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Complete systems of inequalities relating the perimeter, the area
and the Cheeger constant of planar domains

Ilias Ftouhi

July 17, 2022

Abstract

The object of the paper is to find complete systems of inequalities relating the perimeter P , the area | · | and the
Cheeger constant h of planar sets. To do so, we study the so called Blaschke–Santaló diagram of the triplet (P, h, | · |)
for different classes of domains: simply connected sets, convex sets and convex polygons with at most N sides. We
completely determine the diagram in the latter cases except for the class of convex N -gons when N ≥ 5 is odd:
therein, we show that the boundary of the diagram is given by the graphs of two continuous and strictly increasing
functions. An explicit formula for the lower one and a numerical method to obtain the upper one is provided. At last,
some applications of the results are presented.

Keywords: Cheeger constant, complete systems of inequalities, Blaschke–Santaló diagrams, convex sets.
AMS classification: 52A10, 52A40, 65K15.

1 Introduction and main results
Let Ω be a bounded subset of Rn (where n ≥ 2). The Cheeger problem consists in studying the following minimization
problem

h(Ω) := inf

{
P (E)

|E|

∣∣∣ E measurable and E ⊂ Ω

}
, (1)

where P (E) is the distributional perimeter of E measured with respect to Rn (see for example [31] for definitions)
and |E| is the n-dimensional Lebesgue measure of E. The quantity h(Ω) is called the Cheeger constant of Ω and any
set CΩ ⊂ Ω for which the infimum is attained is called a Cheeger set of Ω.

Since the early work of Jeff Cheeger [14], many authors took interest in the Cheeger problem has interested various
authors. An introductory survey on the subject is referenced in [31]. We recall that every bounded domain Ω with
Lipschitz boundary admits at least one Cheeger set CΩ, see for example [31, Proposition 3.1]. In [1], the authors prove
the uniqueness of the Cheeger set when Ω ⊂ Rn is convex, but as far as we know there is no complete characterization
of CΩ in dimension n ≥ 3 (even when convexity is assumed), in contrast to the planar case which was treated
by Bernd Kawohl and Thomas Lachand-Robert in [26] where a complete description of the Cheeger sets of planar
convex domains is given in addition to an algorithm to compute the Cheeger constant of convex polygons. We finally
refer to [27, 28, 29] for recent results in larger classes of sets.

In this paper, we aim to describe all possible geometrical inequalities involving the perimeter, the area and the
Cheeger constant of a given planar shape. It comes down to studying a so called Blaschke–Santaló diagram of the
triplet (P, h, | · |).

Such a diagram allows to visualize all possible inequalities between three geometrical quantities. It is named after
Blaschke and Santaló in reference to their works [4, 35], where they first introduced this notion. Afterward, these
diagrams have been extensively studied, especially for the class of planar convex sets. We refer to [24] for more
details and various examples involving geometrical functionals. We also refer to [9, 17, 18, 21, 30, 39, 40] for some
recent results.

For more precision, let us define the Blaschke–Santaló diagrams we are interested in in this paper.

Definition 1. Given F a class of measurable planar sets of, we define

DF :=
{
(x, y) ∈ R2, ∃ Ω ∈ F such that |Ω| = 1, P (Ω) = x, h(Ω) = y

}
:=

{ (
P (Ω), h(Ω)

)
, Ω ∈ F , |Ω| = 1

}
.
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We note that thanks to the following scaling properties:

∀t > 0, h(tΩ) =
h(Ω)

t
, |tΩ| = t2|Ω| and P (tΩ) = tP (Ω),

one can give a scale-invariant formulation of the diagram

DF =
{
(x, y) ∈ R2, ∃Ω ∈ F such that P (Ω)/|Ω|1/2 = x, |Ω|1/2h(Ω) = y

}
=

{ (
P (Ω)

|Ω|1/2
, |Ω|1/2h(Ω)

)
, Ω ∈ F

}
.

In the whole paper, we denote by:

• S2 the set of bounded, planar and non-empty simply connected sets,

• K2 the set of bounded, planar and non-empty convex sets,

• PN the set of convex polygons of at most N sides,

• B the disk of unit area,

• RN a regular polygon of N sides and unit area,

• dH the Hausdorff distance, see for example [22, Chapter 2] for the definition and more details,

• d(Ω) and r(Ω) respectively the diameter and inradius of the set Ω.

We are aiming at describing all possible inequalities relating P , | · | and h for different classes of planar sets and
thus describing the associated Blaschke–Santaló diagrams. Let us first state the inequalities that we already know; if
Ω is measurable, we have :

• the isoperimetric inequality:
P (Ω)

|Ω|1/2
≥ P (B)

|B|1/2
= 2

√
π, (2)

• a consequence of the definition of the Cheeger constant

h(Ω) = inf
E⊂Ω

P (E)

|E|
≤ P (Ω)

|Ω|
, (3)

• a Faber-Krahn type inequality:

|Ω|1/2h(Ω) ≥ |B|1/2h(B) =
P (B)

|B|1/2
= 2

√
π. (4)

We note that each inequality may be visualized in the Blaschke–Santaló diagram as the hypograph or subgraph of a
given function, see Figure 1 for example.

It is natural to wonder if there are other inequalities. Yet, the answer is tightly related to the choice of the class of
sets F . In the present paper, we are interested in studying complete systems of inequalities relating the perimeter P ,
the Cheeger constant h and the area | · | for three classes of planar sets:

1. The class of simply connected sets.

2. The class of convex sets.

3. The classes of convex polygons of at most N sides, where N ≥ 3.
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1.1 Results on the classes of simply connected and convex set
We provide the complete descriptions of the Blaschke–Santaló diagrams of the triplet (P, h, | · |) for both the classes
S2 of planar simply connected sets and K2 of planar convex sets.

Theorem 2. We take x0 = P (B) = 2
√
π.

1. The diagram of the class S2 of planar simply connected domains is given by

DS2 = {(x0, x0)} ∪ {(x, y) | x > x0 and x0 < y ≤ x} .

2. The diagram of the class K2 of planar convex domains is given by

DK2 =
{
(x, y)

∣∣∣ x ≥ x0 and
x

2
+
√
π ≤ y ≤ x

}
.

The study of the boundary of the Blaschke–Santaló diagram DK2 is a crucial step toward its complete description.
Thus, we introduce the following definition of upper and lower boundaries:

Definition 3. We take x0 = P (B) = 2
√
π. We define the upper boundary of the diagram DK2 as follows:

{(x, yx) | x ≥ x0},

where
yx := sup{h(Ω) | Ω ∈ K2, P (Ω) = x and |Ω| = 1} ∈ R,

and the lower boundary of the diagram DK2 as follows:

{(x, yx) | x ≥ x0},

where
yx := inf{h(Ω) | Ω ∈ K2, P (Ω) = x and |Ω| = 1} ∈ R.

Simply connected sets.

Convex sets.

The equality h(Ω) = P (Ω).

The equality h(Ω) = P (Ω)
2 +

√
π.

P (Ω)

h(Ω)

P (B)

h(B)

Figure 1: The Blaschke–Santaló diagrams for the classes of simply connected sets and convex sets.

We note that by taking advantage of the inequalities (2) and (4), it is also classical to represent the Blaschke–Santaló
diagrams as subsets of [0, 1]2. In our situation, this means to consider the sets

D′
F :=

{
(X,Y ) | ∃Ω ∈ F such as |Ω| = 1 and (X,Y ) =

(
P (B)

P (Ω)
,
h(B)

h(Ω)

)}
⊂ [0, 1]2,

where F is a given class of planar sets. With this parametrization, the Blaschke–Santaló diagrams for the classes S2

and K2 are given by the following sets: D′
S2 = {(1, 1)} ∪ {(X,Y ) | X ∈ (0, 1) and X ≤ Y < 1},

D′
K2 = {(X,Y ) | X ∈ (0, 1] and X ≤ Y ≤ 2X

1+X },

which are represented in Figure 2.

3



Simply connected sets.

Convex sets.

The equality h(Ω) = P (Ω).

The equality h(Ω) = P (Ω)
2 +

√
π.

P (B)
P (Ω)1

1

0

h(B)
h(Ω)

Figure 2: The Blaschke–Santaló diagrams for the classes of simply connected sets and convex sets represented in
[0, 1]2.

Let us give some comments on the latter results:

• One major step in the study of the diagram of convex sets is to prove the following sharp inequality

∀Ω ∈ K2, h(Ω) ≥
P (Ω) +

√
4π|Ω|

2|Ω|
, (5)

where equality occurs for example for circumscribed polygons (i.e., those whose sides touch their incircles) and
more generally for sets which are homothetical to their form bodies1.

• The inequality (5) is rather easy to prove when the convex Ω is a Cheeger-regular polygon (that is, its Cheeger
set touches all of its sides), see [11, Remark 32], but much difficult to prove for general convex sets as shown in
the present paper (see Section 3.1). We also note that this inequality may be seen as a quantitative isoperimetric
inequality for the Cheeger constant of convex planar sets. Indeed, it can be written in the following form

∀Ω ∈ K2, |Ω|1/2h(Ω)− |B|1/2h(B) ≥ 1

2

(
P (Ω)

|Ω|1/2
− P (B)

|B|1/2

)
≥ 0.

We refer to [19, 25] for some examples of quantitative inequalities for the Cheeger constant.

Moreover, we note in Section 5.1 that the inequality (5) is stronger than a classical result [10, Theorem 3] due
to R. Brooks and P. Waksman. It also improves in the planar case a more recent estimate given in [7, Corollary
5.2], which states that for any open, bounded and convex set Ω ⊂ Rn, where n ≥ 2, one has

h(Ω) ≥ 1

n
· P (Ω)

|Ω|
.

• We note that the first statement of Theorem 2 asserts that the inequalities (3) and (4) form a complete system
of inequalities of the triplet (P, h, | · |) in any class of planar sets that contains S2. Meanwhile, the second one
asserts that this is no longer the case for the class K2 of planar and convex sets, where estimates (3) and (5) are
shown to be forming a complete system of inequalities for the triplet (P, h, | · |).

• One could wonder why we chose to work with the class of simply connected sets. The main reason is that for
any subclass of measurable domains that contains the simply connected ones, the diagram is the same. Indeed, if
we denote by C2 a subclass of planar and measurable sets that contains the class S2, we have by the inequalities
(3) and (4) (where the equality holds in (4) only for balls)

DC2 ⊂ {(x0, x0)} ∪ {(x, y) | x > x0 and x0 < y ≤ x} = DS2 .

Moreover, the inclusion S2 ⊂ C2 implies that DS2 ⊂ DC2 , which proves the equality.
1We refer to [36, Page 386] for the definition of form bodies.
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• We finally note that due to technical convenience, we first show the second assertion (the case of convex sets)
and then use it to prove the first one (the case of simply connected sets).

1.2 Results on the classes of convex polygons
Now, let us focus on the class of convex polygons. We give an improvement of the inequality (3) in the class PN of
convex polygons with at most N sides, where N ≥ 3. We recall that since triangles are circumscribed polygons, one
has

∀Ω ∈ P3, h(Ω) =
P (Ω) +

√
4π|Ω|

2|Ω|
, (6)

see the discussion below [26, Theorem 3].
As for the case N ≥ 4, we prove the following sharp inequality

∀Ω ∈ PN , h(Ω) ≤
P (Ω) +

√
P (Ω)2 + 4

(
π −N tan π

N

)
|Ω|

2|Ω|
, (7)

with equality if and only if Ω is Cheeger-regular (i.e., all its sides touch its Cheeger set CΩ) and all of its angles are
equal (to (N − 2)π/N ). The equality is also asymptotically attained by the following family

(
[0, 1] × [0, d]

)
d≥1

of
rectangles when d goes to infinity.

