

# Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome phylogenetics

Jérôme Chave, Cynthia Sothers, Amaia Iribar, Uxue Suescun, Mark Chase, Ghillean Prance

## ▶ To cite this version:

Jérôme Chave, Cynthia Sothers, Amaia Iribar, Uxue Suescun, Mark Chase, et al.. Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome phylogenetics. Botanical Journal of the Linnean Society, 2020, 194 (3), pp.271-289. 10.1093/botlinnean/boaa052. hal-03005991

## HAL Id: hal-03005991 https://hal.science/hal-03005991v1

Submitted on 5 Dec 2020  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome phylogenetics

| Journal:                         | Botanical Journal of the Linnean Society                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | BOTJLS-Feb-2020-3588-ART.R1                                                                                                                                                                                                                                                                                                                                     |
| Manuscript Type:                 | Original Article                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the<br>Author: | n/a                                                                                                                                                                                                                                                                                                                                                             |
| Complete List of Authors:        | Chave, Jerome; CNRS, Evolution et Diversité Biologique<br>Sothers, Cynthia; Royal Botanic Gardens, Kew, Herbarium<br>Iribar, Amaia; CNRS, Evolution et Diversité Biologique<br>Suescun, Uxue; CNRS, Evolution et Diversité Biologique<br>Chase, Mark; Royal Botanic Gardens, Kew, Jodrell Laboratory<br>Prance, Ghillean; Royal Botanic Gardens, Kew, Herbarium |
| Keywords:                        | molecular phylogenetic analysis < Genetics, phylogenetics <<br>Systematics, tropical rainforest < Ecology, Neotropics < Geography,<br>Amazon < Geography                                                                                                                                                                                                        |
|                                  |                                                                                                                                                                                                                                                                                                                                                                 |



| 1<br>ว                                                                                                                                                                                                                                                                     |    |                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------|
| 2<br>3                                                                                                                                                                                                                                                                     | 1  | Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid                                     |
| 4<br>5                                                                                                                                                                                                                                                                     | 2  | genome phylogenetics                                                                                                |
| 6<br>7                                                                                                                                                                                                                                                                     | 3  |                                                                                                                     |
| 8<br>9                                                                                                                                                                                                                                                                     | 4  | JEROME CHAVE <sup>1*</sup> , CYNTHIA SOTHERS <sup>2</sup> , AMAIA IRIBAR <sup>1</sup> , UXUE SUESCUN <sup>1</sup> , |
| 10                                                                                                                                                                                                                                                                         | 5  | MARK W CHASE <sup>2,3</sup> and GHILLEAN T PRANCE <sup>2</sup>                                                      |
| 11                                                                                                                                                                                                                                                                         | 6  | <sup>1</sup> Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRD, Université Paul                      |
| 13<br>14                                                                                                                                                                                                                                                                   | 7  | Sabatier 31062 Toulouse, France                                                                                     |
| 15<br>16                                                                                                                                                                                                                                                                   | 8  | <sup>2</sup> Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK                                               |
| 17                                                                                                                                                                                                                                                                         | 9  | <sup>3</sup> Department of Environment and Agriculture, Curtin University, Perth, Western Australia,                |
| 18<br>19                                                                                                                                                                                                                                                                   | 10 | Australia                                                                                                           |
| 20<br>21                                                                                                                                                                                                                                                                   | 11 |                                                                                                                     |
| 22                                                                                                                                                                                                                                                                         | 12 | * Email: jerome.chave@univ-tlse3.fr                                                                                 |
| 23<br>24                                                                                                                                                                                                                                                                   | 13 |                                                                                                                     |
| 25<br>26                                                                                                                                                                                                                                                                   | 14 | Running head: Amazonian tree diversification                                                                        |
| 27<br>28                                                                                                                                                                                                                                                                   | 15 |                                                                                                                     |
| 29<br>30                                                                                                                                                                                                                                                                   | 16 | Word count: 7,167                                                                                                   |
| 30<br>31                                                                                                                                                                                                                                                                   | 17 | Number of figures: 5                                                                                                |
| 32<br>33                                                                                                                                                                                                                                                                   | 18 | In revision at the Botanical Journal of the Linnean Society.                                                        |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         50         51         52         53         54         55         56         57         58 | 19 |                                                                                                                     |

| 20 | Abstract |
|----|----------|
| -• |          |

We studied the evolutionary history of Chrysobalanaceae with phylogenetic analyses of complete plastid genomes from 156 species to assess the tempo of diversification in the Neotropics and help to unravel the causes of Amazonian plant diversification. These plastid genomes had a mean length of 162,204 base pairs, and the nearly complete DNA sequence matrix, with reliable fossils, was used to estimate a phylogenetic tree. Chrysobalanaceae diversified from 38.9 Mya (95% highest posterior density, 95% HPD: 34.2-43.9 Mya). A single clade containing almost all Neotropical species arose after a single dispersal event from the Palaeotropics into the Amazonian biome c. 29.1 Mya (95%HPD: 25.5-32.6 Mya), with subsequent dispersals into other Neotropical biomes. All Neotropical genera diversified from 10 to 14 Mya, lending clear support to the role of Andean orogeny as a major cause of diversification in Chrysobalanaceae. In particular, the understory genus Hirtella diversified extremely rapidly, producing > 100 species in the last 6 My (95% HPD: 4.9-7.4 My). Our study suggests that a large fraction of the Amazonian tree flora has been assembled in situ within the last 15 My. 

ADDITIONAL KEYWORDS: Amazonia, molecular dating, Malpighiales, phylogenetic
 inference, tropical forest.

| 1<br>2   |    |                                                                                                 |
|----------|----|-------------------------------------------------------------------------------------------------|
| 3        | 39 | INTRODUCTION                                                                                    |
| 4<br>5   | 40 |                                                                                                 |
| 6<br>7   | 41 | How the Neotropical rainforest biome has been assembled is a fascinating question for           |
| 8<br>9   | 42 | biogeography and evolutionary biology (Gentry, 1982). The Neotropics harbour no fewer           |
| 10       | 43 | than 90,000 species of plants, more than the rest of the tropics combined (Antonelli &          |
| 11<br>12 | 44 | Sanmartín, 2011), and this outstanding diversity appears to be the result of a confluence of -  |
| 13<br>14 | 45 | factors, including large areas with stable, favourable environmental conditions for clade       |
| 15       | 46 | persistence (Wallace, 1878), and long periods of continental isolation (Raven & Axelrod,        |
| 17       | 47 | 1974). Also, major geological events, especially the uplift of the Andes (Gregory-Wodzicki,     |
| 18<br>19 | 48 | 2000; Hoorn et al., 2010) are thought to have contributed to the hydrological remodelling of    |
| 20<br>21 | 49 | the region now covered by Amazon forest (Hughes et al., 2012; Hoorn et al., 2017; Jaramillo     |
| 22       | 50 | et al., 2017). In the late Miocene, the demise of the Pebas wetland in western Amazonia         |
| 23<br>24 | 51 | (Figueiredo et al., 2009; Sacek, 2014) created new habitats such as white sand forests that     |
| 25<br>26 | 52 | may have promoted edaphic specialization (Fine et al., 2010) and contributed to allopatric      |
| 27<br>28 | 53 | speciation by creating dispersal barriers (Coyne & Orr, 2004; Smith et al., 2014). Plio-        |
| 29       | 54 | Pleistocene climatic fluctuations could also explain some recent rates of increased             |
| 30<br>31 | 55 | diversification (Prance, 1982; Haffer, 2008). These repeated drier and cooler episodes (Wang    |
| 32<br>33 | 56 | et al., 2017) could have spurred diversification as they would have caused geographical         |
| 34<br>35 | 57 | isolation of wet-forest clades.                                                                 |
| 36       | 58 | Dated molecular phylogenetic trees have proven essential to advance our                         |
| 37<br>38 | 59 | understanding on the diversification of plants in the tropical rainforest biome, and they shed  |
| 39<br>40 | 60 | light on episodes of intercontinental migration and pace of in situ diversification (Eiserhardt |
| 41<br>42 | 61 | et al., 2017). A common feature in the history of Neotropical lowland plant clades is that they |
| 42<br>43 | 62 | cannot be understood without accounting for inter-continental dispersal during the Neogene      |
| 44<br>45 | 63 | (Pennington & Dick, 2004). Combined with reliable fossil constraints, studies have identified   |
| 46<br>47 | 64 | key migrations across biomes (Donoghue & Edwards, 2014; Donoghue & Sanderson, 2015;             |
| 48       | 65 | Fine et al., 2014), and a large number of Neotropical forest clades turn out to have originated |
| 49<br>50 | 66 | outside the lowland Neotropical forests, as is the case, for the palms in Arecoideae            |
| 51<br>52 | 67 | (Arecaceae), which results from a single dispersal event into the Neotropics (Baker &           |
| 53<br>54 | 68 | Couvreur, 2013). The complex environmental history of South America has left an imprint on      |
| 55       | 69 | in situ diversification for many woody plant clades that today characterize the Amazonian       |
| 56<br>57 | 70 | forest (Antonelli & Sanmartín, 2011). Miocene onsets of diversification have been detected in   |
| 58<br>59 | 71 | Arecaceae (Roncal et al., 2013; Bacon et al., 2018), Burseraceae (Fine et al., 2014),           |
| 60       | 72 | Annonaceae (Pirie et al., 2018), Fabaceae (Schley et al., 2018), Orchidaceae (Pérez-Escobar     |

et al., 2017) and Meliaceae (Koenen et al., 2015). However, a complete picture of diversification for Amazonia should ideally be based on a comprehensive sampling of its tree flora, and here we provide insights from a floristically important plant family in lowland Amazonian habitats.

Chrysobalanaceae, the coco plum family, with 545 species, are a mid-sized pantropical family and a notable component of the Neotropical tree flora (Prance, 1972), with c. 80% of its species found only in the Neotropics (Prance & Sothers, 2003). All Chrysobalanaceae are woody plants, ranging in height from 10 cm to > 40 m, with a uniform vegetative architecture (Prance & White, 1988). Across Amazonian rainforests, an analysis of 1,170 tree inventory plots ( $\geq 10$  cm in trunk diameter) reveals that Chrysobalanaceae rank seventh in tree dominance behind Fabaceae, Lecythidaceae, Sapotaceae, Malvaceae, Moraceae and Burseraceae (ter Steege et al., 2013). Their centre of diversity is Amazonia, with 251 species restricted to lowland Amazonian forests, but the family is found in virtually all Neotropical biomes, notably the Brazilian Atlantic forest (47 species), forests of Central America, Colombian Chocó and the Caribbean (47 species), dry habitats (29 species: 15 in the Brazilian cerrado, 11 in South American savannas, and three in seasonally dry forests), and at high elevation (29 species: 18 in the Andes, 11 restricted to the Guyana highlands; Prance & Sothers, 2003). 

Generic delimitation has been challenging in Chrysobalanaceae (for a historical account, see Prance & White, 1988). There are currently 27 genera recognized, 11 Palaeotropical, 12 Neotropical, and three amphi-Atlantic (Chrysobalanus L., Parinari Aubl., and Maranthes Blume). The two non-Neotropical species of Hirtella L. from eastern Africa and Madagascar should be reassigned to the old genus name from Madagascar, Thelira Thouars. Eight genera are found in Oceania and Southeast Asia, and ten occur in Africa and Madagascar. Recent changes to generic delimitations in Chrysobalanaceae include the resurrection of Angelesia Korth. for three Southeast Asian species previously included in Licania Aubl. (Sothers & Prance, 2014), a revision of Couepia Aubl., with four species transferred to other genera, and a new genus, Gaulettia Sothers & Prance, created to accommodate species of the former parillo clade of Couepia (Sothers et al., 2014), and splitting of the large polyphyletic Neotropical genus Licania into eight genera (Sothers et al., 2016). With clarified generic delimitation, an improved interpretation of the diversification and biogeography is now possible for the family. 

In this contribution, we provide a phylogenetic reconstruction based on an expanded taxon sampling, aimed at all major clades of Chrysobalanaceae, and with a focus on the

Neotropical clades. In a previous study, Bardon et al. (2016) sequenced plastid genomes for

51 species of Chrysobalanaceae, complemented with limited DNA sequences of 88 additional species, and concluded that the family diversified in the Palaeotropics in the early Oligocene (33 Mya) and subsequently dispersed once to the Neotropics. The hypothesis of a Palaeotropical origin for the family was motivated by the postulated position of the Southeast Asian genus *Kostermanthus* Prance as sister to the rest of the family, followed by the Parinari-Neocarya (DC.) Prance clade, which is pantropical. However, limited taxon sampling was a major issue, with the risk that 'rogue' taxa, widely divergent taxa with a poorly supported placement, reduced the overall phylogenetic signal. To minimize this risk, we built an improved dataset, with a threefold increase in species sampling, including all currently recognized genera, and sequencing of the full plastid genome for each of the sampled species. Here, we ask when and how Chrysobalanaceae arose to become an important component of Amazonian tree communities. To this end, we use a novel approach to date the major events of diversification, including the crown age of the family. We then build a revised biogeographic scenario for this family both pantropically and in the Neotropics. Finally, based on an analysis of changes in diversification rates across the phylogenetic tree, we discuss shifts in diversification rates in Chrysobalanaceae. MATERIAL AND METHODS DE-NOVO PLASTID GENOME SEQUENCING We sequenced full plastid genomes for 163 specimens of Chrysobalanaceae, which represent 156 species, and all 27 currently recognized genera (Table S1). Two accessions of the following species were sampled: Bafodeya benna (Scott-Elliot) Prance, Chrysobalanus cuspidatus Griseb. ex Duss, Couepia bracteosa Benth., Hymenopus heteromorphus (Benth.) Sothers & Prance, Leptobalanus octandrus (Hoffmanns. ex Roem. & Schult.) Sothers & Prance, Maranthes robusta (Oliv.) Prance, and Parinari excelsa Sabine. Tissue was taken from herbarium collections or leaf samples dried in silica. Total DNA was extracted using standard methods. A separate Illumina library was prepared for each sample, and the libraries were then multiplexed in groups of 24 or 48. The pools were sequenced on HiSeq 2000-2500 high-throughput sequencers, yielding 101-nucleotide pair-ended DNA reads, or the more 

recent HiSeq 3000 sequencer, yielding 150 pair-ended reads. Each run produces *c*. 700 giga
bases in total. Runs generated for Bardon *et al.* (2016) were treated as new accessions and
reassembled *de-novo* using the bioinformatic pipeline described below.
Plastome assembly was performed on a local cluster running Linux CentOS version

6.7. We used the NOVOplasty organelle genome assembler version 2.7.2 (Dierckxsens et al., 2016). We assumed a genome size range of 140–180 kbp, K-mer size of 39 and disabled the 'variant detection' option. We obtained unique circularized plastid genomes for 54 specimens. For another 58 specimens, we set a reference sequence to guide the assembly (using Licania canescens Benoist available in NCBI NC300566). In some cases, NOVOplasty returns two or more optional genomes, corresponding to large inversions, and we manually selected the option matching gene order. Points of reference of the circularized plastid genomes were aligned using the CSA software (Fernandes et al., 2009). For the remaining 51 specimens (30% of our final dataset), we mapped the reads directly against a reference plastid genome using the 'map to reference' option in Geneious version 9.0.5. 

Plastomes were then rotated to a common starting point, and aligned using MAFFT version 7.222 (Katoh et al., 2017). The first raw alignment of 163 plastomes was initially of 207,248 nucleotides. It was manually edited to remove ambiguous characters produced at the assembly stage. We annotated the alignment for Chrysobalanaceae by using that previously published for Hirtella physophora Mart. & Zucc. by Malé et al. (2014; accession NC 024066 on NCBI). The alignment was realigned with this plastome, and annotations were transferred to all sequences in Geneious using the 'transfer annotations' option. Within the alignment, we also carefully checked the reading frames of the coding DNA sequences (CDS).

RECONSTRUCTION AND DATING OF THE CROWN AGE OF CHRYSOBALANACEAE

To reconstruct a dated phylogenetic tree of the family, we used a two-step approach. We estimated divergence times for the crown node of Chrysobalanaceae and the deeper divergences in the family. For this first analysis, we selected high-quality plastid genomes spanning Malpighiales, together with representatives of the main clades of the family. We included only CDSs, which resulted in a high-quality global alignment, with 20 taxa, 19 members of Malpighiales (including five Chrysobalanaceae), and one outgroup from Oxalidales [Sloanea latifolia (Rich.) K.Schum., Elaeocarpaceae]. We used this first analysis to infer the crown age of Chrysobalanaceae. We conducted a second analysis using the full

| 3<br>⊿                      | 173 | 163-plastome dataset, in which the crown age inferred from the first analysis was set as a                 |
|-----------------------------|-----|------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7<br>8<br>9<br>10 | 174 | constraint.                                                                                                |
|                             | 175 | The 20-taxon sequence matrix was used to reconstruct phylogenetic relationships                            |
|                             | 176 | using maximum likelihood in RAxML version 8.2.10 (Stamatakis, 2014). The best model was                    |
|                             | 177 | found to be the general time reversible model for site substitution, with a gamma site model               |
| 12                          | 178 | (GTR+ $\Gamma$ ) for all partitions, as identified using the JmodelTest2 software (Darriba <i>et al.</i> , |
| 13<br>14                    | 179 | 2012). We considered two scenarios: all CDSs as a single partition; and two partitions,                    |
| 15<br>16<br>17              | 180 | first/second codons and third codons. All analyses gave the same results, so we subsequently               |
|                             | 181 | analysed only the single partition. We ran the analysis on the CIPRES supercomputing portal                |
| 19                          | 182 | (Miller et al., 2010) using rapid bootstrapping with an automatic halting option and searching             |
| 20<br>21                    | 183 | for the best-scoring tree.                                                                                 |
| 22<br>23                    | 184 | To generate a time-calibrated tree, we relied on Bayesian relaxed molecular clock                          |
| 24<br>25                    | 185 | models as implemented in BEAST version 2.5.1 (Bouckaert et al., 2019) using the DNA                        |
| 25<br>26                    | 186 | matrix together with fossil constraints (also available on CIPRES). The input file was                     |
| 27<br>28                    | 187 | generated using the BEAUTi software. We imported the same alignment as used in the                         |
| 29<br>30                    | 188 | RAxML analysis. We also used the GTR+ $\Gamma$ model for each partition and assumed a relaxed              |
| 31                          | 189 | clock log-normal model (Drummond et al., 2006). We expected a Cenozoic age for the                         |
| 32<br>33                    | 190 | Chrysobalanaceae clade, and because our tree dating only used few internal priors, we set the              |
| 34<br>35                    | 191 | branching process prior to be the Yule process (or pure birth process; Condamine et al.,                   |
| 36<br>37                    | 192 | 2015).                                                                                                     |
| 38                          | 193 | For the age priors, the split between Malpighiales and Oxalidales was constrained by                       |
| 39<br>40                    | 194 | imposing a uniform prior between 103 and 112 My (constraint 1; Xi et al., 2012). The dating                |
| 41<br>42                    | 195 | of the flowering plant tree has recently been revisited using an extensive plastome dataset (Li            |
| 43                          | 196 | et al., 2019), and although Celastrales were proposed as a new sister group to Malpighiales,               |
| 44                          | 197 | the split between Malpighiales+Celastrales and Oxalidales was inferred at 106.2 Mya (range:                |
| 46<br>47                    | 198 | 93.2-125.0 Mya), close to the date proposed by Magallón et al. (2015), and our prior is                    |
| 48<br>49                    | 199 | consistent with both analyses.                                                                             |
| 50                          | 200 | We also used internal dating constraints, each modelled as uniform priors in the                           |
| 52                          | 201 | BEAST analysis as recommended by Condamine et al. (2015): the minimal age was that of                      |
| 53<br>54<br>55<br>56<br>57  | 202 | the fossil and the maximum age was set at 110 My, the stem age of Malpighiales. Fossils                    |
|                             | 203 | based on reproductive structures were selected over other fossils and obtained from carefully              |
|                             | 204 | documented studies (Parham et al., 2011). The stem age of Clusiaceae was constrained with                  |
| 58<br>59                    | 205 | Paleoclusia chevalieri Crepet & Nixon as the oldest fossil assigned to this order, dated at 89             |

206 Mya (Crepet & Nixon, 1998; constraint 2). We constrained the stem age of genus Parinari to

be > 19 My based on endocarp fossils recently found in Panama and reliably assigned to this genus (Jud et al., 2016; constraint 3). We also constrained the crown age of the Neotropical Chrysobalanaceae clade based on the fossil flower found in Dominican amber and reliably assigned to *Licania* section *Hymenopus* Benth. (Chambers & Poinar, 2010; constraint 4), which is likely to be > 16 My (see below). The stem age of the Euphorbiaceae clade was constrained at > 61 My (*Acalypha* pollen type found in China, reported by Xi *et al.*, 2012; constraint 5). The stem age of Salicaceae was constrained to be more than 48 Mya (fossil flower of Pseudosalix handleyi Boucher, Manchester & Judd; Boucher et al., 2003, constraint 6), the stem age of Caryocaraceae > 55 My (pollen of *Retisyncolporites angularis* González-Guzmán; Germeraad et al., 1968, constraint 7), and the stem age of Humiriacae > 37 My (fossil endocarp of Lacunofructus cuatrecasana Herrera, Manchester & Jaramillo; Herrera et al., 2012, constraint 8).

