broken by stating that bins

must be sorted by decreasing load. Consider the following

constraint:

n
∑

i=1

wi ∗ xij ≥
n
∑

i=1

wi ∗ xij+1 ∀j ∈ {1, . . . , n− 1} (S1)

This constraint forces that the load of bin j must be greater

than or equal to the load of bin j+1. An example of the effect

of (S1) is given in Figure 3. The solution given in Figure 3a

violates (S1), but the equivalent solution from Figure 3b

respects it.

VI. SYMMETRY-LESS REFORMULATION: ILP-0-S2+S0

In this alternate formulation, the symmetry can be elimi-

nated by stating that bins must be sorted by decreasing order of

the maximum item index. To present this constraint, we define

a new integer variable zj (j ∈ {1, . . . , n} ) as the maximum

index over all the items allocated to bin j.

In this case, the objective function is updated to the follow-

ing weighted sum:

min
n
∑

j=1

yj +
2

2 + n(n+ 1)
∗

n
∑

j=1

zj (6)

in a way that minimizes the number of used bins

n
∑

j=1

yj

first (primary objective) and then the sum of its maximum

item index

n
∑

j=1

zj (secondary objective). The latter is also

weighted by the following coefficient 2
2+n(n+1) to impose the

lexicographic optimization ordering as mentioned before. This

means that

n
∑

j=1

yj is the integer part of the objective function

and that
2

2 + n(n+ 1)
∗

n
∑

j=1

zj < 1. Indeed:

n
∑

j=1

zj =
n(n+ 1)

2
<

n(n+ 1)

2
+ 1 =

2 + n(n+ 1)

2

n(n+ 1)

2
<

2 + n(n+ 1)

2

hence
2

2 + n(n+ 1)

n
∑

j=1

zj < 1

The constraints of ILP-0-S2+S0 formulation are con-

straints (1)—(4) and the following set of inequalities which

is denoted as (S2):

i ∗ xij ≤ zj ∀ i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , n}(7)



















zj ≥ zj+1 ∀ j ∈ {1, . . . , n− 1} (8)

zj ≥ 0 ∀ j ∈ {1, . . . , n} (9)

Constraints (7) ensure that the bin index zj must be greater

than or equal to the the maximum item index in bin j.

Constraints (8) mean that the bin index bin zj must be greater

than or equal to the maximum item index in bin j + 1.

Constraints (8) guarantee the positivity of the bin index zj . In

addition, we consider the inequality constraint (S0) to reduce

the size of the enumeration tree by imposing that the bins are

used in increasing order of index.

As illustrated in Figure 4b, the corresponding solution pro-

vided by this new formulation ILP-0-S2+S0 is equivalent

to the initial one given in Figure 4a.

VII. MATRIX-BASED SYMMETRY BREAKING

CONSTRAINTS

The matrix-based symmetry breaking constraints, proposed

here, were inspired from those proposed by [2] and reused

by [10] for the classical Job Scheduling Problem (specifically

operating room scheduling problems), which is a well known

KHADIJA HADJ SALEM, YANN KIEFFER: SYMMETRY BREAKING CONSTRAINTS FOR THE 1D-BPP 319
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Fig. 2: Illustration of (S0)

6

2

4

b1

1

5

b2

3

b3

7

8

b4

(a) A solution without using (S1)

7

8

b1

6

2

4

b2

3

b3

1

5

b4

(b) A solution using (S1)

Fig. 3: Illustration of (S1)
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Fig. 4: Illustration of ILP-0-S2+S0

NP-hard combinatorial optimization problem. These con-

straints restrict the feasible region to a minimal fundamental

domain that has lexicographically decreasing columns.

For example, as illustrated in Figure 5, the 0/1 matrix

x does not have lexicographically decreasing columns, so

it is not in the fundamental domain. Permuting columns 1

and 2 gives the 0/1 matrix x′, which has lexicographically-

decreasing columns, so it is in the fundamental domain.

