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Abstract	30	

Tropical	forests	are	characterized	by	large	carbon	stocks	and	high	biodiversity,	but	they	31	

are	increasingly	threatened	by	human	activities.	Since	structure	strongly	influences	the	32	

functioning	and	resilience	of	forest	communities	and	ecosystems,	it	is	important	to	33	

quantify	it	at	fine	spatial	scales.		 	34	

Here,	we	propose	a	new	simulation-based	approach,	the	"Canopy	Constructor",	with	35	

which	we	quantified	forest	structure	and	biomass	at	two	tropical	forest	sites,	one	in	36	

French	Guiana,	the	other	in	Gabon.	In	a	first	step,	the	Canopy	Constructor	combines	field	37	

inventories	and	airborne	lidar	scans	to	create	virtual	3D	representations	of	forest	38	

canopies	that	best	fit	the	data.	From	those,	it	infers	the	forests'	structure,	including	39	

crown	packing	densities	and	allometric	scaling	relationships	between	tree	dimensions.	40	

In	a	second	step,	the	results	of	the	first	step	are	extrapolated	to	create	virtual	tree	41	

inventories	over	the	whole	lidar-scanned	area.		42	

	43	

Across	the	French	Guiana	and	Gabon	plots,	we	reconstructed	empirical	canopies	with	a	44	

mean	absolute	error	of	3.98m	[95%	credibility	interval:	3.02,	4.98],	or	14.4%,	and	a	45	

small	upwards	bias	of	0.66m	[-0.41,	1.8],	or	2.7%.	Height-stem	diameter	allometries	46	

were	inferred	with	more	precision	than	crown-stem	diameter	allometries,	with	47	

generally	larger	heights	at	the	Amazonian	than	the	African	site,	but	similar	crown-stem	48	

diameter	allometries.	Plot-based	aboveground	biomass	was	inferred	to	be	larger	in	49	

French	Guiana	with	400.8	t	ha-1	[366.2	–	437.9],	compared	to	302.2	t	ha-1	in	Gabon	50	

[267.8	–	336.8]	and	decreased	to	299.8	t	ha-1	[275.9	–	333.9]	and	251.8	t	ha-1	[206.7	–	51	

291.7]	at	the	landscape	scale,	respectively.	Predictive	accuracy	of	the	extrapolation	52	

procedure	had	an	RMSE	of	53.7	t	ha-1	(14.9%	)	at	the	1	ha	scale	and	87.6	t	ha-1	(24.2%)	at	53	



	

	

the	0.25	ha	scale,	with	a	bias	of	-17.1	t	ha-1	(-4.7%).		This	accuracy	was	similar	to	54	

regression-based	approaches,	but	the	Canopy	Constructor	improved	the	representation	55	

of	natural	heterogeneity	considerably,	with	its	range	of	biomass	estimates	larger	by	56	

54%	than	regression-based	estimates.	57	

	58	

The	Canopy	Constructor	is	a	comprehensive	inference	procedure	that	provides	fine-59	

scale	and	individual-based	reconstructions	even	in	dense	tropical	forests.	It	may	thus	60	

prove	vital	in	the	assessment	and	monitoring	of	those	forests,	and	has	the	potential	for	a	61	

wider	applicability,	for	example	in	the	exploration	of	ecological	and	physiological	62	

relationships	in	space	or	the	initialisation	and	calibration	of	forest	growth	models.	63	
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1.	Introduction 64	

Tropical	forests	store	more	than	half	of	terrestrial	living	biomass	(Pan	et	al.,	2011)	and	65	

shelter	a	disproportionate	share	of	terrestrial	biodiversity.	Yet	they	are	increasingly	66	

threatened	by	human	activities,	from	agricultural	encroachment	and	fragmentation	to	67	

global	climate	change	(Lewis	et	al.,	2015).	Tropical	forests	thus	play	a	pivotal	role	in	68	

carbon	mitigation	and	conservation	strategies	such	as	natural	regeneration	and	the	69	

avoidance	of	deforestation	(Chazdon	et	al.,	2016;	Grassi	et	al.,	2017).	To	prioritize	such	70	

strategies	and	assess	their	efficacy,	methods	are	needed	that	accurately	quantify	forest	71	

structure,	i.e.	the	vertical	and	horizontal	arrangement	of	tree	stems	and	crowns.		72	

Forest	structure	shapes	ecosystem	functioning	(Shugart	et	al.,	2010),	wood	73	

quality	(Van	Leeuwen	et	al.,	2011),	microclimates	and	habitats	(Davis	et	al.,	2019),	and	74	

the	resilience	and	resistance	of	ecosystems	to	disturbances	(DeRose	and	Long,	2014;	75	

Seidl	et	al.,	2014;	Tanskanen	et	al.,	2005).	Forest	structure	also	varies	across	climates	76	

(Pan	et	al.,	2013)	and	across	successional	states	and	environmental	conditions	(Lutz	et	77	

al.,	2013).	Approaches	to	quantify	forest	structure	should	therefore	be	able	to	account	78	

for	local	heterogeneities	and	be	applicable	over	large	areas	(R.	Fischer	et	al.,	2019).		79	

Field-based	inventories	provide	detailed	descriptions	of	diameter	distributions	80	

across	time	and	space	and	form	the	bedrock	of	research	in	forest	ecology.	However,	the	81	

mapping,	measuring	and	identification	of	trees	is	typically	limited	to	a	few	hectares.	82	

Furthermore,	it	is	usually	difficult	to	obtain	reliable	measurements	of	tree	height	and	83	

other	crown	dimensions	from	the	ground	(Sullivan	et	al.,	2018).	As	a	result,	it	has	long	84	

been	a	challenge	to	correctly	describe	the	three-dimensional	stratification	of	forests	85	

(Oldeman,	1974).		86	
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Much	has	changed,	however,	with	the	advent	of	laser	scanning	and	its	ability	to	87	

obtain	data	in	three	dimensions	(Atkins	et	al.,	2018;	Disney,	2019).	At	regional	scales,	88	

airborne	laser	scanning	(ALS),	i.e.	aircraft-mounted	laser	scanning	devices,	are	now	89	

commonly	used	to	survey	forest	stratification	over	thousands	of	hectares.	The	data	can	90	

be	used	to	infer	canopy	height	and	leaf	density	at	sub-meter	resolution	(Riaño	et	al.,	91	

2004;	Rosette	et	al.,	2008;	Vincent	et	al.,	2017),	with	diverse	purposes,	from	estimating	92	

carbon	stocks	(Asner	and	Mascaro,	2014)	to	mapping	animal	habitats	(Goetz	et	al.,	93	

2010).	In	some	situations,	even	individual	tree	dimensions	–	especially	tree	height,	94	

crown	area	and	depth	–	can	be	deduced	by	segmenting	dense	ALS	point	clouds	into	95	

individual	plants	and	their	components	(Aubry-Kientz	et	al.,	2019;	Ferraz	et	al.,	2016;	96	

Hyyppä	and	Inkinen,	1999;	Morsdorf	et	al.,	2004).	In	particular	for	emergent	and	more	97	

loosely	spaced	trees,	full	crowns	are	often	visible	in	ALS	datasets	and	can	be	monitored	98	

from	above	(Levick	and	Asner,	2013;	Meyer	et	al.,	2018;	Stovall	et	al.,	2019).	While	this	99	

technique	has	been	well-researched	in	temperate	and	boreal	forests,	its	implementation	100	

is	more	difficult	in	the	multistoried	forests	typically	found	in	the	tropics.	In	the	latter	101	

case,	many	trees	are	overtopped	and	difficult	to	delineate,	so	a	large	part	of	the	102	

information	on	individual	tree	size	is	inaccessible.	Furthermore,	even	when	tree	crowns	103	

have	been	isolated,	the	matching	of	crowns	to	ground-measured	diameters	is	made	104	

difficult	by	asymmetries	in	tree	growth	and	uncertainties	in	geo-positioning.	105	

Here	we	propose	an	alternative,	simulation-based	strategy	to	infer	forest	106	

structure.	It	relies	on	a	combination	of	ALS	data	and	field	inventories	to	first	reconstruct	107	

forests	in	3D	on	local	field	plots,	and	then	uses	local	summary	statistics	to	create	virtual	108	

tree	inventories	over	the	whole	ALS-extent.	We	call	our	method	the	"Canopy	109	

Constructor".	It	is	inspired	by	the	fusion	of	forest	simulators	with	lidar	data	(Fassnacht	110	

et	al.,	2018;	F.	J.	Fischer	et	al.,	2019;	Hurtt	et	al.,	2004;	Knapp	et	al.,	2018;	Shugart	et	al.,	111	
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2015),	space-filling	algorithms	(Bohn	and	Huth,	2017;	Farrior	et	al.,	2016;	Taubert	et	al.,	112	

2015)	and	the	use	of	synthetic	forests	to	link	lidar	and	ground	inventories	(Palace	et	al.,	113	

2015;	Spriggs	et	al.,	2015).	The	Canopy	Constructor	brings	these	approaches	together	to	114	

provide	a	comprehensive	picture	of	forest	canopies	in	space,	with	applications	in	115	

biomass	mapping,	the	study	of	remote	sensing	techniques	and	the	initialization	or	116	

calibration	of	forest	growth	models	(F.	J.	Fischer	et	al.,	2019).	117	

To	implement	it,	we	used	the	assumptions	of	the	spatially	explicit	and	individual-118	

based	forest	growth	model	TROLL	(Maréchaux	and	Chave	2017)	and	notions	from	119	

allometric	scaling	theories,	i.e.	that	tree	dimensions	can	be	predicted	through	allometric	120	

relationships	(Niklas	2007)	and	that	space-filling	concepts	translate	between	the	121	

properties	of	individual	trees	and	those	of	the	whole	stand	(Niklas	et	al.,	2003;	West	et	122	

al.,	2009).	Unlike	general	theories	of	allometric	scaling,	however,	the	Canopy	123	

Constructor	seeks	to	infer	realized	scaling	relationships	from	local	plot	data,	and	then	124	

uses	these	to	predict	tree	positions	and	dimensions	in	space.		125	

Here,	we	describe	the	Canopy	Constructor	algorithm,	and	apply	it	at	two	tropical	126	

rain	forest	sites,	one	in	French	Guiana	(Chave	et	al.,	2008a),	one	in	Gabon	(Memiaghe	et	127	

al.,	2016),	to	infer	the	allometric	relationships	between	trunk	diameter	and	crown	128	

dimensions,	and	to	create	virtual	tree	inventories	across	several	thousands	of	hectares,	129	

from	which	fine-scale	above-ground	biomass	maps	can	be	deduced.	Specifically,	we	130	

asked	the	following	questions:	(i)	How	well	can	we	reproduce	3D	scenes	of	tropical	131	

forests	from	relatively	simple	principles,	(ii)	Are	tree	inventories	and	ALS	data	sufficient	132	

to	infer	allometric	scaling	relationships	between	tree	dimensions,	and	how	do	these	133	

relationships	differ	between	sites?	(iii)	What	is	the	biomass	density	at	both	sites	and	134	

how	is	it	distributed	across	the	landscape?	(iv)	How	accurate	is	the	Canopy	Constructor	135	

approach	in	extrapolation	and	does	it	have	an	advantage	over	conventional	biomass	136	
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mapping	methods?	We	evaluated	the	Canopy	Constructor's	predictions	through	137	

independent	data	and	cross-validation,	compared	the	accuracy	against	regression-based	138	

approaches,	and,	for	practical	purposes,	provide	an	assessment	of	its	accuracy	with	a	139	

reduced	set	of	simulations.		140	
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2.	Materials	and	Methods	141	

2.1	Study	sites	142	

To	answer	our	research	questions,	we	selected	two	tropical	sites,	one	in	French	Guiana,	143	

and	one	in	Gabon.	The	two	sites	were	chosen	based	on	their	location	in	the	Earth's	two	144	

largest	tropical	forest	biomes,	with	high	biomass	and	biodiversity,	which	makes	it	a	145	

challenge	to	correctly	estimate	their	structure.	Furthermore,	their	biomass	has	been	146	

recently	quantified,	so	we	had	empirical	data	sets	and	estimates	at	hand	to	compare	our	147	

approach	with	(Labriere	et	al.,	2018).	Throughout,	we	refer	to	them	as	study	sites,	while	148	

tree	inventories	are	referred	to	as	plots.		149	

The	French	Guiana	site	is	the	Nouragues	Ecological	Research	Station	(4.06°N,	150	

52.68°W).	The	site	is	characterised	by	a	lowland	tropical	rainforest	(except	for	a	granitic	151	

outcrop	at	430m	asl),	ca.	2900	mm	yr-1	rainfall,	a	3-month	dry	season	in	September-152	

