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A B S T R A C T

Cotton-strip bioassays are increasingly used to assess ecosystem integrity because they provide a standardized
measure of organic-matter decomposition – a fundamental ecosystem process. However, several different cotton-
strip assays are routinely used, complicating the interpretation of results across studies, and hindering broader
synthesis. Here, we compare the decay rates and assemblages of bacteria and fungi colonizing the three most
commonly used cotton materials: Artist’s canvas, Calico cloth, and Empa fabric. Cotton strips from each material
type were incubated in 10 streams that span a wide range of physicochemical properties across five ecoregions.
Additionally, to evaluate responses to environmental stress without potentially confounding biogeographical
effects, we deployed identical bioassays in five streams across an acidification gradient within a single ecoregion.
Across all streams decomposition rates (as tensile strength loss [TSL]) differed among the three cotton ma-

terials; Calico cloth decomposed fastest (time to 50% TSL [T50]= 16.7 d), followed by the Empa fabric
(T50= 18.3 d) and then Artist’s canvas (T50= 21.4 d). Despite these differences, rates of TSL of the three cotton
materials responded consistently to variation in environmental conditions; TSL of each fabric increased with
stream temperature, dissolved-nutrient concentrations and acid-neutralizing capacity, although Artist’s canvas
and Calico cloth were more sensitive than Empa fabric. Microbial communities were similar among the mate-
rials, and values of community structure (e.g., phylotype richness and diversity) were comparable to those
reported for decaying leaves in streams from the same region, the major natural basal carbon resource in
forested-stream ecosystems. We present linear calibrations among pairs of assays so that past and future studies
can be expressed in a “common currency” (e.g., Artist’s-fabric equivalents) ‘past and future studies’ repeated two
times in the sentence. Lastly, given its relatively low within-site variability, and the large number of streams
where it has been used (> 700 across the globe), we recommend Artist’s fabric for future work. These results
show that cotton provides an effective and realistic standardized substrate for studying heterotrophic microbial
assemblages, and acts as a reasonable proxy for more chemically complex forms of detritus. These findings add
to growing evidence that cotton-strip bioassays are simple, effective and easily standardized indicators of het-
erotrophic microbial activity and the ecosystem processes that result.

1. Introduction

Organic-matter decomposition is a fundamental ecosystem process
that contributes to the global carbon cycle, governs concentrations of
atmospheric CO2 (Battin et al., 2008, 2009), and influences local food-

web dynamics (e.g., Moore et al., 2004). In streams and rivers this
process plays a central role in ecosystem functioning (see review by
Tank et al., 2010) and, because it responds sensitively to critical an-
thropogenic stressors, decomposition has been proposed as an indicator
of ecosystem condition that complements commonly used structural
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of microbial activity and community structure in streams, like those
already used in terrestrial ecosystems (e.g., Williamson, 1994;
Pankhurst et al., 1995).

The first cotton-strip assays were conducted in terrestrial ecosys-
tems using a fabric produced by the Shirley Company (Manchester,
UK), which became a benchmark industry standard in soil studies
(Latter and Howson, 1977; Latter and Walton, 1988; Boulton and
Quinn, 2000). The ‘Shirley Soil Burial Test Fabric’ was subsequently
used in aquatic ecosystems where it was found to be sensitive to var-
iation in environmental conditions (Hildrew et al., 1984; Boulton and
Quinn, 2000; Claret et al., 2001; Tiegs et al., 2007). Unfortunately, the
manufacture of Shirley material was discontinued in 2002, creating
need for a new standard (Fritz et al., 2011). Several materials have
since been used including 'Calico' cloth (Imberger et al., 2010), 'Artist’s
canvas' (Slocum et al., 2009), also known as ‘Artist’s fabric’ (Tiegs et al.,
2013) and 'Empa material' (Clapcott et al., 2010). Importantly, this lack
of a single standard complicates the comparison of results across studies
because the physical properties of the three cotton materials differ
markedly (e.g., length and fineness of cotton fiber, strength, and elastic
properties). Intercalibrations are therefore needed to compare studies
involving different fabric types, past and future.

Here, we compared the performance of these three materials in
streams along gradients of major environmental factors that influence
organic-matter decomposition rates (e.g., ecoregions, acidification,
temperature, nutrient concentrations). With this approach we derived
intercalibrations that allow the conversion of decomposition rates into
a ‘common currency’ for cellulose-decomposition potential among stu-
dies using different cotton types. We also characterized bacterial and
fungal communities associated with each cotton material and evaluate
attributes of community structure in the context of those published for
leaf litter. Our aim is to provide a standardized methodology for
quantifying cellulose-decomposition potential and heterotrophic com-
munities in streams and other habitats across the globe, so that organic-
matter decomposition and the factors that influence it can be better
understood.

