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Abstract :   
 

Leaf‐level net photosynthesis (A n) estimates and associated photosynthetic parameters are crucial for 
accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and 
collected at variable light conditions. To avoid over‐ or underestimation of modeled photosynthesis, it is 

critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light‐
saturated. We studied the dependence of A n on PPFD in two tropical forests in French Guiana. We 
estimated the light saturation range, including the lowest PPFD level at which A sat (A n at light saturation) 
is reached, as well as the PPFD range at which A sat remained unaltered. The light saturation range was 

derived from photosynthetic light‐response curves, and within‐canopy and interspecific differences were 
studied. We observed wide light saturation ranges of A n. Light saturation ranges differed among canopy 
heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer 
trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 
1,000 µmol m−2 s−1 sufficed for measuring A sat of climax species at our study sites, independent of the 
species or the canopy height. Because of the wide light saturation ranges, results from studies measuring 
A sat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with 
studies measuring at 1,000 µmol m−2 s−1. 
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1. INTRODUCTION 

Tropical forests are among the most productive ecosystems on earth, accounting for more than 

one third of global terrestrial gross primary productivity (GPP), and thereby playing an important 

role in the global carbon (C) cycle (Beer et al., 2010; Malhi, 2010). Global land surface models 

are used to quantitatively assess how tropical forest GPP will evolve under climate change. 

These models require a mechanistic understanding of photosynthesis and accurate estimates of 

regional photosynthetic parameters: Asat (the light-saturated leaf-level net photosynthetic rate; in 

µmol/m²/s), Vcmax (the maximum carboxylation rate; in µmol/m²/s) and Jmax (the electron 

transport rate supporting ribulose 1,5-phosphate (RuBP) regeneration; in µmol/m²/s). Tropical 

leaf-level photosynthesis data are much sparser than data gathered in temperate ecosystems 

(Cavaleri, Reed, Smith, & Wood, 2015; Goldstein & Santiago, 2016; Kattge, Knorr, Raddatz, & 

Wirth, 2009; Niinemets, Keenan, & Hallik, 2015; Wu, Dijkstra, Koch, Peñuelas, & Hungate, 

2011). The knowledge gap in this biome leads to uncertainties and impedes our ability to predict 

the photosynthetic response of tropical forests to a changing environment. 

There are several reasons why photosynthesis in the tropical biome is understudied, often 

related to the complications associated with measuring photosynthetic capacity. First, due to high 

species richness and functional group diversity(Fine, Ree, & Burnham, 2008; Gentry, 1982) 

large variation in the photosynthetic capacity of tropical tree species occurs, requiring greater 

sample sizes than in other biomes (Kattge et al., 2011; Reich, Walters, & Ellsworth, 1997). 

Second, photosynthesis measurement protocols have not been standardized. Leaf-level 

photosynthesis has, for example, been measured at different light levels and at different 

temperatures. Therefore, the leaf-level photosynthesis data required to parameterize land surface 

models are scarce and not always comparable, hampering accurate projections of tropical forest 
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GPP, as well as global syntheses aimed at comparing photosynthesis among tropical forests or 

between tropical forests and other biomes. Finally, strong light gradients throughout the canopy 

exist in forests, resulting in a great variability of light conditions within the canopy (Niinemets, 

2007). This effect is especially pronounced in tropical forests because of high leaf 

layering(Tianxiang et al., 2002; Zhu et al., 2016), and exacerbated by the spatial variation 

induced by canopy gaps, creating sharp gradients in light intensity (Iida et al., 2014). High 

variability in photosynthetic photon flux density (PPFD in µmol of photons/m²/s), and variability 

in how plants adjust to light intensity complicate determining Asat and estimating Vcmax and Jmax, 

all key parameters of photosynthetic activity and critical for upscaling and modelling (Rogers et 

al., 2017).  

