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Abstract: 5 

Lagged precipitation effect explains a large proportion of annual aboveground net 6 

primary productivity in some dryland ecosystems. Using satellite-derived plant 7 

productivity and precipitation datasets in the Northern Hemisphere drylands during 8 

2000-2018, we identify 1111 pixels mainly located in the Tibetan Plateau, the western 9 

US, and Kazakhstan where productivities are significantly correlated with previous-10 

year precipitation (hereafter, the lagged type). Differences in climatic and edaphic 11 

factors between the lagged and unlagged (pixels where productivities are not correlated 12 

with previous-year precipitation) types are evaluated. Permutational multivariate 13 

analysis of variance shows that the two types differ significantly regarding six climatic 14 

and edaphic factors. Compared to unlagged type, water availability, soil organic carbon, 15 

total nitrogen, field capacity, silt content and radiation are more sensitive to changes in 16 

precipitation in lagged type. Water availability is the most important factor for 17 

distinguishing the two types, followed by soil organic carbon, total nitrogen, field 18 

capacity, soil texture, and radiation. Our study suggests that the altered sensitivities of 19 

several climatic and edaphic factors to precipitation collectively affect the lagged effect 20 

of precipitation on productivity in drylands. 21 

Keywords: productivity, lagged precipitation effect, previous-year precipitation, water 22 

availability, dryland 23 
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1 Introduction 24 

Global warming has intensified and accelerated the hydrologic cycle (Huntington, 2010; 25 

Trenberth, 2011), causing precipitation patterns shifting to higher variability and more 26 

frequent dry and wet years, which is almost ubiquitous globally (Collins et al., 2013; 27 

Min et al., 2011; Peng et al., 2018; Ye et al., 2018a). Increasing precipitation variability 28 

may profoundly affect ecosystem functioning and structure, especially primary 29 

productivity (Gherardi and Sala, 2015; Gherardi and Sala, 2019; Knapp et al., 2008; 30 

Rudgers et al., 2018; Ye et al., 2013). Therefore, understanding the relationship between 31 

plant productivity and precipitation is crucial to ecosystem function and also to humans 32 

who depend upon primary productivity for food, fiber and fuel (Haberl et al., 2007; 33 

Knapp et al., 2017). 34 

The lags in the response of ecosystems to changes in precipitation and "asymmetries" 35 

in the productivity-precipitation relationship modulate the effect of precipitation 36 

variability on productivity (Knapp et al., 2017; Reichmann et al., 2013). First, the lags 37 

arise from the legacy effects of transitions from dry to wet years or the reverse 38 

(Reichmann et al., 2013). A previous dry year leads to a decrease in plant productivity 39 

in the following year (termed as drought legacy), while a wet year increases 40 

productivity in the next year, i.e., wetness legacy (Sala et al., 2012). Second, the 41 

productivity-precipitation relationship may be nonlinear, including concave-down and 42 

concave-up curves. Increasing precipitation has diminishing returns for productivity in 43 

"negative asymmetric" productivity-precipitation relationships (concave-down curves); 44 

in contrast, increasing precipitation has increasing returns for productivity in "positive 45 
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asymmetric" relationships (concave-up curves) (Dannenberg et al., 2019; Gherardi and 46 

Sala, 2015). The drivers of lagged response to precipitation and nonlinear productivity-47 

precipitation relationship are valuable for accurately predicting the response of 48 

ecosystem function to global change. Ye et al. (2018b) find that concave-down 49 

nonlinear relationship ecosystems feature lower radiation and/or fewer soil nutrients 50 

than the linear type, suggesting a higher degree of limitation from resources other than 51 

precipitation in the nonlinear ecosystems (Huxman et al., 2004). However, it is still 52 

unclear how other environmental factors affect the lagged response of ecosystems to 53 

changes in precipitation. 54 

The legacy effect of unusually dry or wet periods on biomass could last for less than 55 

one year up to seven years, of which one year is the most commonly reported lag time 56 

(Sherry et al., 2008). Previous-year precipitation has been found to drive the current-57 

year ecosystem process through lagged/legacy effect in multiple sites, e.g., the central 58 

plains in north-central Colorado (Oesterheld et al., 2001), the Patagonian steppe 59 

(Yahdjian and Sala, 2006), the Tallgrass Prairie in Oklahoma (Sherry et al., 2012) and 60 

the Loess Plateau of China (Gong et al., 2020). At the interannual scale, the lagged 61 

precipitation effect is defined as the impact of previous-year precipitation conditions on 62 

the current structure and functioning of ecosystems (Monger et al., 2015; Sala et al., 63 