In order to simplify the notation, we denote by DN := DPN
the Blaschke–Santaló diagram of the triplet (P, h, | · |)

for the class of convex polygons of at most N sides, see Definition 1 for the notion of Blaschke–Santaló diagrams.

As for the case of convex sets, we introduce the notion of upper and lower boundaries of the diagram DN .

Definition 4. Let N ≥ 3, we recall that RN corresponds to a regular polygon of N sides and unit area. We define the
upper boundary of the diagram DN as follows:

{(x, gN (x)) | x ≥ P (RN )},

where
gN : x 7−→ sup{h(Ω) | Ω ∈ PN , P (Ω) = x and |Ω| = 1} ∈ R,

and the lower boundary of the diagram DN as follows:

{(x, yx) | x ≥ P (RN )},

where
yx := inf{h(Ω) | Ω ∈ PN , P (Ω) = x and |Ω| = 1} ∈ R.

Theorem 5. Let N ≥ 3. The diagram DN := DPN
contains its upper and lower boundaries. Moreover, the lower

boundary is given by the half line {(
x,
x

2
+
√
π
)

| x ≥ P (RN )
}
,

and the upper boundary is given by the graph of the continuous and strictly increasing function gN

{(x, gN (x)) | x ≥ P (RN )} .

Moreover, we have the following cases:

• if N = 3, we have
D3 =

{(
x,
x

2
+
√
π
) ∣∣∣ x ≥ P (R3)

}
.

• If N is even, then
DN =

{
(x, y) | x ≥ P (RN ) and

x

2
+

√
π ≤ y ≤ gN (x)

}
,

and

∀x ≥ P (RN ), gN (x) =
x+

√
x2 + 4(π −N tan π

N )

2
.
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• If N ≥ 5 is odd, there exist cN ≥ bN > P (RN ) such that

∀x ∈ [P (RN ), bN ], gN (x) =
x+

√
x2 + 4(π −N tan π

N )

2

and

∀x ∈
[
cN ,+∞

)
, gN (x) <

x+
√
x2 + 4(π −N tan π

N )

2
.

Moreover
gN (x) ∼

x→+∞
x.

Let us give some comments on the latter results:

• For every N ≥ 3, we have the inclusion DN ⊂ DN+1 (because PN ⊂ PN+1). Moreover, we notice that the
right hand side of the inequality (7) (monotonically) converges to the right hand side of the inequality (3). Thus,
one can recover the diagram DK2 of convex sets as the limit of DN . In fact, one can show that

DK2 =

+∞⋃
N=3

DN ,

where
⋃+∞

N=3 DN corresponds to the closure of
⋃+∞

N=3 DN .

• It is interesting to note that Theorem 5 shows that the inequalities (5) and (7) form a complete system of
inequalities of the triplet (P, h, | · |) in the class PN if and only if N is even.

• We believe that cN = bN for every N odd and greater or equal than 5. To prove it, one could be tempted to
solve the shape optimization problems

max{h(Ω) | |Ω| = 1, P (Ω) = p0 and Ω ∈ PN},

where p0 ∈ [P (RN ),+∞). Unfortunately, this seems to be quite challenging in this case, since numerical
simulations (see Section 4) suggest that the solutions are not unique and for large values of p0 they are not
necessarily Cheeger-regular (i.e., all its sides touch its Cheeger set CΩ) and thus one does not have an explicit
formula for their Cheeger constants, see Theorem 11 and Lemma 16. Another possible strategy to prove the
equality cN = bN could be to show that one can continuously deform any Cheeger-regular N -gon Ω whose
angles are all equal into a regular N -gon while making sure to preserve these two properties throughout the
process.

• We note that we are able to prove the following estimate

cN ≤ 2N

√
tan

(N − 2)π

2N
,

see (26).

The present paper is organized as follows: Section 2 contains two subsections, in the first one we recall some
classical definitions and results needed for the proofs, in the second one we state and prove some preliminary lemmas
which are also interesting on their own. The proofs of the main theorems are given in Section 3. Then, we provide
some numerical simulations on the diagrams DN in Section 4. Finally, we give some applications of the results of our
results in Section 5.

2 Classical results and preliminaries

2.1 Classical definitions and results
In this subsection, we recall some classical definitions and results that are used in the paper.

Theorem 6. [16, Theorem 2 and Remark 3]
Take N ≥ 3 and Ω ⊂ R2 a convex polygon of N sides. We define:

T (Ω) :=

N∑
i=1

1

tan αi

2

, (8)
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where αi ∈ (0, π] are the interior angles of Ω. We have the following estimates:

N tan
π

N
≤ T (Ω) ≤ P (Ω)2

4|Ω|
. (9)

The lower bound is attained if and only if all the angles αi are equal (to N−2
2N π), meanwhile the upper one is an

equality if and only the polygon Ω is circumscribed.

Remark 7. The lower bound is a simple application of Jensen’s inequality to the function cotan which is strictly
convex on (0, π/2). On the other hand, since N tan π

N > π, the upper estimate may be seen as an improvement of the
isoperimetric inequality for convex polygons. We refer for example to [16] for a detailed proof of Theorem 6.

Definition 8. Let A and B be two subsets of R2 and t > 0, we define

• the Minkowski sum of the sets A and B by

A⊕B := {x+ y | x ∈ A and y ∈ B},

• and the dilatation of the set A by the positive coefficient t by

tA := {tx | x ∈ A}.

Definition 9. For a given planar set Ω and any x ∈ Ω, we denote by dist(x, ∂Ω) the distance from x to the boundary
of Ω, and for t ≥ 0, we denote by Ω−t the sets of points of Ω of distance at least t to the boundary, i.e.,

Ω−t := {x ∈ Ω| dist(x, ∂Ω) ≥ t}.

The sets (Ω−t)t≥0 are known as the inner parallel sets of Ω.

Let us now recall some classical and important results on the Cheeger problem for planar convex sets.

Theorem 10. [26, Theorem 1] Let Ω be a planar convex set. There exists a unique value t = t∗ > 0 such that
|Ω−t| = πt2. We also have h(Ω) = 1/t∗. Moreover, the Cheeger set of Ω is given by

CΩ = Ω−t∗ ⊕ t∗B1,

where B1 is the unit disk.

Theorem 11. [26, Theorem 3] If Ω is a Cheeger-regular polygon (i.e., all its sides touch its Cheeger set CΩ), then,

h(Ω) =
P (Ω) +

√
P (Ω)2 − 4

(
T (Ω)− π

)
|Ω|

2|Ω|
, (10)

where T (Ω) is defined in (8).

It is natural to wonder if the equality (10) holds for general convex polygons. In Lemma 16, we prove that there is
only an inequality and that the equality occurs if and only if the polygon is Cheeger-regular.

Let us now recall some classical parametrizations of starshaped sets (or convex ones in particular). We refer to [36,
Section 1.7] for more details.

Definition 12. A set Ω ⊂ R2 is called starshaped with respect to a point A ∈ R2, if it is not empty and for every
M ∈ Ω, the segment [AM ] is included in Ω.

Let us now recall some important functions that allow to parametrize a given set Ω. If Ω ⊂ R2 is a compact and
starshaped with respect to the origin 0, we recall that

• its radial function is given by fΩ : x ∈ R2\{0} 7−→ fΩ(x) = max{λ ≥ 0 | λx ∈ Ω},

• and its gauge function is given by uΩ : R2\{0} 7−→ inf{λ ≥ 0 | x ∈ λΩ}.

If Ω is convex (not necessarily containing the origin), its support function is defined as follows:

hΩ : x ∈ R2 7−→ sup{⟨x, y⟩ | y ∈ Ω}.

Since the functions fΩ, uΩ and hΩ satisfy the following scaling properties fΩ(tx) = tfΩ(x), uΩ(tx) = t−1uΩ(x)
and hΩ(tx) = thΩ(x) for t > 0, they can be characterized by their values on the unit sphere S1 or equivalently on the
interval [0, 2π).

In the present paper, the radial, gauge and support functions are defined on the interval [0, 2π) as stated in the
following definition.
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Definition 13. If Ω ⊂ R2 is a compact and starshaped with respect to the origin 0,

• the radial function of Ω is given by fΩ : θ ∈ [0, 2π) 7−→ max{λ ≥ 0 | λ
(
cos θ
sin θ

)
∈ Ω},

• the gauge function of Ω is given by uΩ : [0, 2π) 7−→ inf{λ ≥ 0 |
(
cos θ
sin θ

)
∈ λΩ}.

If Ω is convex (not necessarily containing the origin), its support function is given by

hΩ : [0, 2π) 7−→ sup

{〈(
cos θ

sin θ

)
, y

〉
| y ∈ Ω

}
.

Let us now give some important remarks on these functions.

Remark 14. • The functions introduced above can be defined in higher dimensions. We refer for example to [36,
Section 1.7] for more details and results.

• The gauge function is the inverse of the radial function. Indeed, for every θ ∈ [0, 2π), we have uΩ(θ) =
1/fΩ(θ).

• It is interesting to note that the gauge and support functions allow to provide a simple characterization of the
convexity of a set Ω. Indeed, Ω is convex if and only if h′′Ω + hΩ ≥ 0, which is also equivalent to u′′Ω + uΩ ≥ 0.

• The support function has some nice properties:

– it is linear for the Minkowski sum and dilatation. Indeed, if Ω1 and Ω2 are two convex bodies and α, β > 0,
we have

hαΩ1+βΩ2
= αhΩ1

+ βhΩ2
,

see [36, Section 1.7.1].

– It also provides elegant formulas for some geometrical quantities. Fro example the perimeter of a convex
body Ω is given by

P (Ω) =

ˆ 2π

0

hΩ(θ)dθ,

and the Hausdorff distance between two convex bodies Ω1 and Ω2 is given by

dH(Ω1,Ω2) = sup
θ∈[0,2π)

|hΩ1
(θ)− hΩ2

(θ)|,

see [36, Lemma 1.8.14].

At last, let us recall a classical result on the area of Minkowski sums. For more details and general results, we refer
to [36].

Theorem 15. There exist 3 bilinear (for Minkowski sum and dilatation) forms Wk : K2 × K2 −→ R, for k ∈ [[0; 2]],
named Minkowski mixed volumes, such that for every K1,K2 ∈ K2 and t1, t2 > 0, we have

|t1K1 + t2K2| = t21W0(K1,K2) + 2t1t2W1(K1,K2) + t22W2(K1,K2). (11)

Moreover, the Wk are continuous with respect to the Hausdorff distance, in the sense that if two sequences of convex
bodies (Kn

1 )n and (Kn
2 )n respectively converge to some convex bodies K1 and K2 both with respect to the Hausdorff

distance, one has
lim

n→+∞
Wk(K

n
1 ,K

n
2 ) =Wk(K1,K2).

2.2 Preliminary lemmas
In this section we prove some important Lemmas that we use in Section 3 for the proofs of the main results.

The following lemma2 shows that the equality of Theorem 11 which is valid for Cheeger-regular polygons becomes
an inequality for general polygons. Thus, we obtain an upper bound for the Cheeger constant of polygons that we use
to prove the inequality (7).