2. Materials and methods

2.1. Study site description

Cotton strips were deployed in headwater streams from five ecor-
egions that differ in their geology and climate (Olson et al., 2001;
Omernik and Griffith, 2014): northern temperate deciduous forests of
the United States (US); English lowland deciduous broadleaf woodlands
(UK); Vosges Mountains in northeast of France (FRNE); western-Eur-
opean broadleaf forests of Switzerland (CH); and Mediterranean
mountains of Pyrenees in southwestern France (FRSW). These five
ecoregions encompass broad latitudinal, longitudinal and altitudinal
gradients, with a wide range of environmental and climatic conditions
including oceanic, humid continental and subalpine climates. A pair of
streams was selected in each ecoregion. In FRNE, five additional
streams were included to span an acidification gradient within a single
ecoregion. Water samples were taken on the first and last day of the
cotton-strip-incubation period and assessed for concentrations of am-
monium, nitrate, nitrite, and phosphorus, conductivity and pH using
established protocols (e.g., NF EN ISO 13395). The study streams in the
five ecoregions represented a range of nitrate concentrations from 0.11
to 1.85mg NO3−-N/L, phosphate concentrations from 1.4 to 28.3 µg/L
and ammonium concentrations from 1 to 111 µg NH4+-N/L. The five
sites in FRNE represented a gradient of pH ranging from 4.9 to 6.9, from
−910.1 to 134.4 µeq/L for acid-neutralizing capacity values (ANC) and
from 52.3 to 343.3 µg/L for aluminum concentrations. Detailed in-
formation on characteristics of individual streams across the five
ecoregions are available in Table 1.

indicators� (e.g.,� invertebrate� community� composition)� (Boulton� and�
Quinn,� 2000;� Gessner� and� Chauvet,� 2002).� Organic-matter� decom-
position�is�most�commonly�assessed�using�litter-bag�assays,�an�approach�
that� typically� involves� incubating� a� known�mass� of� locally� collected�
leaves� in�mesh�bags�in�the�field�and�retrieving�them�to�determine� leaf-
mass� loss� over� time� (Boulton� and�Boon,� 1991).� Leaf-litter� breakdown�
has�been�extensively�studied�during�the�past�two�decades�in�a�variety�of�
aquatic�ecosystems� to�evaluate� the� impacts�of�anthropogenic� stressors�
including� organic� pollution,� acidification,� hydromorphological� altera-
tions�and�land-use�change�(Young�et�al.,�2008;�Tank�et�al.,�2010;�Elosegi�
and�Sabater,�2012;�Woodward�et�al.,�2012;�Chauvet�et�al.,�2016;�Colas�
et�al.,�2017;�Ferreira�and�Guérold,�2017).�While�understanding�of� the�
factors� that� influence� this�process�has�grown�considerably,�key�knowl-
edge�gaps�persist�due� in�part�to� limitations�of� litter-bag�assays.

Despite� their�widespread� use,� litter-bag� assays� have� shortcomings�
that�undermine�reliable�comparisons�among�studies�(Boulton�and�Boon,�
1991)� and� hinder� applications� at� large� temporal� and� spatial� scales�
(Jackson� et� al.,�2016;�Tiegs� et� al.,�2019).�Notable� among� these� is� the�
difficulty� in�consistently�obtaining� leaf� litter�of�uniform�quality.�Litter�
characteristics�that�influence�decomposition,�such�as�nutrient�and�lignin�
content,� are� highly� variable� both� among� and� within� tree� species�
(Webster�and�Benfield,�1986;�Gessner�and�Chauvet,�2002;�Hladyz�et�al.,�
2008;�Lecerf�and�Chauvet,�2008),�and�even�among�leaves�of�individual�
trees�of� the� same� species� (e.g.,�Sariyildiz�and�Anderson,�2003).�These�
and�other� sources�of�variability� in� litter�quality� (e.g.,� interannual�var-
iation)�mean�that�decomposition�rates�among�studies�are�contingent�on�
not� only� the� environmental� conditions� in� which� the� litter� was� in-
cubated,� but� also� the� particular� organic� matter� used.� Consequently,�
basic�understanding�of�how�the�inherent�capacity�of�streams�to�process�
organic�matter� –� i.e.,� their� decomposition� potential� (sensu� Imberger�
et� al.,�2010)� –� varies� through� time� and� space,� and� in� response� to� an-
thropogenic� stressors,� is� impeded� by� a�widespread� lack� of� standardi-
zation�and�comparability.

Given� the�numerous� advantages� that� they�offer�over� litter-bag� ap-
proaches,�cotton-strip�assays�are�a�logical�choice�for�use�as�a�universal-
standard�bioassay�because� they�enable� researchers� to�evaluate� the� ca-
pacity� of� ecosystems� to� decompose� organic�matter.�Moreover,� given�
their�ease�of�assembly,�deployment,�and�portability,�cotton-strip�assays�
have�potential� to�enable� research�at� large� spatial�and� temporal� scales,�
addressing� the� pressing� need� for� global� monitoring� and� assessment�
(Jackson�et�al.,�2016;�Tiegs�et�al.,�2019).�Consisting�of�≈95%�cellulose,�
cotton� is� an� ecologically� relevant� compound� given� that� this� key� car-
bohydrate� is� the�main� constituent� of� plant� litter,� the�most� abundant�
organic�polymer� on�Earth,� and� a�major� basal� resource� in�most� of� the�
Earth’s� food�webs� (Egglishaw,� 1972).� Cotton� contains� very� low� con-
centrations� of� nutrients� such� as� N� and� P,� which� are� highly� variable�
among� and�within� the� litter� of� other� plant� species,� and� are�main� in-
trinsic�determinants� of�decomposition� rates� (e.g.,� Latter� and�Howson,�
1977;� Claret� et� al.,� 2001;� Clapcott� et� al.,� 2010;�Hladyz� et� al.,� 2008;�
Tiegs� et� al.,� 2007,� 2013).�Additionally,� cotton� fabric� is� less� prone� to�
fragmentation� than� leaves� (Egglishaw,� 1972),� thereby� reducing� the�
variability�due�to�hydraulic�conditions.�Cellulose�is�colonized�by�a�wide�
range�of�microorganisms,� including� leaf-colonizing� fungi�and�bacteria�
(Singh,�1982;�Harrison�et�al.,�1988).�They�provide�practical�and� logis-
tical�advantages�over� litter-bag�assays,� including�often-shorter� incuba-
tion� times� in� the�field,� relative� ease� of�use,� and� low� cost� of� the�mea-
surement�(Tiegs�et�al.,�2013).�Importantly,�cotton-strip�decomposition,�
as� with� leaf-litter� decomposition,� is� sensitive� to� a� range� of� anthro-
pogenic� stressors� including:� acidification� (e.g.,� Hildrew� et� al.,� 1984;�
Jenkins�et�al.,�2013),�temperature�(Griffiths�and�Tiegs,�2016;�Tiegs�et�al.�
2019),� metal� contamination� (e.g.,� Chew� et� al.,� 2001;� Costello� and�
Burton,� 2014;� Gardham� et� al.,� 2015),� and� nutrient� loading� (e.g.,�
Boulton� and� Quinn,� 2000;� Piggott� et� al.,� 2015).� Cotton-strip� assays�
therefore�offer�promising�opportunities�for�standardized�measurements