In the context of 1D-BPP, we introduce the following

inequality (S3), which guarantees that for any xij equal to

one with i and j greater than one, there is at least one lower-

indexed item i assigned to bin j − 1.

xij ≤
i−1
∑

p=1

xp,j−1 ∀i ∈ {2, . . . , n}, ∀j ∈ {2, . . . , n} (S3)

Now, as an alternative to asking for a lower-indexed item in

the previous bin, one could as well ask for a bigger-indexed

item in the previous bin. This condition is expressed by the

following constraint:

xij ≤
n−1
∑

p=i

xp,j−1 ∀i ∈ {2, . . . , n}, ∀j ∈ {i, . . . , n}

(S3Bis)

Of course, only one of (S3) or (S3Bis) can be enforced,

since the two constraints are incompatible.

While the only 0 − 1 matrices that satisfy constraints (S3)

have lexicographically decreasing columns, the constraints can

be strengthened to create a tighter LP relaxation.

Using the property that each row of x must contain a single

one, the general form of constraints in (S3) becomes:

n
∑

s=j

xis ≤
i−1
∑

p=1

xp,j−1 ∀ i ∈ {2, . . . , n}, ∀j ∈ {2, . . . , n}

(S4)

In the same way, the general form of constraints in (S3Bis)

becomes:

n
∑

s=j

xis ≤
n−1
∑

p=i

xp,j−1 ∀ i ∈ {2, . . . , n}, ∀j ∈ {2, . . . , n}

(S4Bis)

VIII. COMPUTATIONAL EXPERIMENTS AND DISCUSSION

In this section, we test the effectiveness of the formulations

described in the previous sections. Our experiments were

motivated by this main goal: to evaluate, with respect to the

standard formulation ILP-0 (see Section II-A), the benefits

obtained by including the valid inequalities of breaking sym-

metries previously described in Sections IV — VII.

A. Setup

We implemented formulations ILP-0 and all its variants in

Gurobi Optimizer 7.5.2 using Python 3.6 (https://www.gurobi.

com/), running on a PC running Linux Debian 8.0 (“Jessy”). It

has a Core 2 Duo CPU running at 3 GHz, and with 4 gigabytes

of RAM. All executions where run within a single thread; only

one core of the CPU was used.

We considered seven variants of the formulation ILP-0:

• one is the classical ILP model of 1D-BPP: ILP-0 (see

Section II-A);

• one including the symmetry breaking constraint, given

by Eq. (S0), hereafter denoted as ILP-0+S0 (see Sec-

tion IV);
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Fig. 5: Illustration of S3

• one is the new alternate symmetry ILP model of 1D-BPP:

ILP-0-S2+S0 (see Section VI);

• one including the symmetry breaking constraints, given

by Eq. (S0) and Eq. (S3), hereafter denoted as

ILP-0+S0+S3 (see Section VII);

• one including the symmetry breaking constraints, given

by Eq. (S0) and Eq. (S3Bis), hereafter denoted as

ILP-0+S0+S3Bis (see Section VII);

• one including the symmetry breaking constraints, given

by Eq. (S0) and Eq. (S4), hereafter denoted as

ILP-0+S0+S4 (see Section VII);

• one including the symmetry breaking constraints, given

by Eq. (S0) and Eq. (S4Bis), hereafter denoted as

ILP-0+S0+S4Bis (see Section VII).

Moreover, for each implementation we considered two kinds

of run-time settings. Specifically, we run each formulation by

activating and deactivating Gurobi proprietary cuts, aiming at

empirically validating the theoretical results presented in the

previous sections.

As a Gurobi settings and in each implementation, we ac-

tivated both Gurobi heuristics (with its default value of

0.05) and the presolving strategies and deactivated the

Gurobi proprietary symmetry. In addition, in implementations

ILP-0+S0+S3, ILP-0+S0+S3Bis, ILP-0+S0+S4 and

ILP-0+S0+S4Bis, we set the different added valid inequal-

ities (symmetry breaking or cutting plane) as lazy inequalities,

with a value of 2, i.e., all lazy constraints that are violated by

a feasible solution will be pulled into the model. In contrast,

we used a particular branching strategy for binary variables

consisting of giving priority to x variables with respect to

y variables during the branching process. We then set the

ordering branch variable value to 1.