2We are indebted to Jimmy Lamboley for the idea of proof of this lemma.
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Lemma 16. If Ω is a convex polygon, one has

h(Ω) ≤
P (Ω) +

√
P (Ω)2 − 4

(
T (Ω)− π

)
|Ω|

2|Ω|
,

where T (Ω) is defined in (8). The equality occurs if and only if the polygon Ω is Cheeger-regular (i.e., all its sides
touch its Cheeger set CΩ).

Proof. The number of sides of the inner sets (Ω−t)t of a polygon (we refer to Definition 9 for the notion of inner
sets) is decreasing with respect to t ≥ 0. Actually, the function t ∈ [0, r(Ω)] 7−→ n(t) (where r(Ω) is the inradius of
Ω and n(t) is the number of sides of Ω−t) is a piece-wise constant decreasing function. We introduce the sequence
0 = t0 < t1 < · · · < tNΩ

= r(Ω), where NΩ ∈ N∗, such that

∀k ∈ J0, NΩ − 1K,∀t ∈ [tk, tk+1), n(t) = nk,

where (nk)k∈J0,NΩ−1K is strictly decreasing.
In the computations below, we use the classical Steiner formulas (see [37]) for the perimeter and the area of inner

(polygonal) sets. We have for every k ∈ J1, NΩK,

P (Ω−tk) = P ((Ω−tk−1
)−(tk−tk−1)) = P (Ω−tk−1

)− 2(tk − tk−1)T (Ω−tk−1
) (12)

and
|Ω−tk | = |(Ω−tk−1

)−(tk−tk−1)| = |Ω−tk−1
| − (tk − tk−1)P (Ω−tk−1

) + (tk − tk−1)
2T (Ω−tk−1

). (13)

Let us take t ∈ [0, r(Ω)] and k ∈ J1, NΩK. We have

|Ω−tk | − (t− tk)P (Ω−tk) + (t− tk)
2T (Ω−tk) = |Ω−tk−1

| − (tk − tk−1)P (Ω−tk−1
) + (tk − tk−1)

2T (Ω−tk−1
)

− (t− tk)
(
P (Ω−tk−1

)− 2(tk − tk−1)T (Ω−tk−1
)
)
+ (t− tk)

2T (Ω−tk)

> |Ω−tk−1
| − (t− tk−1)P (Ω−tk−1

) + (t− tk−1)
2T (Ω−tk−1

),

where we used (12) and (13) for the equality and the fact that T (Ω−tk−1
) < T (Ω−tk) for the inequality (see the

equation (14) of [26]). By straightforward induction, we show that one has for every k ∈ J1, NΩK,

∀t ∈ [0, r(Ω)], |Ω−tk | − (t− tk)P (Ω−tk) + (t− tk)
2T (Ω−tk) ≥ |Ω| − tP (Ω) + t2T (Ω). (14)

Now, let us take k ∈ J0, NΩ − 1K and t ∈ [tk, tk+1). We have the inequality

g(t) := |Ω−t| − πt2 = |(Ω−tk)−(t−tk)| − πt2 = |Ω−tk | − (t− tk)P (Ω−tk) + (t− tk)
2T (Ω−tk)− πt2

≥ |Ω| − tP (Ω) + t2T (Ω)− πt2 =: f(t),

where the equality g(t) = f(t) holds only on [0, t1]. This inequality yields that 1/h(Ω) which is the unique zero of
g on [0, r(Ω)] (by Theorem 10), is larger than

2|Ω|

P (Ω) +
√
P (Ω)2 − 4

(
T (Ω)− π

)
|Ω|

,

the smallest zero of f ,3 with equality if and only if the zero of g is in [0, t1], which is the case if and only if the polygon
Ω is Cheeger-regular (see [26, Theorem 3]). This ends the proof. □

Remark 17. One interesting takeaway idea of proof of Lemma 16 is that since the Cheeger constant of a planar
convex set is characterized via the area of inner sets (see Definition 9 and Theorem 10), one can use the estimates on
the area of inner sets to obtain bounds on the Cheeger constant. This strategy is used in [20] to prove the following
sharp inequality

∀Ω ∈ K2, h(Ω) ≤ 1

r(Ω)
+

√
π

|Ω|
,

where r(Ω) is the inradius of Ω.

3The second order polynomial function f admits two positive zeros. Since, f is continuous and f(0) = |Ω| > 0 and f(r(Ω)) ≤ g(r(Ω)) =
|Ω−r(Ω)| − πr(Ω)2 = −πr(Ω)2 < 0, we have by the Intermediate Value Theorem that the smallest zero of f is in the interval (0, r(Ω)).
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Since the inequality (5) is quite easy to obtain for Cheeger-regular polygons (because in this case we have an explicit
formula for the Cheeger constant in terms of the perimeter, the area and the interior angles), it is natural when dealing
with general polygons to try to come back to the case of Cheeger-regular ones. The following Lemma shows how to
deform a given polygon into a Cheeger-regular one while preserving its Cheeger constant, increasing its perimeter
and decreasing its area. This allows (as shown in Step 2 of Section 3.1) to prove the inequality (5) for the case of
general polygons.

Lemma 18. Let Ω be a polygon. There exists a Cheeger-regular polygon Ω̃ such that: |Ω| ≥ |Ω̃|, P (Ω) ≤ P
(
Ω̃
)

and
h(Ω) = h

(
Ω̃
)
.

Proof. If Ω is Cheeger-regular, we take Ω̃ = Ω. Let us assume that the polygon Ω is not Cheeger-regular. We provide
an algorithm to deform Ω into a Cheeger-regular polygon with the same Cheeger set (thus, also the same Cheeger
value), larger perimeter and smaller area.

Since the polygon Ω is not Cheeger-regular, there exist three consecutive vertices, that we denote by X , Y and Z,
such that at least one (or may be both) of the sides [XY ] and [Y Z] does not touch the Cheeger set CΩ.

First step: using parallel chord movements

We begin by the case where both the sides [XY ] and [Y Z] do not touch CΩ. We use a parallel chord movement.
More precisely, we move Y along the line passing through Y and being parallel to the line (XZ). This way, the area
is preserved, and the perimeter must increase when moving Y away from the perpendicular bisector of the side [XZ]
(which is possible at least in one direction). We assume without loss of generality that the direction which increases
the perimeter is from Z to X (see Figure 3). We then move Y until one the following cases occurs:

1. the line (XY ) becomes colinear to the other side of extremity X .

2. The side [Y Z] touches the boundary of CΩ.

Figure 3: Case 1 on the left and case 2 on the right.

In both cases, the number of sides that do not touch ∂CΩ decreases by one, while the area and the Cheeger constant
are preserved and the perimeter is increased.

We iterate this process for all the vertices which are extremities of two sides that do not touch ∂CΩ. Since the
number of vertices is finite, in a finite number of steps, we obtain a polygon where there are no consecutive sides that
do not touch ∂CΩ.

10



Second step: rotating the remaining sides4

The second step is to "rotate" the remaining sides that do not touch ∂CΩ in such a way to make them touch it (see
Figure 4), in order to get a Cheeger-regular polygon with the same Cheeger constant, larger perimeter and smaller
area. This kind of deformations is inspired by the work of D. Bucur and I. Fragalà [11].

We denote by

• α1,α2 ∈ (0, π) the interior angles of the polygon Ω respectively associated to the vertices X and Y ,

• O the mid-point of the side [XY ],

• t the angle of our "rotation",

• Xt and Yt the vertices of the new polygon denoted by Ωt, obtained by rotating the side [XY ] around the
mid-point O with the angle t.

The polygon Ωt has the same vertices as Ω except X and Y that have respectively been mapped as Xt and Yt, see
Figure 4.

Figure 4: Rotation of the free side along its midpoint.

Without loss of generality, we assume that α2 ≥ α1 and we take t ∈ (0, π−α2). It is trivial that Ω and Ωt have the
same Cheeger constant, moreover if the side [XY ] is not touching ∂CΩ then α1 + α2 ≥ π (see [26, Section 5]).

Let us now prove the inequalities |Ωt| ≤ |Ω| and P (Ωt) ≥ P (Ω). By using the sinus formula on the triangles
OXXt and OY Yt, we have

XXt = a
sin t

sin(α1 − t)
, OXt = a

sinα1

sin(α1 − t)
, Y Yt = a

sin t

sin(α2 + t)
and OYt = a

sinα2

sin(α2 + t)
,

where a := OX = XY/2.

4We are thankful to Dorin Bucur for suggesting such deformations.
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Moreover, if we denote by SOXXt
and SOY Yt

the areas of the triangles OXXt and OY Yt, we have

|Ωt| − |Ω| = SOXXt
− SOY Yt

=
1

2
OX ·OXt sin t−

1

2
OY ·OYt sin t

=
a2

2

(
sinα1

sin(α1 − t)
− sinα2

sin(α2 + t)

)
sin t

=
a2 sin2 (t) sin(α1 + α2)

2 sin(α1 − t) sin(α2 + t)
≤ 0,

because α1 + α2 ∈ [π, 2π], while α1 − t and α2 + t are in (0, π].

For the perimeters, we have

P (Ωt)− P (Ω) = XXt +OXt +OYt −XY − Y Yt

= a

(
sin t

sin(α1 − t)
+

sinα1

sin(α1 − t)
+

sinα2

sin(α2 + t)
− 2− sin t

sin(α2 + t)

)
= a

(
sin t+ sinα1

sin(α1 − t)
+

sinα2 − sin t

sin(α2 + t)
− 2

)
≥ a

(
sin t+ sinα1

sin(α1 − t)
+

sinα1 − sin t

sin(α1 + t)
− 2

)
= a

(
2 sin

(
α1+t

2

)
cos
(
α1−t

2

)
2 sin

(
α1−t

2

)
cos
(
α1−t

2

) + 2 sin
(
α1−t

2

)
cos
(
α1+t

2

)
2 sin

(
α1+t

2

)
cos
(
α1+t

2

) − 2

)

= a

(√
sin
(
α1+t

2

)
sin
(
α1−t

2

) −√ sin
(
α1−t

2

)
sin
(
α1+t

2

) )2

≥ 0,

where the inequality in the middle is a consequence of the assumption α1 ≤ α2 and the monotonicity of the function
gt : x 7−→ sin x−sin t

sin (x+t) on [α1, α2], where t ∈ (0, π − α2). Indeed, we have for every x ∈ [α1, α2]

g′t(x) =
cosx sin (x+ t)− (sinx− sin t) cos (x+ t)

sin2(x+ t)

=
(cosx sin (x+ t)− sinx cos (x+ t)) + sin t cos (x+ t)

sin2(x+ t)

=
sin t+ sin t cos (x+ t)

sin2(x+ t)

=
sin t · (1 + cos (x+ t))

sin2(x+ t)

≥ 0.

Iterating, in a finite number of steps, we get a Cheeger-regular polygon Ω̃ such that |Ω| ≥ |Ω̃|, P (Ω) ≤ P
(
Ω̃
)

and
h(Ω) = h

(
Ω̃
)
.

□

In the following lemmas, we give some quantitative estimates for the perimeter, the Cheeger constant and the area
via the Hausdorff distance and the radial functions (see Definition 13). These inequalities are used in the fourth step
of Section 3.2.