2.2. Cotton-strip bioassays

Cotton strips were prepared from bolts of ‘Calico’ cloth (Lincraft Pty.
Ltd., Miranda, New South Wales, Australia), ‘Artist’s’ canvas (Fredrix-
brand unprimed 12-oz. heavyweight cotton fabric, Style #548,
Lawrenceville, GA, USA), and ‘Empa’ fabric (Swissatest Product no.
222; Empa, St. Gallen, Switzerland). Detailed information on each
substrate is available in Table 2. Cotton strips were prepared and de-
ployed according to methods previously reported in the literature (e.g.,
Tiegs et al., 2013, 2019).

In each stream, one ‘block’ with one strip of each material type was
located in six riffle-type habitats separated by approximately 7 times
the bankfull-channel width. Each block consisted of cotton strips at-
tached to a stake hammered into the stream substrate. Strips were in-
cubated in streams for 20–27 days beginning in November 2014, a
duration predicted to yield an approximate average of 50% tensile-
strength loss, an amount of decay that is believed to maximize sensi-
tivity of the assay (Tiegs et al., 2013). In the five streams that spanned
the acidification gradient, one additional strip of each material type
located in three riffle-type habitats was incubated for 6 weeks to eval-
uate fungal and bacterial abundance, and to compare microbial as-
semblages that colonized the three types of cotton materials. Ad-
ditionally, a time-series experiment was conducted in the UK and
French reference streams (i.e. FRNE and FRSW) to compare the time to
yield 50% tensile loss of each material. To this end, six strips for each
cotton type were anchored to three additional stakes and removed
weekly for 6 weeks. Temperature was recorded hourly in each stream
for the duration of the experiments with a logger, except for streams in
southeast UK. After incubation in the field, cotton strips were removed
and placed individually into labeled plastic bags for transport to the

laboratory.

2.3. Tensile loss determination

In contrast to litter-bag assays that quantify decomposition rates by
measuring the loss of mass of organic matter through time, cotton-strip
assays quantify the loss of tensile strength, a process that equates to the
catabolism of cellulose. In the laboratory, following the protocol of
Tiegs et al. (2013), each strip was placed in a shallow tray containing
70% ethanol and cleaned gently for 30 s with a small paint brush to
remove adhering sediment and debris. The strips were then transferred
to small aluminum pans, dried at 40 ◦C for several days, and stored in
desiccators. The strips were shipped to the Aquatic Ecology Lab at
Oakland University for tensile-strength determination.

The tensile strength of each strip was measured on a tensiometer
(Mark-10 brand, Model #MG100, Copiague, NY, USA) mounted to a
motorized test stand, and pulled at a rate of 2 cm/min. The initial
tensile strength of the strips was determined using a set of control strips,
i.e., for each ecoregion, seven additional strips of each cotton material
that were not incubated in the streams were wetted in tap water, dried
in an oven, and stored in a desiccator before being processed identically
to the treatment strips (Table 2). Tensile-strength loss (TSL) was ex-
pressed as percent of the initial tensile-strength lost per day of in-
cubation according Equation (1) (after Tiegs et al., 2013):

= ◊TSL
Tensile Strength
Tensile Strength

Incubation Time1 100/treatment strips

reference strips

(1)
where Tensile Strengthtreatment strips is the maximum tensile strength

Table 1
Ranges of values of main physicochemical characteristics of water among streams across the five ecoregions examined: western European broadleaf forests in
Switzerland (CH); the Mediterranean mountains of Pyrenees in southwestern of France (FRSW); the Vosges mountains in northeastern of France (FRNE); the English
lowlands deciduous forests (UK); the temperate deciduous forests of the northern United States (US). Concentrations of Al and acid neutralizing capacity (ANC) were
determined following the methods detailed in Ferreira and Guérold (2017). Nutrient gradient (n=10). ANC, pH and Al were determined in 5 streams in FRNE that
span an acidification gradient.