B. Data-sets

To test the performances of formulations ILP-0,

ILP-0+S0, ILP-0-S2+S0 and ILP-0+S0+Si (i ∈
{3, 3Bis, 4, 4Bis}), we considered the data-sets from the

literature of the 1D-BPP, referred to in the following as the

BPPLIB and described in [14]. All instances are downloaded

from the web page http://or.dei.unibo.it/library/bpplib. The

main characteristics of the used data-sets are summarized in

Table II. Each data-set contains a number of tested instances

(column Tested inst.) of the 1D-BPP, ad-hoc or uniformly

distributed (column Distribution), characterized by having the

same number of items (column n) and the same bin capacity

(column C). Detailed information about the structure of each

of these benchmarks can be found in [15] or in the the BPPLIB

web page.

C. Comparison of the ILP Models

To evaluate the different proposed ILP formulations, de-

scribed in a previous sections, we first compare its size

complexity, which indicates how large a problem is in terms

of binary variables and constraints as a function of n (the

number of bins as well as of items). We note that in these

formulations, no integer variables, except for the formulation

ILP-0-S2+S0 (n integer variables) as well as no Big-M

constraints are considered. As we can see in Table III, the

ILP-0 and its variants are generally equivalent in terms of

binary variables. On the other hand, we can see that the three

formulations: ILP-0, ILP-0+S0, ILP-0+S0+S1 have the

same order of number of constraints: O(n). In the same way,

formulations ILP-0+S0+Si for i in {3, 3Bis, 4, 4Bis} have

approximately the same order of O(n2) of constraints number.

Hence, the strengthening of the ILP-0 by symmetry breaking

inequalities seems to be more favorable for effectively reduc-

ing the search tree.

D. Numerical results

In this section, we analyze our results under one main axis,

in which ILP-0+S0, ILP-0-S2+S0 and ILP-0+S0+Si

for i in {3, 3Bis, 4, S4Bis} vs. ILP-0 are compared. Our

goal is to evaluate, with respect to ILP-0, the benefits

obtained by including symmetry breaking constraints.

1) Analysis of the solution times: Table IV provides the

results for the literature instances (described in table II)

obtained by running the ILP formulations with a time limit

of 60 seconds. Columns 1 and 2 identify the benchmarks

(characterized by a specific number of items n and a bin

capacity C) and give the number of instances for which the

ILP formulations were executed. The column associated with

each ILP formulation provides the number of such instances

that were solved to proven optimality and, in parentheses, the

average CPU time in the following two cases: With GC and

KHADIJA HADJ SALEM, YANN KIEFFER: SYMMETRY BREAKING CONSTRAINTS FOR THE 1D-BPP 321



TABLE II: Main characteristics of the 9 used data-sets from the literature of the 1D-BPP (provided by the BPPLIB) considered in the
experiments

Data-set Reference
Parameters of the instances

Tested inst. n C Distribution

Falkenauer T [4] 40 {60, 120} 1000 ad-hoc

Falkenauer U [4] 40 {120, 250} 150 uniform

Scholl 1 [1] 360 {50, 100} {100, 120, 150} uniform

Scholl 2 [1] 240 {50, 100} 1000 uniform

Scholl 3 [1] 10 200 100 000 uniform

Schwerin 1 [17] 100 100 1000 uniform

Schwerin 2 [17] 100 120 1000 uniform

Wascher [21] 17 [57− 239] 10 000 ad-hoc

Randomly Generated [14] 240 {50, 100} {50, 75, 100, 120, 125, 150, 200, 300, 400, 500, 750, 1000} ad-hoc

TABLE III: Comparison of ILP formulations

Models
No. variables

No. Constraints
binary integer

ILP-0 n2 + n 0 2n

ILP-0+S0 n2 + n 0 3n− 1

ILP-0+S0+S1 n2 + n 0 4n− 1

ILP-0-S2+S0 n2 + n n n2 + 5n− 2

ILP-0+S0+S3 n2 + n 0 (n2)/2 + 3n/2

ILP-0+S0+S3Bis n2 + n 0 (n2)/2 + 7n/2− 1

ILP-0+S0+S4 n2 + n 0 (n2)/2 + 7n/2− 1

ILP-0+S0+S4Bis n2 + n 0 (n2)/2 + 7n/2− 1

No GC which refer to the activation and the deactivation of

Gurobi proprietary cuts, respectively. For instances not solved,

the time limit is considered as the solution time. A cell with a

value of − means that no feasible solution found when solving

an instance using Gurobi optimizer within the time limit. For

each instance set, boldface highlights the highest number of

instances optimally solved. In the same way, for each instance

set, colored cell (Blue) highlights the cases where all instances

were solved to proven optimality. Finally, row Total (average)

reports the total number of instances optimally solved within

the time limit for each formulation as well as the average CPU

time in seconds for its resolution.