The default starting tree for BEAST is incompatible with the imposed age constraints, so we started the MCMC search using an ultrametric starting tree modified from the RAxML output tree. We used the chronos() function of the *ape* package (Paradis *et al.*, 2004) in the R software to generate an dated initial tree within age constraints consistent with the constraints described above. In the BEAST input file, we fixed the topology, i.e. we assumed that the input tree had the correct topology, and optimized only the parameters for evolutionary rates and branch lengths. This was achieved by manually removing the 'narrow exchange', 'wide exchange', 'Wilson Balding' and 'subtree slide' operators from the xml input file. MCMC was run for 200 million generations, sampling parameters and trees every 10000 generations. Convergence was evaluated using Tracer version 1.7.1 (Rambaut et al., 2018). The effective sampling sizes (ESS) of each parameter were checked at the end of each analysis and considered to be of good quality when > 200. Divergence times were computed using TreeAnnotator version 2.5.1 after the removal of the 25% burn-in part of the MCMC (Bouckaert et al., 2019). 

 

#### DATED PHYLOGENETIC RECONSTRUCTION FOR CHRYSOBALANACEAE

To construct a dated phylogenetic hypothesis for 163 specimens of Chrysobalanaceae, we
followed the same strategy described above for reconstruction of the dated phylogenetic tree
of Chrysobalanaceae. We used a two-partition model. All CDS were treated as a first
partition. All other regions, including intergenic regions, intronic regions, rRNA and tRNA,
were a second partition. Prior to partitioning the aligned matrix, we removed the second copy

| 2                                                              |     |                                                                                                     |
|----------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                          | 241 | of the inverted repeat, to avoid double weighting the phylogenetic signal of the inverted           |
|                                                                | 242 | repeat.                                                                                             |
|                                                                | 243 | Considerable age uncertainty has surrounded the biogeographical history of                          |
|                                                                | 244 | Chrysobalanaceae, which in part traces back to the attribution of Eocene leaf and pollen            |
|                                                                | 245 | fossils from North America to Chrysobalanaceae (Berry, 1916; Wodehouse, 1932),                      |
| 11                                                             | 246 | constraining the crown age of Chrysobalanaceae to being > 50 My (Davis et al., 2005; Xi et          |
| 13<br>14<br>15<br>16<br>17                                     | 247 | al., 2012; Bardon et al., 2012). However, Jud et al. (2016) found no solid evidence for fossils     |
|                                                                | 248 | of Chrysobalanaceae prior to the Miocene. In the Neotropics, the first undisputed evidence of       |
|                                                                | 249 | fossils of Chrysobalanaceae is demonstrated with flowers and fruits, possibly of Licania            |
| 18<br>19                                                       | 250 | section Hymenopus (Chambers & Poinar, 2010), preserved in amber from the northern                   |
| 20<br>21<br>22                                                 | 251 | mountain range of the Dominican Republic, dated to 15-20 Mya (Iturralde-Vinent & McPhee             |
|                                                                | 252 | 1996; Iturralde-Vinent, 2001), here assumed to be > 16 Mya. We also used three independent          |
| 23<br>24                                                       | 253 | fossils of Parinari, including wood and fruits from 21 Mya in Panama (Jud et al., 2016),            |
| 25<br>26                                                       | 254 | fruits from 19 Mya in Ethiopia (Tiffney et al., 1994) and wood from the mid-Miocene in              |
| 27<br>28                                                       | 255 | India (Srivastava & Awasthi, 1996).                                                                 |
| 28<br>29                                                       | 256 | The dated tree was produced using BEAST v.2.5.1 using the same DNA matrix as for                    |
| 30<br>31                                                       | 257 | the RAxML analysis, linking the relaxed clock, log-normal models between the two                    |
| 32<br>33                                                       | 258 | partitions. The crown of Chrysobalanaceae was constrained with a Gaussian prior of mean 36          |
| 34<br>25                                                       | 259 | My with variance +/- 2 My, consistent with the first analysis. We also used constraints 3 and       |
| 35<br>36                                                       | 260 | 4 of the first analysis: the stem age of <i>Parinari</i> was set to be > 19 My, and the Neotropical |
| 37<br>38                                                       | 261 | Chrysobalanaceae clade was set to be older than 16 My. MCMC was run for 100 million                 |
| 39<br>40                                                       | 262 | generations, sampling parameters and trees every 10,000 generations. Divergence times were          |
| 41                                                             | 263 | computed using TreeAnnotator after the first 25% of the trees was discarded.                        |
| 42<br>43                                                       | 264 |                                                                                                     |
| 44<br>45                                                       | 265 | DIVERSIFICATION AND BIOGEOGRAPHIC ANALYSES                                                          |
| 46                                                             | 266 |                                                                                                     |
| 47<br>48                                                       | 267 | We first tested whether the dated phylogenetic tree was consistent with phases of accelerated       |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59 | 268 | or decelerated diversification. One prediction is that the major orogenic changes during the        |
|                                                                | 269 | Miocene spurred plant diversification (Lagomarsino et al., 2016; Pérez-Escobar et al., 2017).       |
|                                                                | 270 | We estimated rates of diversification and shifts in these rates using the Bayesian analysis of      |
|                                                                | 271 | macroevolutionary mixture (BAMM, Rabosky et al., 2013; Rabosky 2014). BAMM tests the                |
|                                                                | 272 | hypothesis that diversification has occurred homogeneously across the phylogenetic tree, the        |
|                                                                | 273 | alternative being that shifts in diversification rate have occurred on specific branches of the     |
| 60                                                             | 274 | tree. We used the initial control file with priors on rate parameters inferred by the function      |

setBAMMpriors() of the BAMMtools package in R (Rabosky et al., 2014). BAMM also provides an analytical correction for incompletely sampled trees, and here we assigned a sampling weight to each genus. The species sampling rates within the genera ranged from 13% (Moquilea Aubl.), to 57% (Couepia), for a 29% mean across the family. For Hymenopus (Benth.) Sothers & Prance, which appears in two separate clades in our analysis, we assumed an equal sampling of both clades (set at 36%). BAMM can also be used to compute diversification rates within subclades of the tree. We ran the reverse-jump MCMC simulation for ten million iterations to ensure convergence, which was assessed with the EffectiveSize() function of BAMMtools. For each of the four well-sampled Neotropical genera (Couepia, Hirtella, Licania, Moquilea), plus Parinari, we inferred the speciation rates from the BAMM run. This was done by selecting the subclade using the ape R package (Paradis et al., 2004), and analysing the inferred diversification parameters on it. We also reconstructed the biogeographic history of Chrysobalanaceae by inferring the most likely ancestral area(s). To this end, we attributed each species to a region. Because of the Neotropical focus of this study, we defined two broad regions outside the Neotropics: Africa and Southeast Asia (including Oceania). In the Neotropics, we defined five regions: Caribbean and Central America (including the Chocó region of Colombia, and southeast USA), savannas and seasonally dry tropical forests (including the Llanos of Colombia and Venezuela, cerrado in Brazil and dry forests such as the Chiquitania in Bolivia and caatinga in Brazil), Atlantic rainforest, the Andes and Amazonia. To reconstruct the ancestral area(s), we used an unconstrained dispersal-extinction-cladogenesis (DEC) model (Ree & Smith, 2008) as implemented in the R-package BioGeoBEARS version 1.1.2 (Matzke, 2014). We did not perform a model comparison approach including the founder-event speciation option of BioGeoBEARS because taxon sampling in our dataset remains too incomplete and because this approach has limits (Ree & Sanmartín, 2018). RESULTS The 163 plastomes had a mean length of 162,204 +/-1195 bp and were fully assembled, except for Licania densiflora Kleinhoonte (151,268 bp), Parinari curatellifolia Planch. ex Benth. (157,972 bp) and *Licania micrantha* Miq. (158,098 bp). Average sequencing depth was 369 +/- 233 (range: 30-1,110). Manual editing of the DNA sequences focused on just 42 

| 1<br>2                     |     |                                                                                               |
|----------------------------|-----|-----------------------------------------------------------------------------------------------|
| 3                          | 308 | bp or less than 0.03% of the plastome, except for four species: Kostermanthus heteropetalus   |
| 5                          | 309 | (Scort. ex King) Prance (2,479 edits, close to K. robustus Prance, which had only 43 edits),  |
| 6<br>7                     | 310 | Bafodeya benna2 (Scott-Elliot) Prance (1,726 edits, close to Bafodeya benna1 with 286 edits), |
| 8<br>9                     | 311 | Parinariopsis licaniiflora (Sagot) Sothers & Prance (1,075 edits) and Cordillera platycalyx   |
| 10                         | 312 | (Cuatrec.) Sothers & Prance (1,040 edits). The full DNA alignment and dated tree is available |
| 12                         | 313 | on Dryad (https://doi.org/10.5061/dryad.ghx3ffbkp).                                           |
| 13<br>14                   | 314 | The 20-taxon reconstruction was based on an alignment of coding DNA sequences of              |
| 15<br>16                   | 315 | 61,953 sites and 7,292 patterns (Supplementary Information, Fig. S1). The crown age of        |
| 17                         | 316 | Chrysobalanaceae was inferred in the late-Eocene, at c. 38.9 Mya (95% highest posterior       |
| 18<br>19                   | 317 | density, 95% HPD: 34.2–43.9 Mya). Kostermanthus Prance and Bafodeya Prance ex. F.White        |
| 20<br>21                   | 318 | were sister to the rest of Chrysobalanaceae.                                                  |
| 22                         | 319 | The phylogenetic reconstruction of Chrysobalanaceae was based on 67,317 CDS sites             |
| 23<br>24                   | 320 | with 3,335 patterns and 82,566 non-CDS sites with 13,935 patterns (Figs 1–3). Of the 162      |
| 25<br>26                   | 321 | internal nodes, 114 (70%) had bootstrap percentages > 90, and 133 (82%) had bootstrap         |
| 27<br>28                   | 322 | percentages > 70. Most poorly resolved nodes correspond to within-genus splits and/or recent  |
| 29<br>30<br>31<br>32<br>33 | 323 | events. The tree inferred from RAxML with branch lengths showed no heterogeneity in           |
|                            | 324 | substitution rates across the family (Supplementary Information, Fig. S2).                    |
|                            | 325 | Excluding Kostermanthus-Bafodeya, three clades are mainly African (A-C, Fig 1).               |
| 34<br>35                   | 326 | Pantropical Parinari was inferred to have diversified 7.6 Mya (95% HPD: 5.7–9.3 Mya),         |
| 36                         | 327 | although its stem age was 28 My (95% HPD: 23–33.2 My).                                        |
| 37<br>38                   | 328 | Clade D is predominantly Neotropical and displays a secondary dispersal from the              |
| 39<br>40                   | 329 | Neotropics into Oceania and Southeast Asia (Hunga Pancher ex Prance and Angelesia), which     |
| 41<br>42                   | 330 | diverged from Neotropical Exellodendron Prance 15.9 Mya (95% HPD: 11.4–19.8 Mya). The         |
| 42                         | 331 | Neotropical clade and clade D diversified in the early Oligocene, 33.6 Mya (95% HPD: 30.6-    |
| 44<br>45                   | 332 | 36.9 Mya).                                                                                    |
| 46<br>47                   | 333 | The crown age of the Neotropical clade was inferred at 29.1 My (95% HPD: 25.5-                |
| 48                         | 334 | 32.6 My, Fig 2). Moquilea, Couepia, Leptobalanus (Benth.) Sothers & Prance and Licania        |
| 49<br>50                   | 335 | sensu Sothers et al. (2016) were monophyletic. Species-rich genera of the Neotropical clade   |
| 51<br>52                   | 336 | diversified in the mid to late Miocene: Moquilea 15.1 Mya (95% HPD: 11.9-18.5 Mya),           |
| 53                         | 337 | Couepia 10.3 Mya (8.4–12.3 Mya), Leptobalanus 10.3 Mya (7.6–13.0 Mya) and Licania 16.8        |
| 55                         | 338 | Mya (13.6–20 Mya).                                                                            |
| 56<br>57                   | 339 | Gaulettia (Sothers et al., 2014) and Neotropical Hirtella are monophyletic (Fig. 3).          |
| 58<br>59                   | 340 | The myrmecophilous species of Hirtella (Hirtella section Myrmecophila Prance; seven           |
| 60                         | 341 | species), did not form a clade. The sister of Gaulettia (23.4 Mya) included Hirtella plus a   |
|                            |     |                                                                                               |

complex of seven groups with low bootstrap support: *Hymenopus* cf. occultans (Prance) Sothers & Prance, Microdesmia (Benth.) Sothers & Prance, Hymenopus1, Afrolicania Mildbr., Cordillera Sothers & Prance, Parinariopsis (Huber) Sothers & Prance and Hymenopus2. Except for Hymenopus, each genus was monophyletic. However, based on bootstrap support in this analysis, we cannot exclude the possibility that the clades of Hymenopus (Fig. 3) form a single group. The Neotropical genera in Figure 3 also diversified in the mid to late Miocene: Gaulettia 10.8 Mya (7.8-13.8 Mya), Hirtella 10.4 Mya (8.1-13.1 Mya), Hymenopus1 12.6 Mya (9.3-16 Mya) and Hymenopus2 12.4 Mya (9.5-15.8 Mya). The position of Afrolicania, the only non-Neotropical species of the core Neotropical clade, suggests a single dispersal event from the Neotropics to Africa 24 Mya (95% HPD: 22.4-25.6 Mya). The BioGeoBEARS analysis detected that the combined Neotropical clade and clade D were unambiguously assigned to Amazonia, with secondary dispersal events into Central America, the Atlantic forest and savannas/dry tropical forests (Fig. 4). Migration events to the cerrado were mainly in the Pliocene, confirming Simon et al. (2009). The BAMM analysis converged (effect size for number of shifts was > 1,000 with a log-likelihood > 400). It identified four shifts in diversification rates as the most likely (Fig. 5). A rate-through time analysis for Chrysobalanaceae demonstrated a clear increase in speciation rates after 10 Mya (Fig. 5). The four outlying clades correspond to *Parinari*, Moquilea+Couepia, Licania+Leptobalanus and Hirtella [excluding H. recurva (Spruce ex Prance) Sothers & Prance and H. punctillata Ducke]. The most rapid diversification was in Hirtella minus H. punctillata and H. recurva, for which BAMM inferred a speciation rate of  $\lambda$ =0.60 (in lineages per My, 90% confidence interval: 0.42–0.85), compared with a family mean-speciation rate of  $\lambda$ =0.23 (0.19–0.27), and family mean-speciation rate excluding *Hirtella* of  $\lambda$ =0.20 (0.17–0.25). A rate-through time analysis for *Hirtella* demonstrates a decline in rate through time (Fig. 5, right panels). Parinari was the other clade that exhibited a significantly higher speciation rate compared to the average but with much greater confidence intervals,  $\lambda = 0.49 (0.14 - 0.96)$ . DISCUSSION In this study, we provide a comprehensive analysis of the evolutionary history of Chrysobalanaceae based on the analysis of 163 fully sequenced plastid genomes, including 

Page 13 of 53

about a third of the species currently recognized in the family. As discussed below, our results provide new support for the Miocene origin of the Neotropical flora, and to our knowledge it is the first to be built on a fully sampled matrix of plastid genome data for a Neotropical tree family. Our study was based on an aligned length of 162,204 bp, far more than recently published studies on Neotropical plant diversification. 

In contrast, virtually all existing evolutionary papers of Neotropical plant families have been based on selected plastid markers combined with sequences from the ribosomal cluster (internal transcribed spacer). Important recent studies on the Miocene diversification of Amazonian clades have focused on Annonaceae based on an aligned length of 7,960 bp (Pirie et al., 2018), Meliaceae with 5,207 bp (Koenen et al., 2015) and in clade Detarioideae in Fabaceae with 2,463 bp (Schley et al., 2018). In our study, the most poorly sampled species had a 93% plastome coverage. Generally, coverage is in excess of 99%, and the matrix was almost complete. We also included 156 species, 131 of which are Neotropical, with much increased taxon and character sampling compared to previous efforts. The results include important new biogeographic and systematic results about Chrysobalanaceae and confirm results for the Neotropical flora, but with much greater confidence than the other studies due to the greater amounts of data included. 

#### EARLY DIVERSIFICATION OF CHRYSOBALANACEAE

Bafodeya plus Kostermanthus were found to be sister to the rest of the family. Both results were unexpected based on floral morphology and previous molecular results. Bafodeya was placed in the Parinari-Neocarva clade, whereas Kostermanthus was proposed to have a relationship to Atuna Raf. or Neotropical Acioa Aubl. and African Dactyladenia Welw., although none of these relationships was well supported (Yakandawala et al., 2010). Kostermanthus occurs in Southeast Asian rainforests in mixed dipterocarp and heath associations. Monospecific Bafodeya is endemic to mid-elevation sandstone plateaus of West Africa. Euphronia Mart & Zucc., the sole genus of Euphroniaceae (sister family to Chrysobalanaceae; Xi et al., 2012), is endemic to the Guiana Shield and restricted to white sand or rocky areas. Thus, Kostermanthus and Bafodeya share ecological affinities with *Euphronia*. If the phylogenetic structure proposed here is confirmed, this suggests that the ancestral habitat of Chrysobalanaceae was nutrient-poor and sandier than modern tropical rainforests. It would be important to reassess the position of both genera, and this is a good example where nuclear gene data would be helpful. 