FRNE CH UK FRSW US

Min Max Min Max Min Max Min Max Min Max

Degree days 135.2 172.0 135.2 186.8 n.a. n.a 205.1 231.1 52.9 60.4
NO3−-N (mg/L) 0.11 0.73 0.93 1.66 0.26 1.34 0.74 1.85 n.a n.a
NO2−-N (µg/L) < 10 <10 2.0 45.0 0.60 2.00 <10 37.0 n.a n.a
NH4+-N (µg/L) < 10 <10 6.0 10.0 1.00 7.00 45.0 111.0 n.a n.a
PO43−-P (µg/L) 2.0 5.0 14.0 17.0 1.40 1.60 14.0 28.3 n.a n.a

Acidification gradient (n= 5)

TH MR BR RR CE

ANC (µEq/L) 134.4 38.9 10.1 9.4 −10.0
pH 6.9 6.3 5.6 5.7 4.9
Al (µg/L) 52.3 174.3 207.1 176.0 343.3

Table 2
General characteristics of the cotton materials before they were incubated in the field.

Calico Empa Artist’s

Weight (g/m2) 115 205 407
Average (± SD) initial tensile strength (lbs) 42.7 ± 6.7 44.6 ± 9.0 57.7 ± 7.3
Cotton strip dimensions (mm) 30× 60 24× 50 25× 80
References Imberger et al., (2010) Clapcott et al., 2010 Tiegs et al., (2013)



recorded for each strip incubated in the field, Tensile Strengthreference
strips is the mean tensile strength of control strips that were not in-
cubated in the field, and incubation time is the number of days the
strips were incubated in the field. To account for differences in de-
composition rate due to temperature differences across the acidification
gradient, tensile strength was also expressed as a percentage of the
initial TSL per degree-day by substituting degree-days for time in Eq.
(1). Degree days were estimated by summing the mean daily tem-
peratures at each stream, based on hourly readings greater than 0 ⁰C.
Additionally, the time to yield 50% TSL (T50) was estimated by fitting
the tensile loss to a function of incubation time according to a linear
model using the time series experiments performed in three reference
streams. The linear model was used because it fits the data better than
the exponential model according to AICc.

2.4. Microbial abundance and community assemblages

Before DNA extraction, strips were placed in a shallow tray filled
with distilled water (not ethanol as with the other strips) and cleaned
gently with a small paint brush to remove any adhering sediment.
Pieces of cotton (1.5× 1.5 cm) were crushed in Eppendorf tubes con-
taining 750 µl of the PowerBead Tube solution from the PowerSoil DNA
Isolation Kit (MO BIO Laboratories, Carlsbad, CA). Microbial suspen-
sions were transferred in the PowerBead Tubes and total DNA was ex-
tracted using the PowerSoil DNA Isolation Kit according to the manu-
facturer’s instructions.

The abundance of fungi and bacteria was estimated by qPCR using
the primer sets Fung5F/FF390R (Lueders et al., 2003), 968F/1401R
(Felske et al., 1998), which target fungal 18S rRNA genes and the
bacterial 16S rRNA genes, respectively. The SYBR green qPCR assays
were performed as previously described (Thion et al., 2012; Cébron
et al., 2015) using a CFX96 Real-Time PCR detection system (Bio-Rad).
Data were expressed as 18S to 16S rDNA copy number ratio. PCR pri-
mers ITS3GC and ITS4 were used for PCR amplification of the ITS2
region of fungal ribosomal DNA (Nikolcheva and Bärlocher, 2005). PCR
primers 341F-GC2/907R were used for partial amplification of the

bacterial 16S rRNA genes (Muyzer et al., 1998, 1993).
The amplification products were separated with Denaturing Gel

Electrophoresis (DGGE) on the DCODE Mutation Detection System (Bio-
Rad, Hercules, CA). Electrophoresis was performed on 8% poly-acry-
lamide gels with a denaturing gradient from 30 to 70% for the fungal
PCR products and from 40% to 60% for the bacterial PCR products
[100% denaturant corresponds to 40% (v/v) formamide and 7M urea].
DGGE was run 16 h at 55 V and 56 °C for fungal PCR products and 16 h
at 100 V and 60 °C for bacterial PCR products. The gels were stained
with SYBR Green I and imaged with a STARION FLA-9000 scanner
(Fujifilm Life Sciences FSVT, Courbevoie, France) before being ana-
lyzed using GelCompar II (Applied Maths, Sint-Martens-Latem,
Belgium). DGGE profiles were aligned using control samples as migra-
tion markers. The molecular richness was calculated as the total
number of bands/phylotypes (PR= phylotype richness) for each DGGE
profile. Microbial diversity was calculated using the Shannon-Weaver
index (H’) and relative abundance of phylotypes (based on relative
band intensity).

2.5. Statistical analyses

Nested ANOVA was used to evaluate differences in mean percent
TSL per day among ecoregions and cotton materials (as a fixed effect)
using streams nested within ecoregions as a random effect. A linear
mixed model was used to test the variation of percent TSL per degree-
day along the acidification gradient using the fabric type and the acid
neutralizing capacity, or the aluminum concentrations, as fixed effects
and the streams as random effect. Similarly, the relationships between
percent TSL per day and nutrient concentrations were examined using
linear mixed models. Nutrients concentrations and fabric type were
used as fixed effects and ecoregions and streams nested within ecor-
egions as random effects. Variation in microbial abundance, phylotype
richness and diversity among cotton fabric incubated along the acid-
ification gradient was examined using mixed ANOVA with cotton type
as fixed effect and streams as random effect. All mixed models were
performed using restricted maximum likelihood (REML) and the
package lmerTest (Kuznetsova et al., 2015). Significance of fixed effects
was derived using Satterthwaite approximation for degrees of freedom,
as it produces acceptable Type 1 error rates for smaller samples (Luke,
2017). Post-hoc comparisons of means were performed using ‘glht’
function of the ‘multicomp’ package and a Bonferroni-Holm correction
(Hothorn et al., 2008). Significance of random effects was determined
using ‘rand’ function of ‘lmerTest’ package. Model checking included
homogeneity of variance and normal distribution of model residuals
and did not reveal any obvious deviations from homoscedasticity or
normality.