2012; Shen et al., 2016). A variety of mechanisms explaining the lagged precipitation 64 

effect involve changes in the density of tillers, seeds and plant individuals (Oesterheld 65 

et al., 2001; Reichmann et al., 2013; Yahdjian and Sala, 2006); the structural carry-66 

overs (e.g., leaf area and root biomass) between alternating wet and dry years 67 
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(Oesterheld et al., 2001); and the composition of species differ in rooting depth and 68 

phenology (Gong et al., 2020; Jobbágy and Sala, 2000). Within the context of climate 69 

change, lagged precipitation effect might result from feedbacks between biotic, edaphic, 70 

and geomorphic processes (Monger et al., 2015). Most studies focused on the biotic 71 

mechanisms; however, it remains largely uncertain how climatic and edaphic factors 72 

may interact with lagged precipitation effects. 73 

Drylands comprise 45% of the terrestrial earth surface (Prăvălie, 2016), and 74 

precipitation is the most limiting factor to the functioning of dryland ecosystems 75 

(Lauenroth, 1979; Noy-Meir, 1973). Therefore, their responses to interannual 76 

precipitation variability have important consequences for global patterns of 77 

productivity (Ahlström et al., 2015; Gherardi and Sala, 2019; Yao et al., 2020). 78 

Drylands are inherently slow in the dynamics of soil nutrient buildup and plant 79 

productivity compared to other ecosystems (Huang et al., 2017; Ye et al., 2019), we 80 

would expect strong lagged effects of past climate conditions such as precipitation on 81 

current functioning. However, our ability to forecast ecosystem responses to climate 82 

change is still hindered by our understanding of the mechanisms underlying the lagged 83 

precipitation effect (Kannenberg et al., 2020; Yahdjian and Sala, 2006; Ye et al., 2019). 84 

The lagged response to precipitation change results from drought and wetness legacies, 85 

and the magnitude of drought and wetness legacies are proportional to the relative 86 

precipitation change (Reichmann et al., 2013; Shen et al., 2016). However, we do not 87 

know whether the lagged precipitation effect is associated with precipitation variability. 88 

Sala et al. (2012) suggest that the sensitivity of productivity to precipitation might 89 
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decrease due to the impact of previous-year precipitation. Besides, precipitation input 90 

is the determining factor of plant productivity in drylands, and other drivers of 91 

productivity may be indirectly influenced by precipitation amount and variability (Hsu 92 

and Adler, 2014; Noy-Meir, 1973; Ye et al., 2018b). Therefore, the productivity-93 

precipitation relationship may be modified by changes in the responses of other 94 

environmental factors to precipitation. In these perspectives, we hypothesize that 95 

compared with the unlagged ecosystems, the lagged ones are characterized by (i) lower 96 

sensitivity of productivity response to precipitation, (ii) higher interannual precipitation 97 

variability and more occurrences of dry and wet years, and (iii) higher sensitivity of 98 

other environmental factors to precipitation. To test our hypotheses, we divide 99 

terrestrial ecosystems of the Northern Hemisphere drylands into the lagged and 100 

unlagged types. The lagged type has a significant lagged precipitation effect where 101 

productivities significantly correlate with previous-year precipitation, while 102 

productivities of the unlagged type do not significantly correlate with previous-year 103 

precipitation. To evaluate the difference between the two ecosystem types in terms of 104 

their climatic and edaphic factors, we explore their differences in the intercepts and 105 

slopes of liner regressions between these factors and mean annual precipitation. 106 

2 Materials and methods 107 

2.1 Precipitation 108 

The Tropical Rainfall Measuring Mission (TRMM) product (TRMM 3B42) at 0.25° 109 

spatial and daily temporal resolution (https://pmm.nasa.gov/data-110 

access/downloads/trmm) for the period of 1999-2018 were used. The product covers 111 
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the latitude range of 50°N-S. The daily rainfalls were cumulated to obtain annual 112 

precipitation. Previous studies have suggested that TRMM rainfall data are consistent 113 

with precipitation observations of weather stations at both local and global scales (Fang 114 

et al., 2019; Ye et al., 2018b). 115 

2.2 Primary productivity 116 

We used the enhanced vegetation index (EVI) to estimate primary productivity. The 117 

MOD13C2 version 6 EVI dataset (Didan, 2015) at 0.05° spatial resolution and monthly 118 

compositing periods for the period from February 2000 to December 2018 was 119 

employed. As EVI data for January 2000 were not available, the average of values in 120 

January of 2001-2005 was used as a proxy. When no clear-sky observations were 121 

available, the corresponding pixels were excluded from the analysis. Pixels of croplands, 122 

built-up, water, snow and ice, barren or sparse vegetation, and land cover change were 123 

eliminated based on MCD12C1 IGBP land cover types between 2001 and 2018 (Friedl 124 

and Sulla-Menashe, 2015). We also excluded the wetland pixels due to the poor 125 

performance of EVI in estimating their productivity (Shi et al., 2017). An offset of 0.05 126 

was extracted from each monthly dataset to reduce the soil background signal (Ponce 127 

Campos et al., 2013). Annual integrated EVI (termed iEVI) is a widely used satellite-128 

derived measure of annual vegetation productivity across biomes (Ma et al., 2015; Shi 129 

et al., 2017). We thus used iEVI as the proxy of primary productivity. The iEVI was 130 

calculated in the software of TIMESAT 3.3 using the default parameters (Jönsson and 131 