Most land surface models simulate photosynthesis using the leaf biochemical model of 

Farquhar et al. (1980) (Fisher, Huntzinger, Schwalm, & Sitch, 2014). Two key parameters in this 

model are Vcmax and Jmax and they are typically derived from An-Ci curves measured at light 

saturation. A reasonably accurate alternative way to derive Vcmax is through Asat measurements 

(De Kauwe et al., 2016). To avoid over- or underestimation of these parameters, and hence of 

photosynthesis, it is critical to know at which PPFD photosynthesis becomes light saturated, and 

above which PPFD photoinhibition causes reduced An. The PPFD levels at which light saturation 

is reached varies among tree species (Denslow, 1987) and with light acclimation of the leaves 

(Markesteijn, Poorter, & Bongers, 2007; Rijkers, Pons, & Bongers, 2000; Urban, Holub, & 

Klem, 2017). The reported PPFD levels for Asat vary highly among studies, with reported values 

for upper canopy foliage of tropical rainforest ranging from 1000 µmol/m²/s (Doughty, 2011; 

Doughty et al., 2015; Slot & Winter, 2017) over 1200 µmol/m²/s (Stahl et al., 2013; van de Weg, 

Meir, Grace, & Ramos, 2012) and 1800 µmol/m²/s (Bahar et al., 2016; Domingues, Martinelli, & 
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Ehleringer, 2014; Weerasinghe et al., 2014) to 2000 µmol/m²/s (Rowland et al., 2015; Rowland 

et al., 2016; Santos et al., 2018). Leaves situated in the upper canopy are often in direct sunlight 

while leaves situated in the lower canopy are often shaded and thus acclimated to lower PPFD 

levels (Urban et al., 2017). Many studies have, therefore, used different PPFD settings when 

measuring Asat on sunlit upper or shaded lower canopy leaves (e.g. Domingues et al. (2014); 

Rowland et al. (2015); van de Weg et al. (2012)). The PPFD levels chosen in these studies were, 

however, not consistent and ranged between 1200 and 2000 µmol/m²/s for sunlit upper canopy 

leaves and between 500 and 1000 µmol/m²/s for shaded lower canopy and understory leaves (e.g. 

Domingues et al. (2014); Santos et al. (2018); van de Weg et al. (2012); Weerasinghe et al. 

(2014)). Although these light levels may be appropriate for the specific trees/leaves studied, it is 

usually unclear if light saturation was reached and photoinhibition avoided, hence obscuring 

inter-study comparisons. 

Light levels that exceed the light saturation point may induce photoinhibition, defined as 

the slow, reversible decline of photosynthetic efficiency when absorbed light is in excess of that 

required for C assimilation (Demmig-Adams & Adams III, 1992; Long, Humphries, & 

Falkowski, 1994; Powles, 1984). Because of photoinhibition, measurements of Asat should not be 

conducted at excessive light conditions, and failure to do so would result in an underestimation 

of the maximal C uptake by the leaf, and hence by the ecosystem, significantly impacting the 

estimates of tropical forest C uptake (Clark et al., 2017).  

We here studied the PPFD-dependence of leaf-level net photosynthesis (An) and how this 

varies vertically within the canopy. We also identified the light saturation range, i.e. the PPFD 

levels across which Asat is maintained. Different tropical tree species were studied at two lowland 

tropical rainforests in French Guiana, contrasting climax versus pioneer trees. Climax species are 
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slow-growing and shade-tolerant and form the great majority of tree species in a tropical 

rainforest, whereas pioneer trees are expected to live at high light levels, are shade-intolerant, 

and have high growth rates (Kitajima, 1994; Martinez-Camilo, Gonzalez-Espinosa, Ramirez-

Marcial, Cayuela, & Perez-Farrera, 2017; Raaimakers, Boot, & Dijkstra, 1995; Swaine & 

Whitmore, 1988). Identifying a common PPFD level at which An saturates for lowland tropical 

trees would facilitate the comparisons between different tree species and height levels within the 

canopy. We hypothesize that the PPFD at which An becomes light-saturated, the light saturation 

point, decreases vertically within the canopy due to shade acclimation, as has been observed for 

temperate forest species (Lewis, McKane, Tingey, & Beedlow, 2000; Parra et al., 2015); and that 

it is higher for pioneer species than for shade-tolerant species since pioneers have higher growth 

rates and are less adapted to low light conditions (Martinez-Camilo et al., 2017; Raaimakers et 

al., 1995). We also hypothesize that at very high PPFD (much above the light saturation point), 

photoinhibition occurs irrespective of canopy position, but that this reduction in An occurs at 

lower PPFD levels and is more pronounced for lower-canopy leaves that are more shade-

adapted.  

2. METHODS 

2.1 Study sites 

This study was conducted at two mature lowland tropical rainforest sites in French Guiana, 

South America. The climate at both sites is tropical humid, with a dry season lasting from 

August to November and a short dry spell in March. Mean daily temperature is 25.7°C in the dry 

season and 26.7°C in the rainy season. 