Non-metric multidimensional scaling (NMDS) analyses of fungal
and bacterial community profiles were used to assess differences among
sites and among cotton fabric using the function ‘metaMDS’ in vegan.
The Bray-Curtis coefficient was used to quantify dissimilarity among
sites and among cotton fabrics based on community profiles. Goodness-
of-fit was estimated with a stress function, which ranges from 0 to 1,
with values close to zero indicating a good fit. Stress< 0.15 corre-
sponds to good ordination (Clarke, 1993). Axes values from the NMDS
analyses were correlated using Spearman rank correlation with ANC
and aluminum concentration values to identify variables that corre-
sponded to among-site differences in microbial community profiles
using the function ‘cor.test’ of the ‘stats’ package. Linear regression
models were performed to link percent TSL per day of each cotton
fabrics using the caret (Kuhn et al., 2017) and mass (Venables and
Ripley, 2002) packages. To run the models, data were divided into two
parts, a training data set (i.e. 80% of the original data set) used to build
the model and a validation data set (i.e. 20% of the original data set)
used to gauge the model’s performance. Model performance and ac-
curacy were estimated using root mean square error and the Pearson
correlation coefficient between the observed and predicted values

Fig.1. Mean TSL per day (± SD) across fabric types and ecoregions. CH:
western European broadleaf forests in Switzerland; FRSW: the Mediterranean
mountains of Pyrenees in southwestern France; FRNE: the Vosges mountain in
northeastern France; UK: English lowland beech forests; US: temperate decid-
uous forests of the northern United States. Continuous black line indicates the
mean percent tensile strength loss per day for all cotton fabrics; the dashed line
indicates the mean value for each of the three fabric types across all streams.



coming from the validation data set. All statistical analyses were per-
formed using R version 3.4.3 (R Development Core Team, 2008).

3. Results

3.1. Tensile-strength loss across ecoregions and environmental gradients

Patterns of TSL across ecoregions were similar among the three
cotton materials (Fig. 1). Across all streams, TSL ranged from 0.4 to
4.4% d-1, with an overall mean ± SD of 2.3 ± 1.2, 2.6 ± 1.4 and
2.5 ± 1.7% for Artist’s fabric, Empa and Calico, respectively (Fig. 1).
Differences were observed among fabric types in terms of their overall
rates of tensile-strength loss (F2,108= 5.6, p < 0.005) with Artist’s
fabric being slower to decompose than either Empa or Calico. Differ-
ences in mean rates of TSL were also observed among streams within
ecoregions but not among ecoregions, although the differences were
close to being statistically significant (F4,5= 4.8, p=0.058).

For each of the three fabric types, TSL per degree day increased with
increasing ANC (F1,11= 59.2, P < 0.001; Fig. 2A), and decreased with
increasing aluminum concentrations (F1,11= 43.4, P < 0.001;

Fig 2. Mean TSL per degree day (± SD) along acid-neutralizing capacity (A) and aluminum concentrations (B) gradients. N= 5 streams in each panel.

Fig 3. Mean TSL per day (± SD) across concentrations in NO3--N (A) and in PO43−-P (B). N=8 streams in each panel.

Fig.4. Barplot of T50 (± SD) calculated on three reference sites using linear
models for Artist’s fabric, Calico cloth and Empa’s fabric. N= 3 streams.



Fig. 2B). No significant differences were observed among fabric types,
indicating that regardless of fabric type the decomposition of cellulose
is strongly affected by acidification. Similarly, fabric type did not affect
TSL along gradients of NO3−-N (Fig. 3A) and PO43−-P (Fig. 3B); TSL
increased with concentrations of NO3−-N (F1,5.2= 41.4, P < 0.005)
and PO43−-P (F1,6= 9.3, P < 0.05).

3.2. Time-series experiment

Time-series experiments and linear models revealed that the time to
50% TSL (T50) differed among the fabrics type (Fig. 4). Artist’s fabric
decomposed more slowly than Calico and Empa with 50% tensile-
strength loss achieved after 21.2 ± 2.2, 16.7 ± 3.0 and 18.3 ± 4.2,
respectively. Empa fabric was the most variable at T50; Artist’s fabric
was the least variable (CV: 10.4% for Artist’s fabric, 17.9% for Calico
and 23.0% for Empa).

The TSL of the three cotton materials was strongly related (Table 3).
Each linear regression model performed between TSL of each cotton
type was highly significant. On average, the models accounted for
81.2 ± 4.6% of the variation with correlations between the observed
and predicted values ranging from 0.88 to 0.95. The information re-
quired to convert the tensile-loss rates of each strip type to another is
shown in Table 3, for example, to express measured rates of Empa TSL
in terms of Artist’s-fabric TSL equivalents.