The crown age of the *Parinari* clade was inferred at 9 My (95% HPD: 8.2–9.8 My). *Parinari* possesses the most reliable fossil record of the family, due to the diagnostic features of its endocarp (Jud et al., 2016). The early Miocene Parinari fossils in Africa (Tiffney et al., 1994) and South America (Jud *et al.*, 2016) predate by c. 10 My the crown age of *Parinari*, consistent with their high rates of speciation and extinction. Bardon et al. (2016) supported an African origin for Parinari due to the native African distribution of Neocarya, but the increased sampling of our study leads to a less clear-cut result. The two earliest-diverging clades in Parinari contain all five Neotropical accessions. One clade with a crown age 7.4 My contains all Palaeotropical accessions. Noteworthy is the position of P. nonda F.Muell. ex Benth., from tropical Australia and Papua New Guinea, close to African P. capensis Harv. (inferred age of 0.37 My for the *P. capensis/P. nonda* split), which suggests a recent long-distance dispersal event from Africa to Australasia. Overall, if more research on Parinari confirms the crown age of < 10 My, it would be a striking case of a pantropically distributed genus of long-lived tropical trees with a trans-oceanic dispersal (Renner, 2004). On the whole, our species sampling is currently insufficient to confidently resolve the biogeographical history of Parinari because our results are based on sampling of only 11 species of the 39 currently described *Parinari* spp. Clade B has a strong African component. Increased sampling for *Maranthes* (five of

the 12 species now included) produced a date of 14.4 Mya (95%HPD: 10.9–18.1 Mya). Maranthes is present on all three continents, including the Neotropical species: M. panamensis (Standl.) Prance & F.White, which our analysis places as sister to M. gabunensis (Engl.) Prance. This suggests that *M. panamensis* is the product of a recent dispersal from Africa. We also emphasize that *Magnistipula* Engl. remains an unresolved puzzle in Chrysobalanaceae and further research should include more comprehensive taxon coverage including all three subgenera. Clade C also contains only African species: Dactyladenia plus the African Hirtella spp. (Prance & White, 1988; p. 149), which need to be revised and segregated from Hirtella based on our results.

Clade D contains 28 species (14 Neotropical) and five genera. Hunga (endemic to New Caledonia) and Angelesia (more broadly Australasian) are sister to Neotropical Exellodendron (one species out of five sampled here). Thus, the Angelesia-Hunga clade probably results from a long-distance dispersal event from the Neotropics to Australasia between 9.3 and 15.9 Mya. Cases of dispersal from South America to Australasia via Antarctica probably occurred before the cooling event of the mid-Oligocene, c. 30 Mya 

| 2                                                                                                                                                          |     |                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------|
| 3<br>4<br>5                                                                                                                                                | 442 | (Siegert, 2008), but our dating seems to reject this scenario, pointing instead to a much more   |
|                                                                                                                                                            | 443 | recent dispersal.                                                                                |
| 6<br>7                                                                                                                                                     | 444 | In clade D, Chrysobalanus icaco L. also has a well-documented amphi-Atlantic                     |
| 8<br>9<br>10<br>11                                                                                                                                         | 445 | distribution. We include for the first time all three species of Chrysobalanus, C. icaco, C.     |
|                                                                                                                                                            | 446 | cuspidatus Griseb. and C. prancei I.M.Turner (formerly C. venezuelanus Prance), which were       |
| 12                                                                                                                                                         | 447 | divergent based on plastid genome information, with an early divergence in the mid Miocene       |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> </ol> | 448 | at c. 12.4 Mya (95% HPD: 9.1–15.7 Mya). It would be important to further explore the             |
|                                                                                                                                                            | 449 | divergence of the African populations of C. icaco, which includes two subspecies. The            |
|                                                                                                                                                            | 450 | placement of Acioa sister to Chrysobalanus differs from that in Bardon et al. (2016), and        |
|                                                                                                                                                            | 451 | increased taxon sampling proved important to further resolve this clade.                         |
|                                                                                                                                                            | 452 | We emphasize that our dated phylogenetic tree is based on limited fossil material and            |
|                                                                                                                                                            | 453 | discovery of new fossils could alter these dates. The crown of Chrysobalanaceae was dated at     |
|                                                                                                                                                            | 454 | c. 38.9 Mya (95% HPD: 34.2–43.9 Mya), slightly older than a previous estimate of 33 Mya          |
| 25<br>26                                                                                                                                                   | 455 | (Bardon et al., 2016). This discrepancy is easily explained because this analysis is based on a  |
| 27<br>28                                                                                                                                                   | 456 | better sampling of the early-diverging clade in Chrysobalanaceae, and we used flat priors        |
| 29                                                                                                                                                         | 457 | rather than log-normal ones (Condamine et al., 2015).                                            |
| 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                             | 458 |                                                                                                  |
|                                                                                                                                                            | 459 | STRUCTURE OF THE CORE NEOTROPICAL CLADE                                                          |
|                                                                                                                                                            | 460 |                                                                                                  |
|                                                                                                                                                            | 461 | The main focus of this study was to better resolve the evolutionary history of                   |
|                                                                                                                                                            | 462 | Chrysobalanaceae in the Neotropics. Prior to 2014, the 'core Neotropical clade' (> 99%           |
|                                                                                                                                                            | 463 | Neotropical), included only three genera, but no fewer than 395 species (Prance, 1972; Prance    |
| 41                                                                                                                                                         | 464 | & Sothers, 2003). After redefinition of Couepia (Sothers et al., 2014) and Licania (Sothers et   |
| 42<br>43                                                                                                                                                   | 465 | al., 2016), the structure of the core Neotropical clade has been considerably clarified.         |
| 44<br>45                                                                                                                                                   | 466 | Here we recognize 12 genera of Chrysobalanaceae as members of the core Neotropical               |
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                     | 467 | clade: Neotropical Hirtella (105 species), Geobalanus Small (three species), Microdesmia         |
|                                                                                                                                                            | 468 | (two species), Cordillera (one species), Parinariopsis (one species), Moquilea (54 species),     |
|                                                                                                                                                            | 469 | Couepia (62 species), Leptobalanus (31 species), Licania (100 species), Gaulettia (nine          |
|                                                                                                                                                            | 470 | species), Hymenopus (28 species), and Afrolicania (1 species) the only non-Neotropical genus     |
|                                                                                                                                                            | 471 | in this clade. In addition, Exellodendron (five species) and Acioa (six species) are exclusively |
|                                                                                                                                                            | 472 | Neotropical but outside the core clade.                                                          |
|                                                                                                                                                            | 473 | The stem age of the core Neotropical clade is estimated in the mid-Eocene, and the               |
|                                                                                                                                                            | 474 | crown age is in the early Oligocene c. 29.1 Mya (25.5–32.6 Mya). According to the                |
|                                                                                                                                                            | 475 | biogeographical analysis, this core Neotropical clade diversified in Amazonia. The various       |

non-Amazonian clades (notably Couepia in the Atlantic rainforest and beyond the Andes into the Chocó and Central America) are interpreted as dispersal events. This scenario confirms the more general analysis of Antonelli et al. (2018), but also shows that it is difficult to attribute extant diversity to a single biome: in the case of Chrysobalanaceae, diversification in Amazonia was preceded by a long extra-Neotropical evolutionary history, even potentially outside the forest biome. 

We now turn to the sister clade of Gaulettia, which contains some of the unresolved taxonomic issues in Chrysobalanaceae. This clade, dated at 26.3 My (95% HPD: 24.7-27.9 My), includes *Hirtella* plus seven clades with low bootstrap support for their inter-relationships: Microdesmia, Hymenopus1, Afrolicania, Cordillera, Parinariopsis, *Hymenopus*<sup>2</sup> and *Hymenopus* cf. *occultans*. Our analysis suggests that *Hymenopus* may include two genera (designated as 1 and 2), but further research is needed to confirm this proposal, especially in the light of the weak support for their separation. One hypothesis for the lack of support in this clade is that it may have resulted from a single diversification event giving rise to a variety of new forms associated with the end of the Oligocene. Global warming at this time was associated with a loss of palynofloral diversity in the foothills of the Andes (Jaramillo et al., 2006), which could be due to the rapid Andean uplift around this time (Hoorn *et al.*, 2010). The current distribution of these genera sheds little light on a possible allopatric diversification scenario, in part because the extant distribution due to cultivation of *Microdesmia* species may not reflect their historical distribution (Sothers *et al.*, 2016), and also because extant species of both *Hymenopus* and *Hirtella* have large modern distributions. Bardon et al. (2016) was published before the generic realignments illustrated here. This tree also differs from that in Sothers et al. (2016) based on plastid and nuclear (Xdh, ITS) DNA sequences. 

#### EVOLUTIONARY HISTORY OF NEOTROPICAL CHRYSOBALANACEAE GENERA

According to our results, onset of diversification for seven genera spanned the mid Miocene:

Moquilea (15.1 Mya), Couepia (10.3 Mya), Leptobalanus (10.3 Mya), Licania (16.8 Mya),

Hirtella ss. (10.4 Mya), Gaulettia (10.8 Mya), Hymenopus1 (12.4 Mya) and Hymenopus2

(12.6 Mya). This precedes the initiation of the modern Amazon River and demise of the Pebas wetland (Figueiredo et al., 2009).

Against the backdrop of this geological and climatic setting, the evolutionary history of *Couepia* is informative. The genus clearly split into two groups, one with an affinity for 

dry forests (paraensis clade) with a recent (early Pliocene) unique dispersal to the Atlantic rainforest. In the other (guianensis clade) there was an early-diverging clade of Central American/Chocó species sister to the rest, which are predominantly Amazonian. From the ancestral area reconstruction analysis, we were unable to assign this clade to a specific region, although the most likely area is Amazonia+Central America/Chocó. Finally, Couepia spp. currently found in the Atlantic rainforest of Brazil seem to have resulted from two independent dispersals, both post-Miocene. Moquilea, Licania, and Hymenopus have species in both Amazonia and Central America. However, for these, it would be important to better sample the populations on both sides of the Andes to ensure that these are not divergent "cryptic" species. If our result is confirmed, cross-Andean dispersals have occurred frequently since the Pleistocene.

Sister to the rest of *Hirtella* is a clade of two species including *H. recurva* (Spruce ex Prance) Sothers & Prance (Sothers *et al.*, 2014), found at >2,000 m in the Ecuadorian Andes, and *H. punctillata* Ducke, collected at >1,000 m in the Serra do Aracá tepui (Prance & Johnson, 1992). The fact that these two species cluster together, although distant and morphologically distinct, is unexpected. Aside from these two species, the remaining large clade of *Hirtella* did not diversify before the end of the Miocene at c. 6 Mya. Thus, *Hirtella* is an example of explosive diversification, with a speciation rate inferred c. 0.60 lineages per My (90% confidence interval: 0.42–0.85). Diversification in *Hirtella* thus has a comparable magnitude to that in *Inga* Miller, which is thought to have diversified around 10 Mya, producing c. 300 species (Dexter et al., 2017), and two genera of Meliaceae, Trichilia P.Browne and Guarea F.Allemão, as reported by Koenen et al. (2015). All four genera have their centre of diversity in Amazonia, and it is thus tempting to speculate that the timing of these events is consistent with a westward expansion of Amazonian forests after drainage of the Pebas wetland (Figueiredo et al., 2009). However, it is also possible that ecological attributes of these groups may have played a role: these genera are predominantly understory plants, and their seeds are dispersed by animals (Baker et al., 2014). Remarkably, like Inga, *Hirtella* has a well-documented association with ants, and this could be a major factor in their diversification (Kursar et al., 2009). 

We failed to find support for a single myrmecophilous group in *Hirtella*, meaning that the myrmecophilous association has been repeatedly derived in the genus. However, an alternative interpretation is that incomplete lineage sorting is prevalent in this recent clade, and that plastid genomes are unable to uncover such shallow phylogenetic relationships.

Greater species and regional sampling would be necessary to confirm relationships in this intriguing group.

This analysis included only a few species with multiple accessions, and some of these revealed surprises. Two accessions of *Parinari excelsa* Sabine (Parque Estadual Cristalino, Brazil, and Saint Laurent du Maroni, French Guiana) fell into separate clades, and so did the accessions of *Couepia bracteosa* (Sinnamary, French Guiana, and Manaus, Brazil), Leptobalanus octandrus (Manaus and São Paulo, Brazil) and Hymenopus heteromorphus (Benth.) Sothers & Prance (Régina, French Guiana and Manaus). In all these cases, the accessions were from distant localities. One explanation may be that there are actually several cryptic, or previously unreported, species within the currently large ranges of these species. With more comprehensive sequencing of targeted species across their distribution, it will be possible to assess the prevalence of such entities in Chrysobalanaceae. This situation probably holds more generally across Amazonian plant families (Misiewicz & Fine, 2014; Loiseau et al., 2019). 

### ON THE USE OF PLASTID GENOMES TO INFER THE EVOLUTIONARY HISTORY OF TROPICAL FLOWERING PLANTS

High-throughput technologies have greatly facilitated the sequencing of plastid genomes and these have been used in plant phylogenomics for well over a decade (Jansen et al., 2007; Moore et al., 2007; Straub et al., 2012). About 500 complete flowering plant plastomes had been sequenced by 2014 (Wicke & Schneeweiss, 2015), and there were close to 5,000 fully sequenced plastomes representing > 1,300 genera available on the NCBI website just five years later (July 2019).

Plastomes have been used to infer phylogenetic relationships in Poales (Givnish et al., 2010), Malpighiales (Xi et al., 2012), Zingiberales (Barrett et al., 2013), all angiosperms (Ruhfel et al., 2014), Apocynaceae (Straub et al., 2014), Rosaceae (Zhang et al., 2017) and Caryophyllales (Yao *et al.*, 2019). In such analyses, proper curation of data (Philippe *et al.*, 2011) and appropriate phylogenetic reconstruction methods (Gonçalves et al., 2019) have been crucial to ensure reliable results. Heterogeneity in evolutionary rates should be carefully considered, as it provides insights into modes of evolution (Ruhfel et al., 2014). 

Several mechanisms are known to impact the rate of evolution of plastomes. Groups with known symbiotic associations, such as mycoheterotrophy, show different evolutionary rates, due to gene silencing and loss (Wilke et al., 2011). Also, plastid genomes turn out to be 

biparentally inherited in at least 20% of the land plants (Zhang, 2010), suggesting the
potential for recombination and therefore a more complex picture than often assumed for
evolution of this compartment.

It is not known how often cytonuclear incongruence occurs in the tree of flowering plants, and previously found contradictions between plastid genome data and morphology may be solved using large nuclear gene datasets. For example, because of incomplete lineage sorting, recent and rapidly diversifying clades can be resolved only based on nuclear gene data, such as Andean *Espeletia* Mutis ex Humb. & Bompl. (Asteraceae; Pouchon *et al.*, 2018) and Australian *Nicotiana* L. (Solanaceae; Dodsworth *et al.*, 2020).

Targeted capture of hundreds of nuclear genes could bring even further insight into the question of plant diversification, as has been shown for the Neotropical palm clade Geonomateae (>3 million bp; Loiseau et al., 2019), Fabaceae (c. 1 million bp; Koenen et al., 2020) or land plants (Leebens-Mack et al., 2019). However, it is noteworthy that nuclear gene information did not radically transform the phylogenetic tree of Geonomateae (Roncal et al., 2012), and that plastid genome data were found to be consistent with nuclear gene data in Fabaceae except at the root node, the latter probably caused by incomplete lineage sorting (Koenen et al., 2020). Also, assembling such large nuclear gene datasets represents specific challenges, and phylogenetic reconstruction methods using these data are still in development (Zhang *et al.*, 2018). Although nuclear genes are necessary to resolve parts of the plant tree of life where plastid genomes are insufficiently informative, many Amazonian plant families have not been included in such phylogenetic work, and plastome analyses are a natural step to document systematic relationships and study Amazonian plant diversification.

#### CONCLUSIONS

Chrysobalanaceae have long been promoted as a model for the study of Neotropical diversification, but unravelling their systematics has represented a major challenge (Prance 1972; Prance & White, 1988; Yakandawala et al., 2010). Previously, we have proposed a phylogenetic analysis of the family based on 51 species with fully sequenced plastid genomes and an additional 88 species sequenced for only a few markers (Bardon et al., 2016). With a total of 163 sequenced plastomes in Chrysobalanaceae, and 156 species, the present study is a major update of this previous work and demonstrates that a more comprehensive strategy helps gain greater confidence on the monophyly of several genera, even if a few issues

| 1<br>2                                             |     |                                                                                                   |
|----------------------------------------------------|-----|---------------------------------------------------------------------------------------------------|
| 3                                                  | 610 | remain. In the future, it would be important to: explore whether the Hymenopus complex can        |
| 4<br>5                                             | 611 | be clarified, determine if nuclear DNA confirms the position of Bafodeya and Kostermanthus        |
| 6<br>7                                             | 612 | as sister to the rest of the family, examine the evolutionary history of Neotropical Hirtella and |
| 8<br>9                                             | 613 | of Parinari with better species coverage, and add more Magnistipula spp. to include all three     |
| 10                                                 | 614 | subgenera. For six lowland Amazonian genera of Chrysobalanaceae, we document                      |
| 12                                                 | 615 | accelerated diversification in the wake of the Andean uplift. This study thus provides support    |
| 13<br>14                                           | 616 | for the view that much of the extant Neotropical plant diversity has arisen within the past 15    |
| 15<br>16                                           | 617 | My, Amazonian diversification has played a key role in this diversification process and the       |
| 17                                                 | 618 | majority of diversification events have taken place in situ, rather than being the product of     |
| 18<br>19                                           | 619 | intercontinental dispersal.                                                                       |
| 20<br>21                                           | 620 |                                                                                                   |
| 22<br>23                                           | 621 | A CUNOWI EDGEMENTS                                                                                |
| 24                                                 | 622 | ACKNOWLEDGEMENTS                                                                                  |
| 26                                                 | 623 | We thank Fahien Condamine and Thomas Couvreur for commenting on an earlier manuscrint             |
| 27<br>28                                           | 624 | We gratefully acknowledge funding from "Programme Investissement d'Avenir" managed by             |
| 29<br>30                                           | 625 | Agence Nationale de la Recherche (CEBA ref ANR-10-I ABX-25-01: TIII IP ref ANR-10-                |
| 31                                                 | 626 | LABX-0041)                                                                                        |
| 33                                                 | 627 |                                                                                                   |
| 34<br>35                                           | 027 |                                                                                                   |
| 36<br>37                                           | 628 | REFERENCES                                                                                        |
| 38                                                 | 629 |                                                                                                   |
| 40                                                 | 630 | Antonelli A, Sanmartín I. 2011. Why are there so many plant species in the Neotropics?            |
| 41<br>42                                           | 631 | <i>Taxon</i> <b>60</b> : 403–414.                                                                 |
| 43<br>44                                           | 632 | Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL.                 |
| 45<br>46                                           | 633 | 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the              |
| 40                                                 | 634 | National Academy of Sciences 115: 6034–6039.                                                      |
| 48<br>49                                           | 635 | Bacon CD, Velásquez-Puentes FJ, Hoorn C, Antonelli A. 2018. Iriarteeae palms tracked              |
| 50<br>51                                           | 636 | the uplift of Andean Cordilleras. Journal of Biogeography 45: 1653–1663.                          |
| 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 637 | Baker TR, Pennington RT, Magallón S, Gloor E, Laurance WF. Alexiades M, Alvarez                   |
|                                                    | 638 | E, Araujo A, Arets EJMM, Aymard G de Oliveira AA, Amaral I, Arroyo L, Bonal                       |
|                                                    | 639 | B, Brienen RJW, Chave J, Dexter KG, Di Fiore A, Eler E, Feldpausch TR, Ferreira                   |
|                                                    | 640 | L, Lopez-Gonzalez G, van der Heijden G, Higuchi N, Honorio E, Huamantupa I,                       |
|                                                    | 641 | Killeen TJ, Laurance S, Leaño C, Lewis SL, Malhi Y, Schwantes Marimon B,                          |