Lemma 19. If Ω1 and Ω2 are two planar convex sets, we have

|P (Ω1)− P (Ω2)| ≤ 2πdH(Ω1,Ω2). (15)

Proof. Let us respectively denote by hΩ1 and hΩ2 the support functions of Ω1 and Ω2, see Definition 13. We have

|P (Ω1)− P (Ω2)| =
∣∣∣∣ˆ 2π

0

hΩ1
−
ˆ 2π

0

hΩ2

∣∣∣∣ ≤ 2π ∥hΩ1
− hΩ2

∥∞ = 2πdH(Ω1,Ω2),

where ∥ · ∥∞ stands for the infinity norm over [0, 2π). □
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Lemma 20. Take Ω1 and Ω2 two planar domains starshaped with respect to the origin 0, whose radial functions are
denoted by fΩ1

and fΩ2
and such that fΩ1

, fΩ2
≥ r0, where r0 > 0. We have

1. |h(Ω1)− h(Ω2)| ≤ 2
r20
∥fΩ1 − fΩ2∥∞,

2.
∣∣|Ω1| − |Ω2|

∣∣ ≤ 2πmax(∥fΩ1
∥∞, ∥fΩ2

∥∞)∥fΩ1
− fΩ2

∥∞,

where ∥ · ∥∞ stands for the infinity norm over [0, 2π).

Proof. 1. The proof of this assertion is inspired from the proof of [15, Proposition 1].

Let us take d := ∥fΩ1
− fΩ2

∥∞. We have for every θ ∈ [0, 2π)(
1 +

d

r0

)
fΩ1(θ) = fΩ1(θ) +

d

r0
fΩ1(θ) ≥ fΩ1(θ) + d ≥ fΩ1(θ) + fΩ2(θ)− fΩ1(θ) = fΩ2(θ).

Thus, Ω2 ⊂
(
1 + d

r0

)
Ω1, which implies the following

h(Ω1) ≤ h

(
1

1 + d/r0
Ω2

)
=

(
1 +

d

r0

)
h(Ω2) ≤ h(Ω2) +

d

r0
h(Br0) = h(Ω2) +

2d

r20
,

where Br0 is the disk of radius r0. By similar arguments we obtain

h(Ω2) ≤ h(Ω1) +
2d

r20
,

which proves the announced inequality.

2. We have ∣∣|Ω1| − |Ω2|
∣∣ = 1

2

∣∣∣∣ˆ 2π

0

(f2Ω1
(θ)− f2Ω2

(θ))dθ

∣∣∣∣
≤ 1

2

ˆ 2π

0

(|fΩ1
(θ)|+ |fΩ2

(θ)|)|fΩ1
(θ)− fΩ2

(θ)|dθ

≤ 2πmax(∥fΩ1
∥∞, ∥fΩ2

∥∞)∥fΩ1
− fΩ2

∥∞.

□

3 Proofs of the main results

3.1 Proof of the inequality (5)

The proof is done in four steps:

Step 1: Cheeger-regular polygons

Even-though the inequality was already known in this case, we briefly recall the proof for the sake of completeness.
Since Ω is a Cheeger-regular polygon, by Theorem 11, we have an explicit formula of its Cheeger constant. We

then use the inequality T (Ω) ≤ P (Ω)2

4|Ω| of Theorem 6 to conclude (see (8) for the definition of T (Ω)). We write

h(Ω) =
P (Ω) +

√
P (Ω)2 − 4

(
T (Ω)− π

)
|Ω|

2|Ω|
≥
P (Ω) +

√
P (Ω)2 − 4

(
P (Ω)2

4|Ω| − π
)
|Ω|

2|Ω|
=
P (Ω) +

√
4π|Ω|

2|Ω|
.

Step 2: General polygons

By Lemma 18, there exists Ω̃ a Cheeger-regular polygon such that |Ω| ≥ |Ω̃|, P (Ω) ≤ P
(
Ω̃
)

and h(Ω) = h
(
Ω̃
)
.

Then, we get

h(Ω) = h
(
Ω̃
)
≥
P
(
Ω̃
)
+

√
4π
∣∣∣Ω̃∣∣∣

2
∣∣∣Ω̃∣∣∣ =

P
(
Ω̃
)

2
∣∣∣Ω̃∣∣∣ +

π√∣∣∣Ω̃∣∣∣ ≥
P (Ω)

2|Ω|
+

π√
|Ω|

=
P (Ω) +

√
4π|Ω|

2|Ω|
.
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Step 3: General convex sets

By the density of the polygons in K2 and the continuity of the area, the perimeter and the Cheeger constant with
respect to the Hausdorff distance, we show that the inequality (5) holds for general convex sets. We refer to [32,
Proposition 3.1] for the continuity of the Cheeger constant with respect to the Hausdorff distance in the class of
convex sets.

Step 4: Equality for sets that are homothetical to their form bodies

If Ω is homothetical to its form body (which is the case for circumscribed polygons), we have by using [36, Equality
(7.168)] and the equality 1

2r(Ω)P (Ω) = |Ω| (see for example [2])

∀t ∈ [0, r(Ω)], |Ω−t| =
(
1− t

r(Ω)

)2

|Ω| = |Ω| − P (Ω)t+
P (Ω)2

4|Ω|
t2.

The equation |Ω−t| = πt2 admits two different solutions 2|Ω|
P (Ω)−

√
4π|Ω|

and 2|Ω|
P (Ω)+

√
4π|Ω|

. Thus, by Theorem 10 we

have

h(Ω) ∈

{
P (Ω)−

√
4π|Ω|

2|Ω|
,
P (Ω) +

√
4π|Ω|

2|Ω|

}
.

At last, since h(Ω) ≥ P (Ω)+
√

4π|Ω|
2|Ω| >

P (Ω)−
√

4π|Ω|
2|Ω| (by inequality (5)), we deduce the equality

h(Ω) =
P (Ω) +

√
4π|Ω|

2|Ω|
. (16)

3.2 Proof of the second assertion of Theorem 2 (convex sets)
The inequalities (3) and (5) (stated in the introduction) imply that

DK2 ⊂
{
(x, y) | x ≥ x0 and

1

2
x+

√
π ≤ y ≤ x

}
.

It remains to prove the opposite inclusion. The proof follows the following steps:

1. We provide a continuous family (Sp)p≥P (B) of convex bodies which fill the upper boundary of the diagram.

2. We provide a continuous family (Lp)p≥P (B) of convex bodies which fill the lower boundary of the diagram.

3. We use the latter domains to construct (via Minkowski sums) a family of continuous paths (Γp)p≥P (B) which
relate the upper domains to the lower ones. By continuously increasing the perimeter, we show that we are able
to cover all the area between the upper and lower boundaries of the diagram DK2 (see Definition 3 for the notion
of upper and lower boundaries of the diagram DK2 ).

Step 1: The upper boundary of the diagram DK2 :

The upper boundary of DK2 (see Definition 3) is filled by domains that are Cheeger of themselves, which means
that CΩ = Ω. It is shown in [26, Theorem 2] that the stadiums (i.e., the convex hull of two identical disks) are Cheeger
of themselves. We then use these sets to fill the upper boundary {(x, x) | x ≥ P (B)}.

Let us consider the family of stadiums (Qt)t≥0 given by the convex hulls of the balls of unit radius centered in
O(0, 0) and Ot(0, t) rescaled so as |Qt| = 1. The function t ∈ [0,+∞) 7−→ P (Qt) = 2(π+t)√

π+2t
is continuous and

strictly increasing to infinity. Thus, we have by the Intermediate Value Theorem{(
P (Qt), h(Qt)

)
| t ≥ 0} =

{(
P (Qt), P (Qt)

)
| t ≥ 0} = {(x, x) | x ≥ P (B)}.

Step 2: The lower boundary of the diagram DK2 :

Since the equality (16) holds for sets that are homothetical to their form bodies, we use such domains to fill the
lower boundary. Let us consider the family (Cd)d≥2 of the so-called symmetrical cup-bodies, which are given by the
convex hulls of the unit ball (centered in O(0, 0)) and the points of coordinates (−d/2, 0) and (d/2, 0) rescaled so as
|Cd| = 1. By using formulas (7) and (8) of [23], we have for every d ≥ 2

P (Cd) = 2

√√
d2 − 4 + 2 arcsin

(
2

d

)
.
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The function d ∈ [2,+∞) 7−→ P (Cd) = 2
√√

d2 − 4 + 2 arcsin
(
2
d

)
is continuous and strictly increasing to infinity.

Thus, we have by the Intermediate Value Theorem{(
P (Cd), h(Cd)

)
| d ≥ 2

}
=
{(
P (Cd), P (Cd)/2 +

√
π
)
| d ≥ 2} = {(x, x/2 +

√
π) | x ≥ P (B)}.

Step 3: Continuous paths:

Since the functions t ∈ [0,+∞) 7−→ P (Qt) =
2(π+t)√
π+2t

and d ∈ [2,+∞) 7−→ P (Cd) = 2
√√

d2 − 4 + 2 arcsin 2
d

are continuous and strictly increasing, we have

∀p ≥ P (B),∃!(tp, dp) ∈ [0,+∞)× [2,+∞), P (Qtp) = P (Cdp) = p.

From now on we take Sp := Qtp and Lp := Cdp
.

For every p ≥ P (B), we introduce the closed and continuous path Γp : [0, 3) −→ R2, defined as follows:

t 7−→


(
P (Kt

p), h(K
t
p)
)
, if t ∈ [0, 1],(

(t− 1)P (B) + (2− t)p, (t− 1)P (B) + (2− t)p
)
, if t ∈ (1, 2],(

(3− t)P (B) + (t− 2)p, (3− t)P (B) + (t− 2)(p/2 +
√
π))
)
, if t ∈ (2, 3),

with

Kt
p :=

tSp ⊕ (1− t)Lp√
|tSp ⊕ (1− t)Lp|

∈ K2,

where tSp ⊕ (1− t)Lp is the Minkowski sum of the sets tSp and (1− t)Lp (see Definition 8).

P

h

P (B)

h(B)

p

•
(P (Sp), h(Sp))

•
(P (Lp), h(Lp))

•

t ∈ (1, 2]

t ∈ (2, 3)

t ∈ [0, 1]

Figure 5: The continuous and closed path Γp

For every t ∈ [0, 1], the set Kt
p is convex with unit area. Moreover, by the continuity of the perimeter, the area and

the Cheeger constant with respect to the Hausdorff distance, we have that the set {(P (Kt
p), h(K

t
p)) | t ∈ [0, 1]} is a

continuous curve in R2. Thus, we conclude that the path Γp is a closed and continuous curve in R2.
Since the diameters of Lp and Sp are colinear, we can use the following result of Step 3 of the proof of [21,

Theorem 3.14]:
∀t ∈ [0, 1],

p

2
≤ P (Kt

p). (17)

Step 4: Stability of the paths:

Now, let us prove a continuity result on the paths
(
Γp

)
p≥P (B)

. We take p0 ≥ P (B) and ε > 0, and show that

∃ αε > 0,∀p ∈ (p0 − αε, p0 + αε) ∩ [P (B),+∞), sup
t∈[0,3]

∥ Γp(t)− Γp0
(t) ∥ ≤ ε. (18)
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Let p ∈ [P (B), p0 + 1], with straightforward computations, we have that for every t ∈ [1, 3),

∥Γp(t)− Γp0(t)∥ ≤ 2|p− p0| −→
p→p0

0.

The remaining case (t ∈ [0, 1]) requires more computations. For every t ∈ [0, 1], we have

∥Γp(t)− Γp0(t)∥ ≤ |P (Kt
p)− P (Kt

p0
)|+ |h(Kt

p)− h(Kt
p0
)| ≤

(
2π +

(p0 + 1)6

2

)
︸ ︷︷ ︸

Cp0
>0

dH(Kt
p,K

t
p0
).

