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 in the case of thin triangles.

A celebrated inequality due to Jeff Cheeger states that for every open bounded set Ω ∈ R n (where n ≥ 2) one has:

λ 1 (Ω) ≥ 1 4 h(Ω) 2 ,
where λ 1 (Ω) is the first Dirichlet eigenvalue and h(Ω) is the Cheeger constant of Ω, which is defined as follows:

h(Ω) := inf P (E) |E| E measurable and E ⊂ Ω , (1) 
where P (E) is the perimeter of De-Giorgi of E measured with respect to R n (see for example [START_REF] Parini | An introduction to the Cheeger problem[END_REF] for definitions) and |E| is the n-dimensional Lebesgue measure of E. Any set C Ω ⊂ Ω for which the infimum is attained is called (when it exists) a Cheeger set of Ω. We refer to [START_REF] Parini | An introduction to the Cheeger problem[END_REF] for an introduction to the Cheeger problem.

In the present paper, d and r respectively correspond to the diameter and the inradius functionals.

Recently, E. Parini [START_REF] Parini | Reverse Cheeger inequality for planar convex sets[END_REF] remarked that the constant 1 4 can be improved for the class K 2 (for every n ∈ N * , we denote K n the class of bounded convex bodies of R n of non-empty interior). He proved the following inequality:

∀Ω ∈ K 2 , λ 1 (Ω) ≥ π 2 16 h(Ω) 2 , (2) 
and noted that the constant π 2 16 is also not optimal. He then took a shape optimization point of view by introducing the functional J : Ω ∈ K 2 -→ J(Ω) := λ1(Ω) h(Ω) 2 for which he proves the existence of a minimizer in K 2 and conjectures that it is the square; in which case the optimal lower bound would be given by:

min Ω∈K 2 J(Ω) = J (0, 1) 2 = 2π 2 (2 + √ π) 2 ≈ 1.387...
Nevertheless, as far as we know, as mentioned in [START_REF] Parini | Reverse Cheeger inequality for planar convex sets[END_REF]Section 6], the existence of an optimal shape in higher dimensions (n ≥ 3) remains open.

In order to obtain a lower bound of J on the class K n , one can combine the inequality h(Ω) ≤ n r(Ω) (which is obtained by taking the inscribed ball B r(Ω) as a test set in the definition of the Cheeger constant h(Ω)) and Protter's inequality [START_REF] Protter | A lower bound for the fundamental frequency of a convex region[END_REF]:

∀Ω ∈ K n , λ 1 (Ω) ≥ π 2 4 1 r(Ω) 2 + n -1 d(Ω) 2 , (3) 
which generalises Hersch's inequality [START_REF] Hersch | Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum[END_REF] (used by Parini for the planar case) to higher dimensions. We then obtain the following lower bound:

∀n ≥ 2, ∀Ω ∈ K n , J(Ω) := λ 1 (Ω) h(Ω) 2 > π 2 4n 2 ,
which improves the original constant 1 4 given by J. Cheeger only for n ∈ {2, 3}. In which cases, we have:

∀Ω ∈ K 2 , J(Ω) > π 2 16 
≈ 0.616... and ∀Ω ∈ K 3 , J(Ω) > π 2 36 ≈ 0.274...

In the present paper, we improve the Cheeger-Parini's inequality [START_REF] Blaschke | Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts[END_REF]. Our result in this direction is stated as follows:

Theorem 1.1. We have:

∀Ω ∈ K 2 , J(Ω) = λ 1 (Ω) h(Ω) 2 ≥ πj 01 2j 01 + π 2 ≈ 0.902...
where j 01 denotes the first zero of the first Bessel function.

At last, we are interested by the question of the existence of an minimizer of J for higher dimensions n ≥ 3. We prove the following Theorem: Theorem 1.2. Let us define the real sequence (β n ) n as follows: ∀n ∈ N * , β n := inf Ω∈K n J(Ω).

We have:

1. (β n ) n is a decreasing sequence.

lim

n→+∞

β n = 1 4 .
3. For n ≥ 2, if the strict inequality β n < β n-1 holds, we have the following existence result:

∃Ω * n ∈ K n , J(Ω * n ) = inf Ω∈K n J(Ω).
Let us give a few interesting comments on Theorem 1.2:

• The convergence result lim n→+∞ β n = 1 4 of shows that the constant 1 4 given in the original Cheeger inequality [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] is optimal in the sense that there exists no constant C > 1 4 such that:

∀n ≥ 1, ∀Ω ∈ K n , λ 1 (Ω) h(Ω) 2 ≥ C.
• We believe that the assertion β n < β n-1 is true for any n ≥ 2. This conjecture is motivated by the discussion of Section 4.2. In particular, when n = 2, we have:

inf Ω∈K 2 J(Ω) < π 2 4 = inf ω∈K 1 J 1 (ω)
. Thus, we retrieve Parini's result of existence in the class of planar sets without using the explicit formulae of Cheeger constants of planar convex sets.

At last, we note that the result of Theorem 1.1 relies on the combination of Protter's inequality (3) and the Faber-Krahn inequality [START_REF] Faber | dass unter allen homogenen membranen von gleicher fl ache undgleicher spannung die kreisf örmige den tiefsten grundton gibt[END_REF][START_REF] Krahn | Über eine von rayleigh formulierte minimaleigenschaft des kreises[END_REF] to bound λ 1 (Ω) from below and an upper sharp estimate of the Cheeger constant in terms of the inradius and the area.

The study of complete systems of inequalities relating some given functionals is an interesting subject for its own. It is closely related to the so called Blaschke-Santaló diagrams, we refer to the original works of Blaschke [START_REF] Blaschke | Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts[END_REF] and Santaló [START_REF] Santaló | On complete systems of inequalities between elements of a plane convex figure[END_REF] and to the more recent works [START_REF] Böröczky | Optimizing area and perimeter of convex sets for fixed circumradius and inradius[END_REF][START_REF] Delyon | The missing (A, d, r) diagram[END_REF][START_REF] Hernández Cifre | Is there a planar convex set with given width, diameter, and inradius?[END_REF][START_REF] Hernández Cifre | Optimizing the perimeter and the area of convex sets with fixed diameter and circumradius[END_REF][START_REF] Hernández Cifre | Some optimization problems for planar convex figures[END_REF] for some interesting examples involving geometrical functionals and to [START_REF] Ftouhi | Complete systems of inequalities relating the perimeter, the area and the Cheeger constant of planar domains[END_REF][START_REF] Ftouhi | Blaschke-santaló diagram for volume, perimeter, and first dirichlet eigenvalue[END_REF][START_REF] Lucardesi | On blaschke-santaló diagrams for the torsional rigidity and the first dirichlet eigenvalue[END_REF][START_REF] Van Den Berg | On capacity and torsional rigidity[END_REF][START_REF] Briani | Some inequalities involving perimeter and torsional rigidity[END_REF][START_REF] Van Den Berg | On the relations between principal eigenvalue and torsional rigidity[END_REF] for recent examples dealing with diagrams involving spectral and geometrical quantities.

In the present paper we provide a complete system of inequalities relating the Cheeger constant h, the inradius r and the area | • | of planar convex sets, which corresponds to a complete description of the related Blaschke-Santaló diagram introduced in Theorem 1.3.