7 
 

The first study site was located at the Paracou Research Station (5°16’ N, 52°16’ W), 

characterized by an average annual rainfall of 3150 mm/y (2015 - 2017). The density of trees 

with a DBH > 10 cm averaged ca. 620 trees/ha and average tree species richness is ca. 160 

species/ha (Bonal et al., 2008). The mean canopy height is 35 m, with emergent trees exceeding 

40 m. The second study site was situated at the Pararé site of the Nouragues Research Station 

(4°02’ N, 52°41’ W), located 120 km south of Cayenne. This forest receives approximately 3000 

mm rain/y (Bongers, Charles-Dominique, Forget, & Théry, 2001). Tree species richness varies 

between 180 and 200 species/ha. The canopy height ranges between 30–40 m, with emergent 

trees reaching 60 m (Van Der Meer, Sterck, & Bongers, 1998). The soils at both sites are 

characterized as nutrient-poor Acrisols (FAO, 1998)(FAO-ISRIC-ISSS 1998), with the soils at 

Paracou ranging from loamy sand to sandy loam and at Nouragues from sandy loam to silty clay 

according to the USDA texture classification chart (Van Langenhove et al., 2019). Both forest 

stands are equipped with an instrumentation tower. Meteorological measurements and 

measurements of ecosystem net CO2 exchange with the eddy covariance technique have been 

conducted on a continuous basis since 2003 in Paracou and since 2014 at Nouragues. 

2.2 Leaf gas exchange 

Leaf gas exchange measurements were carried out with a set of infrared gas analyzers (IRGAs) 

incorporated into a portable photosynthesis system (LI-6400XT, LI-COR, Lincoln, NE, U.S.A.). 

During measurements, a leaf was clamped within a chamber with controlled microenvironmental 

conditions and concentration changes of dihydrogen oxide (H2O) and carbon dioxide (CO2) 

between incoming and outgoing air were measured. During the measurements, the relative 

humidity inside the leaf chamber was kept as close to ambient (70 ± 8%) as possible and the air 
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flow rate was 500 µmol/s. The chamber block temperature was controlled to minimize variation 

in leaf temperature and was set at 30 ± 0.15°C.  

All leaf gas exchange measurements were performed on newly formed mature leaves 

from 2 m-long excised and rehydrated branches, except for those measured on saplings (diameter 

0.4-3.4 cm), which were carried out on leaves still attached to the trees. The trunk diameter of 

the sampled forest trees ranged from 10.2 to 101.9 cm (diameter at breast height, or 130 cm 

aboveground, DBH; Table S3). Excised branches were cut by a tree climber, and immediately 

recut under water to restore hydraulic conductivity (Domingues et al., 2010; Dusenge et al., 

2015; Rowland et al., 2015).  

2.3 Photosynthetic light-response curves 

Photosynthetic light-response curves were measured on a total of 74 leaves from 23 different 

species, corresponding to 17 mature trees (13 species) and 12 saplings (4 species) at Paracou, 

and 4 pioneer trees (3 species) and 10 mature trees (8 species) at Nouragues (Table S1; Table 

S3). The trees were classified as climax or pioneer species based on local species knowledge 

(Bongers et al., 2001; Laurance et al., 2004; Molino & Sabatier, 2001; Raaimakers et al., 1995). 

Measurements were performed at four different canopy heights, estimated relative to the top of 

the canopy: upper sunlit foliage, middle canopy foliage, lower canopy foliage, and branches of 

saplings ranging between 1 and 2 m height. For each species, sampling at two canopy heights 

was required to determine the height effect, and additional measurements on more canopy 

heights were carried out whenever possible to further strengthen the data analyses. Due to 

logistical constraints the measurements at Paracou were carried out at the end of the wet season 
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and at Nouragues at the onset of the dry season, except for four pioneer trees that were measured 

during the wet season. 

Light-response curves were established by measuring An at different PPFD levels, while 

maintaining a relatively constant chamber temperature. Leaves were first acclimated to 2000 

µmol/m²/s by exposing them to this PPFD level and waiting until An was stabilized. We 

subsequently decreased the PPFD in steps of 50-300 µmol/m²/s down to 0 µmol/m²/s to obtain a 

total of 14 and 11 measurements of An per leaf respectively for Nouragues and Paracou (PPFD 

levels in Nouragues: 2000-1800-1600-1400-1200-1000-800-600-400-200-100-50-25-0 

µmol/m²/s, PPFD levels in Paracou: 2000-1800-1500-1000-800-600-400-200-100-50-0 

µmol/m²/s). We considered the respiration measured at 0 µmol/m²/s to be an estimate of 

mitochondrial respiration in the light because there had not been sufficient time to completely 

relax respiration (Crous et al., 2012), but this is appropriate for light response curves. The CO2 

concentration was kept constant at 400 ppm using an integrated gas mixing system and miniature 

CO2 cylinders.  