The results in Table IV provide the number of instances

solved in less than one minute (average CPU time in seconds),

by, respectively, ILP-0, ILP-0+S0, ILP-0-S2+S0 and

ILP-0+S0+Si for i in {3, 3Bis, 4, S4Bis}.

The results showed that all formulations were unable to solve

any instance in the data-sets FalkT(60,1000), FalkT(120,1000),

FalkU(250,150) and Scho3(200,100000) within the time limit,

either when activating or deactivating the Gurobi Opti-

mizer proprietary cuts, expect in the case of formulation

ILP-0+S0+S4Bis, i.e., it was able to optimally solve 19

instances in less than 20 seconds on average either both cases

respect to the proprietary cuts.

This trend is also marked in the case of the data-set

Wae([57−239],10000) when activating the Gurobi Optimizer

proprietary cuts, expect in the case of both ILP-0+S0+S4

and ILP-0+S0+S4Bis formulations, i.e., they were able to

optimally solve only one instance in less than 50 seconds.

Formulation ILP-0 was able to solve within the time limit

only 8 instances in the data-set FalkU(120,150), both when acti-

vating and deactivating the Gurobi Optimizer proprietary cuts.

Unfortunately, the combination of formulation ILP-0 with the

symmetry breaking constraints (ILP-0+S0, ILP-0-S2+S0

and ILP-0+S0+S3Bis) did not prove successful, i.e., only

one or at most two instances can be optimally solved. In

contrast, formulation ILP-0+S4Bis was able to optimally

solve the biggest number of instances (11 instances in 26.8

seconds on average) when activating the Gurobi Optimizer

proprietary cuts.

Formulations ILP-0, ILP-0+S0 ,ILP-0-S2+S0 and

ILP-0+S0+S3Bis generally have a similar performance,

i.e., they give rise to too similar results in the data-sets

Scho1(50,C), for C in {100, 120, 150} in both cases regarding

the cuts proprietary. However, formulation ILP-0+S4Bis

performs clearly better than the other formulations by giving

rise to the best results in the data-sets Scho1(50,C) for C
in {100, 120, 150}, i.e., it was able to solve within the time

limit all the instances when activating the Gurobi Optimizer

proprietary cuts, expect in the case of the data-sets Scho1(50,C)

for C in {120, 150} when deactivating the Gurobi Optimizer

proprietary cuts.

Formulation ILP-0+S0+S4Bis provides the highest num-

ber of optimally solved instances in the data-sets Scho1(100,C),

for C in {100, 120, 150} when deactivating and activating

the Gurobi Optimizer proprietary cuts, i.e., it was able to

solve more than 40 instances in each case. In other hand, the

behavior of both formulations ILP-0+S3 and ILP-0+S4

was similar. These formulations were unable to solve no in-

stances, expect 3 instances in the data-set Scho1(100,120) were

solved by ILP-0+S4 when activating the Gurobi Optimizer

proprietary cuts.

Formulations ILP-0, ILP-0+S0 and ILP-0-S2+S0

give rise to the same results in the data-set Scho2(50,1000)
when deactivating the Gurobi Optimizer proprietary cuts, i.e.,

they were able to optimally solve the highest number of

instances (111 instances in less than 1 second on average).