November,	and	a	shorter	one	in	March.	Its	forest	forms	part	of	the	Guiana	Shield,	at	the	153	

northeastern	tip	of	Amazonia,	a	region	with	high	tree	wood	densities	and	biomass,	and	a	154	

large	fraction	of	legume	species	(ter	Steege	et	al.,	2006).	Tree	inventories	have	been	155	

carried	out	since	1992,	including	a	10-ha	plot	called	"Grand	Plateau"	and	a	12-ha	plot	156	

called	"Petit	Plateau"	(Chave	et	al.,	2008b).	Trees	with	diameters	≥	10	cm	at	1.30m	157	

above	the	ground	(diameter	at	breast	height,	dbh)	or	above	deformities	and	buttresses	158	

are	mapped,	tagged	and	identified	at	species	level	when	possible.	The	two	plots	differ	in	159	

their	disturbance	regime	and	canopy	structure	(cf.	Figure	S1	for	their	canopy	height	160	

models),	but	a	typical	hectare	includes	between	500	and	600	trees	≥	10cm	dbh	and	≥	161	

150	tree	species.	Dominant	species	are	Eschweilera	coriacea,	Quararibea	duckei,	Lecythis	162	

persistens,	Vouacapoua	americana,	Eperua	falcata	and	the	palm	Astrocaryum	sciophilum	163	

(Poncy	et	al.,	2001).	Several	ALS	surveys	have	been	conducted	since	2008	(Réjou-164	

Méchain	et	al.,	2015),	with	a	Riegl	lidar	(LMS-Q560)	mounted	on	a	fixed-wing	aircraft.	165	
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We	here	used	the	2012	tree	inventory	and	ALS	dataset	which	covers	2,400	ha	at	a	pulse	166	

density	of	~12	per	m2	(based	on	density	of	last	returns)	and	an	overall	point	density	of	167	

~18	per	m2	(all	returns;	Réjou-Méchain	et	al.,	2015).		168	

The	second	site,	Rabi,	is	located	in	southwestern	Gabon's	Gamba	Complex,	169	

(1.92°S,	9.88°E).	The	site	is	characterized	by	annual	rainfall	of	ca.	1970	mm	yr-1	170	

(Anderson-Teixeira	et	al.,	2015a),	and	is	covered	with	a	lowland	old-growth	tropical	rain	171	

forest,	with	local	human	disturbances	by	oil	operations	and	selective	logging.	A	25	ha	172	

plot	has	been	censused	twice,	including	all	trees	≥	1	cm	dbh,	in	2010-2012	and	2016-173	

2017	(Memiaghe	et	al.,	2016),	following	the	ForestGEO	protocol	(Condit,	1998).	The	plot	174	

has	an	estimated	84	species	ha-1	and	447	trees	≥	10	cm	dbh	ha-1	(Memiaghe	et	al.,	2016).	175	

The	legume	family	contributes	a	large	fraction	of	species,	trees	and	biomass,	with	four	176	

species,	Tetraberlinia	moreliana,	Tetraberlinia	bifoliolata,	Gilbertiodendron	ogoouense,	177	

and	Amanoa	strobilaceae,	accounting	for	ca.	45%	of	canopy	tree	species	(Engone	Obiang	178	

et	al.,	2019).	An	airborne	lidar	campaign	over	900	ha	was	carried	in	2015,	using	a	179	

helicopter-based	RIEGL	VQ-480i,	with	pulse	densities	of	~2.5	per	m2,	and	the	plot	is	part	180	

of	the	AfriSAR	campaign	(Fatoyinbo	et	al.,	2017).	181	

	182	

2.2	The	Canopy	Constructor	algorithm	183	

The	Canopy	Constructor	algorithm	consists	of	two	steps.	In	a	first	step,	the	3D-forest	184	

structure	is	reconstructed	over	a	local	plot	("calibration	plot"),	relying	on	a	tree	185	

inventory,	a	co-registered	ALS-scan	and	stand-average	allometric	relationships	that	186	

relate	trunk	diameter,	tree	height	and	crown	radius.	After	an	initial,	random	187	

reconstruction,	tree	properties	are	swapped	until	a	high	degree	of	similarity	between	188	

the	empirical,	ALS-derived	canopy	and	the	simulated	canopy	is	achieved,	but	without	189	

altering	the	underlying	allometric	structure.	If	allometric	parameters	are	not	known	190	
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empirically,	they	are	inferred	through	Bayesian	inversion	where	the	routine	is	run	with	191	

a	wide	range	of	parameters	(see	e.g.,	Hartig	et	al.,	2011).	At	the	end	this	step,	several	192	

best-fit	3D	scenes	are	obtained,	representing	the	most	likely	structural	configurations	193	

and	allometric	scaling	relationships	on	the	calibration	plot.		194	

In	a	second	step,	the	routine	is	extended	to	create	a	tree-by-tree	reconstruction	195	

over	the	whole	extent	of	the	airborne	lidar	scan.	Trees	are	drawn	from	the	local	stem	196	

diameter	probability	distribution	and	crowns	are	packed	into	the	canopy	until	densities	197	

match	those	of	the	calibration	plot.	In	the	following,	we	describe	both	steps	in	detail.		198	

	199	

Figure	1:	The	two-step	procedure	of	the	Canopy	Constructor	algorithm.		Step	1	uses	tree	inventory	200	

data,	and	a	canopy	height	model	(CHM).	To	infer	the	position	and	size	of	each	tree,	the	algorithm	creates	201	

an	initial	reconstruction	drawing	randomly	dimensions	from	allometric	relationships	between	tree	202	

dimensions.	In	ill-fitting	regions	(red),	deviations	from	the	allometric	means	are	swapped	between	trees	203	

until	a	good	spatial	fit	is	obtained	(green).	Step	2	extrapolates	the	results	of	step	1	and	creates	virtual	204	

inventories	across	thousands	of	hectares,	following	the	same	fitting	algorithm	as	in	step	1,	but	with	fitted	205	

trees	drawn	from	a	distribution	(see	main	text	for	details).	206	



	

4	

The	code	was	developed	in	C++	and	is	available	online	207	

(https://github.com/fischer-fjd/CanopyConstructor).	Statistical	analysis	and	208	

visualization	were	carried	out	in	R	(R	Development	Core	Team,	2019)	with	the	packages	209	

data.table,	raster,	ggplot2,	and	viridis	(Dowle	and	Srinivasan,	2018;	Garnier,	2018;	210	

Hijmans,	2016;	Wickham,	2011)	and	their	dependencies.	211	

	212	

2.2.1	Forest	structure	inference	and	model	calibration		213	

The	Canopy	Constructor	inputs	tree	diameters	and	locations	from	a	forest	inventory,	214	

predicts	tree	heights	and	crown	diameters	from	allometric	scaling	and	fills	up	an	initial	215	

3D-canopy	for	the	fitting	procedure	(resolution	of	1m3),	as	in	the	TROLL	model	216	

(Maréchaux	and	Chave,	2017).	To	summarize	canopy	structure,	we	chose	the	canopy	217	

height	model	(CHM),	defined	as	the	top-of-canopy	height	above	ground	for	a	given	grid	218	

cell	(here	at	1m2	resolution).	For	the	tree-by-tree	reconstruction,	the	minimal	trunk	219	

diameter	size	was	set	to	1	cm.	Each	surveyed	tree	was	assigned	to	a	grid	with	1m2	cell	220	

size.	If	several	trees	co-occured	on	the	same	cell,	their	positions	were	slightly	jittered	to	221	

fill	up	adjacent	cells.	For	multistemmed	trees,	a	single	effective	stem	dbh	was	retained,	222	

equal	to	𝑑𝑏ℎ!"" = 𝑑𝑏ℎ!!! .	For	simplicity,	we	refer	to	𝑑𝑏ℎ!""	as	dbh.	For	tree	223	

inventories	with	a	higher	cutoff	than	1	cm	(e.g.	dbhcutoff	=	10cm	or	30cm),	power-law	and	224	

exponential	dbh-size	distributions	were	assumed	to	fill	up	and	randomly	place	trees	<	225	

dbhcutoff	(Taubert	et	al.,	2015,	Farrior	et	al.,	2018).		226	

	227	

Allometric	relationships	228	

To	predict	canopy	structure	from	the	field-measured	stems,	the	Canopy	Constructor	229	

assumes	the	following	allometric	models:	230	
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	 ℎ =
ℎ𝑚𝑎𝑥 × 𝑑𝑏ℎ
𝑎! + 𝑑𝑏ℎ

 × exp (𝜀!)	
(	1	)	

and	231	

	 𝑐𝑟 = exp 𝑎!" + 𝜀!" ×𝑑𝑏ℎ!!" 	 (	2	)	

In	Equation	(1),	h	is	total	tree	height,	dbh	diameter	at	breast	height,	while	hmax	and	ah	232	

are	Michaelis	Menten	coefficients	interpreted	as	the	asymptotic	height	that	trees	reach	233	

at	large	trunk	diameter	values	and	the	approximately	linear	slope	of	the	increase	of	234	

height	with	diameter	at	small	trunk	diameters,	respectively.	In	Equation	(2),	cr	is	the	235	

tree's	crown	radius,	and	acr	and	bcr	are	the	intercept	and	slope	of	a	log-log	regression,	i.e.	236	

a	power	law	model.	Equation	(1)	was	chosen	instead	of	a	power	model	to	better	capture	237	

the	saturating	relationships	typically	found	in	tropical	rain	forests	(Cano	et	al.,	2019).	238	

The	𝜀!	and	𝜀!"  are	the	respective	error	terms	–	i.e.	the	natural	variation	in	allometry	–,	239	

given	by:	240	

	 𝜀! ~ 𝑁(0,𝜎!)	 (	3	)	

and	241	

	 𝜀!"  ~ 𝑁(0,𝜎!")	 (	4	)	

The	error	terms	generate	a	multiplicative	error	structure	that	accounts	for	the	242	

heteroscedasticity	in	crown	and	height	allometries	(Molto	et	al.,	2014).	We	assumed	that	243	

allometric	variation	did	not	depend	on	species	identity,	that	𝜀!	and	𝜀!" 	were	244	

independent,	and	that	crown	depth	could	be	simply	calculated	as	a	proportion	of	h,	as	in	245	

the	TROLL	model	(Maréchaux	and	Chave,	2017).		246	

To	model	crown	shape	more	realistically,	we	defined	the	ratio	𝛾	between	the	247	

radius	at	the	top	of	the	crown	and	its	base,	with	a	linear	slope	linking	both	layers.	𝛾	248	

varies	between	0	and	1:	if	𝛾 = 0,	the	tree	crown	is	a	cone,	while	if	𝛾 = 1,	it	is	a	cylinder	249	

(as	in	Maréchaux	&	Chave,	2017).	For	the	purposes	of	this	study,	we	set	𝛾	to	0.8.	This	250	
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resulted	in	an	improvement	in	the	convergence	of	the	crown	fitting	algorithm	compared	251	

to	simpler	cylindrical	shapes,	better	modelled	the	less	clear-cut	edges	found	empirically	252	

and	accounted	for	the	fact	that	real	tree	crowns	are	smaller	than	their	cylindrical	253	

envelopes.		254	

Based	on	the	crown	shape	parameter	as	well	as	a	particular	realization	of	the	six	255	

allometric	parameters	(hmax,	𝑎! ,𝑎!" , 𝑏!" , 𝜀!,	𝜀!"),	we	created	an	initial	3D	forest	mockup,	256	

with	deviations	from	allometric	means	randomly	assigned	to	trees.	257	

	258	

Optimization	algorithm	259	

The	Canopy	Constructor	then	optimizes	the	spatial	overlap	of	the	simulated	and	the	260	