Indeed, we used:

• Lemma 19 for the term with the perimeters

|P (Kt
p)− P (Kt

p0
)| ≤ 2πdH(Kt

p,K
t
p0
),

• and the first assertion of Lemma 20 for the term with the Cheeger constants, with the sets Kt
p and Kt

p0
that we

assume to contain the origin 0 and whose radial functions (see Definition 13) are denoted by fp,t, fp0,t.

|h(Kt
p)− h(Kt

p0
)| ≤ 2

min
(
r(Kt

p), r(K
t
p0
)
)2 · ∥fp,t − fp0,t∥∞ (by Lemma 20)

≤ 2

min
(
r(Kt

p), r(K
t
p0
)
)2 · ∥fp,t∥∞∥fp0,t∥∞

min
(
r(Kt

p), r(K
t
p0
)
)2 · dH(Kt

p,K
t
p0
) (by [6, Proposition 2])

≤ (p0 + 1)6

2
dH(Kt

p,K
t
p0
) (we used ∥fΩ∥∞ ≤ d(Ω) ≤ P (Ω)

2
and r(Ω) >

|Ω|
P (Ω)

, see [8, Lemma B.1]).

It remains to prove that dH(Kt
p,K

t
p0
) converges (uniformly in t) to 0 when p goes to p0. Before detailing the

computations, let us recall that if Ω is a convex body, we denote by hΩ its support function defined in Definition
13 (we refer the reader to Remark 14 for some interesting properties of support functions). We also note that if
Ω1,Ω2 ∈ K2 such that |Ω1| = |Ω2| = 1, one has

∀t ∈ [0, 1], |(1− t)Ω1 ⊕ tΩ2| ≥ ((1− t)|Ω1|1/2 + t|Ω2|1/2)2 = 1,

where we used the classical Brunn–Minkowski inequality (see [36, Theorem 7.1.1] for example). We are now in
position to conclude.

dH(Kt
p,K

t
p0
) =

∥∥∥hKt
p
− hKt

p0

∥∥∥
∞

(by [36, Lemma 1.8.14])

=

∥∥∥∥∥ (1− t)hLp0
+ thSp0√

|(1− t)Lp0
⊕ tSp0

|
−

(1− t)hLp
+ thSp√

|(1− t)Lp ⊕ tSp|

∥∥∥∥∥
∞

≤ (1− t)

∥∥∥∥∥ hLp0√
|(1− t)Lp0 ⊕ tSp0 |

−
hLp√

|(1− t)Lp ⊕ tSp|

∥∥∥∥∥
∞

+t

∥∥∥∥∥ hSp0√
|(1− t)Lp0

⊕ tSp0
|
−

hSp√
|(1− t)Lp ⊕ tSp|

∥∥∥∥∥
∞

≤ 1√
|(1− t)Lp ⊕ tSp|

(∥∥hSp0
− hSp

∥∥
∞ +

∥∥hLp0
− hLp

∥∥
∞

)
+
(∥∥hSp0

∥∥
∞ +

∥∥hLp0

∥∥
∞

) ∣∣∣∣∣ 1√
|(1− t)Lp ⊕ tSp|

− 1√
|(1− t)Lp0

⊕ tSp0
|

∣∣∣∣∣
≤ dH(Sp0 , Sp) + dH(Lp0 , Lp) +

(∥∥hSp0

∥∥
∞ +

∥∥hLp0

∥∥
∞

) ∣∣∣ |(1− t)Lp ⊕ tSp| − |(1− t)Lp0 ⊕ tSp0 |
∣∣∣

≤ dH(Sp0 , Sp) + dH(Lp0 , Lp) +
(∥∥hSp0

∥∥
∞ +

∥∥hLp0

∥∥
∞

) 2∑
k=0

|Wk(Lp, Sp)−Wk(Lp0 , Sp0)| −→
p→p0

0,

where W0, W1 and W2 stand for the Minkowski mixed volumes introduced in Theorem 15.
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Finally, we deduce that lim
p→p0

sup
t∈[0,3]

∥ Γp(t)− Γp0
(t)∥ = 0, which proves (18).

Step 5: Conclusion:

Now that we proved that the boundaries {(x, x) | x ≥ P (B)} and {(x, x/2+
√
π) | x ≥ P (B)} are included in the

diagram DK2 , it remains to show that it is also the case for the set of points contained between them. Let A(xA, yA) ∈
{(x, y) | x > x0 and x/2 +

√
π < y < x}. Step 4 shows that for any choice of p0 and p1 in [P (B),+∞), the

curves Γp0 and Γp1 are homotopic, and the homotopy is H : (σ, t) ∈ [0, 1] × [0, 3) 7−→ Γ(1−σ)p0+σp1
. In particular,

let us chose p0 = P (B) and p1 = 4xA. The index of A with respect to ΓP (B) = {(P (B), P (B))} is equal to 0.
Meanwhile, by the inequality (17) of Step 3, we deduce that A is in the interior of the curve Γ4xA

, which means that
its index with respect to Γ4xA

is non-zero. Thus, it must follow that there exists (σ̄, t̄) ∈ [0, 1] × [0, 3) such that
A = H(σ̄, t̄) ∈ DK2 .

Finally, we get the equality

DK2 =

{
(x, y) | x ≥ x0 and

1

2
x+

√
π ≤ y ≤ x

}
.

3.3 Proof of the first assertion of Theorem 2 (simply connected sets)
By the inequalities (3) and (4) where the latter one is an equality if and only if Ω is a ball, we have

DS2 ⊂ {(x0, x0)} ∪ {(x, y) | x > x0 and x0 < y ≤ x} .

We have (x0, x0) =
(
P (B), h(B)

)
∈ DS2 . Take (p, ℓ) ∈ {(x, y) | x > x0 and x0 < y ≤ x}, let us prove that

there exists a simply connected domain Ω ⊂ R2 of unit area such that P (Ω) = p and h(Ω) = ℓ.
If ℓ ≥ p/2 +

√
π, then by the second assertion of Theorem 2 there exists a convex (thus simply connected) domain

satisfying the latter properties. Now, let us assume that ℓ < p/2+
√
π. We take L2(ℓ−

√
π) as in the proof of the second

assertion of Theorem 2 (see Step 3 of Section 3.2) to be a symmetrical 2-cup body (which is the convex hull of a disk
and two points outside it that are symmetric with respect to its center) such that P (L2(ℓ−

√
π)) = 2(ℓ −

√
π) < p,

|L2(ℓ−
√
π)| = 1 and h(L2(ℓ−

√
π)) = ℓ (where we used the equality (16) since L2(ℓ−

√
π) is homothetical to its form

body). Since, the involved functionals are invariant with respect to translations and rotations, we may assume without
loss of generality that L2(ℓ−

√
π) is symmetric with respect to the x-axis, included {x ≤ 0} and its boundary touches

the y-axis in the origin 0 which is assumed to be a singular point, see Figure 6. Let ε > 0 sufficiently small such
that the set Cℓ (the Cheeger set of L2(ℓ−

√
π)) is included in the half-plane {x < −ε}. We denote by A(−ε, cε) and

B(−ε,−cε), where cε > 0, the points of the intersection between the line {x = −ε} and the boundary of L2(ℓ−
√
π)

(see Figure 6). For t ≥ 0, we introduce the points At

(
−ε, εcε

ε+t

)
, Bt

(
−ε,− εcε

ε+t

)
and Ot (t, 0). We then define for

every t ≥ 0,
Lt := (L2(ℓ−

√
π) ∩ {x ≤ −ε}) ∪ Tt,

where Tt is the (closed) triangle of vertices Ot, At and Bt. The function t ≥ 0 7−→ P (Lt) continuously varies from
2(ℓ −

√
π) to +∞. Thus, by the Intermediate Value Theorem, there exists tp such that P (Ltp) = p. Moreover, the

set Ltp is simply connected with unit area and has the same Cheeger set as L2(ℓ−
√
π), which yields that h(Ltp) =

h(L2(ℓ−
√
π)) = ℓ. This shows that (p, ℓ) ∈ DS2 .

Finally, we obtain the equality

DS2 = {(x0, x0)} ∪ {(x, y) | x > x0 and x0 < y ≤ x} .

3.4 Proof of the inequality (7)

This is a direct application of Lemma 16 and the inequality T (Ω) ≥ N tan π
N (see Theorem 6 and (8) for the definition

of T (Ω)). Indeed, for any Ω ∈ PN , one has

h(Ω) ≤
P (Ω) +

√
P (Ω)2 − 4

(
T (Ω)− π

)
|Ω|

2|Ω|
≤
P (Ω) +

√
P (Ω)2 + 4

(
π −N tan π

N

)
|Ω|

2|Ω|
.

The first inequality is an equality if and only if Ω is Cheeger-regular and the second one is an equality if and only if
T (Ω) = N tan π

N , which is equivalent to α1 = · · · = αN = N−2
N π.
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Figure 6: Tailed domain Lt with the same area, the same Cheeger set and higher perimeter.

3.5 Proof of Theorem 5
3.5.1 If N = 3

We have by (6),

∀Ω ∈ P3,
√

|Ω|h(Ω) = P (Ω)

2
√

|Ω|
+

√
π.

Thus, we have the inclusion
D3 ⊂

{(
x,
x

2
+
√
π
) ∣∣∣ x ≥ P (R3)

}
.

The opposite inclusion is proved by considering for example the family (Td)d≥1 of isosceles triangles of vertices

Xd

(
0,

√
3
2

)
, Yd

(
d
2 , 0
)

and Zd

(
−d

2 , 0
)
. We have for every d ≥ 1,

P (R3) = x1 ≤ xd := P (Td)√
|Td|

= d+
√
d2+3

31/4

2

√
d

−→
d→+∞

+∞

h(R3) = y1 ≤ yd := P (Td)

2
√

|Td|
+

√
π = d+

√
d2+3

31/4
√
d

+
√
π −→

d→+∞
+∞,

where the inequalities x1 ≤ xd and y1 ≤ yd are consequences of the isoperimetric inequality for triangles.

3.5.2 If N is even

We have by the inequalities (5) and (7)

DN ⊂
{
(x, y) | x ≥ P (RN ) and

x

2
+

√
π ≤ y ≤ fN (x)

}
,

where fN : x ∈ [P (RN ),+∞) 7−→ x+
√

x2+4(π−N tan π
N )

2 .
It remains to prove the opposite inclusion. We provide explicit families of elements of PN that respectively fill the

upper and lower boundaries of DN (see Definition 4) and then use those domains to construct continuous paths that
fill the diagram.

Step 1: The upper boundary of DN :

We recall that the inequality (7) is an equality if and only if Ω is Cheeger-regular and all its angles are equal to
(N − 2)π/N . We assume without loss of generality that two parallel sides of the regular N -gon RN are colinear to
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the x-axis (note that this is possible because the number of sides N is even). We then consider the family of N -gons
(Ũt)t≥1 such that for every t ≥ 1,

Ũt := {(tx, y) | (x, y) ∈ RN} .

Since the map t ≥ 1 7−→ d(Ũt) ≥ d(RN ) is continuous and strictly increasing, it is a bijection. Thus, for every
δ ≥ d(RN ), there exists a unique tδ ≥ 1 such that d(Ũtδ) = δ. From now on we denote Uδ := Ũtδ for every
δ ≥ d(RN ).