2.4 Photosynthetic CO2-response curves 

To obtain photosynthetic CO2-responses, we measured An at different CO2 concentrations by 

controlling the reference CO2 concentrations, starting at the ambient CO2 concentration of 400 

ppm, but we maintained a constant temperature and PPFD level. The CO2 concentration was then 

first reduced stepwise to 50 ppm (in steps of 50-100 ppm), then returned to 400 ppm and 

thereafter increased to 2000 ppm in steps of 200-300 ppm to obtain a total of 14 measurements 

per leaf (reference CO2 concentrations: 400-300-200-100-50-400-400-600-800-1000-1200-1500-

1700-2000). These An-Ci curves (based on Ci, the CO2 concentration of the leaf intercellular 



10 
 

spaces) were measured on the upper sunlit foliage and lower canopy foliage for three trees 

(Table S2). Additional measurements were carried out on the middle canopy foliage for one of 

these trees and on four additional trees, resulting in a total of 14 curves on seven trees (six 

species) (Table S2). Response curves were made at a constant PPFD of 1300 and 1800 

µmol/m²/s consecutively, to study the effect of light intensity on the photosynthetic parameters 

Vcmax (µmol/m²/s) and Jmax (µmol/m²/s) (Table S4). These parameters were derived by fitting the 

An-Ci curves using the biochemical photosynthesis model of Farquhar, Von Caemmerer and 

Berry (Farquhar, Caemmerer, & Berry, 1980) after temperature-correction (to 25°C) using the 

equations and generalized kinetic coefficients from Sharkey, Bernacchi, Farquhar, and Singsaas 

(2007), without including the limitation by triose phosphate utilization. We assumed that 

mesophyll conductance was infinite.  

2.5 Data analysis 

Since maximum An varied widely across species and canopy height classes, all individual light 

response curves were normalized by scaling the An values between zero and one (Eq. 1) to 

examine relative declines in An with PPFD in all species. 

𝐴𝑛,𝑛𝑜𝑟𝑚 =
𝐴𝑛−min(𝐴𝑛)

max(𝐴𝑛)−min(𝐴𝑛)
         (1) 

where An,norm is the normalized value of An, An is the measured An, and min and max are the 

minimum and maximum values of the measured An for each curve, respectively. 

To test whether a common saturating PPFD level could be found over all canopy height 

levels, these normalized curves were averaged across species for each canopy height level, 

separating shade-tolerant climax species from light-demanding pioneer species (Bongers et al., 
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2001). For each canopy height level, we determined the light saturation range, i.e. the PPFD 

range at which maximum An occurred. Starting from the highest observed An,norm, we employed 

two criteria that both needed to be met for adjacent PPFD levels to be included into this light 

saturation range. First, neighboring PPFD levels that did not significantly differ in An,norm, based 

on their 95% confidence intervals, were also considered as light saturated. Second, the regression 

slope between the measured An,norm values considered at light saturation could not differ from 

zero.  

We compared the obtained light saturation ranges for all measured leaves at all canopy 

heights and searched for a PPFD level that occurred in all light saturation ranges, which we 

coined the common saturating PPFD level. To test whether An at this common saturating PPFD 

level differed from an estimated An at 2000 µmol/m²/s under the assumption that no 

photoinhibition occurred, we then fitted a nonrectangular hyperbola based model (Eq. 2; (Lobo 

et al., 2013)) to the measured An-PPFD curves and calculated An at this common saturating PPFD 

level. We tested whether this value was within five percent of Asat,mod, defined as the modelled An 

value at a PPFD of 2000 µmol/m²/s. Hence, if for example An at the common saturating PPFD is 

greater than Asat,mod (±5%), this is taken to suggest photoinhibition at a PPFD of 2000 µmol/m²/s. 