ALS-derived	CHMs	by	readjusting	trees	and	their	crowns	in	space.	To	this	effect,	we	261	

looped	repeatedly	through	all	trees	on	the	grid,	in	random	order,	and	applied	one	of	262	

three	operations	described	below.	The	loop	was	stopped	when	improvements	in	canopy	263	

structure	were	marginal	(<	1%	acceptance	rates),	usually	achieved	after	100-200	264	

iterations.	A	similar	algorithm	was	implemented	in	Taubert	et	al.	(2015).		265	

For	the	majority	of	field-measured	trees,	we	picked	pairs	of	trees	and	swapped	266	

their	respective	values	of	𝜀!	(deviation	in	height)	and	𝜀!" 	(deviation	in	crown	radius).	267	

We	then	recalculated	the	new	dimensions	of	both	trees	and	kept	the	change	if	it	resulted	268	

in	an	increase	in	the	overall	goodness	of	fit	between	the	simulated	and	ALS-derived	269	

CHM.	To	keep	the	overall	variance	structure,	trees	were	binned	into	logarithmic	dbh	270	

classes	and	only	swapped	when	they	were	in	the	same	dbh	class.	This	procedure	rapidly	271	

redistributed	deviations	from	the	allometric	means	across	the	population	of	trees	so	as	272	

to	improve	spatial	fits,	but	preserved	the	initial	allometric	structure.		273	

We	defined	two	exceptions.	First,	large	tree	crowns	are	crucial	to	obtain	a	good	274	

canopy	reconstruction,	but	only	have	limited	opportunities	to	swap	dimensions	due	to	275	
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their	low	numbers.	Therefore,	if	there	were	less	than	10	trees	within	a	dbh	bin	across	276	

the	plot,	we	drew	new	tree	sizes	from	equations	(1)	and	(2).	If	the	new	draw	resulted	in	277	

a	better	fit	to	empirical	data,	it	was	retained.	To	prevent	bias	in	the	allometric	structure,	278	

the	expected	crown	radii	and	heights	had	to	be	preserved.	We	used	a	simple	method,	279	

allowing	positive	deviations	from	the	mean	only	if	the	previous	bin	average	deviated	280	

negatively	from	the	expected	value,	and	vice	versa.	281	

Second,	for	trees	with	dbh	<	dbhcutoff,	initial	positions	were	chosen	at	random,	so	282	

we	did	not	change	the	trees'	dimensions,	but	instead	relocated	the	entire	tree,	within	a	283	

radius	dependent	on	its	height	(but	at	least	10	m).	If	the	new	location	increased	the	284	

goodness	of	fit,	the	change	was	accepted.	Few	small	trees	were	visible	in	the	CHM,	so	285	

this	procedure	rarely	modified	the	canopy,	except	in	canopy	gaps.			286	

Plot	boundaries	bisect	crown	areas	and	may	thus	introduce	errors	in	estimation	287	

procedures	(Mascaro	et	al.,	2011).	To	prevent	biased	estimates,	we	calculated	the	crown	288	

area	outside	the	plot 𝐶𝐴!!"#	and	the	total	crown	area 𝐶𝐴! 	for	each	tree	i,	summed	both	289	

across	all	n	trees	per	plot	and	computed	the	ratio	𝑅 =  !"!
!"#!

!!!
!!!!

!!!
.	During	the	optimization	290	

procedure,	we	forced	R	to	remain	approximately	constant.	If	during	the	fitting	process,	R	291	

exceeded	its	initial	value,	then	the	trial	was	accepted	only	if	it	lowered	R,	and	vice	versa.			292	

We	further	observed	that	the	Canopy	Constructor	could	assign	large	crowns	to	293	

lower	canopy	layers	that	barely	affected	the	CHM	and	fit	small	crowns	on	the	tallest	294	

trees	to	mimick	natural	heterogeneity,	a	phenomenon	similar	to	oversegmentation	in	295	

tree	delineation	approaches.	To	prevent	this,	we	circled	through	all	trees	within	a	296	

distance	dist	=	CRtree	+	CRtreemax,	for	every	newly	fitted	crown	with	CRtree,	and	rejected	297	

crown	fittings	that	resulted	in	tree	configurations	where	a	large	tree	with	a	small	crown	298	

pierced	a	small	tree	with	a	large	crown.	299	
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	300	

Goodness-of-fit	metrics	301	

Each	time	a	tree	crown	was	updated,	we	tested	whether	this	change	increased	the	fit	302	

with	empirical	values.	To	assess	the	goodness	of	the	fit	between	virtual	and	empirical	303	

CHMs,	we	used	the	mean	of	the	absolute	errors:	304	

	
𝑀𝐴𝐸 =

1
𝑠!"!#$

 𝑐ℎ𝑚!"# 𝑠 − 𝑐ℎ𝑚!"# 𝑠
!!"!#$

!!!

 	
(	5	)	

where	each	s	represents	a	1m2	grid	cell	of	forest,	chmemp	the	empirical	canopy	height	of	305	

that	grid	cell,	chmsim	the	simulated	canopy	height,	derived	from	the	highest	non-empty	306	

voxel,	and	stotal	the	total	number	of	grid	cells	within	the	plot.	MAE	measures	the	307	

matching	of	local	canopy	height	patterns	and	was	used	instead	of	a	mean	squared	error,	308	

because	it	is	more	robust	with	regard	to	outliers	(Hill	and	Holland,	1977).		309	

Since	initial	tests	showed	that	the	size	of	large	trees	would	be	underestimated	by	310	

shrinkage	towards	the	mean	from	an	optimization	of	MAE	alone,	we	also	used	the	311	

dissimilarity	index	of	the	canopy	height	distributions:	312	

	
 𝐷 =

1
2  d!"# ℎ − d!"# ℎ  

!!!!"#

!!!

	
(	6	)	

where	h	is	a	discrete	height	index	(in	m),	and	d!"#	and	d!"#	are	the	densities	of	the	313	

empirical	and	simulated	height	histograms	across	the	surveyed	area,	i.e.	total	number	of	314	

canopy	height	occurrences,	normalized	by	the	number	of	1m2	grid	cells.	The	factor	½	315	

normalizes	the	metric	to	1	and	allows	us	to	interpret	it	as	a	measure	of	distribution	316	

overlap:	the	lower	the	dissimilarity,	the	higher	the	overlap.	In	the	limit	of	D	=	0,	both	317	

distributions	are	identical,	in	the	limit	of	D	=	1,	there	is	no	overlap	at	all.	Formally,	if	OVL	318	

is	the	distribution	overlap,	then	D	=	1	–	OVL,	with	𝑂𝑉𝐿 = min 𝑑!"# ℎ ,𝑑!"# ℎ!!"#
!!! 	319	

(Inman	and	Bradley,	1989;	Swain	and	Ballard,	1991).		320	
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We	fitted	the	tree	crowns	using	both	metrics	independently	first,	until	a	low	321	

acceptance	rate	was	achieved	for	each	(<	1%	for	trees	>	10cm	dbh,	typically	reached	322	

within	50	iterations	for	the	MAE,	and	within	5	iterations	for	the	dissimilarity).	We	then	323	

used	the	difference	between	initial	and	final	fits	to	normalize	both	metrics	and	324	

combined	the	normalized	values	to	an	overall	error	as	follows:		325	

	 𝛿 =  𝑀𝐴𝐸!"#$! + 𝐷!"#$! 	 (	7	)	

In	a	final	number	of	iterations,	we	minimized	𝛿.	The	combined	metric	ensured	that	326	

crowns	did	not	only	fit	spatially	at	local	scales,	encapsulated	by	a	low	MAE,	but	also	327	

preserved	the	overall	canopy	height	model	distribution,	as	measured	by	D.		328	

	329	

Inferring	Allometric	Parameters	by	Approximate	Bayesian	Computation	330	

The	optimization	algorithm	finds	the	best	canopy	reconstruction,	given	a	set	of	331	

allometric	parameters.	However,	allometric	parameters	are	rarely	known,	so	we	used	an	332	

Approximate	Bayesian	Computation	rejection	scheme	(Csilléry	et	al.,	2010;	Hartig	et	al.,	333	

2014;	F.	J.	Fischer	et	al.,	2019)	to	infer	them.	The	prior	probability	distribution	of	the	six	334	

allometric	parameters,	(hmax,	ah,	acr,	bcr)	and	(𝜎! ,𝜎!")	was	approximated	by	10,000	335	

random	draws.	We	applied	the	Canopy	Constructor	to	the	allometric	parameter	336	

combinations,	and	retained	only	the	best	1%	of	canopy	reconstructions	(Csilléry	et	al.,	337	

2010).	The	retained	parameter	values	were	used	to	generate	a	posterior	probability	338	

distribution	over	credible	allometric	parameterizations	given	the	data.	339	

We	chose	flat	parameter	priors	by	drawing	from	uniform	distributions	within	340	

globally	observed	ranges	of	tree	allometries	(Jucker	et	al.,	2017).	Parameters	were	341	

drawn	on	logscales,	except	for	the	crown	allometry	intercept	acr,	drawn	from	a	uniform	342	

distribution	on	the	back-transformed	scale.	A	Latin	hypercube	scheme	was	employed	to	343	

minimize	the	computational	burden,	and	correlation	between	allometric	coefficients	344	
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was	accounted	for	using	an	algorithm	of	the	R	package	'pse'	(Chalom	et	al.,	2013),	345	

rewritten	in	C++	for	speed.	Covariance	coefficients	were	taken	from	the	Jucker	et	al.	data	346	

set	(2017).	Since	crown	depth	did	not	influence	canopy	height	–	and	thus	did	not	347	

directly	affect	the	fitting	procedure	–,	it	was	fixed	to	20%	of	tree	height	throughout	the	348	

procedure.	349	

To	assess	goodness	of	fit,	we	again	used	the	mean	absolute	error	(MAE)	and	350	

dissimilarity	D.	But	instead	of	normalizing	by	the	within-simulation	range,	we	351	

normalized	by	the	range	across	all	simulations	and	combined	the	metrics	to	𝛿!"# =352	

 𝑀𝐴𝐸!"#$%&!! + 𝐷!"#$%&'! .		353	

	354	

2.2.2	Model	extrapolation	355	

In	step	2,	the	Canopy	Constructor	uses	the	local	fit	from	step	1,	extrapolates	the	trunk	356	

diameter	probability	distribution	and	allometric	scaling	relationships	across	the	whole	357	

ALS-covered	area	and	constructs	virtual	tree	inventories	from	space-filling	principles.	358	

We	implemented	the	same	fitting	procedure	as	before,	but	since	the	location	and	size	of	359	

stem	diameters	have	to	be	inferred,	now	all	trees	are	drawn	from	a	distribution	and	360	

then	relocated	to	create	better	spatial	fits.		361	

	362	

Space-filling	principles	363	

As	a	measure	of	space-filling,	we	used	the	crown	packing	density	𝜑 =  !
!!"#

 𝑉!! ,	where	364	

Vmax	is	the	maximally	available	volume	within	a	section	of	the	canopy,	and	Vi	the	volume	365	

contribution	of	each	tree	to	that	section	(Jucker	et	al.,	2015;	Taubert	et	al.,	2015).	The	366	

crown	packing	density	is	the	ratio	of	unit	crown	volume	to	unit	canopy	volume	(m3	per	367	

m3).	It	can	be	calculated	for	single	voxels,	subsets	of	voxels	or	for	the	entire	canopy.		368	
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We	defined	the	crown	packing	density	at	height	h,	with	0 ≤ ℎ ≤ ℎ!"# ,	and	with	369	

ℎ!"#	top-of-canopy	height,	so	that	crown	packing	density	was	dependent	on	the	370	

canopy's	height.	We	then	defined	the	following	quantity:	𝝋 ℎ, ℎ!"# ,	the	packing	density	371	

matrix,	where	columns	represent	top-of-canopy	height	ℎ!"#	and	rows	represent	within-372	

canopy	height	layers	h	(cf.	Figure	S2,	left	panel).	We	set	the	size	of	height	bins	to	1	m,	373	

and	their	numbers	ran	from	0	m	to	maximum	canopy	height.	On	a	per-voxel	basis,	each	374	

tree's	volume	contribution	to	a	voxel	could	thus	be	either	0	or	1	m3,	but	due	to	the	375	

idealized	crown	shapes	assumed	in	the	Canopy	Constructor,	crown	overlaps	were	more	376	

frequent	than	in	real	forest	stands,	resulting	in	local	packing	densities	>	1	m3.	377	