Since

• (Uδ)δ is a family of N -gons that vary continuously with respect to the Hausdorff distance,

• the perimeter and the area are continuous with respect to the Hausdorff distance,

• P (Ud(RN )) = P (RN ) and

P (Uδ)

|Uδ|1/2
≥ P (Uδ)

δ1/2d(RN )1/2
≥ 2δ

δ1/2d(RN )1/2
=

2

d(RN )1/2
δ1/2 −→

δ→+∞
+∞, (19)

we have by the Intermediate Value Theorem:

∀ p ≥ P (RN ),∃ δp ≥ d(RN ),
P (Uδp)

|Uδp |1/2
= p.

Moreover, the sets (Uδ) are Cheeger-regular and all their interior angles are equal to (N − 2)π/N . Thus, they all
realize the equality

|Uδ|1/2h(Uδ) =
P (Uδ) +

√
P (Uδ)2 + 4

(
π −N tan π

N

)
|Uδ|

2|Uδ|1/2
= fN

(
P (Uδ)√

|Uδ|

)
.

We then deduce that the upper boundary of DN is given by the set of points
{(
x, fN (x)

)
| x ≥ P (RN )

}
.

Step 2: The lower boundary of DN :

As for the upper boundary’s case, we construct a continuous family of N -gons (Vδ)δ≥d(RN ), such that Vd(RN ) =
RN and d(Vδ) = δ for every δ ≥ d(RN ). We assume that a diameter of RN is given by [OA], where O = (0, 0) and
A = (d(RN ), 0) and denote by BN its incircle (see Figure 7) and M1, . . . ,MN its vertices.

Take δ ≥ d(RN ), we denote by Aδ = (δ, 0) and (∆δ), (∆
′
δ) the lines passing through Aδ which are tangent to BN .

The line (∆δ) (resp. (∆′
δ)) cuts the boundary of RN in at least two points: we denote by Mδ

kδ
(resp. Mδ

N−kδ+1) the
farthest one from Aδ (see Figure 7), where kδ ∈ J1, N/2K such that 2kδ is the number of vertices of RN that are in
the region given by the convex cone delimited by (∆δ) and (∆′

δ). We then define Vδ as the (convex) polygon whose
vertices are given by 

Mδ
1 =M1 = O,

Mδ
i =Mi, for all k ∈ J2, kδ − 1K

M δ
kδ

= · · · =M δ
N
2

Mδ
N
2 +1

= Aδ

M δ
N
2 +2

= · · · =M δ
N+2−kδ

M δ
i =Mi for all k ∈ JN + 2− kδ, N − 1K

Note that Vδ has at mostN sides and that it is a circumscribed polygon. This yields that the couple ( P (Vδ)
|Vδ|1/2

, |Vδ|1/2h(Vδ))
lies on the lower boundary of the diagram DN . We also, note that the applications δ ∈ [d(RN ),+∞) 7−→ M δ

k ∈ R2

are continuous and thus the family of polygons (Vδ)δ is continuous with respect to the Hausdorff distance. Then, by
estimates similar to (19), we get that lim

δ→+∞
P (Vδ)
|Vδ|1/2

= +∞. Thus, the lower boundary of DN is given by the set of

points
{(
x, x/2 +

√
π
)
| x ≥ P (RN )

}
.

Step 3: Continuous paths:

Now that we have two families (Uδ) and (Vδ) of extremal shapes, it remains to define continuous paths that connect
the upper domains to the lower ones and fill the whole diagram. Unfortunately, unlike for the case of the class K2,
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Figure 7: Construction of the circumscribed polygons Vδ for N = 8.

one cannot use Minkowski sums as they increase the number of sides and thus could give polygons that are not in the
class PN , we will then construct the paths by continuously mapping the lower and upper polygons vertices.

We assume without loss of generality that as for Vδ the diameter of Uδ is given by OAδ . We denote by O =
Lδ
1, L

δ
2, . . . , L

δ
N/2−1 = Aδ, L

δ
N/2, . . . , L

δ
N the vertices of Uδ . For t ∈ [0, 1], we define Ωδ

t as the polygon of vertices

((1− t)Mδ
k + tL

δ
k)k∈[[1,N ]]. The polygon Ωδ

t is convex and included in the rectangle (0, δ)×
(
− d(RN )

2 , d(RN )
2

)
. Thus,

we have the following inequality :

∀t ∈ [0, 1],
P (Ωδ

t )

|Ωδ
t |1/2

≥ 2δ

δ1/2d(RN )1/2
=

2

d(RN )1/2
δ1/2. (20)

For every δ ≥ d(RN ), we introduce the closed and continuous path γδ : [0, 3) −→ R2, defined as follows:

t 7−→



(
P (Ωδ

t )

|Ωδ
t |1/2

, |Ωδ
t |1/2h(Ωδ

t )
)
, if t ∈ [0, 1],(

(t− 1)P (RN ) + (2− t) P (Uδ)
|Uδ|1/2

, fN

(
(t− 1)P (RN ) + (2− t) P (Uδ)

|Uδ|1/2

))
, if t ∈ (1, 2],(

(3− t)P (RN ) + (t− 2) P (Vδ)
|Vδ|1/2

, (3− t)(P (RN )
2 +

√
π) + (t− 2)( P (Vδ)

2|Vδ|1/2
+
√
π)
)
, if t ∈ (2, 3).

Step 4: Stability of the paths:

Take δ0 ≥ d(RN ) and ε > 0, let us show that

∃ αε > 0,∀δ ∈ (δ0 − αε, δ0 + αε) ∩ [P (RN ),+∞), sup
t∈[0,3]

∥ γδ(t)− γδ0(t) ∥ ≤ ε. (21)

Let us take δ ∈ [d(RN ), δ0+1], with straightforward computations, there exists a constant C(δ0) > 0 depending only
on δ0 such that for every t ∈ [1, 3],

∥γδ(t)− γδ0(t)∥ ≤ C(δ0)min

(∣∣∣∣ P (Uδ)

|Uδ|1/2
− P (Uδ0)

|Uδ0 |1/2

∣∣∣∣ , ∣∣∣∣ P (Vδ)|Vδ|1/2
− P (Vδ0)

|Vδ0 |1/2

∣∣∣∣) −→
δ→δ0

0.

Moreover, by the quantitative estimates given in Lemma 20, there exist constants C ′(δ0), C
′′(δ0) > 0, depending
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only on δ0, such that for all δ ∈ [d(RN ), δ0 + 1] and all t ∈ [0, 1]

∥γδ(t)− γδ0(t)∥ ≤

∣∣∣∣∣ P (Ωδ
t )

|Ωδ
t |1/2

− P (Ωδ0
t )

|Ωδ0
t |1/2

∣∣∣∣∣+ ∣∣|Ωδ
t |1/2h(Ωδ

t )− |Ωδ0
t |1/2h(Ωδ0

t )
∣∣

≤ C ′(δ0)
(
|P (Ωδ

t )− P (Ωδ0
t )|+

∣∣∣|Ωδ
t | − |Ωδ0

t |
∣∣∣+ |h(Ωδ

t )− h(Ωδ0
t )|
)

≤ C ′′(δ0) max
i∈J1,NK

∥(1− t)Mδ
i + tLδ

i − (1− t)M δ0
i − tLδ0

i ∥

≤ C ′′(δ0) max
i∈J1,NK

(∥Mδ
i −Mδ0

i ∥+ ∥Lδ
i − Lδ0

i ∥) −→
δ→δ0

0.

Finally, we deduce that lim
δ→δ0

sup
t∈[0,3]

∥ γδ(t)− γδ0(t)∥ = 0, which proves (21).

Step 5: Conclusion:

As for the case of convex sets (see Section 3.2), now that we proved that the boundaries {
(
x, fN (x)

)
| x ≥

P (RN )} and {(x, x/2+
√
π) | x ≥ P (RN )} are included in the diagram DN , it remains to show that it is also the case

for the set of points contained between them. LetA(xA, yA) ∈ {(x, y) | x > P (RN ) and x/2 +
√
π < y < fN (x)}.

Step 4 shows that for any choice of δ and δ′ in [d(RN ), δ0+1], the curves γδ and γδ′ are homotopic, and the homotopy
is H : (σ, t) ∈ [0, 1]× [0, 3) 7−→ γ(1−σ)δ+σδ′ . In particular, let us chose δ = d(RN ) and δ′ = x2Ad(RN ). The index
of A with respect to γδ = {(P (RN ), P (RN )/2+

√
π)} is equal to 0. Meanwhile, by the inequality (20), we have that

A is in the interior of the curve γδ′ , which means that its index with respect to γδ′ is non-zero. Thus, it must follow
that there exists (σ̄, t̄) ∈ [0, 1]× [0, 3) such that A = H(σ̄, t̄) ∈ DN .

Finally, we get the equality

DN =

{
(x, y) | x ≥ P (RN ) and

1

2
x+

√
π ≤ y ≤

x+
√
x2 + 4(π −N tan π

N )

2

}
.

3.5.3 If N ≥ 5 is odd

By the inequalities (5) and (7), we have

DN ⊂
{
(x, y) | x ≥ P (RN ) and x/2 +

√
π ≤ y ≤ fN (x)

}
,

where

fN : x 7−→
x+

√
x2 + 4(π −N tan π

N )

2
. (22)

Let us study the lower and upper boundaries of the diagram DN .

The lower boundary of the diagram DN :

Since N − 1 is even, we have by Section 3.5.2

{(x, x/2 +
√
π) | x ≥ P (RN−1)} ⊂ DN−1 ⊂ DN .

It remains to prove that
{(x, x/2 +

√
π) | x ∈ [P (R(N), P (RN−1)]} ⊂ DN .

To do so, we continuously move two consecutive sides of the polygon RN so as to align them while keeping the
polygon circumscribed. This gives us a continuous ( with respect to the Hausdorff distance) family (Wt)t∈[0,1] of
convex circumscribed polygons such that W0 := RN and W1 is an element of PN−1, see Figure 8.

Since the family of convex polygons (Wt)t∈[0,1] and the functionals perimeter, area and Cheeger constant are
continuous with respect to the Hausdorff distance and P (W1)√

|W1|
≥ P (RN−1) (because of the polygonal isoperimetric

inequality in PN−1), we have by the Intermediate Value Theorem

{(x, x/2 +
√
π) | x ∈ [P (RN ), P (RN−1)]} ⊂

{(
P (Wt)√

|Wt|
,
√
|Wt|h(Wt)

) ∣∣∣ t ∈ [0, 1]

}
⊂ DN .

We finally have
{(x, x/2 +

√
π) | x ∈ [P (R(N),+∞)} ⊂ DN .
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Figure 8: Construction of the circumscribed polygons Wt.

The upper boundary of DN :

Let us now study the upper boundary of DN . We recall that the function gN is defined as follows:

gN : [P (RN ),+∞) −→ R
p 7−→ sup {h(Ω) | Ω ∈ PN , |Ω| = 1 and P (Ω) = p} . (23)

First, let us prove that the problem sup {h(Ω) | Ω ∈ PN , |Ω| = 1 and P (Ω) = p} admits a solution, that we denote
by Ωp ∈ PN .

Take (Ωn
p )n∈N a sequence of elements of PN such that |Ωn

p | = 1 and P (Ωn
p ) = p for every n ∈ N, which satisfies

lim
n→+∞

h(Ωn
p ) = sup {h(Ω) | Ω ∈ PN , |Ω| = 1 and P (Ω) = p} .

Since the diameters of the sets (Ωn
p ) are all bounded by p and the involved functionals are invariant by translations,

we may assume without loss of generality that there exist a fixed ball D ⊂ R2 that contains all the polygons Ωn
p .