To test for interspecific differences and differences among canopy heights in the PPFD level at 

which An becomes saturated, we tested the effects of species and canopy height level on the 

residuals of Asat, measured at the common saturating PPFD, and Asat,mod, using a linear mixed 

model (nlme package (Pinheiro, Bates, Debroy, Sarkar, & R Core Team, 2020)) with canopy 

height level as fixed factor and species as random factor. Note that these analyses were done 

only for the climax species, not for the pioneer species, because for the latter An did not saturate 

within the light range used in this study. 
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𝐴𝑛 =
𝜙∗𝑃𝑃𝐹𝐷+𝐴𝑔𝑚𝑎𝑥−√(𝜙∗𝑃𝑃𝐹𝐷+𝐴𝑔𝑚𝑎𝑥)2−4∗𝜙∗𝜃∗𝐴𝑔𝑚𝑎𝑥∗𝑃𝑃𝐹𝐷

2∗𝜃
− 𝑅𝑑    (2) 

where An is the net photosynthetic rate (µmol (CO2)/m²/s); φ is the apparent quantum yield at 

PPFD = 0 (µmol (CO2)/µmol (photon)); PPFD is the photosynthetic photon flux density (µmol 

(photon)/m²/s); Agmax is the asymptotic estimate of the maximum gross photosynthetic rate (µmol 

(CO2)/m²/s); θ (dimensionless) indicates the convexity. 

Stomatal closure induced by water limitation could have occurred at the highest PPFD levels and 

could therefore contribute to the observed decline in An above light saturation. We therefore 

tested whether the stomatal conductance measured at a PPFD of 2000 µmol/m²/s differed from 

the stomatal conductance measured at the common saturating PPFD level obtained in this study. 

Since normality assumptions were not met, a paired Wilcoxon signed-rank test was performed to 

test if the stomatal conductance at and above light saturation was significantly different. 

We calculated the ratio of Jmax,1300 : Jmax,1800 and Vcmax,1300 : Vcmax,1800, measured at a PPFD 

of 1300 µmol/m²/s and 1800 µmol/m²/s respectively, to test for an effect of PPFD on Jmax and 

Vcmax. These ratios were calculated as the slope estimates of the linear regression by 10,000 

bootstrap replicates. Both PPFD levels were assumed to be at light saturation if the ratio did not 

differ significantly from 1, based on the 95% confidence intervals corresponding to 2.5 and 

97.5% quantiles after bootstrapping. Bootstrapping involves resampling with replacement from 

the original data to simulate multiple samples from a population (Chernick & LaBudde, 2011). 

Additionally, we performed a paired t-test to test whether Jmax and Vcmax differed between a 

PPFD of 1300 µmol/m²/s and 1800 µmol/m²/s. We tested if the Jmax:Vcmax ratio differed between 

1300 and 1800 µmol/m²/s with a linear regression with the ratio as the dependent variable and 
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the PPFD level as fixed factor. All analyses were performed in R 3.3.3 (R Core Team, 2017) 

using the ggplot2 package (Wickham, 2009) for visualization of the data.  

3. RESULTS 

For upper canopy sunlit leaves, the light saturation point was reached at ca. 1000 µmol/m²/s 

(Figure 1a,d). In Nouragues, An,norm did not change between 1000 and 1600 µmol/m²/s, but 

decreased statistically significantly (F1,91 = 4.69; P = 0.03) at higher PPFD (2.4% decrease from 

1600 to 2000 µmol/m²/s, Figure 1a). This decrease in An,norm at 2000 µmol/m²/s was not apparent 

at the Paracou site (Figure 1d), where An,norm did not significantly differ between 1000 and 2000 

µmol/m²/s. 

Compared to the upper canopy sunlit leaves, leaves within the canopy (e.g. ‘lower’ and 

‘middle’ canopy) saturated at lower PPFD. At Nouragues, the light saturation point of these mid-

canopy leaves was reached at 800 µmol/m²/s and An,norm did not change between 800 and 1400 

µmol/m²/s (Figure 1e). This light-saturating PPFD range was similar for both the middle and 

lower canopy foliage (Figure 1b,c). At Paracou, in the lower canopy stratum, the light saturation 

point was reached at 800 µmol/m²/s, and An,norm did not vary significantly between 800 and 1800 

µmol/m²/s (Figure 1e). For saplings, the light saturation range was smaller and light saturation 

occurred between 800 and 1000 µmol/m²/s (Figure 1f). In strong contrast with the leaves of 

shade-tolerant tree species, the An,norm-PPFD curves for sunlit leaves of pioneer trees showed no 

signs of saturation of An,norm within the investigated PPFD range (0 to 2000 µmol/m²/s, Figure 2).  