| 2<br>3   | (1) | Maniman Innian BH, Mantaganda Mandaga A Naill D. Dažusla Mana MC, Ditman                   |
|----------|-----|--------------------------------------------------------------------------------------------|
| 4        | 042 | Marimon Junior BH, Monteagudo Mendoza A Nelli D, Penuela-Mora MC, Pitman                   |
| 5<br>6   | 643 | N, Prieto A, Quesada CA, Ramirez F, Ramirez Angulo H, Rudas A, Ruschel AR,                 |
| 7<br>0   | 644 | Salomão RP, de Andrade AS, Silva JNM, Silveira M, Simon MF, Spironello W, ter              |
| 9        | 645 | Steege H, Terborgh J, Marisol Toledo M, Armando Torres-Lezama A, Rodolfo                   |
| 10<br>11 | 646 | Vasquez R, Vieira ICG, Vilanova E, Vos VA, Phillips OL 2014. Fast demographic              |
| 12       | 647 | traits promote high diversification rates of Amazonian trees. Ecology Letters 17: 527-     |
| 13<br>14 | 648 | 536.                                                                                       |
| 15<br>16 | 649 | Baker WJ, Couvreur TLP. 2013. Global biogeography and diversification of palms sheds       |
| 17<br>19 | 650 | light on the evolution of tropical lineages. II. Diversification history and origin of     |
| 19       | 651 | regional assemblages. Journal of Biogeography 40: 286–298.                                 |
| 20<br>21 | 652 | Bardon L, Chamagne J, Dexter KG, Sothers CA, Prance GT, Chave J. 2012. Origin and          |
| 22<br>23 | 653 | evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics.    |
| 24       | 654 | Botanical Journal of the Linnean Society 171: 19–37.                                       |
| 25<br>26 | 655 | Bardon L, Sothers C, Prance GT, Malé PJG, Xi Z, Davis CC, Murienne J, García-              |
| 27<br>28 | 656 | Villacorta R, Coissac E, Lavergne S, Chave J. 2016. Unraveling the biogeographical         |
| 29       | 657 | history of Chrysobalanaceae from plastid genomes. American Journal of Botany 103:          |
| 30<br>31 | 658 | 1089–1102.                                                                                 |
| 32<br>33 | 659 | Barrett CF, Specht CD, Leebens-Mack J, Stevenson DW, Zomlefer WB, Davis JI. 2013.          |
| 34<br>35 | 660 | Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships  |
| 36       | 661 | among the tropical gingers (Zingiberales)? Annals of Botany 113: 119–133.                  |
| 37<br>38 | 662 | Bendich AJ. 2004. Circular chloroplast chromosomes: the grand illusion. The Plant Cell 16: |
| 39<br>40 | 663 | 1661–1666.                                                                                 |
| 41       | 664 | Berry EW. 1916. The lower Eocene floras of southeastern North America (vol. 91).           |
| 43       | 665 | Washington: US Government Printing Office.                                                 |
| 44<br>45 | 666 | Boucher LD, Manchester SR, Judd WS. 2003. An extinct genus of Salicaceae based on          |
| 46<br>47 | 667 | twigs with attached flowers, fruits, and foliage from the Eocene Green River Formation     |
| 48       | 668 | of Utah and Colorado, USA. American Journal of Botany 90: 1389–1399.                       |
| 49<br>50 | 669 | Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina,            |
| 51<br>52 | 670 | A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF,             |
| 53       | 671 | Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard           |
| 55       | 672 | MA, Wu C-H, Xie D, Zhang C, Stadler T, Drummond AJ. 2019. BEAST 2.5: an                    |
| 56<br>57 | 673 | advanced software platform for Bayesian evolutionary analysis. PLoS Computational          |
| 58<br>59 | 674 | <i>Biology</i> <b>15</b> : e1006650.                                                       |
| 60       |     |                                                                                            |

| 1<br>2               |     |                                                                                            |
|----------------------|-----|--------------------------------------------------------------------------------------------|
| 3                    | 675 | Chambers KL, Poinar Jr GO. 2010. The Dominican amber fossil Lasiambix (Fabaceae:           |
| 4<br>5               | 676 | Caesalpiniodeae?) is a Licania (Chrysobalanaceae). Journal of the Botanical Research       |
| 6<br>7               | 677 | Institute of Texas 4: 217–218.                                                             |
| 8<br>9               | 678 | Collinson ME. 1983. Fossil plants of the London Clay. London: Palaeontological Society.    |
| 10                   | 679 | Condamine FL, Nagalingum NS, Marshall CR, Morlon H. 2015. Origin and                       |
| 12                   | 680 | diversification of living cycads: a cautionary tale on the impact of the branching process |
| 13<br>14             | 681 | prior in Bayesian molecular dating. BMC Evolutionary Biology 15: 65.                       |
| 15<br>16             | 682 | Coyne JA, Orr HA. 2004. Speciation. Sunderland: Sinauer.                                   |
| 17                   | 683 | Crepet WL, Nixon KC. 1998. Fossil Clusiaceae from the Late Cretaceous (Turonian) of        |
| 18<br>19             | 684 | New Jersey and implications regarding the history of bee pollination. American Journal     |
| 20<br>21             | 685 | of Botany <b>85</b> : 1122–1133.                                                           |
| 22                   | 686 | Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new            |
| 24                   | 687 | heuristics and parallel computing. Nature Methods 9: 772.                                  |
| 25<br>26             | 688 | Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. 2005. Explosive                  |
| 27<br>28             | 689 | radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain         |
| 29                   | 690 | forests. The American Naturalist 165: E36–E65.                                             |
| 30<br>31             | 691 | Dexter KG, Lavin M, Torke BM, Twyford AD, Kursar TA, Coley PD, Drake C,                    |
| 32<br>33             | 692 | Hollands R, Pennington RT. 2017. Dispersal assembly of rain forest tree communities        |
| 34<br>35             | 693 | across the Amazon basin. Proceedings of the National Academy of Sciences 114: 2645–        |
| 36                   | 694 | 2650.                                                                                      |
| 37<br>38             | 695 | Dierckxsens N, Mardulyn P, Smits G. 2016. NOVOPlasty: de novo assembly of organelle        |
| 39<br>40             | 696 | genomes from whole genome data. Nucleic Acids Research 45: e18.                            |
| 41                   | 697 | Dodsworth S, Christenhusz MJM, Conran JG, Guignard MS, Knapp S, Struebig M,                |
| 42                   | 698 | Leitch AR, Chase MW. 2020. Extensive plastid-nuclear discordance in a recent radiation     |
| 44<br>45             | 699 | of Nicotiana section Suaveolentes (Solanaceae). Botanical Journal of the Linnean           |
| 46<br>47             | 700 | Society: https://doi.org/10.1093/botlinnean/boaa024.                                       |
| 48                   | 701 | Donoghue MJ, Edwards EJ. 2014. Biome shifts and niche evolution in plants. Annual          |
| 49<br>50             | 702 | Review of Ecology, Evolution, and Systematics 45: 547–572.                                 |
| 51<br>52             | 703 | Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant         |
| 53<br>54             | 704 | diversification. New Phytologist 207: 260–274.                                             |
| 55                   | 705 | Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating         |
| 56<br>57<br>58<br>59 | 706 | with confidence. <i>PLoS Biology</i> <b>4</b> : e88.                                       |

| 1<br>2      |     |                                                                                             |
|-------------|-----|---------------------------------------------------------------------------------------------|
| 3<br>4<br>5 | 707 | Eiserhardt WL, Couvreur TL, Baker WJ. 2017. Plant phylogeny as a window on the              |
|             | 708 | evolution of hyperdiversity in the tropical rainforest biome. New Phytologist 214: 1408-    |
| 6<br>7      | 709 | 1422.                                                                                       |
| 8<br>9      | 710 | Erkens RH, Chatrou LW, Maas JW, van der Niet T, Savolainen V. 2007. A rapid                 |
| 10<br>11    | 711 | diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from        |
| 12          | 712 | Central into South America. Molecular Phylogenetics and Evolution 44: 399-411.              |
| 13<br>14    | 713 | Fernandes F, Pereira L, Freitas AT. 2009. CSA: an efficient algorithm to improve circular   |
| 15<br>16    | 714 | DNA multiple alignment. BMC Bioinformatics 10: 230.                                         |
| 17          | 715 | Figueiredo J, Hoorn C, van der Ven P, Soares E. 2009. Late Miocene onset of the Amazon      |
| 18<br>19    | 716 | River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology         |
| 20<br>21    | 717 | <b>37</b> : 619–622.                                                                        |
| 22<br>23    | 718 | Fine PVA, García-Villacorta R, Pitman NC, Mesones, I, Kembel SW. 2010. A floristic          |
| 24          | 719 | study of the white-sand forests of Peru. Annals of the Missouri Botanical Garden 97:        |
| 25<br>26    | 720 | 283–305.                                                                                    |
| 27<br>28    | 721 | Fine PVA, Zapata, F, Daly DC. 2014. Investigating processes of neotropical rain forest tree |
| 29          | 722 | diversification by examining the evolution and historical biogeography of the Protieae      |
| 30<br>31    | 723 | (Burseraceae). Evolution 68: 1988–2004.                                                     |
| 32<br>33    | 724 | Gentry AH. 1982. Neotropical floristic diversity: phytogeographical connections between     |
| 34<br>35    | 725 | Central and South America, Pleistocene climatic fluctuations, or an accident of the         |
| 36          | 726 | Andean orogeny? Annals of the Missouri Botanical Garden 69: 557–593.                        |
| 37<br>38    | 727 | Germeraad JH, Hopping CA, Muller J. 1968. Palynology of Tertiary sediments from             |
| 39<br>40    | 728 | tropical areas. Review of Palaeobotany and Palynology 6: 189-348.                           |
| 41<br>42    | 729 | Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, de Pamphilis CW, Graham                |
| 43          | 730 | SW, Pires JC, Stevenson DW, Zomlefer WB, Briggs BG, Devall MR, Moore MJ,                    |
| 44<br>45    | 731 | Heaney JM, Soltis DE, Soltis PS, Thiele K, Leebens-Mack JH. 2010. Assembling the            |
| 46<br>47    | 732 | tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales.            |
| 48          | 733 | Annals of the Missouri Botanical Garden 97: 584–617.                                        |
| 49<br>50    | 734 | Gonçalves DJ, Simpson BB, Ortiz EM, Shimizu GH, Jansen RK. 2019. Incongruence               |
| 51<br>52    | 735 | between gene trees and species trees and phylogenetic signal variation in plastid genes.    |
| 53<br>54    | 736 | Molecular Phylogenetics and Evolution 138: 219–232.                                         |
| 55          | 737 | Gregory-Wodzicki KM. 2000. Uplift history of the central and northern Andes: a review.      |
| 56<br>57    | 738 | Geological Society of America Bulletin 112: 1091–1105.                                      |
| 58<br>59    | 739 | Haffer J. 2008. Hypotheses to explain the origin of species in Amazonia. Brazilian Journal  |
| 60          | 740 | of Biology <b>68</b> : 917–947.                                                             |

| 1<br>2   |                                                                                                    |                                                                                             |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2<br>3   | 741                                                                                                | Herrera F, Manchester SR, Jaramillo C. 2012. Permineralized fruits from the late Eocene     |  |  |  |  |  |
| 5        | 742                                                                                                | of Panama give clues of the composition of forests established early in the uplift of       |  |  |  |  |  |
| 6<br>7   | <sup>5</sup> 743 Central America. <i>Review of Palaeobotany and Palynology</i> <b>175</b> : 10–24. |                                                                                             |  |  |  |  |  |
| 8<br>9   | 744                                                                                                | Ho SY, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation |  |  |  |  |  |
| 10       | 745                                                                                                | of evolutionary divergence times. Systematic Biology 58: 367-380.                           |  |  |  |  |  |
| 11<br>12 | 746                                                                                                | Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I,           |  |  |  |  |  |
| 13<br>14 | 747                                                                                                | Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR,              |  |  |  |  |  |
| 15       | 748                                                                                                | Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A. 2010. Amazonia              |  |  |  |  |  |
| 17       | 749                                                                                                | through time: Andean uplift, climate change, landscape evolution, and biodiversity.         |  |  |  |  |  |
| 18<br>19 | 750                                                                                                | <i>Science</i> <b>330</b> : 927–931.                                                        |  |  |  |  |  |
| 20<br>21 | 751                                                                                                | Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SG, Dantas EL,                  |  |  |  |  |  |
| 22       | 752                                                                                                | Dino R, do Carmo DA, Chemale Jr, F. 2017. The Amazon at sea: onset and stages of            |  |  |  |  |  |
| 23<br>24 | 753                                                                                                | the Amazon River from a marine record, with special reference to Neogene plant turnover     |  |  |  |  |  |
| 25<br>26 | 754                                                                                                | in the drainage basin. Global and Planetary Change 153: 51-65.                              |  |  |  |  |  |
| 27<br>28 | 755                                                                                                | Hughes CE, Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of  |  |  |  |  |  |
| 28<br>29 | 756                                                                                                | plant diversification after uplift of the Andes. Proceedings of the National Academy of     |  |  |  |  |  |
| 30<br>31 | 757                                                                                                | Sciences of the United States of America 103: 10334–10339                                   |  |  |  |  |  |
| 32<br>33 | 758                                                                                                | Hughes CE, Pennington RT, Antonelli A. 2012. Neotropical plant evolution: assembling        |  |  |  |  |  |
| 34<br>25 | 759                                                                                                | the big picture. Botanical Journal of the Linnean Society 171: 1–18.                        |  |  |  |  |  |
| 35<br>36 | 760                                                                                                | Iturralde-Vinent MA, MacPhee RDE 1996. Age and paleogeographical origin of                  |  |  |  |  |  |
| 37<br>38 | 761                                                                                                | Dominican amber. Science 273: 1850–1852.                                                    |  |  |  |  |  |
| 39<br>40 | 762                                                                                                | Iturralde-Vinent MA. 2001. Geology of the amber-bearing deposits of the Greater Antilles.   |  |  |  |  |  |
| 41       | 763                                                                                                | Caribbean Journal of Science <b>37</b> : 141–167.                                           |  |  |  |  |  |
| 42<br>43 | 764                                                                                                | Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Müller            |  |  |  |  |  |
| 44<br>45 | 765                                                                                                | KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R,                |  |  |  |  |  |
| 46<br>47 | 766                                                                                                | McNeal JR, Kuehl JV, Boore JL. 2007. Analysis of 81 genes from 64 plastid genomes           |  |  |  |  |  |
| 48       | 767                                                                                                | resolves relationships in angiosperms and identifies genome-scale evolutionary patterns.    |  |  |  |  |  |
| 49<br>50 | 768                                                                                                | Proceedings of the National Academy of Sciences <b>104</b> : 19369–19374.                   |  |  |  |  |  |
| 51<br>52 | 769                                                                                                | Jaramillo C, Rueda MJ, Mora G. 2006. Cenozoic plant diversity in the Neotropics. Science    |  |  |  |  |  |
| 53       | 770                                                                                                | <b>311</b> : 1893–1896.                                                                     |  |  |  |  |  |
| 54<br>55 | 771                                                                                                | Jaramillo C, Romero I, D'Apolito C, Bayona G, Duarte E, Louwye S, Louwye S,                 |  |  |  |  |  |
| 56<br>57 | 772                                                                                                | Escobar J, Luque J, Carrillo-Briceño JD, Zapata V, More A, Schouten S, Zavada M,            |  |  |  |  |  |
| 58<br>59 | 773                                                                                                | Harrington G, Ortiz J, Wesselingh FP. 2017. Miocene flooding events of western              |  |  |  |  |  |
| 60       | 774                                                                                                | Amazonia. Science Advances 3: e1601693.                                                     |  |  |  |  |  |

| 1<br>2   |     |                                                                                           |
|----------|-----|-------------------------------------------------------------------------------------------|
| 3<br>4   | 775 | Jud NA, Nelson CW, Herrera F. 2016. Fruits and wood of Parinari from the early Miocene    |
| 5        | 776 | of Panama and the fossil record of Chrysobalanaceae. American Journal of Botany 103:      |
| 6<br>7   | 777 | 277–289.                                                                                  |
| 8<br>9   | 778 | Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence            |
| 10       | 779 | alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: |
| 12       | 780 | 1160–1166.                                                                                |
| 13<br>14 | 781 | Koenen EJ, Clarkson JJ, Pennington TD, Chatrou LW. 2015. Recently evolved diversity       |
| 15<br>16 | 782 | and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the      |
| 17       | 783 | origins of rainforest hyperdiversity. New Phytologist 207: 327-339.                       |
| 18<br>19 | 784 | Koenen EJ, Ojeda DI, Steeves R, Migliore J, Bakker FT, Wieringa JJ, Kidner C, Hardy       |
| 20<br>21 | 785 | OJ, Pennington RT, Hughes CE. 2020. Large-scale genomic sequence data resolve the         |
| 22<br>23 | 786 | deepest divergences in the legume phylogeny and support a near-simultaneous               |
| 24       | 787 | evolutionary origin of all six subfamilies. New Phytologist 225: 1355–1369.               |
| 25<br>26 | 788 | Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE, Weber MG,                   |
| 27<br>28 | 789 | Murakami ET, Drake C, McGregor R, Coley PD. 2009. The evolution of antiherbivore          |
| 29<br>30 | 790 | defenses and their contribution to species coexistence in the tropical tree genus Inga.   |
| 31       | 791 | Proceedings of the National Academy of Sciences 106: 18073–18078.                         |
| 32<br>33 | 792 | Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. 2016. The abiotic and       |
| 34<br>35 | 793 | biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New        |
| 36       | 794 | Phytologist <b>210</b> : 1430–1442.                                                       |
| 37<br>38 | 795 | Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA, Fritsch PW, Cai           |
| 39<br>40 | 796 | J, Luo Y, Wang H, van der Bank M, Zhang SD, Wang QF, Wang J, Zhang ZR, Fu                 |
| 41<br>42 | 797 | CN, Yang J, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Li DZ. 2019.                |
| 43       | 798 | Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5: 461.           |
| 44<br>45 | 799 | Loiseau O, Olivares I, Paris M, de La Harpe M, Weigand A, Koubinová D, Rolland J,         |
| 46<br>47 | 800 | Bacon CD, Balslev H, Borchenius F, Cano A, Couvreur TLP, Delnatte C, Fardin F,            |
| 48<br>40 | 801 | Gayot M, Mejía F, Mota-Machado T, Perret M, Roncal J, Sanin MJ, Stauffer F,               |
| 50       | 802 | Lexer, C, Kessler M, Salamin N. 2019. Targeted capture of hundreds of nuclear genes       |
| 51<br>52 | 803 | unravels phylogenetic relationships of the diverse Neotropical palm tribe Geonomateae.    |
| 53<br>54 | 804 | Frontiers in Plant Science 10: 864.                                                       |
| 55       | 805 | Madriñán S, Cortés AJ, Richardson JE. 2013. Páramo is the world's fastest evolving and    |
| 50<br>57 | 806 | coolest biodiversity hotspot. Frontiers in Genetics 4: 192.                               |
| 58<br>59 |     |                                                                                           |
| 60       |     |                                                                                           |