However, when activating the Gurobi Optimizer proprietary

cuts, formulation ILP-0 provides the highest number of

322 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



TABLE IV: Number of instances solved in less than one minute (average CPU time in seconds), for formulations ILP-0, ILP-0+S0,
ILP-0-S2+S0 & ILP-0+S0+Si for i in {3, 3Bis, 4, 4Bis}

Set Tested inst. ILP-0 ILP-0+S0 ILP-0-S2+S0 ILP-0+S3 ILP-0+S3Bis ILP-0+S4 ILP-0+S4Bis

No GC With GC No GC With GC No GC With GC No GC With GC No GC With GC No GC With GC No GC With GC

FalkT(60,1000) 20 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) - (60.0) - (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 19 (19.8) 19 (15.1)

FalkT(120,1000) 20 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) - (60.0) - (60.0) 0 (60.0) 0 (60.0) - (60.0) - (60.0) 0 (60.0) 0 (60.0)

FalkU(120,150) 20 8 (30.0) 8 (16.8) 1 (1.1) 2 (1.7) 2 (28.6) 1 (38.5) - (60.0) - (60.0) 2 (24.9) 2 (37.3) - (60.0) - (60.0) 6 (26.9) 11 (26.8)

FalkU(250,150) 20 0 (60.0) - (60.0) 0 (60.0) - (60.0) 0 (60.0) - (60.0) - (60.0) - (60.0) 0 (60.0) - (60.0) - (60.0) - (60.0) - (60.0) - (60.0)

Scho1(50,100) 60 18 (1.3) 19 (0.8) 16 (6.8) 20 (3.9) 16 (2.8) 20 (2.1) - (60.0) - (60.0) 18 (2.8) 16 (0.4) 3 (30.0) 37 (14.5) 60 (0.3) 60 (0.2)

Scho1(50,120) 60 17 (2.2) 19 (2.9) 13 (9.1) 26 (2.7) 11 (3.1) 26 (3.6) 2 (46.1) 2 (27.3) 17 (4.2) 22 (1.7) 6 (7.3) 38 (10.0) 57 (0.6) 60 (0.4)

Scho1(50,150) 60 47 (1.7) 47 (1.0) 40 (4.6) 43 (2.4) 40 (3.1) 44 (1.7) 6 (21.8) 6 (33.5) 47 (2.7) 48 (2.8) 16 (14.7) 18 (15.0) 56 (0.9) 60 (1.3)

Scho1(100,100) 60 8 (12.9) 7 (4.3) 4 (12.2) 11 (13.0) 4 (12.7) 10 (7.5) - (60.0) - (60.0) 6 (9.9) 8 (9.9) - (60.0) - (60.0) 54 (2.8) 60 (2.3)

Scho1(100,120) 60 3 (15.0) 6 (23.4) 1 (1.0) 8 (9.5) 0 (60.0) 8 (10.9) - (60.0) - (60.0) 6 (3.6) 6 (14.8) - (60.0) 3 (36.9) 51 (4.4) 59 (5.0)

Scho1(100,150) 60 29 (11.5) 29 (11.3) 17 (16.5) 17 (9.4) 17 (9.7) 17 (3.5) - (60.0) - (60.0) 21 (11.5) 26 (10.4) 0 (60.0) 0 (60.0) 42 (13.6) 43 (11.6)

Scho2(50,1000) 120 111 (0.7) 113 (0.9) 111 (0.3) 111 (0.3) 111 (0.3) 111 (0.6) 97 (5.6) 98 (7.5) 110 (0.5) 111 (0.7) 108 (2.2) 110 (2.9) 107 (2.2) 111 (2.6)

Scho2(100,1000) 120 103 (1.5) 101 (1.7) 102 (2.5) 102 (1.8) 101 (3.3) 101 (1.7) 46 (27.6) 44 (23.7) 92 (4.2) 98 (3.9) 70 (15.7) 72 (15.5) 57 (11.6) 57 (13.4)

Scho3(200,100000) 10 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) - (60.0) - (60.0) 0 (60.0) 0 (60.0) - (60.0) - (60.0) - (60.0) - (60.0)

Schw1(100,1000) 100 52 (8.4) 48 (10.3) 40 (6.3) 52 (4.7) 40 (6.5) 51 (5.0) - (60.0) - (60.0) 56 (13.4) 62 (12.1) 12 (24.7) 11 (22.2) 15 (18.4) 10 (26.0)

Schw2(120,1000) 100 49 (8.8) 38 (9.8) 26 (8.4) 43 (10.8) 28 (10.0) 43 (11.8) - (60.0) - (60.0) 44 (13.2) 46 (10.8) 2 (37.6) 1 (23.0) 9 (20.6) 6 (24.2)