Aside from the pioneer species, light saturation was reached within a PPFD range that 

varied per canopy height, with 1000 µmol/m²/s as common saturating PPFD level. 73 percent of 
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the Asat,1000 (n = 50), the Asat measured at 1000 µmol/m²/s, was within five percent of Asat,2000, 

defined as the modelled Asat value at a PPFD of 2000 µmol/m²/s (Figure 3), while ten percent of 

Asat,1000 (n = 7) was above Asat,2000 + 5% and 17 percent (n = 12) below Asat,2000 - 5%. Canopy 

height level (likelihood ratio = 3.33; P = 0.19) had no significant effect on deviations of the 

residuals of Asat,1000 and Asat,2000 for climax species. The variance of the tree species only 

accounted for less than one percent of the total variance, with a random intercept of 3.96E-06. 

The stomatal conductance at a PPFD of 2000 µmol/m²/s differed significantly from the 

stomatal conductance measured at the common saturating PPFD level of 1000 µmol/m²/s 

(Wilcoxon paired test, V = 533; P < 0.001; Figure 4). The stomatal conductance at a PPFD of 

2000 µmol/m²/s was higher than at a PPFD of 1000 µmol/m²/s.  

Across all species and heights in the canopy, the photosynthetic parameters Jmax and Vcmax 

did not significantly differ between the light intensities of 1300 and 1800 µmol/m²/s. When 

treating the data in a paired way, there is no significant difference for Jmax (t13 = 1.70; P = 0.11) 

and Vcmax (t13 = 1.31; P = 0.21) between these parameters measured at a PPFD of 1300 and 1800 

µmol/m2/s. After bootstrapping the data, the ratio of Jmax,1300 : Jmax,1800 and Vcmax,1300 : Vcmax,1800 

were 1.08 ± 0.07 µmol/m²/s and 0.97 ± 0.30 µmol/m²/s, respectively. The 95% confidence 

interval for both Jmax ([0.92; 1.17]) and Vcmax ([0.27; 1.32]) included one and thus the ratio did 

not differ significantly from one. The mean ratio Jmax,1300:Vcmax,1300 (1.54) was not significantly 

different from the mean ratio Jmax,1800:Vcmax,1800 (1.71) (F1,26 = 1.03; P = 0.32). 

4. DISCUSSION 

A common PPFD level at which leaf-level photosynthesis saturates in lowland tropical forests 

would facilitate the comparison between different tree species and height levels within the 
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canopy, and between different study sites and studies. Our data suggest that at our study sites in 

French Guiana, dominated by shade-tolerant tree species growing on infertile soils (Grau et al., 

2017; Hammond, 2005; ter Steege et al., 2013), Asat can best be measured within a PPFD range 

of 1000 to 1400 µmol/m²/s for canopy trees, while saplings showed saturation at lower light 

conditions, within a range of 800 to 1000 µmol/m²/s, since they are acclimated to a low PPFD 

regime. Saplings in tropical forests typically receive less than two percent of the incoming light 

at the top of the canopyv(Montgomery & Chazdon, 2002; Théry, 2001; Yoda, 1974). For climax 

canopy trees, Asat can thus be measured within a wide PPFD range, with a common PPFD of 

1000 µmol/m²/s throughout the whole canopy (Figure 1). 

It must, however, be clearly stated that the above does not hold for the pioneer species 

investigated in this study. None of the seven measured pioneer trees belonging to the 

Cecropiaceae family included in this study showed signs of saturation up to a PPFD of 2000 

µmol/m²/s (Figure 2) – the maximum light intensity that could be reached with our device. 

Pioneer trees typically have higher light saturation points compared to climax trees (Chazdon, 

Pearcy, Lee, & Fetcher, 1996; Lüttge, 2008; Silvestrini, Válio, & Mattos, 2007), which is 

supported by this study. Measuring leaf-level photosynthesis of pioneer trees at the light 

saturation range established in this study, or even at PPFD of 2000 µmol/m²/s is thus likely to 

underestimate Asat, and generalization beyond the Cecropiaceae family requires further study. 

Hence, studies seeking to compare photosynthetic traits in early-successional habitats or pioneer 

species with late-successional species need to evaluate traits such as Asat, Vcmax and Jmax for 

different, saturating PPFD levels appropriate to their successional status.  