| 2        | ~~~ |                                                                                             |
|----------|-----|---------------------------------------------------------------------------------------------|
| 3<br>4   | 807 | Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. 2015. A               |
| 5<br>6   | 808 | metacalibrated time-tree documents the early rise of flowering plant phylogenetic           |
| 7        | 809 | diversity. New Phytologist 207: 437–453.                                                    |
| 8<br>9   | 810 | Malé PJG, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-           |
| 10<br>11 | 811 | Saintagne C, Tinaut A, Chave J. 2014. Genome skimming by shotgun sequencing helps           |
| 12       | 812 | resolve the phylogeny of a pantropical tree family. Molecular Ecology Resources 14:         |
| 13<br>14 | 813 | 966–975.                                                                                    |
| 15<br>16 | 814 | Matzke NJ. 2012. Founder-event speciation in BioGeoBEARS package dramatically               |
| 17       | 815 | improves likelihoods and alters parameter inference in dispersal-extinction-cladogenesis    |
| 18<br>19 | 816 | (DEC) analyses. Frontiers of Biogeography 4: 210.                                           |
| 20<br>21 | 817 | Matzke NJ. 2014. Model selection in historical biogeography reveals that founder-event      |
| 22       | 818 | speciation is a crucial process in island clades. Systematic Biology 63: 951–970.           |
| 23<br>24 | 819 | McVay JD, Hipp AL, Manos PS. 2017. A genetic legacy of introgression confounds              |
| 25<br>26 | 820 | phylogeny and biogeography in oaks. Proceedings of the Royal Society B 284: 20170300.       |
| 27<br>28 | 821 | Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for            |
| 29       | 822 | inference of large phylogenetic trees. Proceedings of the gateway computing                 |
| 30<br>31 | 823 | environments workshop (GCE), IEEE.                                                          |
| 32<br>33 | 824 | Misiewicz TM, Fine PV. 2014. Evidence for ecological divergence across a mosaic of soil     |
| 34       | 825 | types in an Amazonian tropical tree: Protium subserratum (Burseraceae). Molecular           |
| 36       | 826 | <i>Ecology</i> <b>23</b> : 2543–2558.                                                       |
| 37<br>38 | 827 | Moore MJ, Bell CD, Soltis PS, Soltis DE. 2007. Using plastid genome-scale data to resolve   |
| 39<br>40 | 828 | enigmatic relationships among basal angiosperms. Proceedings of the National Academy        |
| 41       | 829 | of Sciences 104: 19363–19368.                                                               |
| 42<br>43 | 830 | Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC,              |
| 44<br>45 | 831 | d'Amico J, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH,             |
| 46<br>47 | 832 | Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR. 2001. Terrestrial                    |
| 48       | 833 | ecoregions of the world: a new map of life on Earth. <i>BioScience</i> <b>51</b> : 933-938. |
| 49<br>50 | 834 | Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R    |
| 51<br>52 | 835 | language. Bioinformatics 20: 289–290.                                                       |
| 53       | 836 | Parham JF, Donoghue PC, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis            |
| 54<br>55 | 837 | RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang                |
| 56<br>57 | 838 | Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J,               |
| 58       | 839 | Smith KT, Teodor JM, Warnock RCM, Benton MJ. 2011. Best practices for justifying            |
| 60       | 840 | fossil calibrations. Systematic Biology 61: 346–359.                                        |
|          |     |                                                                                             |

| 1<br>2                                       |     |                                                                                          |
|----------------------------------------------|-----|------------------------------------------------------------------------------------------|
| 3                                            | 841 | Pennington RT, Dick CW. 2004. The role of immigrants in the assembly of the South        |
| 5                                            | 842 | American rainforest tree flora. Philosophical Transactions of the Royal Society of       |
| 6<br>7                                       | 843 | London, B <b>359</b> : 1611–1622.                                                        |
| 8<br>9                                       | 844 | Pérez-Escobar OA, Chomicki G, Condamine FL, Karremans AP, Bogarín D, Matzke              |
| 10                                           | 845 | NJ, Silvestro D, Antonelli A. 2017. Recent origin and rapid speciation of Neotropical    |
| 12                                           | 846 | orchids in the world's richest plant biodiversity hotspot. New Phytologist 215: 891–905. |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 847 | Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G,                |
|                                              | 848 | Baurain D. 2011. Resolving difficult phylogenetic questions: why more sequences are      |
| 17                                           | 849 | not enough. PLoS Biology 9: e1000602.                                                    |
| 18<br>19<br>20<br>21                         | 850 | Pirie MD, Maas PJ, Wilschut RA, Melchers-Sharrott H, Chatrou LW. 2018. Parallel          |
| 20<br>21                                     | 851 | diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest       |
| 22<br>23                                     | 852 | trees tracking Neogene upheaval of South America. Royal Society Open Science 5:          |
| 23                                           | 853 | 171561.                                                                                  |
| 25<br>26                                     | 854 | Pouchon C, Fernández A, Nassar JM, Boyer F, Aubert S, Lavergne S, Mavárez J. 2018.       |
| 27<br>28                                     | 855 | Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex       |
| 29                                           | 856 | (Asteraceae) in the tropical Andes. Systematic Biology 67: 1041–1060.                    |
| 31                                           | 857 | Prance GT. 1972. Chrysobalanaceae. Flora Neotropica 9: 1–409.                            |
| 32<br>33                                     | 858 | Prance GT. 1982. A review of the phytogeographic evidences for Pleistocene climate       |
| 34<br>35                                     | 859 | changes in the Neotropics. Annals of the Missouri Botanical Garden 69: 594-624.          |
| 36<br>27                                     | 860 | Prance GT, Johnson DM. 1992. Plant collections from the plateau of Serra do Aracá        |
| 37<br>38                                     | 861 | (Amazonas, Brazil) and their phytogeographic affinities. Kew Bulletin 47: 1–24.          |
| 39<br>40                                     | 862 | Prance GT, Sothers CA. 2003. Part 10, Chrysobalanaceae. Species plantarum flora of the   |
| 41<br>42                                     | 863 | World. Canberra: Australian Biological Resources Study.                                  |
| 43                                           | 864 | Prance GT, White F. 1988. The genera of Chrysobalanaceae: a study in practical and       |
| 44<br>45                                     | 865 | theoretical taxonomy and its relevance to evolutionary biology. Philosophical            |
| 46<br>47                                     | 866 | Transactions of the Royal Society of London, B <b>320</b> : 1–184.                       |
| 48<br>40                                     | 867 | Rabosky DL, Santini F, Eastman JM, Smith SA, Sidlauskas B, Chang J, Alfaro ME.           |
| 48<br>49<br>50                               | 868 | 2013. Rates of speciation and morphological evolution are correlated across the largest  |
| 51<br>52                                     | 869 | vertebrate radiation. Nature Communications 4: 1958.                                     |
| 53<br>54                                     | 870 | Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity     |
| 55<br>55                                     | 871 | dependence on phylogenetic trees. PLoS ONE 9: e89543.                                    |
| 56<br>57                                     | 872 | Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson           |
| 58<br>59                                     | 873 | JG. 2014. BAMM tools: an R package for the analysis of evolutionary dynamics on          |
| 60                                           | 874 | phylogenetic trees. <i>Methods in Ecology and Evolution</i> <b>5</b> : 701–707.          |

| 1<br>2                                                         |     |                                                                                             |
|----------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|
| 3                                                              | 875 | Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization           |
| 5                                                              | 876 | in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904.                 |
| 6<br>7                                                         | 877 | Raven PH, Axelrod DI. 1974. Angiosperm biogeography and past continental movements.         |
| 8<br>9                                                         | 878 | Annals of the Missouri Botanical Garden 61: 539–673.                                        |
| 10                                                             | 879 | Ree RH, Sanmartín I. 2018. Conceptual and statistical problems with the DEC+ J model of     |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 880 | founder-event speciation and its comparison with DEC via model selection. Journal of        |
|                                                                | 881 | <i>Biogeography</i> <b>45</b> : 741–749.                                                    |
|                                                                | 882 | Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by       |
|                                                                | 883 | dispersal, local extinction, and cladogenesis. Systematic Biology 57: 4-14.                 |
|                                                                | 884 | Renner S. 2004. Plant dispersal across the tropical Atlantic by wind and sea currents.      |
|                                                                | 885 | International Journal of Plant Sciences 165: S23–S33.                                       |
| 22                                                             | 886 | Roncal J, Henderson A, Borchsenius F, Cardoso SRS, Balslev H. 2012. Can phylogenetic        |
| 23<br>24                                                       | 887 | signal, character displacement, or random phenotypic drift explain the morphological        |
| 25<br>26                                                       | 888 | variation in the genus Geonoma (Arecaceae)? Biological Journal of the Linnean Society       |
| 27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35             | 889 | 106: 528–539.                                                                               |
|                                                                | 890 | Roncal J, Kahn F, Millan B, Couvreur TL, Pintaud JC. 2013. Cenozoic colonization and        |
|                                                                | 891 | diversification patterns of tropical American palms: evidence from Astrocaryum              |
|                                                                | 892 | (Arecaceae). Botanical Journal of the Linnean Society 171: 120–139.                         |
|                                                                | 893 | Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From algae to          |
| 36                                                             | 894 | angiosperms – inferring the phylogeny of green plants (Viridiplantae) from 360 plastid      |
| 37<br>38                                                       | 895 | genomes. BMC Evolutionary Biology 14: 23.                                                   |
| 39<br>40                                                       | 896 | Sacek V. 2014. Drainage reversal of the Amazon River due to the coupling of surface and     |
| 41                                                             | 897 | lithospheric processes. Earth and Planetary Science Letters 401: 301-312.                   |
| 42<br>43                                                       | 898 | Schley RJ, de la Estrella M, Pérez-Escobar OA, Bruneau A, Barraclough T, Forest F,          |
| 44<br>45                                                       | 899 | Klitgård B. 2018. Is Amazonia a 'museum' for Neotropical trees? The evolution of the        |
| 46<br>47                                                       | 900 | Brownea clade (Detarioideae, Leguminosae). Molecular Phylogenetics and Evolution            |
| 47<br>48                                                       | 901 | <b>126</b> : 279–292.                                                                       |
| 49<br>50                                                       | 902 | Siegert MJ. 2008. Antarctic subglacial topography and ice-sheet evolution. Earth Surface    |
| 51<br>52                                                       | 903 | Processes and Landforms 33: 646–660.                                                        |
| 53                                                             | 904 | Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009.                |
| 55                                                             | 905 | Recent assembly of the cerrado, a Neotropical plant diversity hotspot, by in situ evolution |
| 56<br>57                                                       | 906 | of adaptations to fire. Proceedings of the National Academy of Sciences USA 106: 20359-     |
| 58<br>59<br>60                                                 | 907 | 20364.                                                                                      |

| 1<br>2                                                                                                                      |     |                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------|
| 3                                                                                                                           | 908 | Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-               |
| 4<br>5                                                                                                                      | 909 | Emán J, Burney CW, Xie X, Harvey MG, Faircloth BC, Glenn TC, Derryberry EP,                |
| 6<br>7                                                                                                                      | 910 | Prejean J, Fields S, Brumfield RT. 2014. The drivers of tropical speciation. Nature 515:   |
| 8<br>9                                                                                                                      | 911 | 406–409.                                                                                   |
| 10                                                                                                                          | 912 | Sothers C, Prance GT, Buerki S, De Kok R, Chase MW. 2014. Taxonomic novelties in           |
| 12                                                                                                                          | 913 | Neotropical Chrysobalanaceae: towards a monophyletic Couepia. Phytotaxa 172: 176-          |
| 13<br>14                                                                                                                    | 914 | 200.                                                                                       |
| 15<br>16                                                                                                                    | 915 | Sothers CA, Prance GT. 2014. Resurrection of Angelesia, a Southeast Asian genus of         |
| 17                                                                                                                          | 916 | Chrysobalanaceae. Blumea 59: 103–105.                                                      |
| 18<br>19                                                                                                                    | 917 | Sothers CA, Prance GT, Chase MW. 2016. Towards a monophyletic Licania: a new generic       |
| 20<br>21                                                                                                                    | 918 | classification of the polyphyletic Neotropical genus Licania (Chrysobalanaceae). Kew       |
| 22<br>23                                                                                                                    | 919 | <i>Bulletin</i> <b>71</b> : 58.                                                            |
| 23                                                                                                                          | 920 | Srivastava R, Awasthi N. 1996. Fossil woods from the Neogene of Warkalli Coast and their   |
| 25<br>26                                                                                                                    | 921 | palaeoecological significance. Geophytology 26: 88–98.                                     |
| 27<br>28                                                                                                                    | 922 | Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of |
| 7 8 9 10 11 2 13 14 15 16 7 18 9 20 21 22 3 24 25 26 7 8 9 30 31 23 34 35 36 7 8 9 40 1 24 3 44 5 46 7 8 9 50 1 52 35 45 56 | 923 | large phylogenies. <i>Bioinformatics</i> <b>30</b> : 1312–1313.                            |
|                                                                                                                             | 924 | Straub SC, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A. 2012. Navigating          |
| 32<br>33                                                                                                                    | 925 | the tip of the genomic iceberg: next-generation sequencing for plant systematics.          |
| 34<br>35                                                                                                                    | 926 | American Journal of Botany 99: 349–364.                                                    |
| 36                                                                                                                          | 927 | Straub SC, Moore MJ, Soltis PS, Soltis DE, Liston A, Livshultz T. 2014. Phylogenetic       |
| 37<br>38                                                                                                                    | 928 | signal detection from an ancient rapid radiation: effects of noise reduction, long-branch  |
| 39<br>40                                                                                                                    | 929 | attraction, and model selection in crown clade Apocynaceae. Molecular Phylogenetics        |
| 41<br>42                                                                                                                    | 930 | and Evolution 80: 169–185.                                                                 |
| 43                                                                                                                          | 931 | ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomao RP, Guevara JE, et al.           |
| 44<br>45                                                                                                                    | 932 | 2013. Hyperdominance in the Amazonian tree flora. Science 342: 1243092.                    |
| 46<br>47                                                                                                                    | 933 | doi:10.1126/science.1243092                                                                |
| 48<br>40                                                                                                                    | 934 | Tiffney BH, Fleagle JG, Brown TM. 1994. Early to Middle Miocene angiosperm fruits and      |
| 49<br>50                                                                                                                    | 935 | seeds from Fejej, Ethiopia. Tertiary Research 15: 25-42.                                   |
| 51<br>52                                                                                                                    | 936 | Wallace AR. 1878. Tropical nature, and other essays. London: Macmillan.                    |
| 53<br>54                                                                                                                    | 937 | Wang X, Edwards RL, Auler AS, Cheng H, Kong X, Wang Y, Cruz FW, Dorale JA,                 |
| 55                                                                                                                          | 938 | Chiang HW. 2017. Hydroclimate changes across the Amazon lowlands over the past             |
| 56<br>57                                                                                                                    | 939 | 45,000 years. <i>Nature</i> <b>541</b> : 204.                                              |
| 58<br>59                                                                                                                    |     |                                                                                            |
| 60                                                                                                                          |     |                                                                                            |

| 940 | Wicke S, Schneeweiss GM, De Pamphilis CW, Müller KF, Quandt D. 2011. The                                                                                                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 941 | evolution of the plastid chromosome in land plants: gene content, gene order, gene                                                                                                                             |
| 942 | function. Plant Molecular Biology 76: 273–297.                                                                                                                                                                 |
| 943 | Wicke S, Schneeweiss GM. 2015. Next-generation organellar genomics: potentials and                                                                                                                             |
| 944 | pitfalls of high-throughput technologies for molecular evolutionary studies and plant                                                                                                                          |
| 945 | systematics. In: Horandl E, Appelhans MS, eds., Next-generation sequencing in plant                                                                                                                            |
| 946 | systematics. Königstein: Koeltz.                                                                                                                                                                               |
| 947 | Wodehouse RP. 1932. Tertiary pollen. I. Pollen of the living representatives of the Green                                                                                                                      |
| 948 | River flora. Bulletin of the Torrey Botanical Club 59: 313-340.                                                                                                                                                |
| 949 | Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK,                                                                                                                                   |
| 950 | Matthews ML, Stevens PF, Davis CC. 2012. Phylogenomics and a posteriori data                                                                                                                                   |
| 951 | partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proceedings of                                                                                                                          |
| 952 | the National Academy of Sciences 109: 17519–17524.                                                                                                                                                             |
| 953 | Yakandawala D, Morton CM, Prance GT. 2010. Phylogenetic relationships of the                                                                                                                                   |
| 954 | Chrysobalanaceae inferred from chloroplast, nuclear, and morphological data. Annals of                                                                                                                         |
| 955 | the Missouri Botanical Garden 97: 259–281.                                                                                                                                                                     |
| 956 | Yao G, Jin JJ, Li HT, Yang JB, Mandala VS, Croley M, Mostow R, Douglas NA, Chase                                                                                                                               |
| 957 | MW, Christenhusz MJM, Soltis DE, Soltis PS, Smith SA, Brockington SF, Moore                                                                                                                                    |
| 958 | MJ, Yi TS, Li DZ. 2019. Plastid phylogenomic insights into the evolution of                                                                                                                                    |
| 959 | Caryophyllales. Molecular Phylogenetics and Evolution 134: 74–86.                                                                                                                                              |
| 960 | Zhang Q. 2010. Why does biparental plastid inheritance revive in angiosperms? Journal of                                                                                                                       |
| 961 | <i>Plant Research</i> <b>123</b> : 201–206.                                                                                                                                                                    |
| 962 | Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS. 2017.                                                                                                                            |
| 963 | Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics.                                                                                                                          |
| 964 | New Phytologist <b>214</b> : 1355–1367.                                                                                                                                                                        |
| 965 | Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species                                                                                                                             |
| 966 | tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19: 153.                                                                                                                            |
| 967 |                                                                                                                                                                                                                |
| 968 |                                                                                                                                                                                                                |
|     | 940<br>941<br>942<br>943<br>944<br>945<br>946<br>947<br>948<br>949<br>950<br>951<br>952<br>953<br>954<br>955<br>956<br>957<br>958<br>959<br>960<br>961<br>962<br>963<br>961<br>962<br>963<br>964<br>965<br>966 |

| 1<br>2                                                                                                                                                |     |                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------|
| 3                                                                                                                                                     | 969 | Figure captions                                                                                     |
| 5                                                                                                                                                     | 970 |                                                                                                     |
| 6<br>7                                                                                                                                                | 971 | Figure 1. Phylogenetic tree for the basal clades of Chrysobalanaceae, obtained from the             |
| 8<br>9                                                                                                                                                | 972 | software RAxML 8.2.10, with dating from the software BEAST 2.5.1. The arrows illustrate             |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 973 | the internal calibration points used for tree dating (n=3). Clade support $< 95\%$ was colour-      |
| 12                                                                                                                                                    | 974 | coded with circles; all other clades had support percentages $> 95\%$ . The numbers next to each    |
| 13<br>14                                                                                                                                              | 975 | node are the inferred ages in millions of years. Grey bars represent the 95% confidence             |
| 15<br>16                                                                                                                                              | 976 | intervals. Asterisks indicate plastid genomes published in Bardon et al. (2016).                    |
| 17                                                                                                                                                    | 977 |                                                                                                     |
| 18<br>19                                                                                                                                              | 978 | Figure 2. Phylogenetic tree of Chrysobalanaceae, continuation of Figure 1. The biome map is         |
| 20<br>21                                                                                                                                              | 979 | modified from Olson et al. (2001). Dark red: Amazonia; orange: savannas and seasonally dry          |
| 22                                                                                                                                                    | 980 | tropical forests; green: Atlantic tropical forests; blue: forests of Central America, the           |
| 23<br>24                                                                                                                                              | 981 | Caribbean and Chocó; black: high-elevation ecosystems (>1,000 m asl).                               |
| 24<br>25<br>26<br>27                                                                                                                                  | 982 |                                                                                                     |
| 27<br>28                                                                                                                                              | 983 | Figure 3. Phylogenetic tree of Chrysobalanaceae, continuation of Figure 2. In the Hirtella          |
| 29                                                                                                                                                    | 984 | clade, the ant symbols indicate myrmecophilous species.                                             |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                                                                                                          | 985 |                                                                                                     |
|                                                                                                                                                       | 986 | Figure 4. Ancestral area reconstruction of Chrysobalanaceae using the dispersal, extinction,        |
|                                                                                                                                                       | 987 | and cladogenesis (DEC) algorithm as implemented in the BioGeoBears software. Pie charts             |
|                                                                                                                                                       | 988 | indicate relative support for the dominant ancestral area; all other ancestral area probabilities   |
| 37<br>38                                                                                                                                              | 989 | are lumped and represented in white.                                                                |
| 39<br>40                                                                                                                                              | 990 |                                                                                                     |
| 41                                                                                                                                                    | 991 | Figure 5. Plot with branches coloured by speciation rate (lineages/My), representing a              |
| 42<br>43                                                                                                                                              | 992 | summary of BAMM analysis. Grey circles indicate the positions of regime shifts in the best          |
| 44<br>45                                                                                                                                              | 993 | configuration. Side plots represent the speciation rate-through-time (RTT) plots for each of        |
| 46<br>47                                                                                                                                              | 994 | the four clades with regime shifts, whereas the bottom plot represents the RTT plot for the         |
| 48                                                                                                                                                    | 995 | entire tree. Finally, the bottom-right histograms indicate the distribution of speciation rates for |
| 49<br>50                                                                                                                                              | 996 | the four regime-shift clades and the entire family.                                                 |
| 51<br>52                                                                                                                                              | 997 |                                                                                                     |
| 53                                                                                                                                                    |     |                                                                                                     |
| 54<br>55                                                                                                                                              |     |                                                                                                     |
| 56<br>57                                                                                                                                              |     |                                                                                                     |
| 58<br>59                                                                                                                                              |     |                                                                                                     |
| 56<br>57<br>58<br>59                                                                                                                                  |     |                                                                                                     |

| 2        |   |                                                                                                                                                            |
|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 1 | Supplementary Information for: Rapid diversification rates in Amazonian                                                                                    |
| 4<br>5   | 2 | Chrysobalanaceae inferred from plastid genome phylogenetics                                                                                                |
| 6<br>7   | 3 |                                                                                                                                                            |
| 8        | 4 | Jerome Chave <sup>1*</sup> , Cynthia Sothers <sup>2</sup> , Amaia Iribar <sup>1</sup> , Uxue Suescun <sup>1</sup> , Mark W Chase <sup>2,3</sup> , Ghillean |
| 10       | 5 | T Prance <sup>2</sup>                                                                                                                                      |
| 11<br>12 | 6 |                                                                                                                                                            |
| 13<br>14 | 7 |                                                                                                                                                            |
| 15       | 8 |                                                                                                                                                            |
| 16<br>17 |   |                                                                                                                                                            |
| 18<br>19 |   |                                                                                                                                                            |
| 20       |   |                                                                                                                                                            |
| 21<br>22 |   |                                                                                                                                                            |
| 23<br>24 |   |                                                                                                                                                            |
| 25       |   |                                                                                                                                                            |
| 20<br>27 |   |                                                                                                                                                            |
| 28<br>29 |   |                                                                                                                                                            |
| 30<br>31 |   |                                                                                                                                                            |
| 32       |   |                                                                                                                                                            |
| 33<br>34 |   |                                                                                                                                                            |
| 35<br>36 |   |                                                                                                                                                            |
| 37       |   |                                                                                                                                                            |
| 38<br>39 |   |                                                                                                                                                            |
| 40<br>41 |   |                                                                                                                                                            |
| 42       |   |                                                                                                                                                            |
| 43<br>44 |   |                                                                                                                                                            |
| 45<br>46 |   |                                                                                                                                                            |
| 47<br>48 |   |                                                                                                                                                            |
| 49       |   |                                                                                                                                                            |
| 50<br>51 |   |                                                                                                                                                            |
| 52<br>53 |   |                                                                                                                                                            |
| 54       |   |                                                                                                                                                            |
| 55<br>56 |   |                                                                                                                                                            |
| 57<br>58 |   |                                                                                                                                                            |
| 59       |   |                                                                                                                                                            |
| 60       |   |                                                                                                                                                            |



Figure S1. Phylogenetic tree for the 20-taxon dataset, including Chrysobalanaceae, obtained from the software BEAST2. The arrow points to the crown age of Chrysobalanaceae, inferred at ca. 38.9 Ma. Squares indicates fossil constraints. 