	378	

Inferring	virtual	inventories	379	

To	infer	virtual	tree	inventories	across	the	whole	ALS-covered	area,	we	divided	the	lidar	380	

scene	into	grid	cells,	roughly	equivalent	in	size	to	the	local	field	inventories.	We	then	381	

used	the	CHM	of	each	grid	cell,	combined	it	with	the	packing	density	matrix	𝝋	obtained	382	

from	the	3D	reconstructions	of	the	local	calibration	plot	and	predicted	crown	volume	383	

per	height	layer.	This	was	achieved	by	calculating	the	ALS-derived	canopy	height	384	

distribution	for	each	grid	cell,	denoted	𝑐!"#,	and	formalized	as	a	vector	of	top-of-canopy	385	

height	frequencies.	Multiplying	the	ALS-derived	canopy	height	vector	with	the	packing	386	

density	matrix	yielded	the	vector	𝑣!"# = 𝝋𝑐!"#	(Figure	S2).	The	quantity	𝑣!"#	is	an	387	

estimate	of	total	crown	volume	per	height	layer	within	the	extrapolation	cell.	For	grid	388	

cells	that	reached	canopy	heights	larger	than	the	calibration	plot	from	which	the	packing	389	

density	matrix	was	derived,	𝝋	was	calculated	by	averaging	over	the	five	non-empty	390	

layers	just	beneath	the	missing	layer.	391	

Once	the	maximum	space	filling	was	determined,	trees	were	drawn	until	a	virtual	392	

forest	with	a	crown	volume	distribution	𝑣!"#$%&' 	similar	to	𝑣!"#	was	obtained.	We	drew	393	
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diameters	from	the	calibration	plot's	probability	distribution	and	used	the	previously	394	

inferred	allometric	relationships	to	predict	tree	height	and	crown	radius.	After	395	

randomly	placing	a	tree	on	the	grid,	we	updated	𝑣!"#$%&' 	and	determined	by	how	much	396	

the	new	tree	improved	the	fit	with	𝑣!"#.	To	do	so,	we	calculated	the	change	in	𝑣!"## ℎ =397	

 𝑣!"# ℎ −  𝑣!"#$%&' ℎ 	for	every	height	layer	h.	If	the	crown	volume	in	h	had	not	yet	398	

reached	the	reference	value	(𝑣!"## ℎ 	>	0),	every	added	unit	of	crown	volume	improved	399	

the	fit	and	was	counted	positively.	As	soon	as	the	crown	volume	in	the	layer	reached	or	400	

exceeded	the	ALS-predicted	volume	(𝑣!"## ℎ ≤ 0),	every	added	crown	volume	unit	401	

penalized	the	fit	and	was	thus	discounted.	We	then	summed	units	of	crown	volume	over	402	

all	layers	h,	and	we	accepted	the	tree	if	the	overall	balance	was	positive.	Otherwise,	the	403	

tree	was	rejected.	Each	drawing	cycle	comprised	n	draws,	where	n	is	the	number	of	404	

potential	tree	locations	(i.e.	the	m2	area)	under	consideration.	When	the	rejection	rate	405	

reached	100%	after	a	full	cycle,	we	stopped	the	procedure.	406	

After	the	initial	distribution	of	trees	in	space	was	obtained,	it	was	gradually	407	

improved	upon.	This	was	done	by	displacing	trees	in	relation	to	their	height	until	an	408	

optimal	spatial	fit	was	achieved,	as	described	for	step	1.	Again,	we	found	that	100-200	409	

iterations	were	sufficient	to	reach	low	rejection	rates	(<	1%).	To	propagate	uncertainty,	410	

the	procedure	was	carried	out	for	each	of	the	100	posterior	reconstruction	of	the	ABC	411	

approach	from	step	1,	with	all	grid	cells	collated	to	produce	final	maps.		412	

	413	

2.2.3	Application	at	the	study	sites		414	

At	Nouragues,	we	used	the	geographically	separated	Petit	Plateau	(12	ha)	and	Grand	415	

Plateau	(10	ha).	Applying	the	inference	step	on	each	of	them	individually	allowed	for	a	416	

comparison	with	previous	studies	and	an	assessment	of	within-site	heterogeneity.	We	417	

also	split	the	25-ha	plot	at	Rabi	into	two	subplots	(10-ha	and	15-ha,	respectively).	We	418	
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used	plot	sizes	of	≥	10ha	because	they	minimized	edge	effects	and	kept	a	balance	419	

between	the	computational	burden	of	the	procedure	and	the	sample	sizes	needed	to	420	

swap	random	terms	between	crowns.	On	each	subplot,	we	inferred	forest	structure	(tree	421	

dimensions,	allometric	parameters	and	crown	packing	densities).	We	then	used	the	422	

larger	plots	at	both	sites	(i.e.	the	12	ha	Petit	Plateau	and	the	15	ha	Rabi	plot)	to	423	

extrapolate	the	virtual	inventories	across	the	whole	landscape,	subdivided	into	400m	x	424	

400m	grid	cells	(16	ha).	Grid	cells	at	the	edges	were	discarded,	and	we	created	virtual	425	

forest	inventories	over	2,016	ha	at	Nouragues	and	832	ha	at	Rabi.		426	

To	create	the	CHMs,	lidar	data	were	classified	via	TerraScan	and	then	post-427	

processed	with	LAStools	to	obtain	pit-free	CHMs	(Isenburg,	2018;	Khosravipour	et	al.,	428	

2014).	While	the	ALS	data	differed	in	point	densities	at	the	two	sites	(with	considerably	429	

lower	densities	at	Rabi),	the	Canopy	Constructor	method	was	robust	to	such	differences	430	

because	it	was	based	on	the	CHM	alone.	Aboveground	biomass	(AGB)	was	estimated	for	431	

each	tree	(kg),	using	the	formula	𝐴𝐺𝐵 = 0.0673 × 𝜌×𝑑𝑏ℎ!×ℎ !.!"# (Chave	et	al.,	2014),	432	

where	ρ	represents	species-level	wood	density,	obtained	from	a	global	database	(Chave	433	

et	al.,	2009;	Zanne	et	al.,	2009).	For	biomass	mapping,	tree	biomass	estimates	were	434	

aggreggated	at	1	ha	and	0.25	ha	resolutions	(t	ha-1),	a	common	grid	size	in	biomass	435	

mapping	(Labrière	et	al.,	2018;	Réjou-Méchain	et	al.,	2015).	For	consistency	with	436	

previous	work,		we	computed	AGB	only	for	trees	with	dbh	≥	10cm.	Diameter	437	

measurement	errors	usually	have	small	effects	on	plot-scale	estimates	(Réjou-Méchain	438	

et	al.,	2017),	and	since	neither	ρ	nor	error	in	the	AGB	equation	directly	affected	the	439	

Canopy	Constructor	algorithm,	we	did	not	propagate	error	in	these	quantities.			440	

	441	

	442	

	443	
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	444	

2.3	Evaluation		445	

We	assessed	the	accuracy	of	the	Canopy	Constructor's	reconstructions	(step	1)	by	446	

comparing	the	inferred	allometric	relationships	between	trunk	diameters	and	tree	447	

dimensions	to	allometric	relationships	derived	from	field	measurements	of	tree	height	448	

and	diameter.	We	computed	the	mean	absolute	and	mean	relative	deviation	(in	%)	449	

between	height	predictions.	For	biomass,	we	compared	our	predictions	to	previous	450	

estimates	of	plot	biomass	for	both	sites	and	landscape-scale	maps	obtained	with	a	451	

pooled	regression	model,	all	reported	in	Labriere	et.	al.	(2018).		452	

To	more	formally	assess	the	extrapolation	to	landscape	scale	(step	2),	we	first	453	

evaluated	the	consistency	of	the	extrapolation	model	with	the	reference	estimate,	454	

derived	from	the	field	inventory	and	Canopy	Constructor-calibrated	allometries	(step	1).	455	

We	did	so	by	applying	the	extrapolation	step	to	each	plot	itself	and	assessed	the	fit	of	the	456	

extrapolation	model.	We	quantified	the	accuracy	and	precision	of	biomass	estimation	457	

via	four	commonly	reported	metrics,	namely	R2	(squared	Pearson's	r),	RMSE	(root	mean	458	

squared	error,	t	ha-1),	MAE	(mean	absolute	error,	t	ha-1)	and	MBE	(mean	bias	of	the	459	

error,	t	ha-1).	All	metrics,	except	R2,	were	also	computed	relative	to	the	reference	AGB.	460	

We	then	evaluated	the	sensitivity	to	plot	characteristics	through	a	cross-validation	461	

procedure	where	we	used	the	summary	statistics	from	one	plot	per	study	site	462	

(calibration	plot)	to	extrapolate	to	the	other	plot	at	the	study	site	(extrapolation	plot),	463	

and	vice	versa.	As	before,	we	quantified	accuracy	with	respect	to	reference	AGB	464	

estimates	through	R2,	RMSE,	MAE	and	MBE.	Finally,	we	also	compared	the	reference	and	465	

predicted	diameter	distributions,	both	for	the	model	fit	and	in	cross-validation.	466	

To	evaluate	the	Canopy	Constructor's	utility	for	biomass	estimates	compared	to	467	

more	conventional	methods,	we	compared	its	accuracy	to	the	accuracy	of	log-log	468	
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regression	models	of	AGB	vs.	median	canopy	height	(Labriere	et	al.,	2018;	Réjou-469	

Méchain	et	al.,	2015).	We	fitted	log-log	regression	models	against	median	canopy	height,	470	

again	for	each	of	the	four	plots	at	both	1	ha	and	0.25	ha	resolution	and	assessed	both	471	

model	fit	at	the	calibration	plot	and	predictions	between	cross-validation	plots.	To	472	

mirror	the	Canopy	Constructor	setup,	we	did	not	use	any	field-inferred	height	473	

allometries	for	the	AGB	estimates,	but	inferred	height	from	a	bioclimatic	predictor	474	

(Chave	et	al.,	2014;	Réjou-Méchain	et	al.,	2017).	Accuracy	was	reported	with	the	same	475	

metrics	as	above	(R2,	RMSE,	MAE,	MBE).		476	

Throughout	this	study,	we	carried	out	a	comprehensive	Bayesian	inference	with	477	

10,000	prior	and	100	posterior	simulations.	This	gave	a	good	approximation	of	the	478	

Canopy	Constructor's	posterior	distributions,	but,	more	importantly,	also	allowed	us	to	479	

assess	the	method's	sensitivity	to	simulation	numbers.	To	this	effect,	we	resampled	100	480	

sets	of	1,000	simulations	from	the	10,000	prior	simulations,	and	100	sets	of	10	481	

simulations	from	the	100	posterior	simulations,	and	repeated	both	steps	of	the	Canopy	482	

Constructor	to	assess	accuracy	and	precision	in	a	computationally	more	efficient	setting.		 	483	
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3.	Results	484	

3.1	Reconstructions	of	tropical	forest	canopies	in		3D	485	

Across	all	plots,	the	Canopy	Constructor	yielded	good	fits	for	the	canopies	with	a	final	486	

error	in	mean	canopy	height	of	0.66m	[95%	credibility	interval:		-0.41,	1.8]	or	2.7%	of	487	

mean	canopy	height,	and	a	mean	absolute	error	of	3.98m	[3.02,	4.98]		or	~14.4%	of	488	

mean	canopy	height.	Figure	2	visualizes	the	approach	at	the	Petit	Plateau	plot	for	a	489	

posterior	simulation	after	200	iterations	of	fitting.	The	initial	draw	(panel	a)	already	490	

mirrored	average	properties	of	the	empirical	canopy,	but	not	the	spatial	location	of	its	491	

features	(panel	b).	Swapping	the	deviations	in	allometries	greatly	improved	the	spatial	492	

structure	(panel	c).				493	

	494	

Figure	2:	Example	of	canopy	reconstruction	at	the	Petit	Plateau	plot,	Nouragues.	Shown	are	the	495	

initial	canopy	height	model	(CHM)	where	tree	dimensions	are	randomly	drawn	from	site-specific	496	

allometries	(a),	the	ALS-derived	CHM	(b),	and	the	final	reconstruction	of	the	Canopy	Constructor	(c).		497	