We hypothesized that photosynthesis becomes light saturated at lower PPFD levels when 

leaves are more shade-adapted. In accordance with this hypothesis, the light saturation range 
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measured in this study started at lower PPFD levels and became more narrow for leaves 

positioned deeper in the canopy (i.e. more shade-adapted leaves). Nonetheless, this saturation 

range of shade-adapted leaves overlapped with the saturation range of sun-adapted leaves at the 

top of the canopy. At the Nouragues site, the upper boundary of the light saturation range 

decreased vertically from the top of the canopy (1600 µmol/m²/s) to the forest floor (1400 

µmol/m²/s). Opposed to results from previous studies (e.g. Ellsworth and Reich (1993)), we did 

not find a continuous decrease in light saturation point towards the lower canopy, as the middle 

and lower canopy foliage at the Nouragues site showed the same light saturation point range 

(800 to 1400 µmol/m²/s). At Paracou, the light saturation range of the lower canopy foliage (800 

– 1800 µmol/m2/s) was slightly lower than that of the upper canopy sunlit leaves (1000 – 2000 

µmol/m2/s), and the lower boundary overlapped with the range of the saplings in the understory.  

We hypothesized that at high PPFD (above saturation for photosynthesis), 

photoinhibition would occur at all heights in the canopy, but that this reduction in leaf-level 

photosynthesis would be more pronounced lower in the canopy where leaves are not used to 

receiving high light intensities. At the Nouragues site, upper sunlit canopy foliage exhibited a 

statistically significant decline in An,norm measured at a PPFD of 2000 µmol/m²/s, which was not 

caused by stomatal closure based on available evidence (Figure 4; Figure S1; Figure S2). 

However, this decline was only minor in magnitude (2%) and did not occur at the other canopy 

heights, nor was it found for sunlit leaves at the Paracou site. We thus refute the hypothesis of a 

pronounced decline in An measured at a PPFD of 2000 µmol/m²/s for more shade-adapted leaves, 

although it is obviously more advisable to measure Asat at lower PPFD for all but pioneer tree 

leaves.  
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Total incoming light at the top of the canopy in tropical forests can exceed 2000 

µmol/m²/s (Shuttleworth, 1984), and we therefore expected that the light saturation point of the 

upper canopy sunlit leaves would be reached at PPFD levels close to 2000 µmol/m²/s for optimal 

light use efficiency. However, the upper canopy sunlit leaves typically received much less 

incoming PPFD due to the diel cycle of the solar zenith angle and the leaf angle (Ventre-

Lespiaucq, Flanagan, Ospina-Calderon, Delgado, & Escudero, 2018). This is demonstrated by 

the comparison of light interception by sensors installed on the leaves themselves compared to 

measurements of incoming light on the flux tower (Figure S3), indicating that the leaves are not 

frequently exposed to very high PPFD levels. Trees are able to adjust the spatial configuration of 

their leaves by changing the leaf angle or orientation to control their light interception and 

energy balance, e.g. reorient a leaf blade parallel to the sun rays to intercept less PPFD and avoid 

excessive light (Posada, Lechowicz, & Kitajima, 2009). Increasing the frequency of low/medium 

PPFD incident on leaves can increase photosynthetic light use efficiency (Posada et al., 2012), 

but can also reduce photoinhibition and stress associated with high irradiance (Posada et al., 

2009; Walters & Field, 1987) and warming (Doughty, 2011; Slot & Winter, 2017). This is an 

important characteristic, especially for sunlit leaves of canopy dominant trees that are frequently 

exposed to high PPFD levels and risk experiencing high-radiation damage. Due to their leaf 

angle not being perpendicular to the solar beams, sunlit leaves thus typically intercept less light 

than is incoming at the top of the canopy and we postulate that this is the reason why the light 

saturation point occurred at much lower PPFD levels than the typical incoming light intensity at 

the top of the canopy. 

We further tested whether Vcmax and Jmax differed between PPFD levels of 1300 and 1800 

µmol/m²/s. Assuming that the PPFD of 1800 µmol/m²/s does not induce photoinhibition , An is 



18 
 

light saturated at this PPFD level (as reported in e.g. Weerasinghe et al. (2014) and Bahar et al. 