Table S1. Description of the accessions included in this study, with plastid genome length and area coding. Codes for biogeographical areas are as follows: AM: Amazonia, AF: Atlantic rainforest, DRY: dry corridor and savannas of South America (llanos, cerrado and caatinga), CA: Central America, the Caribbean, and the Chocó province, AUST: Australia and Oceania; AFRICA: Africa, SEASIA: Southeast Asia. The column 'Voucher information' includes details about the voucher are provided, including the sequence laboratory code (in bold), collector and/or geographical location, and country of collection. 

|                     | length | Ecology                                          | Area   |                                    |
|---------------------|--------|--------------------------------------------------|--------|------------------------------------|
| Species             | (bp)   | (from Sothers & Prance, 2003)                    | coding | VOUCHER INFORMATION                |
|                     |        | Known only from a small area of Amazonas,        |        |                                    |
|                     |        | Brazil, where it is locally abundant. Forest of  |        |                                    |
|                     |        | non-flooded ground (terra firme). Also           |        | 49; Sothers1512; BR-174, Reserva   |
|                     |        | cultivated outside its natural range, especially |        | Fruticultura do INPA, Amazonas,    |
| Acioa edulis        | 162850 | along the Rio Solimões in Amazonas.              | AM     | KEW11547; Brazil                   |
|                     |        | French Guiana and Amazonian Brazil (AM,          |        | 108; Prance30841; KEW11593;        |
| Acioa guianensis    | 162332 | AP). Terra firme forest.                         | AM     | Brazil                             |
|                     |        | Brazil (lower Rio Negro region) (AM, PA).        |        | 109; Sothers1600; Manaus, grounds  |
| Acioa longipendula  | 162648 | Non-flooded forest.                              | AM     | of INPA; KEW11571; Brazil          |
|                     |        | Scattered distribution from Sierra Leone to      |        |                                    |
|                     |        | Gabon. Coastal forest and fringing forest        |        | Aela; ADN:GiD1563,                 |
| Afrolicania         |        | inside the Guineo-Congolian rainforest           |        | voucherGD1606; Gilles Dauby 201    |
| elaeosperma         | 162176 | region.                                          | AFRICA | Gabon                              |
|                     |        | Thailand and Sumatera, Malay Peninsula to        |        | Lsplen; Ambriansyah & Arifin 411   |
|                     |        | Philippines and Sulawesi. Lowland rainforest     |        | East Kalimantan, Wanariset researc |
|                     |        | and in peat swamp, fresh water swamp forest,     |        | station, at MNHN P05562869;        |
| Angelesia splendens | 162201 | on seashores and in rocky places.                | AUST   | Indonesia                          |
|                     |        | Thailand to the Pacific, including Malay         |        |                                    |
|                     |        | Peninsula, Sumatera, Borneo, Sulawesi,           |        |                                    |
|                     |        | Philippines, Maluku, New Guinea, New             |        |                                    |
|                     |        | Britain, Solomon Is., Caroline Is., Fiji,        |        |                                    |
|                     |        | Samoa, Tonga. Well-drained lowland or hill       |        | Aracemosa; Ridsale, Baquiran et al |
|                     |        | forest up to 600 m, above riverbeds,             |        | ISU420 Digallorin, Divinisa camp   |
| Atuna racemosa      | 162717 | freshwater or brackish swamp.                    | AUST   | site; at MNHN; Philippines         |
|                     |        | Only known for certain from Fouta Djalon in      |        |                                    |
|                     |        | Guinea, adjacent upland areas in Sierra Leone    |        |                                    |
|                     |        | and in Mali. Derived savanna on well-drained     |        |                                    |
|                     |        | hill soil, and in arborescent savanna, at about  |        |                                    |
| Bafodeya benna 1    | 161468 | 900-1000 m.                                      | AFRICA | 110; Couch916; Guinea Conakry      |

|                     |        |                                              |         | 111; Mamaden Saiden (M Saiden            |
|---------------------|--------|----------------------------------------------|---------|------------------------------------------|
|                     |        |                                              |         | Mamou, Fouta Djalon, forest bor          |
| Bafodeya benna 2    | 161360 | Idem                                         | AFRICA  | 'Foret de Quehuel' ENATEF; Gui           |
|                     |        | Only known from St. Kitts and Guadeloupe     |         |                                          |
|                     |        | in the Leeward Islands, and Dominica,        |         |                                          |
| Chrysobalanus       |        | Martinique and St. Lucia in the Windward     |         |                                          |
| cuspidatus 1        | 162892 | Islands                                      | CA      | <b>50</b> ; Hill28129; Kew KEW11520      |
|                     |        |                                              |         | 51; Barrier3068; Kew KEW1152             |
|                     |        |                                              |         | Forêt domaniale de la Basse-Terr         |
| Chrysobalanus       |        |                                              |         | trace des Crêtes, forêt dense humi       |
| cuspidatus 2        | 162572 | Idem                                         | CA      | Guadeloupe                               |
|                     |        | Widespread in tropical America and tropical  | AFR,AM, | Ci; KD5286 Kyle Dexter; beachf           |
| Chrysobalanus icaco | 162845 | Africa. Mainly coastal distribution          | AF,CA   | Cayenne; French Guiana                   |
|                     |        | Venezuela (Bolívar State) and recently       |         |                                          |
| Chrysobalanus       |        | collected in Brazil (near Manaus).           |         |                                          |
| prancei             | 162736 | Submontane and lowland forests               | AM      | <b>52</b> ; Cardozo2536; Kew KEW115.     |
|                     |        |                                              |         | 57; Clark4639; Kew: KEW11542             |
|                     |        |                                              |         | Bilsa Biological Station. Reserva        |
|                     |        | Costa Rica, Venezuela, Colombia and          |         | Ecologica Mache-Chindu, 35 km            |
| Cordillera          |        | Ecuador. High altitude Andean and Central    |         | of Quininde. Cube River (NE cor          |
| platycalyx          | 162459 | American forests                             | AND     | of Station); Ecuador                     |
|                     |        | E and SE Brazil. Common in the remnants of   |         | A; Sothers1531, Espírito Santo,          |
|                     |        | the southern Bahia wet forest and in coastal |         | Linhares, Res. Natural da CVRD;          |
| Couepia belemii     | 162079 | forest.                                      | AF      | Brazil                                   |
|                     |        | Western Amazonia. Growing in terra firme     |         | <b>B</b> ; JH6/5 Jenaro Herrero; Rooseve |
| Couepia bernardii   | 162952 | forest                                       | AM      | Garcia; Peru                             |
|                     |        |                                              |         | 53; Sothers1517; EMARC Gregó             |
|                     |        |                                              |         | Bondar, Mun. Ilhéus, Bahia               |
| Couepia bondarii    | 162065 | Brazil, state of Bahia, Forest.              | AF      | KEW11546; Brazil                         |
|                     |        | Guianas and Amazonia. In primary and         |         | C; P00610245; Paracou Station;           |
| Couepia bracteosa 1 | 162194 | secondary forest on non-flooded ground.      | AM      | French Guiana                            |
|                     |        |                                              |         | 113. Sothers 1550. Manaus Reser          |
| Couenia bracteosa?  | 162106 | Idem                                         | ΔM      | Florestal Ducke: Brazil                  |
|                     | 102100 |                                              |         |                                          |
| Couepia             |        | Guianas and Brazil. Primary forest on terra  |         | A110372; Acarouany plot; French          |
| caryophylloides     | 162014 | firme.                                       | AM      | Guiana                                   |
|                     |        |                                              |         | 54; Sothers1519; Bahia, KEW115           |
| Couepia coarctata   | 161806 | Brazil (Bahia, Mun. de Maraú). Restinga.     | AF      | Brazil                                   |

| 3        |                     |        | Eastern Amazonian Brazil and in French           |     | E: IC 152: Juliette Chamagne:             |
|----------|---------------------|--------|--------------------------------------------------|-----|-------------------------------------------|
| 1<br>5   | Couenia excelsa     | 162057 | Guiana Non-flooded forest                        | AM  | French Guiana                             |
| 5        |                     | 102007 | Brazil (lower Rio Negro region) Forest on        |     | F: Sothers1516 Amazonas 7F-2              |
| 7<br>}   | Couepia glabra      | 161977 | terra firme                                      | АМ  | Reservas do PDBFF <sup>.</sup> Brazil     |
| )        |                     |        |                                                  |     |                                           |
| 0        |                     |        | Brazil Bolivia and Baraguay Carrados and         |     | Sothors 1507: Prosília Distrita           |
| 2        | Couania grandiflora | 162002 | Savannas                                         | CEP | Federal Jardim Botânico: Brazil           |
| 13       |                     | 102092 | savainias.                                       | CER | Federal, Jardini Botanico, Brazil         |
| 4<br> 5  |                     |        | Guianas and Brazil. Growing on terra firme       |     | Cg; B421045; BAFOG plot near St           |
| 6        | Couepia guianensis  | 162127 | or flooded river bank.                           | AM  | Laurent; French Guiana                    |
| 7<br>8   |                     |        | Guyana, Colombia, Venezuela and C                |     |                                           |
| 9        |                     |        | Brazilian Amazonia. In riverine and non-         |     | G; LV109174; Saut Lavilette; French       |
| 20       | Couepia habrantha   | 162148 | flooded forest.                                  | AM  | Guiana                                    |
| 22       |                     |        |                                                  |     | 55; Aguilar8227; Reinaldo Aguilar,        |
| 23       | Couepia             |        |                                                  |     | San Ramon, camino a el P.N. Braulio       |
| 24<br>25 | hallwachsiae        | 162082 | Endemic to Costa Rica.                           | CA  | Carrillo, KEW11523; Costa Rica            |
| 26       |                     |        |                                                  |     | H; Sothers1529; Pernambuco,               |
| 27<br>28 | Couepia impressa    | 162019 | NE Brazil. Primary forest.                       | AM  | Restinga de Ariquindá; Brazil             |
| 9        |                     |        | French Guiana and Brazil (Amapá), Forest on      |     | I: NH200492: Nouragues Station:           |
| su<br>31 | Couepia joaquinae   | 162089 | terra firme on a table-top hill on clay oxisol   | AM  | French Guiana                             |
| 32       | Couepia             |        | French Guiana and Brazil. In non-flooded         |     | <b>J</b> ; P01860371; Paracou brown sand; |
| 33<br>34 | magnoliifolia       | 162147 | forest.                                          | AM  | French Guiana                             |
| 85       |                     |        |                                                  |     | K; Maas9807; Reserva Natural Vale         |
| 86<br>87 | Couepia             |        | NE and SE Brazil. Growing in Atlantic            |     | (CVRD) Joao Neiva; Atlantic Rain          |
| 88       | monteclarensis      | 161890 | coastal forest.                                  | AF  | Forest: Brazil                            |
| 9<br>10  |                     |        | Central Amazonia, Brazil, Forest on terra        |     | L: Sothers1470: Amazonas. ZF-2.           |
| 1        | Couepia morii       | 162131 | firme.                                           | AM  | Reservas do PDBFF; Brazil                 |
| 2        | *                   |        |                                                  |     | <b>5(</b> , D4.,5(0), P.P.W11520          |
| 4        | C                   | 1(2027 | Guyana and Brazil (Koraima). Savannas and        | CED | <b>50</b> ; Dexter5005; KEW11528;         |
| 5        | Couepia multiflora  | 162027 | savanna scrublands.                              | CEK | Guyana                                    |
| ю<br>17  |                     |        | Guianas, Venezuela and central, Colombian,       |     | 115; Sothers sn; Amazonas, Manaus,        |
| 8        |                     |        | Peruvian and Ecuadorean Amazonia. Non-           |     | Reserva Florestal Ducke;                  |
| 19<br>50 | Couepia obovata     | 162030 | flooded forest.                                  | AM  | KEW11601; Brazil                          |
| 51       |                     |        | On the coast of Brazil from Pernambuco to        |     |                                           |
| 52       |                     |        | Rio de Janeiro. Restingas, littoral forest, sand |     | Sothers1509; R.J., Rio de Janeiro,        |
| 53<br>54 | Couepia ovalifolia  | 161928 | plains, and sand bars.                           | AF  | Barra da Tijuca, Lote 2; Brazil           |
| 55       |                     |        | Eastern and central Amazonian Brazil. Sandy      |     |                                           |
| 56<br>57 |                     |        | river banks and beaches, and open riverine       |     | Sothers1510; Amazonas, Manaus,            |
| 58       | Couepia paraensis   | 161930 | forest.                                          | AM  | Praia Dourada; Brazil                     |

| 3<br>4   | Couepia paraensis  |        | In the north of the Planalto of central Brazil. |       | DUARTE47; Mato Grosso, Mun.               |
|----------|--------------------|--------|-------------------------------------------------|-------|-------------------------------------------|
| 5        | cerradonana        | 162067 | Growing in cerrado.                             | CER   | Novo Santo Antônio; Brazil                |
| 6<br>7   |                    |        |                                                 |       | N; Oliveira1713; C. A. L. de Oliveira     |
| 8        |                    |        | Brazil; known only from Rio de Janeiro.         |       | Alto da Boa Vista, Estr. da Vista         |
| 9<br>10  | Couepia parvifolia | 161902 | Forests.                                        | AF    | Chinesa; Brazil                           |
| 11       |                    |        |                                                 |       |                                           |
| 12<br>13 |                    |        | Central America from Sinaloa in Mexico to       |       | JASMITH1530; J.Amith 1530;                |
| 14       | Couepia polyandra  | 162048 | Panama. Riverine forest and low woodland.       | CA    | Mexico                                    |
| 15<br>16 |                    |        | Central Amazonia (N of Manaus) and              |       |                                           |
| 17       |                    |        | recently collected in central French Guiana.    |       | Sothers1454; Manaus, Amazonas,            |
| 18       | Couepia rankiniae  | 162048 | Forest on terra firme.                          | AM    | ZF-2, Reservas do PDBFF; Brazil           |
| 19<br>20 |                    |        |                                                 |       | O; Sothers167; Reserva Florestal          |
| 21       |                    |        |                                                 |       | Ducke, Manaus - Itacoatiara, km 26;       |
| 22<br>23 | Couepia robusta    | 162085 | Brazilian Amazonia. Non-flooded forest.         | AM    | Brazil                                    |
| 24       |                    |        |                                                 |       | 116; Sothers1528; Pernambuco;             |
| 25<br>26 | Couepia rufa       | 161992 | NE and SE Brazil. Primary forests.              | AF    | Brazil                                    |
| 27       |                    |        |                                                 |       | Sothers1465; Amazonas, ZF-2,              |
| 28<br>29 | Couepia sandwithii | 162068 | Guyana and Venezuela. Primary forest.           | AM    | Reservas do PDBFF; Brazil                 |
| 30       |                    |        |                                                 |       | Q; Sothers1532; Espírito Santo,           |
| 31<br>22 |                    |        | Brazil (Bahia to Rio de Janeiro). Coastal       |       | Linhares, Res. Natural da CVRD;           |
| 33       | Couepia schottii   | 161850 | restingas.                                      | AF    | Brazil                                    |
| 34<br>25 |                    |        | Panama; known only from Cerro Jefe. In          |       |                                           |
| 35<br>36 |                    |        | cloud forest dominated by Clusia and            |       | 58;McPherson12340, Cerro Jefe;            |
| 37       | Couepia scottmorii | 162166 | Colpothrinax cookii at 1000m.                   | CA    | Panama                                    |
| 38<br>39 |                    |        |                                                 |       | R; Sothers1556, Amazonas, rio             |
| 40       |                    |        | Brazil (Amazonas). Growing in terra firme       |       | Urucu, Área de Exploração da              |
| 41<br>42 | Couepia spicata    | 161955 | forest                                          | AM    | Petrobrás; Brazil                         |
| 43       |                    |        |                                                 |       | Sothers1511; Amazonas, Manaus,            |
| 44<br>45 | Couepia subcordata | 162081 | Amazonia. Forest.                               | AM    | Campus da UFAM; Brazil                    |
| 46       |                    |        | Bolivia, Brazil and Paraguay. Savannas,         |       |                                           |
| 47<br>48 |                    |        | cerrados, and rocky places beside streams and   |       | <b>S</b> ; Parada26; Parada-Gutierrez 26; |
| 49       | Couepia uiti       | 162824 | sandy riverbanks.                               | CER   | Laguna la Gaiba, MO; Bolivia              |
| 50<br>51 |                    |        | -                                               |       | T; Sothers992; Reserva Florestal          |
| 52       |                    |        | Western Amazonia. Riverine forest and non-      |       | Ducke, Manaus-Itacoatiara, Km 26;         |
| 53<br>54 | Couepia ulei       | 162088 | flooded forest.                                 | AM    | Brazil                                    |
| 55       |                    |        | Wastern Amazonia Forest on non floodad          |       | U.DA 10/55: Doggwalt Caraia Duarta        |
| 56<br>57 | Couenia williamsii | 161516 | and periodically flooded ground                 | ΔM    | Almendras: Peru                           |
| 58       | Daetyladaria       | 101310 | Cameroon Cabon and parkans Democratic           |       | Annenuras, 1 eru                          |
| 59       | ballayana          | 162200 | Republic of Congo. Lowland forests              |       | <b>CiD1056:</b> Gilles Douby: Cobor       |
| 00       | Denayana           | 102309 | Republic of College. Lowland forests            | ATACA | GID 1750, OHIES Dauby, Gaboli             |