Before stating the result, let us provide some notations and define various important notions: we denote d H the Hausdorff distance (for more details we refer for example to [START_REF] Henrot | Shape variation and optimization[END_REF]Chapter 2]), S n-1 ⊂ R n the unit sphere and B ⊂ R n a ball of unit volume. If Ω ∈ K n , we denote by h Ω : u ∈ S n-1 -→ sup In what follows we denote such a supporting hyperplane by H(Ω, u). We then have the following characterization of the supporting hyperplanes of Ω:

H(Ω, u) = {x ∈ R n , x, u = h Ω (u)}.
A point x ∈ ∂Ω is called regular if the supporting hyperplane at x is uniquely defined, that is if there is a unique u ∈ S n-1 such that x ∈ H(Ω, u) ∩ Ω. The set of all regular points of ∂Ω is denoted by reg(Ω). We also introduce U(Ω) the set of all outward pointing unit normals to ∂Ω at points of reg(Ω). We are now in position to define the form body Ω * of Ω as in [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF]:

Ω * := u∈U (Ω) {x ∈ R n , x, u = 1}.
We are now ready to state the following result:

Theorem 1.3. We have:

∀Ω ∈ K 2 , 1 r(Ω) + πr(Ω) |Ω| ≤ h(Ω) ≤ 1 r(Ω) + π |Ω| , (4) 
These inequalities are sharp as equalities are obtained for stadiums in the lower estimate and for domains that are homothetic to their form bodies in the upper one. Moreover, we have the following explicit description of the Blaschke-Santaló diagram:

D := 1 r(Ω) , h(Ω) | Ω ∈ K 2 and |Ω| = 1 = (x, y) x ≥ 1 r(B) = √ π and x + π x ≤ y ≤ x + √ π ,
where B ⊂ R 2 is a ball of unit area.

The present paper is organized as follows: in Section 2, we provide the proof of the sharp estimates of the Cheeger constant given in Theorem 1.3. Section 3 is devoted to the improvement of the Cheeger-Parini's inequality for planar convex sets (2), we also give improved results for some special shapes (triangles, rhombii and stadiums), see Proposition 3.1. We then prove the existence result of Theorem 1.2 in Section 4. We finally discuss some new sharp inequalities involving the first Dirichlet eigenvalue, the Cheeger constant, the inradius and the area of planar convex sets in Appendix 5. 2 Sharp estimates for the Cheeger constant: Proof of Theorem 1.3

The proof of Theorem 1.3 is presented in 3 parts:

The lower bound:

Let Ω ∈ K 2 , we denote C Ω ∈ K 2 its (unique) Cheeger set. Let us show that:

r(Ω) = r(C Ω ).
By the characterization of the Cheeger set of planar convex sets of [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF], we have

C Ω = Ω -1 h(Ω) + 1 h(Ω) B 1
, where B 1 is the ball of unit radius centred at the origin. We then have:

r(C Ω ) = r Ω -1 h(Ω) + 1 h(Ω) B 1 = r Ω -1 h(Ω) + r 1 h(Ω) B 1 = r(Ω) - 1 h(Ω) + 1 h(Ω) r(B 1 ) = r(Ω).
Since, the Cheeger set C Ω is convex, we can use the following Bonnesen's inequality [START_REF] Bonnesen | Theory of convex bodies[END_REF]:

P (C Ω ) ≥ πr(C Ω ) + |C Ω | r(C Ω ) ,
with equality if and only if C Ω is a stadium (note that does not mean that Ω is a stadium). Thus:

h(Ω) = P (C Ω ) |C Ω | ≥ πr(C Ω ) + |CΩ| r(CΩ) |C Ω | = πr(Ω) |C Ω | + 1 r(Ω) ≥ πr(Ω) |Ω| + 1 r(Ω) ,
where the last inequality is a consequence of the inclusion C Ω ⊂ Ω and thus is an equality if and only if Ω = C Ω . Finally, we proved the lower bound and the equality holds if and only if Ω is a stadium.

The upper bound:

Let Ω ∈ K 2 . We have by [START_REF] Matheron | La formule de Steiner pour les érosions[END_REF]Theorem 2]:

∀t ∈ 0, r(Ω) , |Ω -t | ≥ |Ω| 1 - t r(Ω) 2 , (5) 
with equality if and only if Ω is homothetic to its form body.

If Ω is homothetic to its form body, we have by solving the equation

|Ω -t | = |Ω| 1 -t r(Ω) 2 = πt 2 : h(Ω) = 1 r(Ω) + π |Ω| .
From now on, we assume that Ω is not homothetic to its form body. Let us introduce the functions:

• f : t ∈ 0, r(Ω) -→ |Ω| 1 -t r(Ω) 2 -πt 2 = |Ω| -2|Ω| r(Ω) t + |Ω| r(Ω) 2 -π t 2 , • g : t ∈ 0, r(Ω) -→ |Ω -t | -πt 2 .
By (5), we have:

g(0) = f (0), ∀t ∈ 0, r(Ω) , g(t) > f (t).
This implies that 1/h(Ω), the first zero of g on [0, r(Ω)], is strictly larger than the first zero of f given by

1 r(Ω) + π |Ω| -1
(see Figure 2) , which proves the inequality. 

The diagram:

The inequalities (4) imply that

D := |Ω| r(Ω) , |Ω|h(Ω) | Ω ∈ K 2 and |Ω| = 1 ⊂ (x, y) x ≥ 1 r(B) = √ π and x + π x ≤ y ≤ x + √ π .
It remains to prove the reverse inclusion. The proof follows the following steps:

1. We explicit a continuous family (S r ) r≤r(B) of convex bodies which fill the lower boundary of the diagram.

2. We explicit a continuous family (U r ) r≤r(B) of convex bodies which fill the upper boundary of the diagram.

3. We use the latter domains to construct (via Minkowski sums) a family of continuous paths (Γ r ) r≤r(B) which connect the upper domains to the lower ones and prove that we are able to cover all the area between the upper and lower boundaries.

Step 1: The lower boundary of the diagram:

As proved above, the lower boundary corresponds to stadiums. Let us consider the family of stadiums (Q t ) t≥0 given by convex hulls of the balls of unit radius centred in O(0, 0) and O t (t, 0). The functions

• t ∈ [0, +∞) -→ |Q t |/r(Q t ) = π + 2t • t ∈ [0, +∞) -→ |Q t |h(Q t ) = 2(π+t) √ π+2t .
are continuous and strictly increasing to infinity (when t → +∞). Thus, we have by the intermediate values Theorem:

|Q t | r(Q t ) , |Q t |h(Q t ) t ≥ 0 = (x, y) x ≥ 1 r(B) = √ π and y = x + π x .
Step 2: The upper boundary of the diagram:

Since equality h(Ω) = 1 r(Ω) + π
|Ω| holds for sets that are homothetical to their form bodies, we use such domains to fill the upper boundary.