Wae([57−239],10000) 10 1 (40.6) - (60.0) 8 (15.5) - (60.0) 9 (17.8) - (60.0) - (60.0) - (60.0) 1 (37.2) - (60.0) 2 (35.9) 1 (42.3) - (60.0) 1 (49.8)

RG 240 151 (8.1) 161 (8.1) 103 (7.9) 117 (6.3) 97 (5.4) 108 (6.6) 3 (35.0) 44 (20.3) 140 (8.2) 153 (10.6) 16 (21.4) 22 (22.8) 189 (4.5) 212 (5.2)

Total (average) 1140 597 (11.0) 596 (7.6) 482 (7.1) 552 (5.6) 476 (8.6) 540 (7.8) 154 (27.2) 194 (22.4) 560 (10.5) 598 (9.6) 235 (21.0) 314 (20.51) 722 (9.7) 769 (13.1)

optimally solved instances, with a value of 113 (in less than

1 second on average).

In the case of the data-set Scho2(100,1000), formulation

ILP-0 performs better than the other formulations when

deactivating the Gurobi Optimizer proprietary cuts, i.e., it

was able to optimally solve 103 instances. In contrast, when

activating the Gurobi Optimizer proprietary cuts, formulation

ILP-0-S2+S0 is better by optimally solving 102 instances

in less than 2 seconds on average.

In both Schw1(100,1000) and Schw2(120,1000) data-sets,

the table shows the clear superiority of formulation

ILP-0+S0+S3Bis over the other formulations, either when

activating or deactivating the Gurobi Optimizer proprietary

cuts, expect in the case of the data-set Schw2(120,1000), for

which formulation ILP-0 performs better when activating

Gurobi Optimizer proprietary cuts.

Among the proposed symmetry breaking constraints, for-

mulation ILP-0+S0+S4Bis provides the highest number

of optimally solved instances in the data-set RG (Randomly

Generated) compared to the formulation ILP-0. It was able to

solve 189 and 212 instances (in 5 seconds on average), when

activating and deactivating the Gurobi Optimizer proprietary

cuts, respectively.

The table confirms the clear superiority of

ILP-0+S0+S4Bis over the other formulations. It was able

to optimally solve within the time limit (60 seconds) in total

722 and 769 instances (in 9.7 and 13.1 seconds on average),

respectively. In the same way, we can see that the behavior

of ILP-0+S0, ILP-0-S2+S0, ILP-0+S0+S3Bis and

ILP-0+S0+S3Bis formulations was generally similar

to that of the standard formulation ILP-0. In addition,

we can see that the formulation ILP-0+S0+S4, where

constraints (S4) is the general form of constraints in (S3),

performs better than formulation ILP-0+S0+S3, especially

when activating the Gurobi Optimizer proprietary cuts.

For example, formulation ILP-0+S0+S3 was unable

to solve within the time limit any instance in the data-

sets FalkU(120,150), Scho1(50,100), Scho2(100,C) for C

in {100, 120, 150}, Schw1(100,1000), Schw2(120,1000) and

Wae([57−239],10000). This means that the constraint (S3) is

the least effective among all the other symmetry breaking

constraints.

However, the classical formulation ILP-0 remains an

effective model to solve some of the used BPPLIB data-sets,

specifically the data-sets Scho2(n,100) for n in {50, 100} and

Schw2(120,1000).

As a general trend, the results showed that the use of Gurobi

Optimizer proprietary cuts may increase the number of

instances optimally solved and reduce the solution time in

most formulations with the exception of the formulation

ILP-0 for certain data-sets: Scho1(100,100), Scho1(100,150),

Scho2(n,100) for n in {50, 100}, Schw2(100,1000) and

Schw2(120,1000).

2) Analysis of the gap : We analyze the performances

of each proposed formulation with respect to both Gurobi

gap GGap (%), i.e., the difference between the best feasible

solution and the best lower bound found by Gurobi at the end

of CPU time limit (60 s) and the Gap, i.e., the difference

between the best lower bound to a given instance of the 1D-

BPP in a specific data-set and the objective function value

of the linear programming relaxation at the root node of the

respective search tree, divided by the best lower bound.