(2016)), and thus maximum values for Vcmax and Jmax are reached. Below light saturation, An is 

usually considered to become limited by rates of photosynthetic electron transport (Jmax) 

(Farquhar et al., 1980). Hence, measuring An-Ci curves below light saturation is more likely to 

lead to underestimation of Jmax (Buckley & Diaz-Espejo, 2015), than of Vcmax. The lack of 

difference between Vcmax,1300 and Vcmax,1800 was thus expected and was even hypothesized by 

Buckley and Diaz-Espejo (2015). In contrast, Jmax is derived from the light limited part of the 

curve and a higher Jmax at a PPFD of 1800 µmol/m²/s than at 1300 µmol/m²/s would be expected 

if light was not saturating at 1300 µmol/m²/s, because this term of the Farquhar-von Caemmerer-

Berry (1980) photosynthesis model is light sensitive below light saturation. However, Jmax did 

not significantly differ between a PPFD of 1300 and 1800 µmol/m²/s, which is in accordance 

with the light saturation range established for Asat and confirms that the PPFD of 1300 µmol/m²/s 

was at light saturation. Although the ratio Jmax:Vcmax in this study was in the lower range of what 

was found in other studies (e.g. Bahar et al. (2016); Rowland et al. (2015)), the ratio Jmax:Vcmax 

did not differ significantly between PPFD levels of 1300 and 1800 µmol/m²/s, confirming light 

saturation at both PPFD levels and no photoinhibition at 1800 µmol/m²/s.  

Overall, An was light-saturated over a wide range of PPFD levels, but for all tree species 

and on all heights within the adult tree canopy An reached saturation at 1000 µmol/m²/s. The 

exception to this generalization were the pioneer trees, which did not reach light saturation even 

at light levels up to 2000 µmol/m²/s. These results suggest that a light intensity of 1000 

µmol/m²/s is sufficient for measuring Asat of climax species in the lowland forests of French 

Guiana, no matter at which canopy height the measurements are taken. Moreover, the negligible 

magnitude of photoinhibition (if at all present) in our study implies that any value of PPFD 
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within the range of 1000-2000 µmol/m²/s would have yielded accurate values of Asat. This study 

thus clearly shows that, with exception of pioneer species belonging to the Cecropiaceae family, 

tropical tree photosynthesis data reported in previous studies can quite safely be compared even 

if different PPFD levels were used, given that a minimum of 1000 µmol/m²/s PPFD was 

provided for canopy leaves. Some caution is warranted since this study took place in the nutrient 

poor forests of French Guiana, and different light, water and nutrient environments of tropical 

forests and different species composition might have the potential to change the light saturation 

range.   
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FIGURE LEGENDS 

FIGURE 1 Normalized leaf net photosynthesis (An) in response to light (PPFD; µmol/m²/s), 

averaged over a set of eight tropical tree species (10 trees in total) and a total of 23 leaves 

measured at the Nouragues site for (a) top sunlit leaves (n = 15 leaves), (b) middle canopy 

foliage (n = 3) and (c) lower canopy foliage (n = 5), and a set of 15 tropical tree species (17 trees 

and 12 saplings) and a total of 44 leaves measured at the Paracou site for (d) top sunlit leaves (n 

= 13 leaves), (e) lower canopy foliage (n = 19) and (f) saplings (n = 12). The error bars are the 

standard errors of the mean. The black filled points, underlined with a black line, indicate the 

light saturation range, which is the range of PPFD levels at which An is light saturated and for 

which the points do not significantly differ from each other (p > 0.05). The slope between these 

data points is not significantly different from zero. The inset is a zoom of the main figure for 

which normalized An ranges between 0.85 and 1. 

FIGURE 2 Normalized mean of leaf net photosynthesis (An; µmol/m²/s) in response to light 

(PPFD; µmol/m²/s) for seven pioneer trees (n = 7). The error bars are the standard errors of the 
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mean. Light-saturated leaf net photosynthesis was not reached according to the criteria for testing 

light saturation (see Methods). 

FIGURE 3 Leaf-level net photosynthesis at 2000 µmol/m²/s (Asat,2000) derived from a 

nonrectangular hyperbola based model (Eq. 2) in function of the leaf-level net photosynthesis at 

1000 µmol/m²/s (Asat,1000) derived from the measured data. 1000 µmol/m²/s is assumed to be at 

light saturation in this study since it is at the lower PPFD for which An saturated here. Grey dots 

represent Asat,1000 data that are within five percent from Asat,2000 (n = 50). Yellow dots represent 

Asat,1000 that are above Asat,2000 + 5% (n = 7). Blue dots represent Asat,1000 below Asat,2000 – 5% (n = 

12). The error bars show the 5%-derivations from Asat,2000. The black line is the 1:1 line. 

FIGURE 4 The stomatal conductance (gs; mol/m²/s) measured at PPFD = 2000 µmol/m²/s 

compared to the stomatal conductance at the common saturating PPFD level of 1000 µmol/m²/s 

(n = 68). 56 points are above the 1:1 line (black line), and 12 are below the 1:1 line. 
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