3.3. Comparison of microbial communities

Heterotrophic microbial assemblages were broadly similar across
cotton types, but varied significantly among streams. Across all streams
and cotton materials, fungi-to-bacteria ratios ranged between 0.2 and
4.1. Mean phylotype richness (PR) ranged from 13.7 to 22 phylotypes
for bacteria and from 13.7 to 23.3 for fungi. Shannon-Weaver’s di-
versity index (H’) ranged from 2.2 to 2.9 for bacteria and from 1.9 to
2.7 for fungi. NMDS ordinations performed on fungal (Fig. 5A) and
bacterial communities (Fig. 5B) exhibited stress< 0.15, with Axes 1 of
the NMDS being strongly correlated with ANC and total aluminum

concentration for fungal (r=−0.70, p < 0.001; r= 0.66, p < 0.001,
respectively) and bacterial community profiles (r=−0.61, p < 0.001;
r= 0.80, p < 0.001, respectively). Detailed information on microbial
abundances and assemblages across the five streams is available in
Table 4.

4. Discussion

Ecosystem processes are rarely included as part of river-health-as-
sessment programs, despite compelling advocacy for considering their
role when gauging human impacts; part of the reason is a lack of easy-
to-use standardized indicators. The results presented here further sup-
port a body of evidence indicating that cotton-strip assays are sensitive
to a suite of environmental factors, including those that are influenced
by human activities. Adding to the utility of cotton-strip assays are close
relationships among the three fabrics we examined – relationships that
enable direct comparisons of past, ongoing and future studies, thereby
greatly expanding the number of streams for which there are compar-
able data. Given that the number of fungal and bacterial phylotypes
that were found colonizing the cotton strips was similar to that found
on leaves, the assay holds promise as a standardized means of sampling
microbes in stream and other habitats. And given that Artist’s fabric had
the least variability among analytical replicates, and the large number
of studies and field sites where Artist’s fabric has been used (e.g., in-
cluding this study, over 700 different streams across the globe), we
recommend Artist’s fabric as the standard material for researchers who
require a reliable and sensitive process-based indicator. These and other
findings are key steps towards understanding large-scale variation in

x y

Artist’s Calico Empa

Artist’s Intercept= -0.764 Intercept= 0.238
Slope= 1.388 Slope= 1.041
R2=85.3% R2= 76.1%
F-value= 222.2 F-value= 121.8
P-value < 0.001 P-value < 0.001
AIC=84.1 AIC= 85.1
ρ=0.95 ρ=0.88
RMSE=0.59 RMSE=0.77

Calico Intercept= -0.7426 Intercept= 0.882
Slope= 1.387 Slope= 0.717
R2= 87.1% R2= 81.2%
F-value= 373.5 F-value= 165.6
P-value < 0.001 P-value < 0.001
AIC=52.5 AIC= 75.5
ρ=0.95 ρ=0.95
RMSE=0.40 RMSE=0.58

Empa Intercept= 0.315 Intercept= -0.612
Slope= 0.737 Slope= 1.141
R2= 76.1% R2=81.2%
F-value= 121.8 F-value= 165.6
P-value < 0.001 P-value < 0.001
AIC=71.6 AIC=93.7
ρ=0.88 ρ=0.95
RMSE=0.57 RMSE=0.61

Fig.5. NMDS plots of DGGE fungal (A) and bacterial (B) community profiles
from the five streams ordered according to the acidification gradient (i.e., from
1, the circumneutral stream, to 5, the most acidified stream) for each of the
three materials. The plot shows both the communities (3 replicates× 3 blocks
per stream; open circles) and phylotypes (crosses). Polygons connect the as-
semblages belonging to the same stream.

Table.3
Parameters�of�calibrations�performed�between�the�TSL�per�day�of�each�material.�
ρ� indicates� the� Spearman’s� correlation� between� the� observed� (i.e.� data� from�
training� data� sample)� and� predicted� values� (i.e.� data� from� validation� data�
sample).�RMSE� indicates� the�values�of�Root�Mean�Square�Error�values.



ecosystem functioning, and inclusion of process-based indicators in
bioassessment programs across the globe.

We found consistent results across the three fabric types, and with
studies using cotton-strips and litter-bags in terms of the responses to
environmental gradients and stressors (e.g., Ferreira et al., 2006; Gulis
et al., 2006; Ferreira and Chauvet, 2011; Fernandes et al., 2012; Tiegs
et al., 2013, 2019; Wagenhoff et al., 2011). Organic-matter decom-
position in aquatic ecosystems has typically been investigated without
explicit consideration for the communities of microorganisms involved.
Our study characterized bacterial and fungal communities and their
role in cellulose decomposition, and paves the way for future work that
will elucidate the roles of these communities in cellulose decay using
next-generation molecular tools (e.g., Clivot et al., 2014).