Let us consider the family (C d ) d≥2 of the so-called symmetrical cup-bodies, which are given by convex hulls of the unit ball ( centred in O(0, 0) of radius 1) and the points of coordinates (-d/2, 0) and (d/2, 0). By using formula [START_REF] Brasco | Spectral inequalities in quantitative form[END_REF] of [START_REF] Hernández Cifre | Some optimization problems for planar convex figures[END_REF], we have for every d ≥ 2:

|C d | = d 2 -4 + π -2 arccos 2 d , r(C d ) = 1 and h(C d ) = 1 r(C d ) + π |C d | .
The functions

• d ∈ [2, +∞) -→ |C d |/r(C d ) = √ d 2 -4 + π -2 arccos 2 d , • d ∈ [2, +∞) -→ |C d |h(C d ) = √ d 2 -4 + π -2 arccos 2 d + √ π.
are continuous and strictly increasing to infinity (when d → +∞), this shows by the intermediate values Theorem that:

|C d | r(C d ) , |C d |h(C d ) d ≥ 2 = (x, y) x ≥ 1 r(B) = √ π and y = x + √ π .
Step 3: Continuous paths:

For every d ≥ 2 and t ≥ 0, we denote

C d := C d √ |C d | and Q t := Qt √ |Qt| the rescaled versions of C d and Q t (such that |C d | = 1 and |Q t | = 1). Since the functions • t ∈ [0, +∞) -→ 1 r(Q t ) = √ |Qt| r(Qt) = 2(π+t) √ π+2t • d ∈ [2, +∞) -→ 1 r(C d ) = √ |C d | r(C d ) = 2 √ d 2 -1 + 2 arcsin 2 d
are continuous and strictly increasing, we have that for every r ≤ r(B), there exists a unique

(t r , d r ) ∈ [0, +∞) × [2, +∞) such that r(Q tr ) = r(C dr ) = r.
From now on we denote S r := Q tp and L r := C dp .

For every r ≤ r(B), we introduce the closed and continuous path Γ r (see Figure 3) :

Γ r : [0, 3] -→ R 2 t -→        1/r(K t r ), h(K t r ) if t ∈ [0, 1], x r,1 (t), f 1 (x r,1 (t)) if t ∈ [1, 2], x r,2 (t), f 2 (x r,1 (t)) if t ∈ [2, 3],
where

• K t r := tSr+(1-t)Lr √ |tSr+(1-t)Lr| ∈ K 2 1 := {Ω ∈ K 2 , |Ω| = 1}, • x r,1 : t -→ (t -1) 1 r(B) + (2 -t) 1 r , • x r,2 : t -→ (3 -t) 1 r(B) + (t -2) 1 r , • f 1 : x ∈ [1/r(B), +∞) -→ x + √ π, • f 2 : x ∈ [1/r(B), +∞) -→ x + π x . The application t ∈ [0, 1] -→ tS r + (1 -t)L r ∈ (K 2 , d H
) is continuous and since the measure is continuous for the Hausdorff distance, we deduce that t ∈ 

[0, 1] -→ K t r ∈ (K 2 1 , d H ) is continuous,
]), the path t ∈ [0, 3] -→ Γ r (t) ∈ R 2 is a continuous curve.
We also notice that thanks to the linearity of the inradius for the Minkowski sum, as well as the Brunn-Minkowski inequality (see for example [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF]Theorem 7.1.1]), one has:

r(tS r + (1 -t)U r ) = t × r(S r ) + (1 -t) × r(U r ) = t × r + (1 -t) × r = r and |tS r + (1 -t)U r | ≥ 1.
We then have:

∀t ∈ [0, 1], 1 r(K t r ) = |t × r(S r ) + (1 -t) × r(U r )| t × r(S r ) + (1 -t) × r(U r ) ≥ 1 r . ( 6 
)
Figure 3: The continuous path Γ r .

Step 4: Stability of the paths:

For X = (x 1 , x 2 ) ∈ R 2 , we denote X = max(|x 1 |, |x 2 |).
In this step, we prove a continuity result on the paths Γ r r≤r(B) : let us take r 0 ∈ (0, r(B)] and ε > 0, we show that:

∃ α ε > 0, ∀r ∈ (r 0 -α ε , r 0 + α ε ) ∩ (0, r(B)], sup t∈[0,3] Γ r (t) -Γ r0 (t) ≤ ε. (7) 
Let us take r ∈ [r 0 /2, r(B)], we have for every

t ∈ [1, 2]: Γ r (t) -Γ r0 (t) = max |x r,1 (t) -x r0,1 (t)|, |f 1 (x r,1 (t)) -f 1 (x r0,1 (t))| ≤ max |x r,1 (t) -x r0,1 (t)|, sup s∈[ √ π,+∞) |f 1 (s)| × |x r,1 (t) -x r0,1 (t)| = |x r,1 (t) -x r0,1 (t)| = (2 -t) 1 r - 1 r 0 ≤ 1 r × r 0 |r -r 0 | ≤ 2 r 2 0 |r -r 0 |.
With similar computations we obtain that for every t ∈ [2, 3], we have Γ r (t) -Γ r0 (t) ≤ 2 r0 |r -r 0 |. We then write:

sup t∈[1,3] Γ r (t) -Γ r0 (t) ≤ 2 r 2 0 |r -r 0 |. (8) 
The remaining case (t ∈ [0, 1]) requires more computations. For every t ∈ [0, 1], we have

Γ r (t) -Γ r0 (t) ≤ max 2 r 2 0 , 128 r 6 0 Cr 0 >0 d H (K t r , K t r0 ).
Indeed, we used:

• for the term with inradii

1 r(K t r ) - 1 r(K t r0 ) = 1 r - 1 r 0 = 1 r × r 0 |r -r 0 | ≤ 2 r 2 0 |r -r 0 |,
• the first assertion of [14, Lemma 2.7] for the term with the Cheeger constants, with the sets K t p and K t p0 that we assume to contain the origin O and whose radial functions are denoted f p,t , f p0,t (if Ω is a convex set that contains the origin we denote f Ω : θ ∈ [0, 2π] -→ sup{λ ≥ 0, λ cos θ sin θ ∈ Ω} the radial function of Ω).

|h(K t r ) -h(K t r0 )| ≤ 2 min(r, r 0 ) 2 × f r,t -f r0,t ∞ (by the first assertion of [14, Lemma 2.7]) ≤ 8 r 2 0 × f p,t ∞ f p0,t ∞ min r(K t r ), r(K t r0 ) 2 × d H (K t r , K t r0 ) (by [6, Proposition 2]) ≤ 8 r 2 0 × d(K t r )d(K t r0 ) min(r, r 0 ) 2 × d H (K t r , K t r0 ) (because f r,t ∞ , f r0,t ∞ ≤) ≤ 32 r 4 0 × 4 r 2 0 × d H (K t r , K t r0 ) (because f r0,t ∞ ≤ f r0,t ∞ ≤ d(K t r0 ) and d(K t r0 ) ≤ 2 r 0 , see (9) below) = 128 r 6 0 × d H (K t r , K t r0 ),
where we used that for every Ω ∈ K 2 with unit area which contains a ball of radius r 0 /2, we have:

d(Ω) ≤ 1 2 P (Ω) ≤ |Ω| r(Ω) ≤ 2|Ω| r 0 = 2 r 0 . (9) 
Moreover, we recall that h K t r 0 and h K t r respectively correspond to the support functions of the convex sets K t r0 and K t r , we have:

d H (K t r , K t r0 ) = h K t r -h K t r 0 ∞ = (1 -t)h Lr 0 + th Sr 0 |(1 -t)L r0 + tS r0 | - (1 -t)h Lr + th Sr |(1 -t)L r + tS r | ∞ ≤ (1 -t) h Lr 0 |(1 -t)L r0 + tS r0 | - h Lr |(1 -t)L r + tS r | ∞ +t h Sr 0 |(1 -t)L r0 + tS r0 | - h Sr |(1 -t)L p + tS p | ∞ ≤ 1 |(1 -t)L r + tS r | h Sr 0 -h Sr ∞ + h Lr 0 -h Lr ∞ + h Sr 0 ∞ + h Lr 0 ∞ 1 |(1 -t)L r + tS r | - 1 |(1 -t)L r0 + tS r0 | ≤ d H (S r0 , S r ) + d H (L r0 , L r ) + h Sr 0 ∞ + h Lr 0 ∞ × |(1 -t)L r + tS r | -|(1 -t)L r0 + tS r0 | ≤ d H (S r0 , S r ) + d H (L r0 , L r ) + h Sr 0 ∞ + h Lr 0 ∞ × 2 k=0 |W k (L r , S r ) -W k (L r0 , S r0 )| Gr 0 (r)
,

where W 1 , W 2 and W 3 are the classical Minkowski mixed volumes (we refer to [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF] for definitions and more properties). Thus, we obtain:

sup t∈[0,1] Γ r (t) -Γ r0 (t) ≤ max 2 r 2 0 , 128 r 6 0 × G r0 (r). (10) 
By combining ( 8) and ( 10), we write:

sup t∈[0,3] Γ r (t) -Γ r0 (t) ≤ max max 2 r 2 0 , 128 r 6 0 × G r0 (r), 2 r 2 0 |r -r 0 | -→ r→r0 0,
where the convergence G r0 (r) -→ r→r0 0 follows from the fact that d H (S r , S r0 ) -→ r→r0 0, d H (L r , L r0 ) -→ r→r0 0 and the continuity of the Minkowski mixed volumes W 1 , W 2 and W 3 for the Hausdorff distance (see [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF]).

Finally, we deduce that lim

r→r0 sup t∈[0,3]
Γ r (t) -Γ r0 (t) = 0, which proves [START_REF] Brasco | Spectral inequalities in quantitative form[END_REF].

Step 5: Conclusion:

Now that we proved that the boundaries {(x, x + √ π) | x ≥ 1/r(B)} and {(x, x + π/x) | x ≥ 1/r(B)} are included in the diagram D, it remains to show that it is also the case for the set of points contained between them. We argue by contradiction, assuming that there exists A(x A , y A ) ∈ {(x, y) | x > 1/r(B) and x + π/x < y < x + √ π}, such that A / ∈ D. We consider the function φ A : x ∈ [1/r(B), +∞) -→ ind(Γ 1/x , A), where ind(Γ 1/x , A) is the index of A with respect to Γ 1/x (also called the winding number of the closed curve Γ 1/x around the point A).

• By Step 4 and the continuity of the index, the function φ A is constant on [1/r(B), +∞).

• By inequality (6), for every x > x A the point A is in the interior of Γ 1/x , thus φ A (x) = 0.

• On the other hand, the point A is in the exterior of

Γ 1/r(B) = {(1/r(B), 1/r(B)+ √ π)}, thus φ A (1/r(B)) = 0.
By the last three points we get a contradiction, thus A ∈ D. Finally, we get the equality

D = (x, y) | x ≥ x 0 and x + π x ≤ y ≤ x + √ π .
3 Improving the Cheeger inequality for planar convex sets

In this section, we provide the proof of Theorem 1.1 and prove some improved bounds for J in some special subclasses of K 2 , namely: triangles, rhombii and stadiums.

Proof of Theorem 1.1

Let Ω ∈ K 2 . We have by Hersch inequality [START_REF] Hersch | Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum[END_REF] and Faber-krahn inequaliy [START_REF] Faber | dass unter allen homogenen membranen von gleicher fl ache undgleicher spannung die kreisf örmige den tiefsten grundton gibt[END_REF][START_REF] Krahn | Über eine von rayleigh formulierte minimaleigenschaft des kreises[END_REF]:

|Ω|λ 1 (Ω) ≥ max πj 2 01 , π 2 |Ω| 4r(Ω) 2 .
On the other hand, we recall the upper estimate of Theorem 1.3:

|Ω|h(Ω) ≤ |Ω| r(Ω) + √ π.
Thus, we have:

J(Ω) = λ 1 (Ω) h(Ω) 2 ≥ max πj 2 01 , π 2 |Ω| 4r(Ω) 2 √ |Ω| r(Ω) + √ π 2 ≥ min x≥ √ π max πj 2 01 , π 2 x 2 4 (x + √ π) 2 = πj 01 2j 01 + π 2 ≈ 0.902... The minimum is taken over [ √ π, +∞) because √ |Ω| r(Ω) ≥ √ π for every Ω ∈ K 2 .
Moreover, it is attained for x = πj01 √ π , see Figure 4. We note that one can combine the following Protter's inequality [START_REF] Protter | A lower bound for the fundamental frequency of a convex region[END_REF]:

∀Ω ∈ K 2 , λ 1 (Ω) ≥ π 2 4 1 r(Ω) 2 + 1 d(Ω) 2 ,
which is an improvement of Hersch's inequality [START_REF] Hersch | Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum[END_REF]Section 8] with the optimal inequality (7) of [START_REF] Hernández Cifre | Some optimization problems for planar convex figures[END_REF]:

∀Ω ∈ K 2 , |Ω| r(Ω) 2 ≥ 1 + d(Ω) r(Ω) 2 + 2 arcsin 2r(Ω) d(Ω) := ϕ d(Ω) r(Ω) , (11) 
to provide a slight improvement of the lower bound of Theorem 1.1. Indeed, the function ϕ is continuous and strictly increasing on [2, +∞) (we note that d(Ω)/r(Ω) ∈ [2, +∞), thus by considering the inverse function denoted ϕ -1 , inequality 11 becomes:

∀Ω ∈ K 2 , d(Ω) r(Ω) ≤ ϕ -1 |Ω| r(Ω) 2
. We then write:

λ 1 (Ω) h(Ω) 2 ≥ max   π 2 4r(Ω) 2 × 1 + 1 ϕ -1 |Ω| r(Ω) 2 2 , πj 2 01 |Ω|   1 r(Ω) + π |Ω| 2 = max   π 2 4 × |Ω| r(Ω) 2 ×   1 + 1 ϕ -1 |Ω| r(Ω) 2 2   , πj 2 01   |Ω| r(Ω) 2 1/2 + √ π 2 ≥ min x∈[π,+∞) max π 2 4 x 1 + 1 ϕ -1 (x) 2 , πj 2 01 ( √ x + √ π) (because |Ω| r(Ω) 2 ≥ πr(Ω) 2 r(Ω) 2 = π).
Numerical computations show that the latter minimum is approximately equal to 0.914..., which slightly improves the lower bound of Theorem 1.1.

Improvements for special classes of shapes

We provide some improved lower bounds of J for some special classes of planar convex sets. We note that the numerical bounds which appear in the following proposition are not exact.

Proposition 3.1. Let Ω ∈ K 2 .
1. If Ω is a triangle, then J(Ω) > 1.2076.