	498	

3.2	Allometric	scaling	relationships	499	

Tree	inventories	and	ALS	data	were	sufficient	to	infer	allometric	relationships	between	500	

tree	dimensions	at	both	sites.	Across	all	plots,	we	found	substantial	covariation	between	501	

allometric	parameters	(Table	S1,	and	Figure	S3,	left	panels),	but	height	allometries	had	502	

lower	uncertainties	than	crown	radius	allometries	(Figure	3,	Figure	S3,	Table	1).	High	503	

within-site	similarity	was	found	for	height	allometries	at	both	Nouragues	and	Rabi	504	

(Figure	3).	Crown	allometries,	on	the	other	hand,	showed	a	divergence	at	Nouragues,	505	
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with	larger	crown	radii	predicted	at	Petit	Plateau	than	at	Grand	Plateau.	The	sites	were	506	

clearly	distinct	in	their	height	allometries,	with	generally	taller	trees	at	Nourages	than	at	507	

Rabi,	but	not	in	their	crown	allometries.	508	

	509	

	510	

Figure	3:	Inferred	allometries	at	Nouragues	and	Rabi	(step	1).	The	panels	show	height	allometries	511	

(top	row)	and	crown	allometries	(bottom	row),	as	inferred	by	the	Canopy	Constructor,	for	Nouragues	512	

(a,d),	Rabi	(b,e)	and	both	sites	combined	(c,f).	The	grey	background	indicates	the	prior	range.	Mean	and	513	

75%	highest	density	intervals	are	given	for	each	plot	separately,	i.e.	for	Grand	Plateau	(orange)	and	Petit	514	

Plateau	(dark	red)	at	Nouragues,	and	for	the	10ha	(light	blue)	and	15ha	(dark	blue)	plot	at	Rabi.	As	515	

comparison,	we	have	plotted	empirical	height	allometries	measured	from	in	the	field	for	both	Grand	516	

Plateau	(dotted)	and	Petit	Plateau	(dashed)	in	the	top	panels,	as	well	as	a	single	ground-inferred	allometry	517	

at	Rabi	(dotted).	Results	for	same	inference	procedure,	but	with	a	lower	number	of	simulation	runs,	are	518	

provided	in	Figure	S8.		519	

	520	
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At	both	sites,	parameter	estimates	were	close	to	those	previously	obtained	from	521	

field	measurements	of	tree	height	(cf.	Figure	3,	top	row).	At	Nouragues,	the	Canopy	522	

Constructor's	height	estimates	were	slightly	lower	than	empirical	ones	at	small	523	

diameters	and	exceeded	them	at	large	diameters,	but	mirrored	their	qualitative	524	

patterns,	i.e.	the	larger	heights	predicted	at	Petit	Plateau	compared	to	Grand	Plateau.	525	

The	difference	to	empirical	height	predictions	never	exceeded	1m	(or	2%)	at	Petit	526	

Plateau,	versus	3.2	m	(or	7.8%)	at	Grand	Plateau.	At	Rabi,	the	pattern	was	inversed,	with	527	

lower	predictions	of	tree	height	at	large	diameters	than	from	empirical	data,	but	528	

differences	never	exceeded	11%	(Supplementary	Figure	S4).		529	

Table	1:	Inferred	parameters.	Mean	of	posterior	distributions	for	allometric	parameters	at	the	two	sites.	530	

Plots	are	Grand	Plateau	(GP)	and	Petit	Plateau	(PP)	at	Nouragues,	and	the	10	ha	and	15	ha	rectangular	531	

strips	at	Rabi	(Rabi10	and	Rabi15,	respectively).	ah	and	hmax	are	given	in	m,	all	other	variables	are	unitless.	532	

 ah hmax 𝝈𝒉 aCR bCR 𝝈𝑪𝑹 

	 	 	 	 	 	 	GP	 0.41	 56.88	 0.39	 2.19	 0.55	 0.24	
PP	 0.39	 58.38	 0.23	 2.29	 0.56	 0.22	
Rabi10	 0.32	 47.52	 0.37	 2.2	 0.53	 0.25	
Rabi15	 0.28	 43.67	 0.35	 2.23	 0.55	 0.27	
	533	
	534	

3.3	Biomass	mapping	at	landscape	scale		535	

Aboveground	biomass	was	estimated	to	be	400.8	t	ha-1	at	the	Nouragues	plots	[366.2	–	536	

437.9]	and	302.2	t	ha-1	[267.8,	336.8]	at	Rabi.	Within-site	standard	deviation	at	hectare	537	

scale	was	105.1	t	ha-1	[86.5,	120.7]	at	Nouragues	and	71.0	t	ha-1	[60.5,	83.6]	at	Rabi.	At	538	

both	sites,	biomass	density	decreased	at	the	landscape	scale	to	an	average	of	299.8	t	ha-1	539	

[275.9,	333.9]	and	251.8	t	ha-1	[206.7,	291.7],	respectively,	but	with	considerable	540	

heterogeneity	(Figure	4,	a	and	d).	Map	uncertainty	was	highest	at	vegetation	edges	and	541	

low	biomass	areas,	and	generally	higher	at	Rabi	(median	coefficient	of	variation	of	542	

~0.24)	than	at	Nouragues	(~0.16,	cf.	also	Figure	4,	b	and	e).	At	both	Nouragues	and	Rabi,	543	
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aboveground	biomass	reached	similar	extreme	values,	of	over	1100	t	ha-1	at	the	0.25-ha	544	

scale.	545	

	546	

Figure	4:	Aboveground	biomass	predictions	for	ALS	campaign	at	Nouragues	and	Rabi	(step	2).	547	

Maps	show	the	mean	aboveground	biomass	values	(t	ha-1)	predicted	with	the	Canopy	Constructor	548	

approach	across	2,016	ha	at	Nouragues	(panel	a)	and	832	ha	at	Rabi	(panel	d),	as	well	as	the	respective	549	

coefficient	of	variation	across	100	simulations	(panels	b	and	e,	dimensionless).	Also	given	are	the	overall	550	

distributions	of	aboveground	biomass	(panels	c	and	f,	red	distributions,	in	t	ha-1)	and	previously	obtained	551	

estimates	(panels	c	and	f,	yellow)	from	a	pooled	regression-model	(Labrière	et	al.	2018).	Clearly	evident	is	552	

the	shrinkage	towards	the	mean	in	the	regression-based	approach,	as	opposed	to	much	stronger	variation	553	

in	the	Canopy	Constructor	approach.	Please	note	that	the	geographic	extent	of	the	maps	has	been	rescaled	554	

for	visualization	purposes.	555	
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Biomass	estimates	were	close,	but	lower	at	both	sites	than	previous	estimates	of	556	

404.6	t	ha-1	at	the	plot	and	328.6	t	ha-1	at	landscape	scale	at	Nouragues,	and	314.6	t	ha-1	557	

282	t	ha-1	at	Rabi	(Labriere	et	al.,	2018).	However,	the	spread	in	aboveground	biomass	558	

density	was	much	larger	than	in	previous	biomass	maps,	with	a	larger	fraction	of	both	559	

low-	and	high-density	grid	cells	(Figure	4,	c	and	f).		560	

	561	

3.4	Extrapolation	accuracy	562	

Across	both	sites,	the	extrapolation	model's	biomass	predictions	were	consistent	with	563	

the	locally	inferred	reference	values	(Figure	5,	a	and	c),	with	an	R2	of	0.84	at	the	1	ha	564	

scale,	and	0.67	at	the	0.25	ha	scale.	The	RMSEs	were	53.2	t	ha-1	(14.7%)	and	87.3	t	ha-1	565	

(24.1%).	The	calibration	plots	were	also	representative	of	the	local	environment,	as	the	566	

quality	of	the	inference	did	not	decrease	in	cross-validation,	with	identical	R2	values	and	567	

similar	RMSE	as	before,	i.e.	53.7	t	ha1	at	the	one-hectare	scale,	and	87.6	at	the	0.25	ha	568	

scale,	or	14.9%	and	24.2%,	respectively	(Figure	5,	b	and	d).	The	good	predictive	569	

accuracy	was	mirrored	by	diameter	distributions	that	matched	well	empirical	ones,	both	570	

when	fit	at	the	calibration	site	and	in	cross-validation	(Figures	S5	and	S6,	Table	S2).		571	

	 Regression-based	approaches	generally	produced	better	model	fits	at	the	572	

calibration	sites	than	the	Canopy	Constructor,	but	there	was	no	clear	advantage	in	cross-573	

validation,	with	R2	=	0.72	at	the	1	ha	scale	and	0.55	at	the	0.25	ha	scale,	and	an	RMSE	of		574	

51.6	t	ha-1	(14.6%)	and	81.4	t	ha-1	(18.3%),	respectively	(Figure	S7).	Bias	was	slightly	575	

higher	in	the	Canopy	Constructor,	at	-4.7%,	compared	to	a	+1.2%	in	regression,	but	the	576	

Canopy	Constructor	predicted	much	larger	heterogeneity	than	the	regression-based	577	

approach.	In	the	calibration	step,	it	had	a	95%	range	in	AGB	of	489.7	t	ha-1,	compared	to	578	

458.5	t	ha-1		at	the	0.25	ha	scale,	and	the	difference	was	even	larger	in	extrapolation,	579	

with	a	predicted	range	of	568	t	ha-1	against	368.3	t	ha-1	from	regression	(54%	increase).	580	
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	581	

Figure	5:	Evaluation	of	aboveground	biomass	predictions	in	extrapolation	(step	2).	Shown	are	the	582	

predictions	of	aboveground	biomass	(median	of	100	posterior	simulations,	given	in	t	ha-1)	at	the	1	ha	scale	583	

(a,	b)	and	0.25	ha	scale	(c,	d).	The	left	column	shows	the	results	when	the	space-filling	approach	is	applied	584	

at	the	calibration	plot	from	which	allometries	and	packing	densities	were	derived	("Model	fit"),	the	right	585	

column	the	results	when	the	approach	is	transferred	between	plots	("Cross-	validation").	The	Nouragues	586	

results	are	plotted	in	red/orange,	and	for	Rabi	in	dark/light	green.	Goodness	of	fit	values	are	provided	in	587	

the	bottom-right	corner	of	the	panels.	MBE	does	not	change	between	0.25	and	1	ha	scales	and	is	thus	only	588	

given	in	the	top	panels.	For	visualization	purposes,	we	only	plot	error	bars	at	the	hectare	scale,	589	

representing	the	interquartile	ranges	of	estimates	from	100	posterior	simulations.		590	
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All	our	estimates	were	stable	and	had	low	uncertainties	when	resampling	smaller	591	

sets	of	simulations.	Within	plots,	height	allometric	parameters	were	similar	to	the	full	592	

simulation	set	(example	inference	in	Figure	S8).	Average	AGB	was	also	similar	to	the	full	593	

simulation	set,	with	399.2	t	ha-1	at	Nouragues	and	305.0	t	ha-1	at	Rabi,	and	small	594	

standard	deviations	of	5.7	t	ha-1	(1.4%)	and	5.6	t	ha-1	(1.8%).	The	average	R2	in	595	

extrapolation	was	0.65	at	the	0.25	ha	scale	with	an	average	RMSE	of	90.7	t	ha-1,	and	596	

standard	deviations	of	0.02	and	2.8	ha-1,	respectively	(or	~3%	for	both	metrics).		597	

	 	598	
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4.	Discussion	599	

We	described	and	applied	a	new	approach	to	quantifying	forest	structure,	the	Canopy	600	