Cotton differs from leaf litter (the most commonly used substrate in
organic-matter decomposition studies and a key source of carbon in
streams) in that it does not contain appreciable quantities of nutrients
such as nitrogen and phosphorus that can promote microbial activity,
nor does it contain lignin or secondary compounds that can inhibit it
(French, 1988). Because of these and other differences in quality, dif-
ferent heterotrophic microbial communities between leaves and cotton
strips might be expected. However, given the extremely wide ranging
quality of litter and other organic matter that has been documented,
including that from riparian trees (e.g., Boyero et al., 2017), microbes
can also be expected to harbor adaptations that allow them to exploit
diverse types of resources. Despite the differences between cellulose
fabric and more-complex organic matter, the microbial communities
from cotton strips were similar to those reported for leaf-litter in terms
of phylotype richness and diversity (Manerkar et al., 2008; Clivot et al.,
2014). Here we found between 14 and 23 OTUs of fungi along the
gradient of acidification; in the same geographic same area, Clivot et al.
(2014) reported between 17 and 22 OTUs of fungi on decaying alder
(Alnus glutinosa) leaves in five streams across an acidification gradient.
Regarding bacterial community profiles, Clivot et al. (2014) found a
range of 15 to 28 OTUs on maple leaves in streams spanning an acid-
ification gradient, compared to the range of 14 and 22 OTUs in our
study. In a first-order stream in Nova Scotia (Canada), Manerkar et al.
(2008) found a total of 23 OTUs of fungi on leaf disks of Tilia cordata.
Our results, in the context of previously reported findings, suggest that
in addition to providing a useful method for quantifying decomposition
rates, cotton-strip assays offer a standardized means of sampling het-
erotrophic microbial communitie.

The community structure of microorganisms found on cotton strips,
and any organic matter in streams, stems from several processes,

including inoculum transport from the upstream environment, coloni-
zation on the substrate and subsequent microbial activity and growth.
Of these, inoculum pressure and colonization would seem to be the least
sensitive to substrate quality; this might explain the similar levels of
phylotype diversity found between cotton strips and leaves. Regardless
of the mechanisms behind the similarity in phylotype diversity between
cotton strips and leaves, cotton strips seem to function as a standardized
substrate for obtaining a representative sample of microbial hetero-
troph communities.

While the three cotton materials displayed similar responses to
variable environmental conditions and stressors, such as acidification
and nutrient loading, TSL differed among them; this demonstrates the
need for intercalibrations across studies that use different assays. Since
the microbial communities that colonize cotton strips were similar,
simple physical differences in the properties of the cotton types may be
driving the differences in TSL (e.g., thread density, thread strength).
Artist’s canvas is far denser than the Empa and Calico cotton (i.e.,
407 g/m2 for Artist’s fabric and 205 and 115 g/m2 for Empa and Calico,
respectively), an observation that may explain why the Artist’s fabric
had the least within-site variability of the three fabric types examined.
A notable finding was that the Empa material was less sensitive to
environmental conditions than the other fabric types given its greater
coefficient of variation. Despite the differences among them we none-
theless found very strong positive linear relationships between the TSL
values. This enables direct comparisons of studies by providing re-
searchers with information to convert data to a common currency. For
example, with the calibration parameters provided in Table 3, TSL of
Calico and Empa materials can easily and accurately be converted to
Artist’s-fabric equivalents.

Tensile-strength loss is the most commonly applied method for
quantifying cotton-strip decomposition, an approach that requires a
tensiometer. Tensiometers are common in materials-testing facilities
across the globe, and in engineering departments at universities.
Additionally, some laboratories perform tensile-strength determination
on a contract basis for researchers who do not have ready access to a
tensiometer. These instruments range widely in their degree of so-
phistication and price. For researchers who opt not to determine tensile
strength, the cotton-strip assay can still be applied, and in lieu of tensile
strength, closed chamber measurements of respiration can be per-
formed (see Tiegs et al., 2013 for details). And as mentioned above, the
assay can be used as a standard means of sampling microbial commu-
nity structure. Lastly, mass loss can be measured on the strips, which
relates to tensile-strength loss (Tiegs et al., 2007). However, we urge

Table 4
Phylotype richness (PR) and diversity index (H’) of bacteria and fungi for three cotton fabrics based on qPCR and DGGE performed on 16S and 18S rRNA. PR-Bac:
Phylotype richness of bacteria, H-Bac: Shannon-Weaver diversity index of bacteria, PR-fungi: Phylotype richness of fungi, H-fungi: Shannon and Weaver diversity
index of fungi, F/B ratio: fungi-to-bacteria ratio from qPCR. Streams are ordered according to the acidification gradient, from 1 (circumneutral stream) to 5 (acidified
stream).

PR-Bac H’-Bac PR-Fungi H’-Fungi F/B ratio

Fabric Stream mean SD mean SD mean SD mean SD mean SD

Artist’s 1 22.0 0.00 2.76 0.09 17.7 2.08 1.98 0.05 3.94 1.85
2 22.0 0.00 2.62 0.08 17.3 0.60 1.94 0.51 2.66 1.20
3 15.0 0.00 2.38 0.04 20.7 0.60 2.34 0.19 0.90 0.48
4 14.0 0.00 2.19 0.20 15.7 0.58 2.34 0.04 2.61 1.29
5 15.0 0.00 2.59 0.03 23.3 2.88 2.55 0.30 2.23 1.25

Calico 1 22.0 0.00 2.92 0.03 21.0 2.00 2.26 0.25 1.63 0.50
2 21.0 0.00 2.48 0.04 17.3 0.60 2.00 0.29 4.08 2.78
3 15.7 0.60 2.49 0.19 19.7 0.60 2.41 0.07 0.28 0.05
4 15.0 0.00 2.28 0.07 17.0 1.00 2.41 0.08 0.91 0.12
5 13.7 1.15 2.33 0.21 23.3 1.16 2.20 0.03 1.29 0.91