2.

If Ω is a rhombus, then J(Ω) ≥ 1.3819.

3.

If Ω is a stadium (i.e. the convex hull of two identical balls), then J(Ω) ≥ 1.3673.

Proof. Let Ω ∈ K 2 , since J is invariant by homothety (due to scaling properties of λ 1 and h), we may assume without loss of generality that |Ω| = 1.

1. Let us assume Ω to be a triangle and denote d its diameter and L its perimeter. To bound λ 1 (Ω) from below, we make use of two inequalities:

• The first one is the polygonal Faber-Krahn inequality for triangles, which states that between triangles of the same area, the regular one minimizes the first Dirichlet eigenvalue:

λ 1 (Ω) ≥ λ 1 (T eq ) = 4π 2 √ 3 ,
where T eq is the equilateral triangle of unit area (whose diameter is d eq = 2 3 1/4 ). • The second (more recent) is due to P. Freitas and B. Siudeja [13, Corollary 4.1]:

λ 1 (Ω) ≥ π 2 4|Ω| 2 d(Ω) + 2|Ω| d(Ω) 2 .
We then have on the one hand:

λ 1 (Ω) ≥ max 4π 2 √ 3 , π 2 4 d + 2 d 2 ,
and on the other hand, the Cheeger constant of the triangle Ω is given by:

h(Ω) = P (Ω) + 4π|Ω| 2|Ω| = L + √ 4π 2 ≤ L iso + √ 4π 2 ,
where L iso is the perimeter of the isoceles triangle whose diameter is equal to d and area equal to 1. By using Pythagoras' theorem, we have:

L iso = 2d + d -d 2 - 4 d 2 2 + 4 d 2 .
Finally, we obtain the following inequality:

J(Ω) ≥ φ 1 (d) := max 4π 2 √ 3 , π 2 4 d + 2 d 2   2d+ d-d 2 -4 d 2 2 + 4 d 2 + √ 4π 2   2 .
We note that d ≥ d eq . Indeed, by the isoperimetric inequality of triangles:

3d eq = L eq ≤ L ≤ 3d.
Numerically, we obtain min d≥deq φ 1 (d) ≈ 1.2076...

2.

Let us assume Ω to be the rhombus of unit area whose vertices are given by (-d/2, 0), (0, -1/d), (d/2, 0) and (0, 1/d).

We bound λ 1 (Ω) from below by using the following Hooker and Protter's estimate for for rhombi [START_REF] Hooker | Bounds for the first eigenvalue of a rhombic membrane[END_REF]:

λ 1 (Ω) ≥ π 2 d 2 + 1 d 2 .
As for the Cheeger constant, since Ω is a circumscribed polygon, we have:

h(Ω) = P (Ω) + 4π|Ω| 2|Ω| = 2 1 d 2 + d 2 4 + √ π
we use its explicit value in term of d.

J(Ω) ≥ φ 2 (d) = π 2 d 2 + 1 d 2 2 1 d 2 + d 2 4 + √ π 2 .
Numerically, we obtain min d≥ √ 2 φ 2 (d) ≈ 1.3819...

3.

Let us assume Ω to be a stadium of unit area whose diameter is given by a + 2r, where r > 0 is the radius of the ball of its extremity and a > 0. The condition |Ω| = 1 implies that πr 2 + 2ar = 1, which is equivalent to a = 1-πr 2 2r . We use the monotonicity of λ 1 for inclusion (for Ω ⊂ (-r, r) × (0, a + 2r)) and Faber-Krahn inequality to write:

λ 1 (Ω) ≥ max λ 1 (B), π 2 1 4r 2 + 1 (a + 2r) 2 = max λ 1 (B), π 2 4r 2 (1 + (4 -π)r 2 ) 2 + 1 4r 2 .
It is classical that the stadiums are Cheeger of themselves, see [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF], we then have:

h(Ω) = P (Ω) |Ω| = 2a + 2πr = 1 + πr 2 r .
Then: 

J(Ω) ≥ φ 3 (r) := max λ 1 (B), π 2 4r 2 (1+(4-π)r 2 ) 2 + 1
β n := inf Ω∈K n J(Ω) ≤ inf ω∈K n-1 J(ω) =: β n-1 .
The idea is to prove that for any ω ∈ K n-1 , there exists a family (Ω d ) d>0 of elements of K n such that:

J(ω) = lim d→+∞ J(Ω d ).
The proof is decomposed in 3 steps.

Step 1: Lower estimates for λ 1 and h

Let us take Ω ∈ K n . We can assume without loss of generality that inf{t ∈ R | Ω ∩ {x 1 = t} = ∅} = 0 and denote

M Ω := sup{t ∈ R | Ω ∩ {x 1 = t} = ∅}.
We introduce the functions

φ λ : t ∈ [0, M Ω ] -→          λ 1 (Ω ∩ {x 1 = t}) ∈ R * + if t ∈ (0, M Ω ), λ 1 (Ω ∩ {x 1 = t}) ∈ R * + if t ∈ {0, M Ω } and |Ω ∩ {x 1 = t}| > 0, +∞ if t ∈ {0, M Ω } and |Ω ∩ {x 1 = t}| = 0, and 
φ h : t ∈ [0, M Ω ] -→          h(Ω ∩ {x 1 = t}) ∈ R * + if t ∈ (0, M Ω ), h(Ω ∩ {x 1 = t}) ∈ R * + if t ∈ {0, M Ω } and |Ω ∩ {x 1 = t}| > 0, +∞ if t ∈ {0, M Ω } and |Ω ∩ {x 1 = t}| = 0, Since the function t ∈ (0, M Ω ) -→ Ω ∩ {x 1 = t} ∈ (K n-1 , d H
) is continuous and λ 1 and h are continuous for the Hausdorff distance d H on K n-1 , we have that the functions φ λ and φ h are continuous on (0, M Ω ). We then distinguish the cases "φ λ (0) = +∞ or φ λ (M Ω ) = +∞" (resp. "φ h (0) = +∞ or φ h (M Ω ) = +∞") and "φ λ (0) ∈ R and φ λ (M Ω ) ∈ R" (resp. "φ h (0) ∈ R and φ h (M Ω ) ∈ R") and use the intermediate values theorem to show that there exist t λ , t h ∈ [0, M Ω ] such that min t∈(0,MΩ) φ λ (t) = φ λ (t λ ) and min t∈(0,MΩ)

φ h (t) = φ h (t λ ).
In the proof of [START_REF] Brasco | Spectral inequalities in quantitative form[END_REF]Lemma 7.63], the authors prove that:

λ 1 (Ω) ≥ λ 1 (Ω ∩ {x 1 = t λ }).
Let us prove a similar result for Cheeger's constant (i.e. h(Ω) ≥ h(Ω ∩ {x 1 = t h }).). We have

h(Ω) = P (C Ω ) |C Ω | = ´d 0 P (C Ω ∩ {x 1 = t})dt ´d 0 |C Ω ∩ {x 1 = t}|dt ≥ ´d 0 h(Ω ∩ {x 1 = t})|C Ω ∩ {x 1 = t}|dt ´d 0 |C Ω ∩ {x 1 = t}|dt ≥ h(Ω ∩ {x 1 = t h }) ´d 0 |C Ω ∩ {x 1 = t}|dt ´d 0 |C Ω ∩ {x 1 = t}|dt = h(Ω ∩ {x 1 = t h }).
Step 2: Study of sets with increasing diameters and fixed volume

Let (Ω k ) a sequence of elements K n of the same volumes 1, such that d k := d(Ω k ) → +∞.
Let us prove that:

lim inf k→+∞ J(Ω k ) ≥ inf ω∈K n-1 J(ω).
For every k ∈ N, we consider A k and A k two diametrical points of Ω k (ie. such as

|A k A k | = d k ).
Since J is invariant by rigid motions we can assume without loss of generality that A k = (0, ..., 0) and A k = (d k , 0, ..., 0).