Constructor.	The	Canopy	Constructor	inputs	local	forest	tree	inventories	and	airborne	601	

lidar	scanning	and	outputs	estimates	of	forest	structure,	allometric	relationships	among	602	

tree	dimensions	and	virtual	landscape-scale	tree	inventories.	These	results	provide	603	

insights	on	tree	allometric	relationships	and	the	distribution	of	carbon	stocks.	Below	we	604	

discuss	how	the	method	advances	our	knowledge	on	both	issues,	and	we	reflect	on	the	605	

underlying	assumptions	and	computational	limitations.	We	applied	our	approach	at	two	606	

tropical	forest	sites,	one	in	the	Guiana	Shield	of	South	America,	the	other	in	the	Guineo-607	

Congolian	rainforest	of	Africa.	We	selected	the	two	sites	because	they	are	geographically	608	

and	floristically	distinct,	but	represent	high-carbon	stock	forests,	those	for	which	classic	609	

airborne	lidar	scanning	(ALS)	methods	of	biomass	mapping	are	the	most	error	prone.	610	

We	also	discuss	whether	the	Canopy	Constructor	method	is	applicable	beyond	closed-611	

canopy	tropical	forests,	e.g.,	in	landscapes	with	land-use	mosaics,	and	in	temperate	and	612	

boreal	forests.			613	

	614	

Inferring	allometric	relations	in	forest	trees	615	

We	used	the	first	step	of	the	Canopy	Constructor	in	a	Bayesian	setting	to	infer	the	616	

allometric	relationships	between	tree	height	and	trunk	diameter	(dbh),	and	between	617	

crown	size	and	dbh.	Such	allometric	relationships	are	essential	for	scaling	up	from	618	

individual	trees	to	forest	canopies,	and	we	found	that	they	could	be	well-inferred	from	a	619	

combination	of	field	inventories	and	ALS	data	alone.	620	

In	particular,	we	found	that	height-diameter	relationships	differed	more	strongly	621	

between	than	within	sites,	suggesting	that	biogeographic	constraints	at	the	macroscale	622	

outweighed	micro-environmental	effects,	such	as	disturbances,	in	shaping	the	two	623	
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forests'	height	scaling	relationships.	Crown	radius	allometries,	on	the	other	hand,	had	624	

higher	uncertainties	and	were	not	clearly	separated	between	sites.	However,	the	French	625	

Guiana	plots	displayed	considerable	within-site	differences	in	their	crown	radius	626	

allometry.	While	trees	generally	show	both	plasticity	in	height	growth	and	the	lateral	627	

extension	of	the	crown	(Henry	and	Aarssen,	1999,	Jucker	et	al.,	2015;	Pretzsch	and	628	

Dieler,	2012),	height	growth	is	also	strongly	influenced	by	physiological	limitations	629	

(Niklas,	2007).	Horizontal	crown	growth,	on	the	other	hand,	may	depend	strongly	on	630	

canopy	openings,	particularly	so	for	mid-sized	canopy	trees,	which	might	explain	why	631	

we	recorded	such	a	notable	difference	at	the	Nouragues	site,	where	the	two	plots	have	632	

very	different	disturbance	regimes.		633	

One	key	assumption	of	our	approach	is	that	a	single	functional	form	holds	across	634	

a	wide	range	of	environmental	conditions,	forest	cover	types	and	functional	groups.	635	

Specifically,	equations	(1)	and	(2)	assume	a	Michaelis	Menten	model	for	the	dbh-height	636	

relationship,	and	a	power-law	model	for	the	dbh-crown	size	relationship,	and	we	make	637	

the	strong	assumption	that	variation	in	tree	architecture	can	be	summarized	by	638	

variation	in	six	pre-defined	allometric	parameters	(ℎ!"# ,𝑎! ,𝜎! ,𝑎!" , 𝑏!" ,𝜎!").	On	the	one	639	

hand,	there	is	considerable	empirical	evidence	for	global	scaling	relationhips	between	640	

plant	dimensions	(Jucker	et	al.,	2017),	and	there	are	strong	theoretical	arguments	for	641	

their	generality	due	to	constraints	on	resource	uptake	and	hydraulics	(West	et	al.,	1999;	642	

Niklas,	1994;	Niklas,	2007).	On	the	other	hand,	physiological	constraints	depend	on	643	

climatic	conditions	and	are	shaped	by	the	organisms'	evolutionary	history	and	644	

ecological	niches	(Niklas,	1994),	so	allometric	relationships	vary	strongly	across	645	

environments,	among	species	and	co-vary	with	growth	strategies	and	plant	functional	646	

traits	(Cano	et	al.,	2019;	Lines	et	al.,	2012).	Empirical	data	also	show	deviations	from	647	

idealized	allometric	relationships	due	to	disturbances	and	size-dependent	competition	648	
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among	plants	(Coomes	et	al.,	2003).	In	light	of	this	knowledge,	there	is	currently	not	649	

enough	evidence	that	equations	(1)	and	(2)	are	valid	across	all	of	the	world's	forest	650	

types.	However,	they	are	flexible	enough	to	accommodate	a	wide	range	of	tree	forms	651	

and	have	been	previously	found	to	yield	good	fits	at	our	study	sites	and	for	other	652	

tropical	rain	forests	(Labriere	et	al.,	2018;	Feldpausch,	et.	al.	2012).		653	

In	tropical	forests,	in	particular,	the	Michaelis-Menten	functional	form	has	been	654	

shown	to	well-represent	the	saturating	scaling	relationships	between	diameter	and	tree	655	

height	(Molto	et	al.,	2014,	Cano	et	al.,	2019)	and	is	commonly	used	to	improve	biomass	656	

estimates	(Feldpausch	et	al.,	2012,	Réjou-Méchain	et	al.,	2017).	However,	field	data	on	657	

tree	height	are	difficult	to	obtain,	so	the	number	of	empirically	derived	dbh-height	658	

allometric	models	remains	limited	in	the	tropics	(Sullivan	et	al.,	2018).	The	retrieval	of	659	

crown	radius	is	equally,	if	not	more	challenging	in	dense	canopies.	The	Canopy	660	

Constructor	approach	circumvents	such	data	acquisition	problems	by	parameterizing	661	

the	scaling	relationships	directly	from	a	combination	of	geo-located	trunk	diameters	and	662	

ALS-derived	canopy	height	models.	At	both	our	study	sites,	in	French	Guiana	and	Gabon,	663	

the	approach	considerably	narrowed	down	the	parameter	ranges	for	the	inference	of	664	

dbh-height	tree	allometries	and	dbh-crown	radius	allometries.	Independent	field	data	665	

for	the	dbh-height	allometry	further	confirmed	that	our	inference	matched	the	666	

relationships	derived	from	empirical	measurements.	The	Canopy	Constructor	thus	667	

provides	an	important	approach	to	estimate	tree	crown	dimensions	and	biomass	668	

estimates	where	field	measurements	are	scarce.	669	

The	allometric	models	described	in	equations	(1)	and	(2)	account	for	inter-670	

individual	variation	in	allometry	through	the	parameters	𝜎! ,𝜎!" .	For	each	allometry,	a	671	

single	terms	is	thus	used	to	model	variation	due	to	life	histories	(King,	1996),	species	672	

differences	(Poorter	et	al.,	2006;	Thomas,	1996),	and	environmental	conditions	(Lines	et	673	
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al.,	2012).	If	allometries	were	inferred	for	different	species	or	different	functional	674	

groups,	much	lower	variation	around	allometric	means	would	be	expected,	with	a	675	

probable	reduction	in	uncertainty	and	more	accurate	representation	of	the	underlying	676	

ecological	relationships	(Cano	et	al.,	2019).	However,	there	is	also	a	tradeoff	between	677	

increasing	the	number	of	model	parameters	to	reduce	uncertainty,	and	overfitting	the	678	

model.	Another	risk	is	that	few	forest	types	currently	have	the	level	of	information	to	679	

implement	species-specific	versions	of	equations	(1)	and	(2).	In	tropical	forests,	for	680	

example,	there	would	likely	not	be	enough	field	measurements	to	infer	allometric	681	

relationships	for	rare	species,	and	data	might	have	to	be	pooled	except	for	the	most	682	

abundant	species.		683	

Recently,	a	wealth	of	information	about	tree	allometry	has	been	made	available	684	

by	the	lidar	scanning	of	entire	trees	from	the	ground	(Dassot	et	al.,	2011).	Terrestrial	685	

lidar	scanning	(TLS)	has	reached	a	stage	of	maturity	where	it	can	now	be	applied	to	686	

mixed-species	forests,	and	even	to	all	canopy	trees	from	a	stand	(Calders	et	al.,	2015;	687	

Momo	Takoudjou	et	al.,	2017;	Newnham	et	al.,	2015;	Stovall	et	al.,	2018).	Furthermore,	688	

it	allows	the	implementation	of	detailed	canopy	space-filling	models	(Pretzsch,	2014)	689	

and	creates	high-resolution	renditions	of	the	3D	architecture	of	individual	trees.	This	690	

novel	source	of	information	poses	great	challenges	at	the	analysis	stage	(Åkerblom	et	al.,	691	

2017),	but	has	become	the	best	approach	to	test	the	generality	of	allometric	exponents	692	

(Lau	et	al.,	2019).	In	the	future,	it	would	be	possible	to	either	directly	integrate	TLS	693	

information	into	the	Canopy	Constructor	at	the	parameter	estimation	stage	(step	1),	e.g.	694	

as	an	additional	constraint	on	how	the	3D	voxel	volume	is	filled,	or	to	test	the	validity	of	695	

the	inferred	scaling	relationships.	696	

This	could	be	of	particular	value	in	heavily	disturbed	landscapes	with	few	trees,	697	

where	the	simulation	approach	and	its	idealized	crown	shapes	may	fail	to	capture	inter-698	
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individual	variation	in	tree	architecture.	However,	it	would	likely	have	the	strongest	699	

benefits	for	small	understory	species	that	are	mostly	hidden	from	the	Canopy	700	

Constructor's	fitting	procedure.	The	latter	do	not	only	increase	the	range	of	allometries	701	

that	fit	the	local	forest	plot	and	thus	contribute	strongly	to	the	uncertainty	in	allometric	702	

inference,	but	they	also	increase	the	computational	burden	without	considerably	703	

improving	the	3D-fits	.	Nevertheless,	it	is	vital	to	include	small	trees	in	our	approach,	704	

since	they	reduce	the	bias	in	allometric	estimates.	Without	them,	the	algorithm	would	705	

extend	crowns	from	the	understory	into	gaps	to	improve	the	fit	of	the	canopy	height	706	

model	and	both	underestimate	tree	heights	and	overestimate	crown	radii.		707	

An	alternative	to	the	Canopy	Constructor	approach	is	to	search	for	individual	708	

crown	features	by	tree	crown	segmentation	of	ALS	point	clouds	(Aubry-Kientz	et	al.,	709	

2019;	Dalponte	and	Coomes,	2016;	Ferraz	et	al.,	2016)	and	to	mtach	the	crowns	to	stems	710	

on	the	ground.	In	the	future,	a	merging	of	both	techniques	could	prove	interesting:	the	711	

Canopy	Constructor	algorithm	has	advantages	for	forest	canopies	where	individual	trees	712	

cannot	be	easily	segmented,	while	individual	tree	crown	segmentation	methods	are	713	

effective	for	emergent	trees	and	more	open	forest	landscapes.	One	option	would	be	to	714	

first	isolate	easily	identifiable	trees,	and	then	pass	information	on	crown	shape	and	size	715	

on	to	the	Canopy	Constructor.	This	would	narrow	down	priors	on	allometric	parameters	716	

and	provide	tie-points	for	the	spatial	fitting	procedure.		717	

Another	important	objective	would	be	the	improvement	of	the	inference	of	718	

crown	radii,	which	showed	higher	uncertainty	than	inferred	tree	heights.	So	far,	we	did	719	

not	impose	any	restrictions	on	crown	overlap.	This	is	at	odds	with	observations	(Goudie	720	

et	al.,	2009)	and	may	have	increased	the	uncertainty,	since	crowns	can	be	hidden	within	721	

each	other.	A	solution	could	be	the	simulation	of	phototropism	and	plasticity	(Purves	et	722	

al.,	2008;	Strigul	et	al.,	2008),	or	the	incorporation	of	leaf-level	constraints,	e.g.	a	723	
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condition	that	assimilated	carbon	should	be	greater	than	respiration	losses,	as	in	the	724	