Empa 1 21.7 0.58 2.92 0.08 22.3 1.53 2.19 0.20 2.56 0.79
2 20.7 0.60 2.40 0.17 13.7 2.08 2.04 0.18 3.38 2.24
3 15.0 1.00 2.34 0.13 22.0 2.00 2.71 0.32 0.19 0.06
4 15.7 0.58 2.37 0.24 19.3 0.58 2.61 0.14 0.84 0.35
5 14.0 0.00 2.30 0.04 21.3 1.53 2.43 0.05 0.93 0.29
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caution�with� this�approach� since� significantly� longer� incubations�may�
be� required,� and� the� strips� become� prone� to� mass� loss� through� un-
raveling,� rather� than� carbon� mineralization.� Whether� through� de-
termination� of� tensile� strength,� respiration,� or� heterotrophic-commu-
nity� structure,� the� cotton-strip� assay� offers� utility� and� value� to�
ecologists� interested� in�organic-matter�decomposition.

Here�we� helped� develop� the� cotton-strip� assay� by� deploying� it� in�
streams,�however,� it�is� increasingly�used�to�evaluate�microbial�activity�
in�other�ecosystems,�terrestrial�and�aquatic.�For�example,�cotton�strips�
have� been� deployed� in� shallow� hyporheic� sediments� (Boulton� and�
Quinn,� 2000;� Burrows� et� al.,� 2017)� and� deep� groundwater� (Lategan�
et�al.,�2010).�Artist’s� fabric�has�been�deployed� in� remote�high-latitude�
wetlands� (Vizza� et� al.,� 2017),� in� the� flocculant� sediments� of� lakes,�
wetlands�and� streams� (Kincaid�et�al.,� in� revision),�and� in� spruce�peat-
lands�as�part�of�a� large� scale�warming�and�carbon-dioxide-enrichment�
experiment�(SPRUCE).�Additionally,�the�assay�has�tremendous�potential�
to� improve�understanding�of�how�decomposition� rates�vary� in�marine�
habitats,�and�to�date,�strips�have�been�deployed�in�estuaries�(Bierschenk�
et�al.,�2012),�kelp� forests� (Filbee-Dexter�unpublished�data),�and� inter-
tidal�mangrove� creek� systems� (Tiegs�unpublished�data).�Lastly,�cotton�
strips�made� of� Artist’s� fabric� have� been� deployed� in� hundreds� of� ri-
parian�zones�across�the�globe�to�better�understand�the�drivers�of�carbon�
processing� in�these�ecosystems�(Tiegs�et�al.,�2019).�Through�time,�and�
with� the�continued�used�of�standardized�decomposition�assays,�a�finer�
resolution� picture�will� emerge� of� how� carbon� is� processed� in� Earth’s�
ecosystems,� such� as� identifying� its�hot� spots� and�hot�moments� (sensu�
McClain�et�al.,�2003).

The�cotton-strip�assay�is�believed�to�be�most�sensitive�to�variation�in�
environmental�conditions�when�values�of�tensile-strength� loss�are�near�
50%�(Harrison�et�al.,�1988)�and�the�research�presented�here�is�useful�for�
optimizing� incubation� durations� in� order� to� hit� this� target.� These�
durations�are�21d,�16d,�18d� for�Artist’s� fabric,�calico�and�Empa�mate-
rial,�respecively.�Temperature�and�nutrient�status�are�additional�factors�
to�consider�when�estimating�an�appropriate� incubation�duration,�with�
moderate� levels�of�enrichment� stimulating�decay�rates.�However,�very�
high�nutrient�concentrations,�such�as�those�associated�with�agriculture�
and� urbanization,� can� be� associated� with� slowed� decay� (Woodward�
et� al.,� 2012),� and� incubation� duration�may� need� to� be� adjusted� ac-
cordingly.�Notably,�most� of� the� streams� studied� here� have� somewhat�
high�nutrient� levels,�and� longer� incubations�with�more�degree�day�ac-
cumulations�will� be� required� to� hit� the� target� decay� level� of� 50%� in�
other�systems.�Moisture� is�believed� to�be� limiting� to�microbial�activity�
in�terrestrial�habitats�(Tiegs�et�al.,�2019),�and�incubation�durations�may�
need� to� be� lengthened� considerably� (e.g.,� up� to�many�months)�when�
aridity�is�a�factor.�While�50%�TSL�should�be�the�aim�in�most�instances,�
appreciable�deviations� from� this� target�will�not� invalidate� studies,�but�
may� limit� the�sensitivity�of� the�assay.

Our�results�validate�the�utility�of�cotton�strips�as�effective�indicators�
of� both� ecosystem� functioning� and� the� community� structure� of� the�
microbes�that�drive�it.�These�are�needed�steps�towards�a�more�universal,�
global�bioassay.�Hundreds�of� streams�have�now�had� their�decomposi-
tion�potential�quantified�with� the�cotton-strip�assay�and� this�data�con-
stitutes�a� substantial� foundation� for�establishing�baselines� to� track�en-
vironmental� change.� And� if� developed�within� the� framework� of� new�
global�biomonitoring� initiatives�(e.g.,�Future�Earth,� Intergovernmental�
Science-Policy� Platform� on� Biodiversity� and� Ecosystem� Services),� the�
cotton-strip� assay� holds� promise� as� a�means� to� track� the� impacts� of�
global�change�on�vital�aspects�of�carbon�cycling,�such�as�decomposition�
rates�and� the�structure�of�heterotrophic�microbial�communities.
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