By

Step 1, we have for all k ∈ N:

λ 1 (Ω k ) ≥ λ 1 (ω k )
where

ω k := Ω k ∩ {x = t k }.
We can assume without loss of generality that t k ≥ d k /2. Let T k be the cone obtained by taking the convex hull of {A k } ∪ C k , where C k is the Cheeger set of the convex section ω k .

Let α ∈]0, 1[, we introduce the tube U α k := αC k × (0, (1 -α)t k ). By convexity, we have the following inclusions:

U α k ⊂ T k ⊂ Ω k
By definition of the Cheeger constant, we have:

h(Ω k ) ≤ P (U α k ) |U α k | = 2α n-1 |C k | + α n-2 (1 -α)P (C k )t k α n-1 (1 -α)|C k |t k = 2 (1 -α)t k + h(ω k ) α ∼ k→+∞ h(ω k ) α .
Indeed:

1 t k = o k→∞ P (C k ) |C k |
, because:

|C k | P (C k ) = |C k | P |C k | 1 n × C k |C k | 1 n = |C k | |C k | n-1 n P C k |C k | 1 n = |C k | 1 n P C k |C k | 1 n ≤ |C k | 1 n P (B n-1 ) ≤ |Ω k | 1 n n 1 n P (B n-1 ) × 1 t 1/n k = o k→∞ (t k ),
where

B n-1 ⊂ R n-1 is a ball of volume 1.
We deduce that:

∀α ∈ (0, 1), J(Ω k ) ≥ λ 1 (ω k ) 2 (1-α)t k + h(ω k ) α 2 ∼ k→+∞ α 2 J(ω k ) Thus: ∀α ∈ (0, 1), lim inf k→+∞ J(Ω k ) ≥ α 2 lim inf k→+∞ J(ω k ) ≥ α 2 inf ω∈K n-1 J(ω)
By letting α → 1, we obtain:

lim inf k→+∞ J(Ω k ) ≥ inf ω∈K n-1 J(ω)
Step 3: Study of long tubes

In this step, we show that when the height of a tube goes to infinity, the value of J of this tube converges to the value corresponding to the (n -1)-dimensional section given by its basis. More precisely, if we take ω ∈ K n-1 , we prove that

lim d→+∞ J [0, d] × ω = J(ω).
We have by Step 2:

lim inf k→+∞ J(Ω k ) ≥ J(ω) It is classical that λ 1 [0, d] × ω = π d 2 + λ 1 (ω),
which follows from the use the separation of variables and the orthogonality of Laplacian eigenfunctions.

As for the Cheeger constant, we use the result of Step 1:

h [0, d] × ω ≥ h(ω).
Thus, we have:

J [0, d] × ω = λ 1 [0, d] × ω h [0, d] × ω 2 ≤ π d 2 + λ 1 (ω) h(ω) 2 . 
By passing to superior limit:

lim sup d→+∞ J [0, d] × ω ≤ J(ω).
Then:

lim d→+∞ J [0, d] × ω = J(ω).
At last, we write:

β n-1 = inf ω∈K n-1 J(ω) = inf ω∈K n-1 lim d→+∞ J [0, d] × ω ≥ inf Ω∈K n J(Ω) ≥ inf Ω∈K n J(Ω) = β n .
2. For every n ≥ 2, we take a ball B n ⊂ R n of unit radius, we have:

1 4 ≤ inf Ω∈K n J(Ω) ≤ J(B n ) = λ 1 (B n ) h(B n ) 2 = j 2 n 2 -1,1 n 2 ∼ n→+∞ n 2 2 n 2 = 1 4 ,
where j n 2 -1,1 is the first root of the n th Bessel function of first kind. We refer to [START_REF] Tricomi | Sulle funzioni di Bellel di ordine e argomento pressochè uguali[END_REF] for the equivalence

j n 2 -1,1 ∼ n→+∞ n 2 .

The existence result:

Now, we assume that: inf Ω∈K n J(Ω) < inf ω∈K n-1 J(ω). Let us prove the existence of a minimizer of J on K n . Let (Ω k ) be a minimizing sequence of K n (ie. such as

lim k→+∞ J(Ω k ) = inf Ω∈K n J(Ω)
). Since J is scaling invariant we can assume without loss of generality that |Ω k | = 1 for all n ∈ N.

If d(Ω k ) is not bounded, we can extract a subsequence (Ω ϕ(k) ) such as lim k→+∞ d(Ω ϕ(k) ) = +∞.
Thus, by Step 2:

inf Ω∈K n J(Ω) = lim k→+∞ J(Ω k ) ≥ inf ω∈K n-1 J(ω). which contradicts hypothesis β n-1 > β n .
We deduce that the sequence of diameters d(Ω k ) is bounded, then by compactness, there exists Ω * ∈ K n and a strictly increasing map σ : N -→ N such that Ω σ(k) -→ k→∞ Ω * for Hausdorff distance. We then have by continuity of J for the same metric (see [START_REF] Parini | Reverse Cheeger inequality for planar convex sets[END_REF]Proposition 3.2]):

J(Ω * ) = lim k→+∞ J(Ω k ) = inf Ω∈K n J(Ω).
4.2 Discussion of the hypothesis β n < β n-1

We believe that hypothesis β n < β n-1 is true for any dimension n and that one can use convex cylinders (i.e. those of the form ω × [0, d], where ω ∈ K n-1 and d > 0) to show it.

Let us analyse what happens when n = 2. In this case convex cylinders are rectangles. We consider the family of cylinders Ω d = [0, 1] × [0, d] (where d > 0) and denote

Ψ [0,1] : d > 0 -→ J(Ω d ) = λ 1 (Ω d ) h(Ω d ) 2 = π 2 1 + 1 d 2 4-π 1+d- √ (d-1) 2 +πd 2 .
We plot the curve of Ψ [0,1] in Figure 5. We note that for sufficiently high values of d the function Ψ [0,1] : d > 0 -→ J(Ω d ) is strictly increasing and converges to J (0, 1) = π 

Ψ [0,1] : d > 0 -→ J [0, 1] × [0, d] .
We believe that the monotonicity property should hold in higher dimensions: let n ≥ 2, Ω d := ω × [0, d] where d > 0 and ω ∈ K n-1 , as before we denote Ψ ω : d > 0 -→ J(Ω d ). We have already proved above that:

lim d→+∞ Ψ ω (d) = lim d→+∞ J(Ω d ) = J(ω).
It remains to prove that for large values of d one has:

Ψ ω (d) = J(Ω d ) < J(ω).
To do so, we propose to show that function Ψ ω is strictly increasing for large values of d by studying the derivative Ψ ω (d).