Let n ∈ N. Since Ωn
p ∈ PN , the polygon Ωn

p is the convex hull of N points An
1 , An

2 ,. . . , An
N . The sequences

(An
1 ), . . . , (A

n
N ) are bounded in R2. Thus, by Bolzano-Weirstrass Theorem, there exist σ : N −→ N strictly increasing

and A1, . . . , AN ∈ R2 such that lim
n→+∞

A
σ(n)
k = Ak. By elementary arguments of convex geometry one shows that

the convex hull of the points A1, . . . , AN defines a convex polygon Ωp which is also the limit of (Ωσ(n)
p )n with

respect to the Hausdorff distance (we refer to [36, Section 1.8] for results on the Hausdorff metric). By the continuity
of the perimeter, the area and the Cheeger constant with respect to the Hausdorff distance among convex sets (see [32,
Proposition 3.1] for the continuity of the Cheeger constant), we have

|Ωp| = lim
n→+∞

|Ωσ(n)
p | = 1,

P (Ωp) = lim
n→+∞

P
(
Ω

σ(n)
p

)
= p,

h(Ωp) = lim
n→+∞

h
(
Ω

σ(n)
p

)
= sup {h(Ω) | Ω ∈ PN , |Ω| = 1 and P (Ω) = p} .

Finally, we conclude that Ωp ∈ PN is a solution of the problem sup {h(Ω) | Ω ∈ PN , |Ω| = 1 and P (Ω) = p}.

Now, let us prove the properties of the function gN stated in Theorem 5.

1) The function gN is continuous

Let p0 ∈ [P (RN ),+∞).

• We first show the superior limit inequality. Let (pn)n≥1 be a real sequence converging to p0 such that

lim sup
p→p0

h(Ωp) = lim
n→+∞

h(Ωpn).

As the perimeters of (Ωpn)n∈N∗ are uniformly bounded, one may assume that the domains (Ωpn)n∈N∗ are
included in a fixed ball. Then by similar arguments as above, the sequence (Ωpn) converges with respect to the
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Hausdorff distance up to a subsequence (that we also denote by pn for sake of simplicity) to a convex polygon
Ω∗ ∈ PN .

Again, by the continuity of the perimeter, the area and the Cheeger constant with respect to the Hausdorff
distance among convex sets (see [32, Proposition 3.1] for the continuity of the Cheeger constant), we have:

|Ω∗| = lim
n→+∞

|Ωpn
| = 1,

P (Ω∗) = lim
n→+∞

P (Ωpn
) = lim

n→+∞
pn = p0,

h(Ω∗) = lim
n→+∞

h(Ωpn
) = lim sup

p→p0

h(Ωp).

Then by the definition of gN (since Ω∗ ∈ PN , |Ω∗| = 1 and P (Ω∗) = p0), we obtain

gN (p0) ≥ h(Ω∗) = lim
n→+∞

h(Ωpn
) = lim sup

p→p0

h(Ωp) = lim sup
p→p0

gN (p).

• It remains to prove the inferior limit inequality. Let (pn)n≥1 be a real sequence converging to p0 such that

lim inf
p→p0

gN (p) = lim
n→+∞

gN (pn).

By using parallel chord movements (see the proof of Lemma 18), we can construct a sequence of unit area
polygons (Kn)n≥1 with at most N sides, converging to Ωp0

with respect to the Hausdorff distance such that
P (Kn) = pn for sufficiently high values of n ∈ N∗. By using the definition of gN , one has

∀n ∈ N∗, gN (pn) ≥ h(Kn).

Passing to the limit, we get

lim inf
p→p0

gN (p) = lim
n→+∞

gN (pn) ≥ lim
n→+∞

h(Kn) = h(Ωp0
) = gN (p0).

We finally get that lim
p→p0

gN (p) = gN (p0), so gN is continuous on [P (RN ),+∞).

2) The function gN is strictly increasing

Let us assume by contradiction that gN is not strictly increasing. Then, there exist p2 > p1 ≥ P (RN ) such
that gN (p2) ≤ gN (p1), and from the equality case in the polygonal isoperimetric inequality, we necessarily have
p1 > P (RN ). Since g is continuous, it reaches its maximum on [P (RN ), p2] at a point p∗ ∈ (P (RN ), p2), that is to
say

∀Ω ∈ PN such that |Ω| = 1 and P (Ω) ∈ [P (RN ), p2], h(Ωp∗) = gN (p∗) ≥ h(Ω). (24)

We note that gN (p∗) > p∗/2+
√
π. Indeed, if it is not the case (i.e., gN (p∗) = p∗/2+

√
π), we have for sufficiently

small t > 0
gN (p∗ + t) ≥ (p∗ + t)/2 +

√
π > p∗/2 +

√
π = gN (p∗),

which contradicts the fact that gN admits a local maximum at p∗.

The assertion (24) shows that Ωp∗ is a local maximizer of the Cheeger constant between convex N -gons of unit

area. On the other hand, the fact that h(Ωp∗) = gN (p∗) >
P (Ωp∗ )+

√
4π

2 implies that Ωp∗ is not a circumscribed
polygon (otherwise, it should satisfy the equality (16)). Let us now show that any non-circumscribed polygon Ω (i.e.,
T (Ω) < P (Ω)2

4|Ω| ) can be locally perturbed (while preserving the number of sides) in such a way to increase |Ω|1/2h(Ω).

We denote by (ℓi)i∈[[1,N ]] the lengths of the sides of the polygon Ω and (αi)i∈[[1,N ]] its interior angles and take

r0 := min
1≤i≤N

ℓi

tan
(
π
2 − αi

2

)
+ tan

(
π
2 − αi−1

2

) ,
where we define α0 := αN . For every i ∈ J1, NK and ε ∈ R such that |ε| is sufficiently small, we introduce the

polygon Ωi
ε obtained by performing a parallel displacement of the i-th side with the algebraic distance ε, see Figure 9.
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Ωi
ε (if ε > 0)

Ωi
ε (if ε < 0)

ε > 0

ε < 0

Ω

αi−1 αi

Figure 9: Parallel displacement of the i-th side.

Let us distinguish two cases:

• if |Ω| − r0P (Ω) + r20(T (Ω) − π) ≥ 0 (where T is defined in (8)), this means by [26, Theorem 3] that there
exists i ∈ J1, NK such that the i-th side of Ω that does not touch the boundary of the Cheeger set CΩ or touch
it in one point. For ε > 0 sufficiently small, the polygons Ω and Ωi

ε have the same Cheeger set. Thus, we have
|Ωi

ε|1/2h(Ωi
ε) > |Ω|1/2h(Ω).

• On the other hand if |Ω| − r0P (Ω) + r20(T (Ω)− π) < 0 (where T is defined in (8)), then by [26, Theorem 3],
the polygons (Ωi

ε)i∈J1,NK (for |ε| sufficiently small) are Cheeger-regular and thus we have explicit formulas for
their Cheeger constants. We write

|Ωi
ε|1/2h(Ωi

ε) =
P (Ωi

ε) +
√
P (Ωi

ε)
2 − 4(T (Ωi

ε)− π)|Ωi
ε|√

|Ωi
ε|

=
P (Ωi

ε)√
|Ωi

ε|
+

√
P (Ωi

ε)
2

|Ωi
ε|

− 4(T (Ω)− π), (25)

where we used T (Ω) = T (Ωi
ε) for the last equality.

As stated in the proof of [11, Lemma 23], through elementary geometric arguments, we have for every i ∈
J1, NK, 

P (Ωi
ε) = P (Ω) +

(
1

tanαi−1
+ 1

tanαi
+ 1

sinαi−1
+ 1

sinαi

)
ε,

|Ωi
ε| = |Ω|+ ℓiε+

1
2

(
1

tanαi−1
+ 1

tanαi

)
ε2.

Thus,

P (Ωε)
2

|Ωε|
=

(
P (Ω) +

(
1

tanαi−1
+ 1

tanαi
+ 1

sinαi−1
+ 1

sinαi

)
ε
)2

|Ω|+ ℓiε+
1
2

(
1

tanαi−1
+ 1

tanαi

)
ε2

=
P (Ω)2

|Ω|
+ P (Ω) ·Ψi · ε+ o

ε→0
(ε),

where

Ψi := 2

(
1

tanαi−1
+

1

tanαi
+

1

sinαi−1
+

1

sinαi

)
− P (Ω)

|Ω|
ℓi.

Let us show that there exists i ∈ [[1, N ]] such that Ψi ̸= 0. We assume by contradiction that Ψi = 0 for every
i ∈ [[1, N ]], we then have

N∑
i=1

Ψi = 0,

which is equivalent to

P (Ω) =
4|Ω|
P (Ω)

N∑
i=1

(
1

tanαi
+

1

sinαi

)
=

4|Ω|
P (Ω)

N∑
i=1

1

tan αi

2

=
4|Ω|
P (Ω)

· T (Ω),

where T (Ω) is defined in (8). As stated in Theorem 6, this equality holds if and only if Ω is a circumscribed
polygon, which is not the case as assumed above. Thus, there exists i ∈ [[1, N ]] such that Ψi ̸= 0. Then, by
performing a parallel displacement (in the suitable sense: ε > 0 if ψi > 0 and ε < 0 if ψi < 0) of the ith side,
one is able to strictly increase P (Ω)

|Ω|1/2 and thus, by (25), increase |Ω|1/2h(Ω).
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3) Comparison between gN and fN and asymptotic

• It is immediate by the inclusion PN−1 ⊂ PN , the equality fN−1 = gN−1 (because N − 1 is even) and the
inequality (7) that fN−1 ≤ gN ≤ fN on [P (RN ),+∞) (we recall that fN is defined in (22)).

• If we perform a parallel displacement of one of the sides of the regular polygonRN , we see that there exists ε0 >
0 and a continuous family (with respect to the Hausdorff distance) of Cheeger-regular polygons (Ωε)ε∈[0,ε0) with
the same interior angles as RN such that P (Ωε)

|Ωε|1/2
> P (Ω)

|Ω|1/2 , for every ε ∈ (0, ε0). This shows that there exists

bN ≥ P (Ωε0
)

|Ωε0
|1/2 > P (RN ) such that

∀x ∈ [P (RN ), bN ], gN (x) =
x+

√
x2 + 4(π −N tan π

N )

2
= fN (x).

• Let us now prove that if Ω is a polygon of N sides and unit area and whose angles are all equal (to βN :=
(N−2)π

N ), one has

P (Ω) ≤ 2N

√
tan

βN
2
. (26)

We assume that the polygon Ω is included in the half-plane {y ≥ 0} and that its longest side is given by the
segment [OA], where A(ℓ, 0) and ℓ > 0. Since N is odd and all the angles of Ω are equal, we deduce that there
exists a unique vertex B(xB , η) which is strictly higher (i.e., has the largest ordinate) than all the other vertices.
We can assume without loss of generality that xB ≥ ℓ/2. We denote by C(xC , 0) the point of intersection
of the line obtained by extending the left side of extremity B and the x-axis and by D(xB , 0) the orthogonal
projection of the point B on the x-axis, see Figure 10. By the convexity of Ω, we have 0 < θ ≤ βN

2 < π
2 , where

θ is the angle between the vectors
−−→
BO and

−−→
BD.

We note that xC ≤ 0. Indeed,

xC = xB − (xB − xC) = xB − CD = xB − η tan
βN
2

≤ xB − η tan θ = xB −OD = 0. (27)

θ

βN

2

A(ℓ, 0)O ℓ
2 D(xB , 0)C(xC , 0)

B(xB , η)
η

Figure 10: An N -gon with all interior angles equal to βN .