Figs. 6, 8, 7 and 9 show the results of our computational

experiments in term of box-and-whisker plots. Specifically,

the bottom and the top of each box represent the first and

third quartiles; the band inside the box represents the second

quartile (the median), and the ends of the whiskers represent

the 9th percentile and the 91st percentile. Outliers are plotted

as individual points.

In particular, Figs. 6 and 7 show the performances of the

7 formulations when disabling Gurobi Optimizer proprietary

cuts. In contrast, Figs. 8 and 9 show the performances of the

7 formulations when enabling Gurobi Optimizer proprietary

cuts. The gaps are expressed in percentage and the perfor-

mances are (i) represented by means of box and whiskers

plots and (ii) shown in function of 9 data-sets: FalkU(120,150),
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Fig. 6: Comparison of the gurobi gaps (%) of formulations ILP-0, ILP-0+S0, ILP-0-S2+S0 and ILP-0+S0+Si for i in
{3, 3Bis, 4, 4Bis} on the data-sets from BPPLIB, when disabling Gurobi Optimizer proprietary cuts
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Fig. 7: Comparison of the gaps (%) of formulations ILP-0, ILP-0+S0, ILP-0-S2+S0 and ILP-0+S0+Si for i in {3, 3Bis, 4, 4Bis}
on the data-sets from BPPLIB, when disabling Gurobi Optimizer proprietary cuts

Scho1(50,C), for C in {100, 120, 150}), Scho1(100,C), for C
in {100, 120, 150}), Schw1(100,1000) and Schw2(120,1000). For

the rest of data-sets, the behavior of all formulations was

generally similar, as shown in Table IV.

As shown in Figs. 6 and 8, respectively in Figs. 7 and 9,

formulation ILP-0+S0+S4Bis provides generally the small-

est median gurobi gaps GGap and gaps Gap, except in the

case of data-sets FalkU(120,150) and Scho1(100,150), in which

its results are too similar to those of ILP-0. This fact is

consistent with the results discussed in the previous sections.

In the same way, Figs. 6 and 8 show that the activation of the

Gurobi Optimizer proprietary cuts from one hand causes a gen-

eral decrement of the median gaps related to the formulations

but on the other hand does not change their general trends.

In particular, we observed that the use of these proprietary

strategies has a major impact on formulations ILP-0+S0,

ILP-0-S2+S0, ILP-0+S0+S3 and ILP-0+S0+S4, minor

in formulation ILP-0 and becomes negligible or absent in

formulations ILP-0+S0+S3Bis and ILP-0+S0+S4Bis.

The trend is more marked in datasets Scho1(50,C), for C in

{100, 120}) and Scho1(100,C), for C in {100, 120, 150}) and

less in the others, for which the improvements are marginal.
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Fig. 8: Comparison of the gurobi gaps (%) of formulations ILP-0, ILP-0+S0, ILP-0-S2+S0 and ILP-0+S0+Si for i in
{3, 3Bis, 4, 4Bis} on the data-sets from BPPLIB, when enabling Gurobi Optimizer proprietary cuts
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Fig. 9: Comparison of the gaps (%) of formulations ILP-0, ILP-0+S0, ILP-0-S2+S0 and ILP-0+S0+Si for i in {3, 3Bis, 4, 4Bis}
on the data-sets from BPPLIB, when enabling Gurobi Optimizer proprietary cuts

Our study of the topic of symmetry breaking constraints

for the classical formulation ILP-0 has led us to the con-

sideration of an alternative encoding, and thus an alternate

symmetry-less formulation for the 1D-BPP. This new for-

mulation encodes partitions directly, removing the need for

variables to encode the use of bins. We refer to Hadj Salem

and Kieffer (2020) [12] for further details.

IX. CONCLUSION AND FUTURE WORK

We have presented a study of how symmetry breaking

constraints can improve the resolution performance of integer

linear formulations for the 1-dimensional bin packing problem.

Our study includes a review of all known and/or symmetry

breaking constraints.

One exciting perspective of this work would be to investigate

the impact of reusing these inequalities to other optimization

problem ILP formulations, e.g., BPP with Conflicts (BPC),

Cutting Stock Problem, etc. Understand how symmetry break-

ing methods interact with other ILP features such as branching

strategies and cutting plane methods, in the context of packing

problems, may be also a new direction should be investigated.
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