TROLL	model	(Maréchaux	and	Chave,	2017).	We	hypothesize	that	this	would	restrict	the	725	

range	of	crown	sizes,	particularly	in	the	understory	where	light	limits	tree	growth.		726	

	727	

Virtual	forest	inventories	and	carbon	mapping	728	

In	the	second	step	of	the	Canopy	Constructor,	the	locally	calibrated	models	are	used	to	729	

generate	large-scale	virtual	tree	inventories	across	thousands	of	hectares	covered	by	730	

ALS.	We	tested	this	approach	at	the	two	study	sites	and	validated	its	performance	731	

through	cross-validation.	One	of	the	main	applications	for	these	virtual	tree	inventories	732	

is	the	evaluation	of	carbon	mitigation	and	conservation	strategies.		733	

Forest	biomass	is	concentrated	in	a	small	number	of	large	trees	(Bastin	et	al.,	734	

2015;	Lutz	et	al.,	2018;	Meyer	et	al.,	2018),	and	mapping	the	spatial	distribution	of	these	735	

trees	is	key	to	achieving	high-resolution	biomass	estimates.	Using	ALS-data	to	736	

extrapolate	virtual	inventories,	the	Canopy	Constructor	showed	good	predictive	737	

accuracy,	mirroring	well	empirical	tree	densities	and	their	biomass	heterogeneity	738	

(Figure	4).	The	extrapolation	uncertainty	did	not	increase	between	the	calibration	and	739	

cross-validation	plots.	We	validated	this	at	Nouragues,	where	the	plots	have	different	740	

disturbance	regimes	and	different	canopy	height	distributions	(Figure	S1).	This	suggests	741	

that	the	Canopy	Constructor	is	an	efficient	method	to	map	aboveground	biomass	across	742	

an	entire	landscape.		743	

Specifically,	the	Canopy	Constructor	led	to	an	improved	biomass	inference	744	

compared	to	regression-based	approaches.	Regression-based	approaches,	also	known	as	745	

area-based	approaches	(Coomes	et	al.,	2017),	infer	mean	stand	biomass	from	ALS-746	

derived	canopy	features,	such	as	mean	or	median	canopy	height	(Asner	and	Mascaro,	747	

2014;	Næsset,	2002;	Zolkos	et	al.,	2013).	However,	all	regression-based	inferences	tend	748	
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to	shrink	the	extreme	values	to	the	mean	when	uncertainty	in	the	predicted	variable	is	749	

not	propagated	or	when	there	is	strong	variation	in	the	independent	variable,	a	750	

phenomenon	sometimes	called	"dilution"	bias	(Réjou-Méchain	et	al.,	2014).	Because	the	751	

Canopy	Constructor	factors	in	the	influence	of	large	trees	and	makes	use	of	the	whole	752	

canopy	height	model,	we	expected	that	it	would	mitigate	this	issue.		753	

Indeed,	we	found	a	similar	predictive	accuracy	for	both	methods,	but	the	Canopy	754	

Constructor	better	represented	the	heterogeneity	of	the	canopy.	The	95%	range	of	755	

biomass	estimates	at	the	0.25	ha	scale	was	higher	across	both	Canopy	Constructor	steps,	756	

with	an	overall	increase	of	54%	compared	to	an	equivalent	regression	procedure.	757	

Particularly	noticeable	were	low	biomass	estimates	for	low-canopy	forests	that	led	to	an	758	

overall	decrease	in	landscape-wide	estimates	at	both	Nouragues	and	Rabi	compared	to	759	

previous	biomass	maps	(Figure	4).	Since	many	field	inventories	in	the	tropics	are	760	

established	within	primary	forest,	regression-based	estimates	are	often	calibrated	on	761	

tall	canopies,	and	while	additional	field	data	would	be	required	to	validate	this	claim,	it	762	

may	be	that	our	individual-based	approach	better	captures	forest	structure	outside	the	763	

regression	model's	calibration	range.	Similarly,	it	likely	better	accounts	for	the	large	764	

multiplicative	errors	in	tall	canopies.	Such	fine-scale	structural	representations	are	765	

particularly	important	in	identifying	high-priority	areas	for	carbon	mitigation	and	766	

conservation,	and	when	monitoring	the	impact	of	human	interventions	such	as	selective	767	

logging	on	ecosystem	functioning	and	animal	habitats.		768	

Furthermore,	we	hypothesize	that	there	is	considerable	room	for	improvement	of	769	

future	canopy	reconstructions,	since	additional	considerations	on	crown	overlapping	770	

and	carbon	balance	or	species'	ecological	strategies	would	likely	improve	the	spatial	771	

positioning	of	trees.	The	Canopy	Constructor	thus	has	the	potential	to	be	more	widely	772	

applicable	across	biomes	and	environmental	conditions	than	currently	used	individual-	773	
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or	area-based	models	(Coomes	et	al.,	2017)	and	could	provide	an	efficient	means	to	774	

assimilate	forest	inventories	and	ALS	surveys	into	high-resolution	aboveground	biomass	775	

maps	for	the	validation	of	remote-sensing	biomass	missions	(Duncanson	et	al.,	2019;	Le	776	

Toan	et	al.,	2011).		777	

Nevertheless,	the	accuracy	of	biomass	predictions	with	the	Canopy	Constructor	778	

also	depends	on	the	quality	and	the	representativeness	of	the	calibration	sites.		779	

First,	while	we	do	not	assume	that	stem	diameter	probability	distributions	are	780	

identical	across	the	whole	area,	we	assume	that	they	are	similar	enough	to	sample	the	781	

entire	diameter	range.	Ideally,	they	should	not	considerably	over-	or	underrepresent	a	782	

particular	size-class.	When	the	calibration	plot	covers	a	sufficiently	large	area	(≥	10	ha),	783	

microenvironmental	features	are	likely	well-sampled,	and	the	space-filling	approach	of	784	

the	Canopy	Constructor	will	mostly	compensate	for	deviations.	However,	in	more	785	

heterogeneous	landscapes	than	the	ones	selected	for	this	study,	it	is	essential	to	ensure	786	

that	calibration	plots	are	representative	of	all	vegetation	types.		787	

Second,	we	assume	that	the	vertical	distribution	of	crown	packing	density	within	788	

the	canopy,	as	described	by	the	local	packing	density	matrix,	is	representative	of	the	789	

whole	lidar-covered	area.	This	crown	packing	matrix	provides	within-canopy	densities	790	

conditional	on	top-of-canopy	height	and	thus	reflects	disturbance	regimes	visible	in	the	791	

canopy	height	distribution.	At	the	study	sites,	we	found	that	a	10-ha	forest	inventory	792	

was	sufficient	to	provide	robust	estimates	of	biomass	even	if	the	plot	was	not	793	

representative	of	the	sampled	area,	as	shown	in	the	Nouragues	forest.	So,	even	if	more	794	

studies	are	needed	to	fully	explore	this	issue,	we	conclude	that	the	assumptions	of	the	795	

Canopy	Constructor	do	not	lead	to	serious	bias	in	biomass	mapping	as	long	as	the	796	

sampled	area	is	large.				797	
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Third,	we	extrapolate	locally	fitted	allometries	between	tree	dimensions	across	798	

the	entire	landscape.	This	raises	the	question	of	whether	an	allometric	model	is	valid	799	

beyond	the	stand	where	it	was	generated.	Recently	Jucker	et	al.	(2017)	have	explored	800	

the	generality	of	allometric	relationships,	with	the	aim	to	inform	the	link	between	field	801	

inventories	and	remote	sensing.	Compilation	of	empirical	evidence	suggests	that	some	802	

allometric	relationships	among	tree	dimensions	are	applicable	outside	of	the	locality	803	

where	they	have	been	constructed,	but	this	may,	again,	need	to	be	qualified	if	there	is	804	

strong	regional	environmental	variation	or	shifts	in	species	composition	(Beirne	et	al.,	805	

2019,	Lines	et	al.,	2012).	Provided	that	enough	data	were	available,	separate	allometric	806	

relationships	for	functional	or	species	groups,	likely	more	conserved	across	the	807	

landscape,	could	alleviate	this	problem	in	the	future.		808	

One	of	the	main	issues	in	extrapolation	are	understory	trees,	as	they	do	not	show	809	

up	in	the	canopy	height	model	and	thus	exclusively	depend	on	the	diameter	810	

distributions	and	crown	packing	densities	of	the	calibration	plots.	The	assumption	of	811	

similar	understory	tree	densities	may	be	violated,	for	example	due	to	browser	pressure	812	

(Anderson-Teixeira	et	al.,	2015b)	or	when	the	forest	is	more	or	less	fragmented	than	at	813	

the	calibration	sites	(Laurance	et	al.,	2006).	While	the	effect	on	biomass	will	be	814	

comparatively	weak,	understory	densities	can	have	important	consequences	for	815	

ecological	dynamics,	such	as	regrowth	and	resilience.		816	

Here,	we	only	had	two	calibration	plots	per	site	and	they	where	either	817	

immediately	adjacent	(Rabi)	or	geographically	close	to	each	other	(Nouragues),	so	the	818	

effect	of	spatial	auto-correlation	across	the	landscape	could	not	be	fully	assessed.	Any	819	

changes	in	soil	characteristics,	topography	and	floristic	composition	that	may	generate	820	

bias	in	our	biomass	maps,	would,	however,	also	affect	regression-based	approaches	and	821	

can	only	be	solved	by	more	accurate	sampling	(Babcock	et	al.,	2015;	Spriggs	et	al.,	2019).	822	
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Since	most	forest	sites	around	the	world	involve	small	plots	(0.25	ha	or	1	ha)	that	are	823	

spread	out	in	space	to	sample	heterogeneous	environments,	a	future	evaluation	of	the	824	

Canopy	Constructor's	assumptions	across	forest	types	should	not	pose	a	problem.		825	

	826	

Applicability	across	forest	types	and	processing	considerations	827	

Many	sites	worldwide	offer	a	combination	of	high-quality	local	forest	inventories	and	828	

ALS	surveys	(Duncanson	et	al.,	2019),	but	far	fewer	provide	quantitative	information	on	829	

the	vertical	arrangement	of	individual	trees	and	within-canopy	forest	structure,	so	the	830	

Canopy	Constructor	was	designed	to	be	as	widely	applicable	as	possible.	It	only	requires	831	

a	canopy	height	model	that	covers	the	sampling	area	and	a	sufficiently	large	number	of	832	

stem	diameter	measurements	to	accurately	sample	the	diameter	distribution.	These	833	

conditions	are	likely	already	met	within	a	few	hectares	in	closed-canopy	forests,	and	our	834	

results	at	two	tropical	forest	stands	provide	evidence	for	this	hypothesis.		835	

The	Canopy	Constructor	should,	however,	also	be	applicable	to	temperate	and	836	

boreal	forests,	or	more	open	landscapes,	such	as	woodlands,	savannas	or	heavily	837	

disturbed	forests.	Variable	crown	shapes	can	be	accomodated	through	a	crown	shape	838	

parameter,	ranging	from	cylindric	to	conic	forms,	and	non-measured	trees	below	a	stem	839	

diameter	cutoff	can	be	supplemented	by	drawing	from	power-law	or	exponential	840	

functions,	as	done	in	the	present	study.	Due	to	its	simulation	approach	and	need	for	841	

representative	calibration	data,	the	Canopy	Constructor	reaches	its	limits	in	842	

insufficiently	or	unequally	sampled	landscapes	with	low	tree	densities	and	strong	843	

floristic	variation,	but	there,	tree	crown	delineation	would	likely	perform	well	and	could	844	

complement	it.		845	

When	applied	across	a	wide	range	of	forests,	variation	in	wood	density	beyond	846	

the	species	level	and	variation	in	biomass	allometries	beyond	a	global	mean	would	need	847	
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to	be	considered	(Réjou-Méchain	et	al.,	2017).	This	would	likely	further	increase	the	848	

local	heterogeneity	of	simulated	canopies,	differentiate	out	between	different	849	

successional	stages	and	thus	achieve	a	more	realistic	picture.	However,	since	neither	850	

wood	density	nor	biomass	directly	affect	the	Canopy	Constructor	procedure	and	since	851	

wood	density	is	distributed	normally	around	species	means	(Chave	et	al.,	2009,	Kattge	et	852	

al.,	2011),	both	uncertainties	could	be	propagated	in	a	relatively	simple	way.		853	