We have
1

tan βN

2

= cotan
βN
2

=
η

xB − xC
= 2

1
2ℓη

ℓ(xB − xC)
= 2

SOAB

ℓ(xB − xC)
≤ 4

ℓ2
,

where SOAB corresponds to the area of the triangle OAB. The last inequality is a consequence of SOAB ≤ 1
(because OAB ⊂ Ω and |Ω| = 1) and xB − xC ≥ xB ≥ ℓ/2 (we recall that xC ≤ 0 as shown in (27)).

Thus, we have the result

P (Ω) ≤ Nℓ ≤ 2N

√
tan

βN
2
.

This proves that there is no polygon of unit area, N sides and perimeter larger than 2N
√

tan βN

2 whose interior

angles are all equal (to βN ). Thus, for every Ω ∈ PN such that |Ω| = 1 and P (Ω) > 2N
√
tan βN

2 , we have

h(Ω) ≤
P (Ω) +

√
P (Ω)2 − 4

(
T (Ω)− π

)
|Ω|

2|Ω|
<
P (Ω) +

√
P (Ω)2 + 4

(
π −N tan π

N

)
|Ω|

2|Ω|
,
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where the first inequality corresponds to the inequality (7) and the second (strict) one is a consequence of the
inequality T (Ω) > N tan π

N of Theorem 6 (see (8) for the definition of T (Ω)).

We finally have that

∀x > 2N

√
tan

βN
2
, gN (x) <

x+
√
x2 + 4(π −N tan π

N )

2
.

• Since N ≥ 4, we have

∀x ≥ P (RN−1),
x+

√
x2 + 4(π − (N − 1) tan π

N−1 )

2
≤ gN (x) ≤

x+
√
x2 + 4(π −N tan π

N )

2
.

Thus,
gN (x) ∼

x→+∞
x.

4 Numerical simulations
Since it is not easy to give an explicit description of the upper boundary of the diagram DN whenN is odd, we perform
some simulations in order to have an approximation of the function gN (defined in Definition 4). We numerically solve
the following problems:

max {h(Ω) | Ω ∈ PN , |Ω| = 1 and P (Ω) = p0} , (28)

where p0 ∈ [P (RN ),+∞).

4.1 Parametrization of the domains
We parametrize a polygon Ω via its vertices’ coordinates A1 := (x1, y1), . . . , AN := (xN , yN ).

• Let us first express the constraint of convexity in terms of the coordinates of the vertices of Ω. It is classical that
a polygon Ω is convex if and only if all the interior angles are less than or equal to π. By using the cross product
(see [3] for example), the convexity is equivalent to the constraints

Ck(x1, . . . , xN , y1, . . . , yN ) := (xk−1 − xk)(yk+1 − yk)− (yk−1 − yk)(xk+1 − xk) ≤ 0,

for k ∈ J1, NK, where we used the conventions A0 = AN and AN+1 = A1.

• The area and the perimeter of Ω are given by the following formulas
f(x1, . . . , xN , y1, . . . , yN ) := P (Ω) =

∑N
k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2,

g(x1, . . . , xN , y1, . . . , yN ) := |Ω| = 1
2

∣∣∣∑N
k=1(xkyk+1 − xk+1yk)

∣∣∣
• Finally, we introduce the function

ϕ : (x1, . . . , xN , y1, . . . , yN ) 7−→

{
h(Ω), if the polygon Ω does not have overlapping sides,

−1, if the polygon Ω has overlapping sides,

where Ω is the polygon of vertices A1(x1, y1), . . . , AN (xN , yN ). The Cheeger constant is computed by using
an open source Matlab code of B. Bogosel [5]. The algorithm combines the well known result of Kawohl and
Lachand-Robert [26] (stated in Theorem 10) which characterizes the Cheeger sets for convex domains and the
toolbox Clipper, a very good implementation of polygons’ inner parallel sets 5 computation by A. Johnson.

We are now able to write the problem (28) in the following form

sup
(x1,...,yN )∈R2N

ϕ(x1, . . . , yN ),

∀k ∈ J1, NK, Ck(x1, . . . , xN , y1, . . . , yN ) ≤ 0,

f(x1, . . . , xN , y1, . . . , yN ) = p0

g(x1, . . . , xN , y1, . . . , yN ) = 1.
5We refer to Definition 9 for the notion of inner parallel sets.
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4.2 Computation of the gradients
We want to use Matlab’s routine fmincon to solve the last problem. To do so, we should compute the gradients of
the constraints Ck,f ,g and the objective function ϕ.

Since Ck, f and g are explicitly expressed via usual functions of (x1, . . . , yN ), we obtain explicit formulas for the
gradients by straightforward computations. This is not the case for the objective function ϕ, for which we use a shape
derivation result proved in [33]. Since Ω is convex, it admits a unique Cheeger set CΩ that is C1,1 (see [1]). We are
then in position to use the following result of [33, Corollary 1.2]:

h′(Ω, V ) := lim
t→0

h(Ωt)− h(Ω)

t
=

1

|CΩ|

ˆ
∂CΩ∩∂Ω

(
κ− h(Ω)

)
⟨V, n⟩dH1,

where V ∈ R2 −→ R2 is a smooth perturbation, Ωt := (Id+ tV )(Ω) (where Id : x 7−→ x is the identity map), n(x)
is the normal to ∂Ω at the point x and κ(x) is the curvature of ∂Ω at the point x.

Since Ω is a convex polygon and CΩ is C1,1, the contact set Ω ∩ CΩ is given by a finite union of segments. We
then have κ = 0 on ∂CΩ ∩ ∂Ω. Thus, if we denote by Vxk

and Vyk
the perturbations respectively associated to the

variables xk and yk, where k ∈ J1, NK, we have
∂ϕ
∂xk

(x1, . . . , xN , y1, . . . , yN ) = −h(Ω)
|CΩ|
´
∂CΩ∩∂Ω

⟨Vxk
, n⟩dH1,

∂ϕ
∂yk

(x1, . . . , xN , y1, . . . , yN ) = −h(Ω)
|CΩ|
´
∂CΩ∩∂Ω

⟨Vyk
, n⟩dH1.

4.3 Results
In Figure 11, we plot the points corresponding to 105 random convex pentagons and the points corresponding to the
optimal pentagons obtained for p0 ∈ {P (R5) + 0.02 · k | k ∈ J0, 20K}, in addition to the graphs of the functions

x 7−→ x and x 7−→ f5(x) :=
x+

√
x2+4(π−5 tan π

5 )

2 whose hypographs represent the inequalities (3) and (7) in the
Blaschke–Santaló diagram. The random polygons are generated by using the algorithm presented in [34] (based on a
work of P. Valtr, see [38, Section 4]). The Cheeger constants are computed by a Matlab algorithm implemented by B.
Bogosel, see [5].

3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2

3.65

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

Figure 11: Numerical approximation of the Blaschke–Santaló diagram of convex pentagons.

In Figure 12, we provide a zoom on the upper boundary of the diagram D5. We observe that the points (p, g5(p))p≥P (R5)

(where g5 is introduced in Definition 4) are at first exactly located on the red and continuous curve corresponding to

the graph of the function x 7−→ f5(x) :=
x+

√
x2+4(π−5 tan π

5 )

2 , then they detach and become strictly lower than it.
We also note that the abscissa c5 introduced in the statement of Theorem 5 is indeed (as shown in (26)) bounded from

above by 10
√

tan 3π
10 ≈ 11.73.
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Figure 12: A zoom on the upper boundary of the diagram D5.

Finally, in Figure 13, we give the obtained optimal pentagons (solutions of (28)) for p0 ∈ {3.86, 4, 5}. We note that
for larger values of p0, the maximizers seem not to be Cheeger-regular.

Values of p0 3.86 4 5

Optimal pentagons

Figure 13: Numerically obtained (upper) extremal pentagons corresponding to different values of p0.

Remark 21. Our numerical approach has been tested on problems for which the solutions are theoretically provided
in the present paper (see Theorem 5 and its proof in Section 5). Namely, problems of the type

min{h(Ω) | P (Ω) = p0, |Ω| = 1 and Ω ∈ PN} =
p0
2

+
√
π,

where N ≥ 3 and p0 ≥ P (RN ) and

max{h(Ω) | P (Ω) = p0, |Ω| = 1 and Ω ∈ PN} = fN (p0) =
p0 +

√
p20 + 4(π −N tan π

N )

2
,

where N is even.
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5 Some applications
In this last section, we give two applications of the results of the present paper.

5.1 Improvement of a classical lower bound for the Cheeger constant of polygons
One early result in the spirit of the inequality (5) is due to R. Brooks and P. Waksman [10], see Proposition 22 below.
It gives a lower estimate of the Cheeger constant of convex polygons, which we show to be a consequence of the
inequality (5).

Proposition 22. [10, Theorem 3.] If Ω is a convex polygon, we denote by Ω∗ the (unique up to rigid motions)
circumscribed polygon which has the same area as Ω and whose angles are the same as those of Ω, then

h(Ω) ≥ h(Ω∗) =

√
T (Ω) +

√
π√

|Ω|
, (29)

where the functional T is defined in (8).

Proof. We use the inequality (5) to provide an alternative proof:

h(Ω) ≥
P (Ω) +

√
4π|Ω|

2|Ω|
≥

2
√
|Ω|
√
T (Ω) +

√
4π|Ω|

2|Ω|
=

√
T (Ω) +

√
π√

|Ω|
=

√
T (Ω∗) +

√
π√

|Ω∗|
,

where we respectively used (5) and (9) for the first and second inequalities and the fact that Ω∗ has the same area and
interior angles as Ω for the last equality.

□

5.2 On the stability of the Cheeger constant of polygons
We use the inequality (5) and [12, Proposition 2.1] to give a quantitative version of the polygonal Faber-Krahn type
inequality for convex polygons (see [11]).

Proposition 23. Take N ≥ 3. There exists a positive constant CN such that for every convex N -gon Ω with unit area,
there exists a rigid motion ρ of R2 such that

h(Ω)2 − h(RN )2 ≥ CNd
H
(
Ω, ρ(RN )

)2
, (30)

where RN is a regular polygon of unit area and N sides.

Proof. Take N ≥ 3 and Ω a convex N -gon. We have by the inequality (5) applied to Ω and the equality (16) applied
to the circumscribed polygon RN

P (Ω) ≤ 2(h(Ω)−
√
π) and P (RN ) = 2(h(RN )−

√
π).

Thus,

P (Ω)2 − P (RN )2 ≤ 4(h(Ω)−
√
π)2 − 4(h(RN )−

√
π)2

= 4
(
h(Ω)2 − h(RN )2 − 2

√
π
(
h(Ω)− h(RN )

))
≤ 4

(
h(Ω)2 − h(RN )2

)
,

where the last inequality is a consequence of the polygonal Faber-Krahn type inequality h(Ω) ≥ h(RN ), see [11].
On the other hand, it is proved in [12, Proposition 2.1] that there exists CN > 0 depending only on N such that

P (Ω)2 − P (RN )2 ≥ 4CNd
H
(
Ω, ρ(RN )

)2
.

Finally, by combining the latter inequalities, we get the announced result. □
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Remark 24. The quantitative inequality (30) shows in particular the stability of the Cheeger constant in the neigh-
borhood of regular polygons among convex polygons with the same number of sides and the same area. In the sense
that if the Cheeger constants of a convex polygon and a regular polygon with the same number of sides and the same
area are close, then the polygon looks (up to rigid motions) like the regular one. A similar result can be obtained for
non convex N -gons, see [13].
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