Let us take d > 0, we have for t > 0 sufficiently small:

λ 1 (Ω d+t ) = λ 1 (ω) + π 2 (d + t) 2 = λ 1 (ω) + π 2 d 2 - 2π 2 d 3 t + o t→0 (t), and 
h(Ω d+t ) = h(Ω d ) + h (Ω d , V d ) × t + o t→0 (t), where V d : R n → R n is the smooth dilatation field such that V d (x 1 , • • • , x n ) = 0, • • • , 0, xn d .
As proved in [START_REF] Parini | Shape derivative of the cheeger constant[END_REF], we have:

h (Ω d , V d ) = 1 |C Ω d | ˆ∂Ω d ∩∂CΩ d κ -h(Ω d ) V d , n dσ,
where κ is the mean curvature and C Ω d is the Cheeger set of Ω d . Since V d , n = 0 on all ∂Ω d ∩ ∂C Ω d except on the upper basis ∂Ω d ∩ ∂C Ω d ∩ {x n = d} where κ is null, we have the following formula for the shape derivative:

h (Ω d , V d ) = - |∂C Ω d ∩ {x n = d}| |C d | h(Ω d ).
By straightforward computations we obtain:

Ψ ω (d) = 1 h(Ω d ) 2 - 2π 2 d 3 + 2 λ 1 (ω) + π 2 d 2 |∂C Ω d ∩ {x n = d}| |C d | > 2π 2 h(Ω d ) 2 - 1 d 3 + λ 1 (ω) |∂C Ω d ∩ {x n = d}| |C d | ≥ 2π 2 d × h(Ω d ) 2 λ 1 (ω) |ω| |∂C Ω d ∩ {x n = d}| - 1 d 2 (because C Ω d ⊂ Ω d , thus |C Ω d | ≤ |Ω d | = |ω| × d).
Finally, it remains to prove that for sufficiently large values of d one can prove estimate of the type:

|∂C Ω d ∩ {x n = d}| > 1 d 2 .
One can check that this assertion is correct when n = 2. Indeed, if we consider the cylinder (rectangle)

Ω d = [0, 1] × [0, d],
we use the explicit expression of the Cheeger constant of rectangles that can be found in [START_REF] Kawohl | Characterization of Cheeger sets for convex subsets of the plane[END_REF]:

h(Ω d ) = 4 -π d + 1 -(d -1) 2 + πd = 1 + 1 d + 1 + π -2 d = 2 + π -1 2d + o d→+∞ 1 d .
Thus, as shown in Figure 6, we have:

|∂C Ω d ∩ {x 2 = d}| = 1 - 2 h(Ω d ) = π -1 4d + o d→+∞ 1 d ,
which proves that At last, let us mention the very recent work of E. Parini and V. Bobkov [START_REF] Bobkov | On the cheeger problem for rotationally invariant domains[END_REF] where they manage to explicitly describe the Cheeger sets of rationally invariant sets in any dimension and thus compute their Cheeger values. By applying these results to cylinders of the form B n-1 × [0, d], where B n-1 ⊂ R n-1 is a ball, we remark as expected that Ψ Bn-1 is strictly increasing for higher values of d and thus converges to J(B n-1 ) from below, which supports our strategy.

|∂C Ω d ∩ {x 2 = d}| ∼ d→+∞ π -1 4d > 1 d 2 .

Appendix: Some applications

In this Appendix, we apply the sharp estimates given in (4) to obtain some new bounds for the first Dirichlet eigenvalue in the case of planar convex sets.

5.1 Some sharp upper bounds for the first Dirichlet eigenvalue 5.1.1 General planar convex sets Proposition 5.1. We have the following sharp inequality:

∀Ω ∈ K 2 , λ 1 (Ω) < π 2 4 1 r(Ω) + π |Ω| 2 , ( 12 
)
where equality is asymptotically attained by any family of convex sets (Ω k ) k∈N such as

|Ω k | = V 0 for any k ∈ N (where V 0 is a positive constant) and d(Ω k ) -→ k→+∞ +∞.
Proof. We have for every Ω ∈ K 2 :

λ 1 (Ω) < π 2 4 h(Ω) 2 ≤ π 2 4 1 r(Ω) + π |Ω| 2 ,
where the first inequality is the reverse Cheeger inequality (also called Buser inequality) proved by E. Parini in [27, Proposition 4.1] and the second inequality corresponds to the upper bound given in (4).

Let us now prove the sharpness inequality [START_REF] Faber | dass unter allen homogenen membranen von gleicher fl ache undgleicher spannung die kreisf örmige den tiefsten grundton gibt[END_REF]. Let V 0 > 0 and (Ω k ) k∈N a family of convex sets such as

|Ω k | = V 0 for any k ∈ N and d(Ω k ) -→ k→+∞ +∞.
We have on the one hand:

∀k ∈ N * , π 2 4r(Ω k ) 2 < λ 1 (Ω k ) < π 2 4 1 r(Ω k ) + π |Ω k | 2 = π 2 4 1 r(Ω k ) + π V 0 2 ,
on the other hand, we have:

1 r(Ω k ) ≥ P (Ω k ) 2|Ω k | ≥ d(Ω k ) V 0 -→ k→+∞ +∞, thus: λ 1 (Ω k ) ∼ k→+∞ π 2 4r(Ω k ) 2 , (13) 
which proofs the sharpness of inequality [START_REF] Faber | dass unter allen homogenen membranen von gleicher fl ache undgleicher spannung die kreisf örmige den tiefsten grundton gibt[END_REF].

Remark 5.2. We note that one can use inequalities (4), to provide a similar equivalence as (13) for the Cheeger constant. Indeed, let us consider V 0 > 0 and (Ω k ) k∈N a family of convex sets such as |Ω k | = V 0 for any k ∈ N and d(Ω k ) -→ k→+∞ +∞. We have by (4):

∀k ∈ N, 1 r(Ω k ) + πr(Ω k ) V 0 ≤ h(Ω k ) ≤ 1 r(Ω k ) + π |V 0 | ,
and since 1 r(Ω k ) -→ k→+∞ +∞, we have the following equivalence:

h(Ω k ) ∼ k→+∞ 1 r(Ω k ) . ( 14 
)
By combining (13) and (14), we retrieve (with an alternative method) the asymptotic result of [27, Proposition 4.1]:

lim k→+∞ J(Ω k ) = lim k→+∞ λ 1 (Ω k ) h(Ω k ) 2 = π 2 4 .
It is interesting to compare inequality [START_REF] Faber | dass unter allen homogenen membranen von gleicher fl ache undgleicher spannung die kreisf örmige den tiefsten grundton gibt[END_REF] with other inequalities involving the inradius and the area. One immediate estimate can be obtained by considering the inclusion B r(Ω) ⊂ Ω (where B r(Ω) is an inscribed ball of Ω (with radius r(Ω)). We have by the monotonicity of λ 1 :

λ 1 (Ω) ≤ λ 1 B r(Ω) = j 2 01 r(Ω) 2 , (15) 
where j 01 denotes the first zero of the first Bessel function. This inequality was already stated in [27, inequality (3)] and in [8, inequality (1.5)] in higher dimensions and for a more general setting. In Figure 7, we plot the curves corresponding to the latter inequalities and an approximation of the Blaschke-Santaló diagram corresponding to the functionals λ 1 , the inradius r and the area | • |, obtained by generating 10 4 random convex sets. The diagram corresponds to the set of points: 12) improves ( 15) for convex sets with small inradius (ie. large 1 r ).