The	main	limitation	of	the	Canopy	Constructor	compared	to	more	conventional,	854	

regression-based	approaches	are	its	computational	requirements.		On	one	core	of	an	855	

Intel	Skylake	6104	processor	at	2.3	GHz,	computational	burden	of	the	Canopy	856	

Constructor	was	ca.	3	minutes	for	a	simulation	of	the	typical	field	inventory	in	this	study	857	

(~10ha),	with	moderate	memory	needs	(~300	MB).	For	the	full	set	of	10,000	858	

simulations	tested	here,	this	amounted	to	~400	cpu	core	hours	per	plot	for	allometric	859	

inference	and	~700	cpu	core	hours	for	reconstructing	tree-by-tree	assemblies	at	the	860	

landscape	scale.	Reduced	sets	of	simulations	yielded	nearly	identical	results,	with	very	861	

low	standard	deviations	of	the	estimates	(typically	1-2%,	and	always	lower	than	5%)	862	

but	on	our	hardware,	the	approach	still	required	50-100	cpu	core	hours	for	a	typical	863	

data	configuration.	The	procedure	is	thus	beyond	desktop	computers	at	the	moment,	but	864	

since	simulations	within	step	1	or	step	2	are	fully	independent,	the	inference	procedure	865	

can	be	parallelized	and	is	relatively	easily	executed	on	a	modern	cluster.		866	

For	future	reconstructions,	there	are	a	number	of	ways	to	reduce	the	Canopy	867	

Constructor's	runtime.	The	computationally	most	expensive	part	of	the	procedure	is	the	868	

creation	of	precise	spatial	fits,	because	it	involves	the	constant	swapping	of	tree	crown	869	

variation	across	the	whole	plot.	While	this	is	crucial	for	spatial	predictions	of	biomass	870	

and	forest	structure,	unbiased	estimates	of	allometric	scaling	relationships	may	already	871	

be	possible	with	the	initial,	non-optimized	canopy	reconstruction.	In	this	case,	runtime	872	
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reduces	to	a	few	seconds	and	becomes	executable	on	a	desktop	computer	or	within	an	R	873	

package.	Furthermore,	the	two	goodness-of-fit	metrics	currently	employed	may	not	874	

yield	the	best	convergence	time	towards	a	spatially	accurate	canopy	reconstruction,	and	875	

the	use	of	a	single,	feature-based	pattern	recognition	metric	such	as	Earth	Mover's	876	

Distance	(Rubner	et	al.,	2000)	may	be	preferable.	Similarly,	the	rudimentary	rejection-877	

based	Approximate	Bayesian	Computation	could	also	be	replaced	by	sequential	878	

approaches	that	converge	more	rapidly	and	can	be	analyzed	with	state-of-the-art	tools	879	

(Csilléry	et	al.,	2012;	Nunes	and	Prangle,	2015).		880	

However,	what	the	Canopy	Constructor	lacks	in	computational	rapidity,	it	makes	881	

up	for	in	comprehensiveness.	Where	regression-based	predictions	address	one	question	882	

at	a	time,	the	Canopy	Constructor's	individual-based	approach	infers	a	wide	range	of	883	

canopy	features	simultaneously,	most	of	which	we	have	not	explored	in	this	study	(e.g.,	884	

vertical	stratification,	tree	overtopping,	and	exposure	to	wind,	variation	in	tree	densities	885	

and	clustering).	Furthermore,	the	simulation-based	approach	and	its	Bayesian	886	

framework	render	the	integration	of	further	data	sources,	such	as	hyperspectral	imaging	887	

or	photogrammetry,	relatively	straightforward.	Such	data	could	extend	the	approach	888	

even	further	in	space	and	time	and	increase	its	precision	(Dalponte	and	Coomes,	2016;	889	

Goodbody	et	al.,	2019;	Vaglio	Laurin	et	al.,	2014),	or	make	use	of	species-specific	890	

properties	to	predict	variation	in	leaf	functional	traits	and	community	composition.	The	891	

consideration	of	repeated	ALS	acquisitions	could	yield	individual-based	estimates	of	892	

mortality	and	growth.	And,	since	it	models	every	individual	tree	down	to	1	cm	dbh,	the	893	

Canopy	Constructor	could	also	be	used	to	calibrate	and	initialize	vegetation	models,	894	

particularly	the	individual-based	forest	TROLL	model	on	which	much	of	its	code	is	based	895	

(Maréchaux	and	Chave,	2017),	thus	contributing	to	a	model-data	synthesis	at	global	896	

scales	(Shugart	et	al.,	2015).	This	could	provide	a	link	between	existing	3D	897	
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reconstruction	approaches	at	local	scales	(Calders	et	al.,	2018)	and	their	extrapolation	in	898	

space	via	ALS.		899	

	900	

Conclusion	901	

Tropical	forests	account	for	over	half	of	the	carbon	stored	in	live	tissue	(Pan	et	al.,	902	

2011),	and	mapping	these	stocks	at	high	resolution	is	essential	to	assess	the	impact	of	903	

ongoing	forest	deforestation	and	degradation	(Asner	et	al.,	2010).	One	major	challenge	904	

of	carbon	mapping	in	tropical	regions	is	that	national	forest	inventories	are	missing	and	905	

that	natural	tropical	forests	are	difficult	to	monitor	using	traditional	forestry	techniques	906	

(Schimel	et	al.,	2015).	Mapping	carbon	stocks	accurately	is	of	prime	importance	in	global	907	

carbon	cycle	research	because	tropical	deforestation	is	an	important	cause	of	908	

anthropogenic	carbon	dioxide	emissions,	and	a	likely	cause	of	major	climatic	shifts	909	

(Boisier	et	al.,	2015;	Nobre	et	al.,	2016).	The	uncertainty	of	future	anthropogenic	910	

pressures	and	climatic	changes	in	African	rain	forests	(Malhi	et	al.,	2013)	as	well	as	the	911	

recent	acceleration	of	deforestation	in	the	Amazon	can	only	increase	the	urgency	of	912	

providing	accurate	and	repeated	methods	for	carbon	stock	monitoring	(Amigo,	2020).	913	

The	Canopy	Constructor	transforms	information	available	at	biomass	validation	914	

sites	(sensu	Duncanson	et	al.,	2019)	into	virtual	tree	inventories	that	best	match	915	

empirically	measured	forest	structure.	This	creates	a	unifying	framework	that	brings	916	

together	traditionally	separate	fields,	such	as	the	demographics	of	plant	communities,	917	

their	underlying	physiological	constraints	and	ecosystem	functioning,	and	its	results	can	918	

be	used	as	input	for	the	upscaling	to	global	scales	(Dubayah	et	al.,	2020),	for	dynamic	919	

vegetation	modelling	(F.	J.	Fischer	et	al.,	2019)	or	for	radiative	transfer	studies	to	test	920	

how	remote	sensing	signals	interact	with	vegetation,	especially	radar	applications	921	

(Tebaldini	et	al.,	2019).	Such	methods,	creating	virtual	systems	that	mirror	the	922	
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complexity	of	real	systems,	considerably	increase	our	ability	to	predict	future	vegetation	923	

dynamics	under	increased	human	pressure	and	climatic	changes.	924	
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List	of	Figure	Captions	1483	

Figure	1:	The	two-step	procedure	of	the	Canopy	Constructor	algorithm.		Step	1	uses	1484	

tree	inventory	data,	and	a	canopy	height	model	(CHM).	To	infer	the	position	and	size	of	1485	

each	tree,	the	algorithm	creates	an	initial	reconstruction	drawing	randomly	dimensions	1486	

from	allometric	relationships	between	tree	dimensions.	In	ill-fitting	regions	(red),	1487	

deviations	from	the	allometric	means	are	swapped	between	trees	until	a	good	spatial	fit	1488	

is	obtained	(green).	Step	2	extrapolates	the	results	of	step	1	and	creates	virtual	1489	

inventories	across	thousands	of	hectares,	following	the	same	fitting	algorithm	as	in	step	1490	

1,	but	with	fitted	trees	drawn	from	a	distribution	(see	main	text	for	details).	1491	

	1492	

Figure	2:	Example	of	canopy	reconstruction	at	the	Petit	Plateau	plot,	Nouragues.	1493	

Shown	are	the	initial	canopy	height	model	(CHM)	where	tree	dimensions	are	randomly	1494	

drawn	from	site-specific	allometries	(a),	the	ALS-derived	CHM	(b),	and	the	final	1495	

reconstruction	of	the	Canopy	Constructor	(c).		1496	

	1497	

Figure	3:	Inferred	allometries	at	Nouragues	and	Rabi	(step	1).	The	panels	show	1498	

height	allometries	(top	row)	and	crown	allometries	(bottom	row),	as	inferred	by	the	1499	

Canopy	Constructor,	for	Nouragues	(a,d),	Rabi	(b,e)	and	both	sites	combined	(c,f).	The	1500	

grey	background	indicates	the	prior	range.	Mean	and	75%	highest	density	intervals	are	1501	

given	for	each	plot	separately,	i.e.	for	Grand	Plateau	(orange)	and	Petit	Plateau	(dark	1502	

red)	at	Nouragues,	and	for	the	10ha	(light	blue)	and	15ha	(dark	blue)	plot	at	Rabi.	As	1503	

comparison,	we	have	plotted	empirical	height	allometries	measured	from	in	the	field	for	1504	

both	Grand	Plateau	(dotted)	and	Petit	Plateau	(dashed)	in	the	top	panels,	as	well	as	a	1505	

single	ground-inferred	allometry	at	Rabi	(dotted).	Results	for	same	inference	procedure,	1506	

but	with	a	lower	number	of	simulation	runs,	are	provided	in	Figure	S8.		1507	
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	1508	

Figure	4:	Aboveground	biomass	predictions	for	ALS	campaign	at	Nouragues	and	1509	

Rabi	(step	2).	Maps	show	the	mean	aboveground	biomass	values	(t	ha-1)	predicted	1510	

with	the	Canopy	Constructor	approach	across	2,016	ha	at	Nouragues	(panel	a)	and	832	1511	

ha	at	Rabi	(panel	d),	as	well	as	the	respective	coefficient	of	variation	across	100	1512	

simulations	(panels	b	and	e,	dimensionless).	Also	given	are	the	overall	distributions	of	1513	

aboveground	biomass	(panels	c	and	f,	red	distributions,	in	t	ha-1)	and	previously	1514	

obtained	estimates	(panels	c	and	f,	yellow)	from	a	pooled	regression-model	(Labrière	et	1515	

al.	2018).	Clearly	evident	is	the	shrinkage	towards	the	mean	in	the	regression-based	1516	

approach,	as	opposed	to	much	stronger	variation	in	the	Canopy	Constructor	approach.	1517	

Please	note	that	the	geographic	extent	of	the	maps	has	been	rescaled	for	visualization	1518	

purposes.	1519	

	1520	

Figure	5:	Evaluation	of	aboveground	biomass	predictions	in	extrapolation	(step	1521	

2).	Shown	are	the	predictions	of	aboveground	biomass	(median	of	100	posterior	1522	

simulations,	given	in	t	ha-1)	at	the	1	ha	scale	(a,	b)	and	0.25	ha	scale	(c,	d).	The	left	1523	

column	shows	the	results	when	the	space-filling	approach	is	applied	at	the	calibration	1524	

plot	from	which	allometries	and	packing	densities	were	derived	("Model	fit"),	the	right	1525	

column	the	results	when	the	approach	is	transferred	between	plots	("Cross-	1526	

validation").	The	Nouragues	results	are	plotted	in	red/orange,	and	for	Rabi	in	dark/light	1527	

green.	Goodness	of	fit	values	are	provided	in	the	bottom-right	corner	of	the	panels.	MBE	1528	

does	not	change	between	0.25	and	1	ha	scales	and	is	thus	only	given	in	the	top	panels.	1529	

For	visualization	purposes,	we	only	plot	error	bars	at	the	hectare	scale,	representing	the	1530	

interquartile	ranges	of	estimates	from	100	posterior	simulations.		1531	