| Dactyladenia          |        | Central African Republic, Congo, DRC and       |        | V101849; Pierre Fabre collection;     |
|-----------------------|--------|------------------------------------------------|--------|---------------------------------------|
| buchneri              | 162156 | Angola. Riverine forests                       | AFRICA | Democratic Republic of the Congo      |
|                       |        | Gabon. Rainforest, forest edge next to         |        |                                       |
|                       |        | savanna, coastal thicket and secondary         |        | GiD1939; ADN:GiD1939, voucher         |
| Dactyladenia floretii | 162312 | vegetation.                                    | AFRICA | GD2766, Gilles Dauby 2012; Gabo       |
| Exellodendron         |        | Venezuela, Guianas and Amazonian Brazil.       |        | A110225; Acarouany plot; French       |
| barbatum              | 162325 | Riverine and non-flooded forest                | AM     | Guiana                                |
|                       |        | Restricted to one locality in northern Brazil, |        |                                       |
|                       |        | in the foothills and surroundings of Serra do  |        |                                       |
|                       |        | Aracá, a sandstone mountain of the Guayana     |        | 117; Stevenson1011 South of Serra     |
| Gaulettia amaraliae   | 163538 | Highlands                                      | TEP    | do Aracá, KEW11590; Brazil            |
|                       |        | French Guiana, Guyana, western and central     |        |                                       |
|                       |        | Amazonian Brazil (Acre, Amazonas) and          |        |                                       |
|                       |        | Colombia. Found in non-flooded forests; also   |        |                                       |
|                       |        | occurs infrequently in sandy campinarana       |        | Sothers1450; Reserva Florestal        |
| Gaulettia elata       | 162251 | vegetation.                                    | AM     | Ducke, Manaus, Amazonas; Brazil       |
|                       |        | Guyana, French Guiana, Suriname,               |        |                                       |
|                       |        | Venezuela, Amazonian Brazil (Acre,             |        |                                       |
|                       |        | Amazonas, Amapá, Roraima), Peru, Ecuador       |        |                                       |
|                       |        | and Colombia. Savannas, primary and            |        |                                       |
| Gaulettia parillo     | 162440 | secondary forests                              | AM     | 118; Pereira67; KEW11580; Brazi       |
|                       |        |                                                |        | GEM; described as <i>L.discolor</i> ; |
|                       |        |                                                |        | Soesdyke-Linden Highway SL            |
| Gaulettia sp          | 162059 |                                                | AM     | Roosevelt Garcia; Guyana              |
|                       |        |                                                |        | 2055382; collected JB Nelson(199      |
|                       |        |                                                |        | ten Mile Creek, Georgia; sampled      |
| Geobalanus            |        | SE United States. Pine barrens, sand dunes     |        | Paris Herbarium (P05562808);          |
| oblongifolius         | 162547 | and oak scrubland.                             | CA     | Georgia; United States of America     |
|                       |        | Mauritius and Réunion. Forest at low and       |        |                                       |
|                       |        | medium altitudes on the east and southern      |        |                                       |
|                       |        | sides of the islands which are exposed to the  |        |                                       |
| Grangeria             |        | SE monsoon and receive more than 3000 mm       |        | Gbor; Colorado, plot1; Dominique      |
| borbonica             | 162797 | of rainfall a year.                            | AFRICA | Strasberg; La Réunion                 |
| Hirtella              |        | Brazil, from north of Manaus eastward to       |        | LBD; NL110214: Nouragues: Free        |
| araguariensis         | 163072 | Amapá and French Guiana. Upland forest         | AM     | Guiana                                |
|                       |        | 1 ····································         |        | GDP; MHT410: São Gabriel da           |
|                       |        | Brazil (C to W Amazonia). White sand           |        | Cachoeira Morro dos Seis Lagos        |
| Hirtella arenosa      | 162144 | campina.                                       | AM     | Lago do Jacaré: Brazil                |
| in icha ai chosa      | 102177 | cumpinu.                                       | 1 1171 | Lugo do sucuro, Diuzii                |

|                     |        | Colombia to the Guianas, Brazil and            |         |                                         |
|---------------------|--------|------------------------------------------------|---------|-----------------------------------------|
| Hirtella bicornis   | 162909 | Amazonian Peru.                                | AM      | GCA; P01110528; French Guiana           |
|                     |        |                                                |         | 120; Sothers1533; Espírito Santo,       |
|                     |        |                                                |         | Linhares, Reserva Natural da CVR        |
| Hirtella corymbosa  | 164173 | Eastern Brazil. Open restinga with savannas    | AF      | Brazil                                  |
|                     |        | Nicaragua and Costa Rica, Eastern              |         |                                         |
|                     |        | Venezuela, Guianas, and eastern Amazonian      |         |                                         |
| Hirtella davisii    | 160638 | Brazil. Primary forest on high ground.         | AM, CA  | GBT; JC 111; French Guiana              |
|                     |        |                                                |         | GEA; Myrmecophila; VIC2428              |
|                     |        | Northern Brazil. Low caatinga forest on        |         | Vicentini, North of Manaus (tbc);       |
| Hirtella dorvalii   | 162872 | sandy soils.                                   | AM      | Brazil                                  |
|                     |        | Guyana and C and W Amazonia. Non-              |         | GEI; Myrmecophila; JH6/515A             |
| Hirtella duckei     | 162922 | flooded forest.                                | AM      | Jenaro JH Roosevelt Garcia; Peru        |
|                     |        | Venezuela and W Amazonia. River banks          |         | GEE; JH1/60 Jenaro JH Roosevelt         |
| Hirtella elongata   | 162685 | and riverine forest.                           | AM      | Garcia; Peru                            |
| Hirtella            |        | French Guiana and Brazil. Primary and          |         | GBI; P00610010; Paracou; French         |
| glandistipula       | 163798 | secondary forest on non-flooded ground.        | AM      | Guiana                                  |
|                     |        | Commonest in the planalto of C Brazil, but     |         |                                         |
|                     |        | extending into the savannas of Amazonia and    |         |                                         |
|                     |        | the Guianas. Damp forest in open places,       |         |                                         |
|                     |        | mainly gallery forest, river banks and         |         | GBF; NH200142; Nouragues;               |
| Hirtella glandulosa | 162929 | savanna margins.                               | AM, CER | French Guiana                           |
|                     |        |                                                |         | 61; Myrmecophila;                       |
|                     |        |                                                |         | Duivenvoorden2352; Araracuara,          |
|                     |        |                                                |         | bosque alto, suelo arcilloso rojizo d   |
| Hirtella guainiae   | 162560 | Western Amazonia. Non-flooded forest.          | AM      | tierra firme; Colombia                  |
| Hirtella            |        |                                                |         |                                         |
| guatemalensis       | 162922 | Central America. Forest on well-drained soil.  | CA      | 121; Peterson6824; Panama               |
| Hirtella lemsii     | 164050 | Endemic to Costa Rica. Primary rainforest.     | CA      | 62; Aguilar9823; Costa Rica             |
| Hirtella            |        | Eastern Venezuela and the Guianas. Primary     |         | B445070; BAFOG near Saint               |
| macrosepala         | 162958 | forest.                                        | AM      | Laurent du Maroni; French Guiana        |
|                     |        | Peru and Brazil. Upland forest on terra firme; |         | LCS; Jenaro Herrero JH; Roosevel        |
| Hirtella magnifolia | 162386 | understorey in open clearings.                 | AM      | Garcia et al.; JH6/95A; Peru            |
|                     |        |                                                |         | <b>63</b> ; Myrmecophila; Sothers 1503; |
| Hirtella            |        | Brazil (Central Amazonia). Non-flooded         |         | Reserva Florestal Ducke, Manaus,        |
| myrmecophila        | 162880 | forest                                         | AM      | Amazonas; Brazil                        |
|                     |        |                                                |         |                                         |

|                      |        | St. Vincent, Trinidad, Venezuela, Guianas,     |        |                                       |
|----------------------|--------|------------------------------------------------|--------|---------------------------------------|
|                      |        | Colombia and N Brazil. Open sandy places,      |        |                                       |
|                      |        | savannas, savanna margins, sandy river banks   |        | GDS; V200031; Herbier Pierre          |
| Hirtella paniculata  | 163046 | and islands.                                   | AM,CA  | Fabre, cf French Guiana               |
| Hirtella physophora  | 162984 | Guianas and Amazonia. Non-flooded forest.      | AM     | <b>Hp</b> ; Myrmecophila; French Guia |
|                      |        |                                                |        | GEN; TS55rg 169; Tamshiyacu           |
| Hirtella pilosissima | 162381 | Western Amazonia. Non-flooded forest.          | AM     | Roosevelt Garcia et al.; Peru         |
|                      |        | Venezuela, Guianas, Colombia and E             |        |                                       |
|                      |        | Amazonian Brazil. Common species of the        |        |                                       |
|                      |        | Guayana Highland and the Upper Rio Negro       |        | GDM; Barcelos Serra do Araca          |
|                      |        | in sandy savannas, open and low forest in      |        | Arredores da serra FMC0386; FM        |
| Hirtella punctillata | 163084 | sandstone areas, and open river margins.       | TEP    | Costa, sent by Vicentini; Brazil      |
| -                    |        | Central America and Trinidad to Bolivia and    |        | `````````````````````````````````     |
|                      |        | E Brazil Primary forest especially beside      |        |                                       |
|                      |        | rivers and streams, but also in understorey of |        | Hr; Pierre-Jean Malé, Nouragues       |
| Hirtella racemosa    | 162890 | forest on non-flooded ground                   | АМ     | French Guiana                         |
|                      |        |                                                |        |                                       |
|                      |        |                                                |        | 122; Ecuador, Homeier2190; Res        |
|                      |        | Ecuador and Peru. Andean primary forest, to    |        | San Francisco, ca 2000m asl,          |
| Hirtella recurva     | 163411 | 1700 m.                                        | MONT   | Zamora-Chinchipe; Ecuador             |
|                      |        | Peru and C Amazonian Brazil. Non-flooded       |        | GEH; JH6/123 Jenaro JH; Roose         |
| Hirtella rodriguesii | 162164 | forest. Flowering June–Sept.                   | AM     | Garcia et al.; Peru                   |
|                      |        |                                                |        | 123; Sothers 1530; Brazil, Espírit    |
|                      |        |                                                |        | Santo, Linhares, Res. Natural da      |
| Hirtella sprucei     | 164140 | Northeastern and E-C Brazil. Forests.          | AF     | CVRD; Brazil                          |
|                      |        | French Guiana and N Brazil Non-flooded         |        | NH200131: Nouragues Station           |
| Hirtella suffulta    | 162646 | forest.                                        | АМ     | French Guiana                         |
|                      | 102010 |                                                |        |                                       |
|                      |        | French Guiana and N Brazil. Primary and        |        | GBS; JC 084; noted as <i>Emmotum</i>  |
| Hirtella tenuifolia  | 162715 | secondary forest.                              | AM     | previous analysis; French Guiana      |
|                      |        | Central Mexico through Central America and     |        |                                       |
|                      |        | the Antilles to northern South America and     |        | <b>KTT</b> ; BOLLC391; La Chonta J.   |
| Hirtella triandra    | 163055 | SE Brazil                                      | CA, AM | Licona; Bolivia                       |
|                      |        | Endemic to NW New Caledonia. Frequent          |        | H-gerontogea; Hequet 4104;            |
|                      |        | beside creeks and in riverine woodland in      |        | Vanessa Hequet; Nouméa; Nouve         |
| Hunga gerontogea     | 162404 | serpentine terrain and on serpentine alluvia   | AUST   | Calédonie                             |
|                      |        | Known only from New Caledonia (northern        |        | 37; Vardrot938; Vanessa Hequet;       |
| Hunga mackeeana      | 162414 | part). Maquis.                                 | AUST   | Nouméa; Nouvelle Calédonie            |
|                      |        | L                                              |        |                                       |

|                  |        | <u>^.</u>                                     |           |                                                      |
|------------------|--------|-----------------------------------------------|-----------|------------------------------------------------------|
|                  |        | S New Caledonia (including Ile des Pins),     |           |                                                      |
|                  |        | and Lifou, in the Loyalty Islands. Forests on |           | <b>38</b> ; Hequet1; Vanessa Hequet;                 |
| Hunga rhamnoides | 162377 | serpentine                                    | AUST      | Noumea; Nouvelle Calédonie                           |
|                  |        | Widespread in Amazonia (Guianas,              |           |                                                      |
| Hymenopus        |        | Colombia, Ecuador, Peru, Brazil). Flooded as  |           | 67; Sothers sin#; Reserva Floresta                   |
| caudatus         | 162527 | well as non-flooded forest.                   | AM        | Ducke, Manaus, Amazonas; Braz                        |
|                  |        |                                               |           | 125; Gillespie725; Linden Highw                      |
| Hymenopus        |        | Guianas and northern Brazil. Forest on terra  |           | near turnoff to St. Cuthbert's                       |
| divaricatus      | 162843 | firme and savanna margins.                    | AM        | Mission; Guyana                                      |
|                  |        |                                               | CA,       |                                                      |
| Hymenopus        |        | Costa Rica, Colombia, Venezuela, Guianas      | CHOCO,    | A110093; Acarouany plot; French                      |
| glabriflorus     | 163010 | and Brazil (Amapá, Pará). Terra firme forest. | AM        | Guiana                                               |
| Hymenopus        |        |                                               |           |                                                      |
| heteromorphus 1  | 162910 | Central and South America.                    | AM, CA    | Lh; LV109473; French Guiana                          |
| Hymenopus        |        |                                               |           | 126: Sothers1547; Porto Urucu,                       |
| heteromorphus 2  | 162580 | Idem                                          | AM, CA    | Amazonas; Brazil                                     |
|                  |        | Guianas, N Brazil and Amazonian Colombia,     |           |                                                      |
| Hymenopus        |        | Peru and Venezuela. Lowland forest in open    |           | GEK; MH-046; Mabura-Hill MH                          |
| intrapetiolaris  | 162838 | places.                                       | AM        | Roosevelt Garcia; Guyana                             |
| Hymenopus        |        | Venezuela, Guianas, Brazil and Peru. Terra    |           | <b>GBD</b> ; M17116512; Montagne                     |
| laevigatus       | 160126 | firme forest                                  | AM        | Tortue; French Guiana                                |
| Hymenopus        |        | Guianas, Venezuela and Amazonian Ecuador,     |           |                                                      |
| latifolius       | 160446 | Peru and Brazil. Non-flooded forest           | AM        | LCD; PE5397; French Guiana                           |
| Hymenopus        |        | French Guiana and Venezuela. Forest on high   |           | <b>GBB</b> ; M17116079; Montagne                     |
| latistipulus     | 162994 | ground.                                       | AM        | Tortue; French Guiana                                |
| Hvmenopus        |        | Guianas, Venezuela, Peru and Amazonian        |           | KD5284: Kyle Dexter. French                          |
| macrophyllus     | 162677 | Brazil. Periodically flooded forest           | АМ        | Guiana                                               |
|                  |        | French Guiana western (Colombia Ecuador       |           |                                                      |
| Hymenopus        |        | Peru) and Brazilian Amazonia Non-flooded      |           |                                                      |
| reticulatus      | 162555 | and periodically flooded forest               | АМ        | <b>68</b> : Sothers, Ducke tree#499 <sup>.</sup> Bra |
|                  | 102000 | Malay Peninsula Borneo and Sumatera to        |           |                                                      |
| Kostermanthus    |        | Sulawesi and S Philippines Lowland            |           | 69. Ahmad7485. near Sungai Lia                       |
| heteronetalus    | 161914 | rainforest from sea level to 500 m            | SEASIA    | Arboretum Forest Reserve: Rrune                      |
| nerer operations | 101714 | Romeo (Sarawak) Hill slope in mixed           | 51210171  | Kostarmanthus: Sarawal                               |
| Kostarmanthia    |        | dinterocarp forest to 200 m and in large      |           | Samangah Arbaratum 1st Di-isi                        |
| Rosiermaninus    | 161700 | (heath) forest to 200 m., and in kerangas     | OF A OF A | Deie: Lee, D. 2000, Malarei                          |
| rodusius         | 101/88 | (neath) forest to 600 m.                      | SEASIA    | гане, Lee, B. 38000, Malaysia                        |
|                  |        | widespread in Amazonia. Gallery forest,       |           | <b>130</b> ; D daSilvaCosta396 ; previou             |
|                  |        | periodically flooded forest, river margins,   |           | identified as Leptobalanus apetal                    |
| Hymenopus cf.    |        | savanna margins, and open river beaches on    |           | identification modified in Feb. 20                   |
| occultans        | 162471 | sandy soil.                                   | AM,SAV    | Brazil                                               |

|                    |        | Vanazualan Guayana and Amazanian Prazil      |         |                                       |
|--------------------|--------|----------------------------------------------|---------|---------------------------------------|
| Lontobalanua       |        | and Damy Non-flooded forest, especially on   |         | CEE: 111/169: Japara Harrara D        |
| Lepiobalanus       | 162106 | and Peru. Non-moded forest, especially on    | AM TED  | GEF, JH1/108, Jenaro Herrero, K       |
| emarginalus        | 102190 | grantic outcrops.                            | AM, IEP | Garcia; Peru                          |
|                    |        | Bolivia, and in C, NE, SE and N Brazil.      |         |                                       |
| Leptobalanus       |        | Riverine forest bordering cerrado, and in    |         |                                       |
| gardneri           | 162289 | cerrado itself.                              | CER     | <b>131</b> ; Queiroz11012; Brazil     |
|                    |        | From Panama, Ecuador and Colombia to         |         |                                       |
|                    |        | French Guiana, Guyana, Venezuela and         |         |                                       |
| Leptobalanus       |        | Brazil (Amazonas). Upland forest on terra    |         | <b>GDV</b> ; V200639; Herbier Pierre  |
| granvillei         | 162207 | firme and along riverbanks.                  | AM,CA   | Fabre; French Guiana                  |
|                    |        |                                              |         | KVF; Estação Ecologica de Assis       |
| Leptobalanus       |        |                                              |         | PEEA; Renato Lima, São Paulo ;        |
| humilis            | 162057 | Bolivia and Brazil. In cerrados.             | CER     | Brazil                                |
|                    |        | Guianas, Venezuela, C & W Amazonia           |         |                                       |
|                    |        | (Colombia, Ecuador, Peru and Brazil). Non-   |         |                                       |
|                    |        | flooded forest and secondary scrub on sandy  |         | GED; Allpahuayo AM; AM59 rg-          |
| Leptobalanus latus | 162060 | soil                                         | AM      | 059; Roosevelt Garcia; Peru           |
|                    |        | Widely distributed from N Venezuela          |         |                                       |
|                    |        | through the Guianas, Peru, Colombia, Bolivia |         |                                       |
| Leptobalanus       |        | and E & C Amazonia to Northeast, East-       |         |                                       |
| octandrus 1        | 162298 | central & Southeast Brazil. Forest           | AM      | 132; Castro165; Brazil                |
|                    |        | 0                                            |         | GAL; Brazil LIC OCT 10447 (PECB       |
| Leptobalanus       |        |                                              |         | 119) Parque Estadual Carlos Botelho,  |
| octandrus 2        | 162340 | Idem                                         | AF      | São Paulo, Renato Lima; Brazil        |
|                    |        | Bolivia, Colombia, Peru, eastern and         | •       |                                       |
|                    |        | southern Amazonia and the planalto of        |         |                                       |
| Leptobalanus       |        | central Brazil. Non-flooded forest, riverine |         |                                       |
| sclerophyllus      | 162377 | forest or cerrado                            | AM,CER  | 133; Pereira3558; Brazil              |
|                    |        |                                              |         | KTQ; JH6/325 Jenaro Herrero,          |
|                    |        |                                              |         | Roosevelt Garcia, misdet as L blackii |
| Leptobalanus sp    | 159487 |                                              | AM      | (perhaps L. longistylus?); Peru       |
|                    |        | Guianas, Venezuela and in the Amazon         |         |                                       |
| Leptobalanus       |        | region of Brazil. Primary forest on non-     |         | Ls; P01860159; Paracou Station;       |
| sprucei            | 162234 | flooded ground and secondary forest          | AM      | French Guiana                         |
|                    |        | Guianas and adjacent Venezuela and Brazil    |         | La; P00610185; Paracou Station:       |
| Licania alba       | 162489 | (Amapá, Amazonas, Pará). Primary forest.     | AM      | French Guiana                         |
|                    |        | Guianas, Venezuela, Bolivia, Peru and        |         |                                       |
|                    |        | widespread in Amazonian Brazil. Riverine     |         | Lc; NH200019; Nouragues Station:      |
| Licania canescens  | 162624 | and periodically flooded forest              | AM      | French Guiana                         |
|                    |        |                                              |         |                                       |