D := 1 r(Ω) , λ 1 (Ω) | Ω ∈ K 2 and |Ω| = 1 .
Remark 5.3. We note that the use of numerical simulations can be very helpful to have an idea on the shape and the properties of Blaschke-Santaló diagrams and state possible conjectures. It is then common to generate a large number of random domains, compute the values of the involved functionals and then obtain a cloud of dots that approximates the Blaschke-Santaló diagram. For various examples we refer to [START_REF] Antunes | New bounds for the principal Dirichlet eigenvalue of planar regions[END_REF][START_REF] Ftouhi | Complete systems of inequalities relating the perimeter, the area and the Cheeger constant of planar domains[END_REF][START_REF] Ftouhi | Blaschke-santaló diagram for volume, perimeter, and first dirichlet eigenvalue[END_REF][START_REF] Lucardesi | On blaschke-santaló diagrams for the torsional rigidity and the first dirichlet eigenvalue[END_REF]..

5.1.2

Sets that are homothetic to their form bodies: in particular "triangles"

We recall that in the case of sets that are homothetic to their form bodies, one has 1 2 P (Ω)r(Ω) = |Ω| and:

h(Ω) = P (Ω) + 4π|Ω| 2|Ω| = 1 r(Ω) + π |Ω| .
Thus one can write the following result, which is an immediate Corollary of the reverse Cheeger's inequality of [START_REF] Parini | Reverse Cheeger inequality for planar convex sets[END_REF]Proposition 4.1]:

Corollary 1. For every set Ω ∈ K 2 , that is homothetic to its form body (in particular triangles), we have the following inequality:

λ 1 (Ω) < π 2 4 × 1 r(Ω) + π |Ω| 2 = π 2 16 × P (Ω) |Ω| + 2 π |Ω| 2 . ( 16 
)
The inequality is sharp as it is asymptotically attained by any sequence of convex sets (Ω k ) of unit area that are homothetic to their form bodies such that d(Ω k ) -→ k→+∞ +∞.

The most important thing about this upper bound is that in the case of triangles, inequality [START_REF] Henrot | Shape variation and optimization[END_REF] is better than the following bound obtained by B. Siudeja in [START_REF] Siudeja | Sharp bounds for eigenvalues of triangles[END_REF]Theorem 1.1] for "thin" triangles:

λ 1 (T ) ≤ π 2 9 × P (T ) |T | 2 . ( 17 
)
It is also interesting to note that inequality ( 16) is even better (also for thin triangles) than the following upper bound stated in [32, Conjecture 1.2]:

Conjecture 1. For every triangle T , one has:

λ 1 (T ) ≤ π 2 12 × P (T ) |T | 2 + √ 3π 2 3|T | . ( 18 
)
Here also, let us compare the different estimates in a Blaschke-Santaló diagram: we consider the one involving the perimeter, the area and λ 1 in the class of triangles, that is the set of points: 16) and [START_REF] Hernández Cifre | Is there a planar convex set with given width, diameter, and inradius?[END_REF] and Conjecture [START_REF] Hernández Cifre | Optimizing the perimeter and the area of convex sets with fixed diameter and circumradius[END_REF] with a zoom on smaller values of the perimeter.

A sharp Cheeger-type inequality

Proposition 5.4. We have the following sharp Cheeger-type inequality:

∀Ω ∈ K 2 , λ 1 (Ω) > π 2 4 h(Ω) - π |Ω| 2 , ( 19 
)
where equality is asymptotically attained by any family of convex sets (Ω k ) k∈N such as |Ω k | = V 0 for any k ∈ N (where V 0 is a positive constant) and d(Ω k ) -→ k→+∞ +∞.

Proof. Let Ω ∈ K 2 , we have:

λ 1 (Ω) > π 2 4 × 1 r(Ω) 2 ≥ π 2 4 h(Ω) - π |Ω| 2 ,
where the first inequality is the classical Hersch's inequality [START_REF] Hersch | Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum[END_REF] and the second follows from is the upper estimate of (4). We note that inequality [START_REF] Hernández Cifre | Some optimization problems for planar convex figures[END_REF] is better than the improved Cheeger inequality of Theorem 1.1 (and even the conjecture J(Ω) ≥ J((0, 1) 2 )) for thin planar convex domains, see Figure 9, where we provide an approximation of the following Blaschke-Santaló diagram relating λ 1 , the Cheeger constant and the area: 

  x∈Ωx, u the support function of the convex body Ω, it is the function that describes the distance from the origin to the supporting hyperplane of Ω with normal u.

4 4. 5 5Figure 1 :

 451 Figure 1: The diagram of the triplet (r, h, | • |).

Figure 2 :

 2 Figure 2: Idea of proof of the upper bound, with Ω = [-1, 1] × [0, 10].

  thus by continuity of the inradius and the Cheeger constant for the Hausdorff distance (see the proof of [11, Proposition 1] and [27, Proposition 3.1

Figure 4 : 2 01 , π 2 x 2 4 (x+ √ π) 2 . 3 . 2 A

 424232 Figure 4: Curve of the function x -→ max πj 2 01 , π 2 x 2 4 (x+ √ π) 2

4r 2 1+πr 2 r 2 Numerically, we obtain min r∈ 0, 1 √ π φ 3 2 1.

 2132 (r) ≈ 1.3673... 4 On the existence of a minimizer in higher dimensions 4.1 Proof of Theorem 1.Let n ≥ 2, let us first prove that:

Figure 5 :

 5 Figure 5: Curve of the functionΨ [0,1] : d > 0 -→ J [0, 1] × [0, d] .

Figure 6 :

 6 Figure 6: Cheeger set of the rectangle Ω d .

Figure 7 :

 7 Figure 7: Inequality (12) improves (15) for convex sets with small inradius (ie. large 1 r ).

TFigure 8 :

 8 Figure 8: Comparison between inequalities (16) and[START_REF] Hernández Cifre | Is there a planar convex set with given width, diameter, and inradius?[END_REF] and Conjecture[START_REF] Hernández Cifre | Optimizing the perimeter and the area of convex sets with fixed diameter and circumradius[END_REF] with a zoom on smaller values of the perimeter.

2 4

 2 As for the equality case, let (Ω k ) a family of convex sets (Ω k ) k∈N such as |Ω k | = V 0 for any k ∈ N and d(Ω k ) -→ k→+∞ +∞. By [27, Proposition 4.1], we have: λ 1 (Ω k ) ∼ k→+∞ π h(Ω k ) 2 and by the equivalence (14) and lim k-→+∞ 1 r(Ω k ) = +∞ (see the proof of Proposition 5.1), we have lim k-→+∞ h(Ω k ) = +∞ which implies the equivalence: λ 1 (Ω) ∼

C

  := h(Ω), λ 1 (Ω) | Ω ∈ K 2 and |Ω| = 1 .

Figure 9 :

 9 Figure 9: Approximation of the Blaschke-Santaló diagram C and relevant inequalities.
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