|                    |        | venezuela (Cerro Yapacana, where it is         |         |                                  |
|--------------------|--------|------------------------------------------------|---------|----------------------------------|
|                    |        | reported to be abundant) and in Amazonian      |         |                                  |
| Licania cordata    | 160064 | Brazil (Amazonas). Savannas                    | SAV     | GDQ; MHTA486; Brazil             |
|                    |        | Guianas and adjacent Venezuela and Brazil.     |         | GBV; JC 136; Juliette Chamagne;  |
| Licania densiflora | 151268 | Primary forest on high ground and slopes.      | AM      | French Guiana                    |
|                    |        | Western Amazonia: Bolivia, Colombia,           |         |                                  |
|                    |        | Ecuador, Peru and Brazil (Acre). Terra firme   |         |                                  |
| Licania harlingii  | 163427 | forest.                                        | AM      | 136; Homeier31755; Ecuador       |
|                    |        | A wide-ranging variety from Southern           |         |                                  |
|                    |        | Mexico to Bolivia, the Guianas, Venezuela,     |         |                                  |
|                    |        | Colombia, Peru and scattered localities in NE  |         |                                  |
|                    |        | and Amazonian Brazil. Sandy soils in forest    |         | LCB; NH22023; Nouragues Station  |
| Licania hypoleuca  | 162444 | and savannas                                   | AM,CA   | French Guiana                    |
|                    |        | Guianas, Venezuela and Brazil (Amazonas).      |         | LCE; KD5287; Kyle Dexter; French |
| Licania irwinii    | 162686 | Forested slopes.                               | AM      | Guiana                           |
|                    |        | A wide-ranging species from Costa Rica to      |         |                                  |
|                    |        | Bolivia, the Guianas, Venezuela, Peru and      |         |                                  |
|                    |        | throughout Brazil. Non-flooded forest,         | AM,CER, | GAV; LV113008; Saut Lavilette;   |
| Licania kunthiana  | 162255 | riverine forest, cerrados, or secondary forest | CA      | French Guiana                    |
|                    |        | Brazil (Bahia). Restinga on sandy soil, 25 m   |         |                                  |
|                    |        | altitude, growing with many individuals of     |         | 137; Sothers tree1870; Bahia;    |
| Licania lamentanda | 162683 | piaçaba palm                                   | AF      | KEW11607; Brazil                 |
|                    |        | E Brazil, from Paraíba to Rio de Janeiro.      |         |                                  |
|                    |        | Confined to coastal restingas and coastal      |         | 138; Sothers tree2850; Bahia;    |
| Licania littoralis | 162242 | forests.                                       | AF      | KEW11608; Brazil                 |
|                    |        | Guianas and Amazonian Brazil. Upland           |         | A110139; Acarouany Plot; French  |
| Licania majuscula  | 162436 | forest and high riverine forest.               | AM      | Guiana                           |
| Licania            |        | Trinidad, the Guianas, Venezuela and Brazil.   |         | M17116059; Montagne Tortue;      |
| membranacea        | 162204 | Forested slopes and non-flooded forest.        | AM      | French Guiana                    |
|                    |        | Widespread from Costa Rica to the Guianas,     |         |                                  |
|                    |        | Venezuela, Colombia, Peru, Amazonian           |         |                                  |
|                    |        | Brazil and Bolivia. Its known range has been   |         |                                  |
|                    |        | recently extended west of the Andes in         |         |                                  |
|                    |        | Colombia (Chocó and Valle) and in Brazil       |         |                                  |
|                    |        | (Bahia). Non-flooded forests and Atlantic      |         | NH200679; Nouragues Station;     |
| Licania micrantha  | 158098 | coastal forests.                               | AM,CA   | French Guiana                    |
|                    |        | Bolivia and N Brazil (Amazonas, Rondônia).     |         | <b>140</b> ; Sothers tree219-02; |
| Licania niloi      | 162518 | Primary forest.                                | AM      | KEW11600; Brazil                 |
|                    |        | -                                              |         | ·                                |

| 3        |                      |             | Amazonian Venezuela and adjacent Brazil          |        |                                       |
|----------|----------------------|-------------|--------------------------------------------------|--------|---------------------------------------|
| 4<br>5   |                      |             | (Amazonas). Riverine forest and savanna          |        | LCT; SL-07; Soesdyke-Linden           |
| 6        | Licania orbicularis  | 162259      | margins.                                         | AM     | Road, Guyana; Roosevelt Garcia        |
| 7<br>8   |                      |             |                                                  |        | P610256; Paracou Station; French      |
| 9        | Licania ovalifolia   | 162320      | Guianas and Brazil (Amapá). Primary forest.      | AM     | Guiana                                |
| 10<br>11 |                      |             | Guianas and Venezuela to Brazilian               |        | GDR; P009 Prance14070; rio Ituxi,     |
| 12       |                      |             | Amazonia, Peru and Ecuador. Non-flooded          |        | vicinity of Boca do Curuquete,        |
| 13       | Licania pallida      | 162406      | forest                                           | AM     | varzea forest, 1971; at MNHN; Brazil  |
| 14       |                      |             | French Guiana and Brazilian Amazonia             |        | <b>141</b> ;Sothers tree245-02;       |
| 16       | Licania rodriguesii  | 162314      | (Amazonas, Pará). Non-flooded forest.            | AM     | KEW11599 ; Brazil                     |
| 17<br>18 |                      |             | Throughout the Congo River basin and some        |        |                                       |
| 19       |                      |             | of its tributaries to the south. River banks and |        | NONB; F2P2C2603; M'Baiki Plot;        |
| 20<br>21 | Magnistipula         |             | sometimes also in forest on dry land in valley   |        | collected M Réjou-Méchain; Central    |
| 22       | butayei              | 162546      | bottoms, in lowlands up to 450 m.                | AFRICA | African Republic                      |
| 23<br>24 |                      |             | West Africa in a narrow coastal belt from SE     |        |                                       |
| 25       |                      |             | Nigeria to the extreme SW corner of DRC,         |        |                                       |
| 26<br>27 | Maranthes            |             | just N of the River Congo. Evergreen             |        | GD1917; ADN:GiD1917, voucher          |
| 28       | gabunensis           | 162774      | rainforest.                                      | AFRICA | GD2800; Gilles Dauby; Gabon           |
| 29       |                      |             | Widely distributed throughout the greater part   |        |                                       |
| 30<br>31 |                      |             | of the Guineo-Congolian region from Sierra       |        |                                       |
| 32       |                      |             | Leone to Ituri in E DRC and in Cabinda and       |        | GD1845; ADN:GiD1845,                  |
| 33<br>34 |                      |             | Angola. Evergreen and semi-evergreen             |        | voucher:GD2848; Gilles Dauby;         |
| 35       | Maranthes glabra     | 162290      | rainforest; absent only from the drier types.    | AFRICA | Gabon                                 |
| 36<br>37 |                      |             | Sudanian Region from Togo to the Central         | 0      |                                       |
| 38       |                      |             | African Republic. Fringing forest in the         |        | F1P1C4988; M'Baiki Forest Station;    |
| 39<br>40 |                      |             | wetter parts of the Sudanian region. In West     |        | Maxime Réjou Méchain; Central         |
| 41       | Maranthes kerstingii | 162400      | Africa occurs mainly in upland areas.            | AFRICA | African Republic                      |
| 42<br>43 |                      |             |                                                  |        | 143; Hammel16653; Parque Nacional     |
| 44       | Maranthes            |             | Panama (Isthmus), and recently collected in      |        | Corcovado. Sirena station; lower Olla |
| 45<br>46 | panamensis           | 162462      | Nicaragua and Costa Rica. Dense rainforest.      | CA     | trail; Costa Rica                     |
| 47       | <u> </u>             |             | West Africa from the Ivory Coast to Nigeria      |        | <b>26</b> : MH2306: Myriam Heuertz:   |
| 48<br>40 | Maranthes robusta 1  | 162417      | Swamp forest and semi-evergreen rainforest       | AFRICA | Benin                                 |
| 49<br>50 |                      |             | F                                                |        |                                       |
| 51<br>52 |                      | 1 ( 2 1 2 0 |                                                  |        | 27; MH2285; Myriam Heuertz;           |
| 52<br>53 | Maranthes robusta 2  | 162130      | Idem                                             | AFRICA | Benin                                 |
| 54       |                      |             | From Mexico through Central America to           |        |                                       |
| 55<br>56 |                      |             | Bolivia, Colombia, Peru, Ecuador, Venezuela      |        |                                       |
| 57       | Microdesmia          | 1 (0 50 5   | and northern Brazil. Dry plains, slopes and      |        | 72; Ibarra-Manriquez6065; Nueva       |
| 58<br>59 | arborea              | 162521      | scrub forest.                                    | CA,AM  | Italia; Mexico                        |

|                     |        | Native to northeastern Brazil. Dry forest and |        |                                             |
|---------------------|--------|-----------------------------------------------|--------|---------------------------------------------|
| Microdesmia rigida  | 162617 | gallery forest                                | AF     | 144; Cardoso1052; Brazil                    |
|                     |        | W Amazonia in Bolivia, Colombia, Ecuador,     |        |                                             |
| Moquilea            |        | Peru and Brazil. Non-flooded and              |        | GEG; JH2/286 jen2/286; Roosevelt            |
| brittoniana         | 162443 | periodically flooded forest                   | AM     | Garcia; Peru                                |
|                     |        |                                               |        | 73; Aguilar9846; Rincon, margen             |
| Moquilea            |        | Costa Rica (Puntarenas and Osa Peninsula).    |        | derecha de Quebrada Aparicio; Costa         |
| corniculata         | 162438 | Lowland rainforest.                           | CA     | Rica                                        |
|                     |        | Guianas, Venezuela, the Amazon delta, W       |        |                                             |
|                     |        | Amazonia, Ecuador, Peru and in Brazil.        |        |                                             |
| Moquilea guianensis | 161828 | Riverine, terra firme and premontane forests  | AM     | LCC; PE1075; French Guiana                  |
|                     |        |                                               |        | 139; Homeier38001; Province of              |
|                     |        | Panama, Colombia, Ecuador and Peru.           |        | Napo, Parque Nacional Sumaco-               |
| Moquilea            |        | Lowland forests to 600 m and in premontane    |        | Galeras, Rio Hollin watershed;              |
| macrocarpa          | 162389 | rain forest in Panama.                        | CA,AM  | Ecuador                                     |
|                     |        | Guianas, Venezuela, Bolivia and Amazonian     |        |                                             |
| Moquilea            |        | Brazil. Non-flooded forests and gallery       |        | NH200162; Nouragues Station;                |
| minutiflora         | 162438 | forests.                                      | AM     | French Guiana                               |
|                     |        | Martinique to Trinidad, adjacent Venezuela    |        | <b>39</b> ; Licania pyrifolia; Hato Pinero; |
|                     |        | and Colombia. Lowland forest and riverine     |        | AF28517 Angel Fernandez & J                 |
| Moquilea pyrifolia  | 162493 | forest in open places.                        | AM     | Chave; Venezuela                            |
|                     |        | Northeastern, southeastern and southern       |        | Ltom; Olivier Maurin NA cultivated          |
| Moquilea tomentosa  | 162555 | Brazil. Native to the coastal restinga forest | AF     | in South Africa; South Africa               |
|                     |        | Common in West Africa in a coastal strip, in  | r      |                                             |
|                     |        | places up to 300 km wide, from Senegal to     |        |                                             |
|                     |        | Liberia, and with a scattered east-west       |        |                                             |
|                     |        | distribution in the much drier and more       |        |                                             |
|                     |        | continental northern half of the Sudanian     |        |                                             |
| Neocarya            |        | region 700.1000 km inland. Cultivated in      |        | Nmac;Association France-Sahel,              |
| macrophylla         | 162410 | Panama. Apparently confined to sandy soils.   | AFRICA | Sénégal                                     |
|                     |        | Widely distributed species from the Nicobar   |        |                                             |
|                     |        | Islands and Thailand through the Malay        |        |                                             |
|                     |        | Peninsula to Borneo and Sumatra. Lowland      |        |                                             |
| Parastemon          |        | and coastal forest; commonest in swamp and    |        | SARAWAK100485;                              |
| urophyllus          | 162681 | secondary forest                              | SEASIA | Niyomdham1083; Thailand                     |
|                     |        | Brazil (coastal Bahia). Littoral forest. Some |        |                                             |
|                     |        | collections of this species have ants nests   |        | 74; Barbosa-Silva sin#; Bahia;              |
| Parinari alvimii    | 162320 | formed by the curvature of the leaves         | AF     | KEW11534 ; Brazil                           |

| 2            |                      |        |                                                 |           |                                        |
|--------------|----------------------|--------|-------------------------------------------------|-----------|----------------------------------------|
| 3            |                      |        | Thailand, Cambodia, Laos, Vietnam. 41:          |           |                                        |
| 4<br>5       |                      |        | CBD, LAO, THA, VIE. Open deciduous              |           |                                        |
| 6            |                      |        | forest, forest beside streams, hill forest to   |           |                                        |
| 7<br>8       | Parinari anamensis   | 161810 | 1000 m altitude.                                | SEASIA    | LCL; V105002; Herbier Pierre Fabre     |
| 9            |                      |        |                                                 |           |                                        |
| 10           |                      |        | Trinidad, the Guianas, and adjacent             |           |                                        |
| 12           |                      |        | Venezuela, Colombia and Brazil. River           |           |                                        |
| 13           | Parinari campestris  | 162638 | margins, savanna margins, and open forests.     | AM        | Pca; Paracou Station ; French Guiana   |
| 14<br>15     |                      |        | Sumatera, Borneo (Kalimantan, Brunei,           |           |                                        |
| 16           |                      |        | Sarawak, Sabah) and Philippines (Palawan).      |           | LCI; SAN152336; Sandakan               |
| 17<br>10     | Parinari canarioides | 159646 | Rainforest up to 800 m                          | SEASIA    | Herbarium; Malaysia                    |
| 10           |                      |        | Throughout the greater part of the Zambezian    |           |                                        |
| 20           |                      |        | region and southwards to Natal and              |           |                                        |
| 21<br>22     |                      |        | northwards into the Congo Republic and          |           | Pcap; OM3613 subspecies incohata;      |
| 23           | Parinari capensis    | 162529 | DRC.                                            | AFRICA    | Olivier Maurin; South Africa           |
| 24<br>25     |                      |        | Widespread in woodland on the African           |           |                                        |
| 26           |                      |        | mainland from Senegal to Kenya and              |           |                                        |
| 27           |                      |        | southwards to Namibia and the Transvaal, but    |           |                                        |
| 28<br>29     |                      |        | absent from the forests of the Guineo-          |           |                                        |
| 30           |                      |        | Congolian region: also in coastal forest on the |           |                                        |
| 31<br>32     |                      |        | east side of Madagascar and in the              |           |                                        |
| 33           | Parinari             |        | Sevenelles Woodland wooded grassland and        |           | <b>Pcura</b> : OM2621: Olivier Maurin: |
| 34<br>25     | curatellifolia       | 157972 | coastal forests                                 | AFRICA    | South Africa                           |
| 35<br>36     |                      |        | From Amazonian Colombia Peru Bolivia            |           |                                        |
| 37           |                      |        | and E Venezuela through the Guianas and         |           | GAS: B445017: BAFOG: French            |
| 38<br>39     | Parinari excelsa l   | 160789 | Amazonian Brazil to E-C and S Brazil            | AM AF     | Guiana                                 |
| 40           |                      | 100707 | Amazonian Brazil to E-C and S Brazil            | Awi, Ai   | 75: Prozil(Socolci1402): Porque        |
| 41<br>42     |                      |        | From Amerophia Colombia Dary Polizia            |           | Fatadual Cristelina, Vagatação aborta  |
| 42           |                      |        | and E Vanazuela through the Cuianes and         |           | marginal da Dia Cristalina:            |
| 44           | D                    | 162412 | And E venezuera unough the Guanas and           |           | KEW11522: Deceil                       |
| 45<br>46     | Parinari exceisa 2   | 162412 | Amazonian Brazil to E-C and S Brazil            | AM, AF    | KEW 11533; Brazil                      |
| 47           |                      |        | French Guiana, Colombia and N Brazilian         |           | LAK; LV109130; Saut Lavilette;         |
| 48<br>40     | Parinari montana     | 160283 | Amazonia. Non-flooded forest.                   | AM        | French Guiana                          |
| <del>-</del> |                      |        | New Guinea and northern Australia. Savanna      |           |                                        |
| 51           | Parinari nonda       | 162368 | open forest, forest on rocky areas in lowlands  | AUST      | <b>76</b> : Crawford434: KEW11531      |
| 52<br>53     |                      |        | Malesian Peninsula (S Kelantan to Johore)       |           | .,                                     |
| 54           |                      |        | Sumatera Borneo (Sabah Kalimantan)              |           | SAN152336: is not the correct code:    |
| 55<br>56     | Parinari             |        | Lowland rainforest and beside rivers or in      |           | SAN152716: Sandakan Harbarium          |
| 50<br>57     | ablongifalig         | 167515 | vallays and avtanding to 450 m altitude         | SE V CI V | Malaysia                               |
| 58           | oviongijolia         | 102313 | valleys and extending to 450 m attitude         | SEASIA    | wataysta                               |

|                      |        |                                                  |        | 77; Queiroz15137; Queiroz, L.P.de; |
|----------------------|--------|--------------------------------------------------|--------|------------------------------------|
|                      |        | Planalto of Central Brazil, SE Brazil,           |        | Rodovia Go - 118 (São João         |
|                      |        | Paraguay and Bolivia. Cerrado and open           |        | d'Aliança para Alto Paraiso)       |
| Parinari obtusifolia | 162518 | disturbed areas                                  | CER    | KEW11532; Brazil                   |
|                      |        | Guianas, Venezuela and Amazonia. Open            |        |                                    |
| Parinariopsis        |        | forest at river margins, savanna margins and     |        | GBK; P00610743; Paracou Station ;  |
| licaniiflora         | 160393 | in secondary forest.                             | AM     | French Guiana                      |
|                      |        | Eastern Africa in Tanzania, Kenya, Malawi,       |        |                                    |
|                      |        | Mozambique and Zambia. Widespread in             |        |                                    |
| 'Hirtella'           |        | fringing forest, coastal forest, forest in lower |        | OM2649; Olivier Maurin; South      |
| zanzibarica          | 162362 | slopes of mountains to about 900 m.              | AFRICA | Africa                             |

Page 49 of 53

Botanical Journal of the Linnean Society



Time before present (My)



Page 51 of 53

Botanical Journal of the Linnean Society