Eklundh, 2017; Ponce Campos et al., 2013). We found a similar linear relationship 132 

between MODIS NPP (MOD17A3 product) and iEVI, consistent with Ponce Campos 133 
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et al. (2013) and Ye et al. (2018b) (Fig. S1). 134 

2.3 Climatic and edaphic factors 135 

Radiation, air temperature, water availability, nitrogen (N), phosphorus (P), soil organic 136 

carbon (SOC), soil texture, soil field capacity, and water table depth are important 137 

drivers of productivity (Epstein et al., 1997; Huang et al., 2019; Ye et al., 2018b). 138 

Therefore, we selected these climatic and edaphic factors to analyze their respective 139 

contribution to the lagged precipitation effect on plant productivity. The annual average 140 

climatic factors were obtained from Seddon et al. (2016). Radiation was measured by 141 

the proportion of clear-sky to cloudy days in a given pixel based on the MODIS Cloud 142 

Mask product (MOD35_L2) (Ackerman and Frey, 2015). MOD07_L2 Atmospheric 143 

Profile product was used as a measure of air temperature (Borbas and Menzel, 2015). 144 

Pixels from the highest available pressure level, corresponding to the temperature 145 

nearest to the Earth's surface, were selected. We used the ratio of actual 146 

evapotranspiration to potential evapotranspiration (AET/PET) as an indicator of water 147 

availability. A higher value suggests sufficient water supply to plant, while a lower one 148 

indicates higher water deficit or aridity. AET and PET were both derived from the 149 

MOD16 Global Evapotranspiration product, which estimates evapotranspiration 150 

through the Penman-Monteith equation (Mu et al., 2011). 151 

We obtained edaphic factors from the gridded Global Soil Dataset for use in Earth 152 

System Models (GSDE), including total nitrogen (TN), total phosphorus (TP), total 153 

carbon, SOC, volumetric water content (VMC), and soil texture. The dataset provides 154 

soil properties, such as soil texture, organic carbon, and nutrients, with 30 arc-seconds 155 
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spatial resolution, which are quality controlled (Shangguan et al., 2014). The water table 156 

depth dataset at 30 arc-second grid was obtained from Fan et al. (2013). 157 

To match the low-resolution TRMM precipitation dataset, all the above iEVI, climatic 158 

and edaphic data were aggregated up to 0.25° spatial resolution. The distribution of dry 159 

domain was derived from the map of Bailey's four global ecoregion domains (Bailey, 160 

1995). 161 

2.4 Selection of lagged and unlagged ecosystems  162 

For each pixel in the Northern Hemisphere drylands, linear regression and multiple 163 

linear models between current-year iEVI and current-year precipitation (PPT𝑡) and/or 164 

previous-year precipitation (PPT𝑡−1) were fitted (Table 1) using the linear model (lm) 165 

function in R4.0.0. The lagged type fitted the multiple-year regression (i.e., p < 0.05 for 166 

the multiple-year model [ iEVI𝑡 = 𝑎 × PPT𝑡 + 𝑏 × PPT𝑡−1 + 𝑐 ] and p ≥  0.05 for 167 

current-year [𝑡] model [iEVI𝑡 = 𝑎 × PPT𝑡 + 𝑐] ), or previous-year (𝑡 − 1) regression 168 

(i.e., p < 0.05 for previous-year model [iEVI𝑡 = 𝑎 × PPT𝑡−1 + 𝑐] and p ≥ 0.05 for the 169 

current-year model). The unlagged type only fitted current-year regression (i.e., p < 170 

0.05 for the current-year model and p ≥  0.05 for the multiple-year model and 171 

previous-year model). 172 

2.5 Hypotheses testing 173 

To test the first hypothesis, i.e., the lagged type had a lower sensitivity of productivity 174 

response to precipitation. We fitted the regressions between iEVI and precipitation for 175 

each pixel. We measured the sensitivities as the slopes of the liner regression between 176 

iEVI and precipitation. We then compared the sensitivities of the lagged and unlagged 177 
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types across the mean annual precipitation (MAP) gradients based on the procedure of 178 

Zar (2009). 179 

To test the second hypothesis, i.e., the lagged type had higher interannual precipitation 180 

variability and more occurrences of dry and wet years. We calculated the coefficient of 181 

variation (CV) of annual precipitation and the occurrences of dry and wet years for each 182 

pixel based on 19-year annual precipitation data. We defined a dry year as one and two 183 

SDs (standard deviations) of precipitation lower than the average and wet year as one 184 

and two SDs higher than the average during the study period. 185 

To test the third hypothesis, i.e., the lagged type had a higher sensitivity of other 186 

environmental factors to precipitation. We compared the difference between the two 187 

types in terms of climatic-edaphic factors, to explore what factors were responsible for 188 

the lagged precipitation effect. Firstly, the linear regressions between each factor and 189 

MAP were conducted for the two types, respectively. We then tested the statistical 190 

differences in the slopes and intercepts of these linear fittings based on the procedure 191 

of Zar (2009). To ensure that the lagged type was sensitive to the selected climatic-192 

edaphic factors, we used the two criteria: (1) the regression between climatic-edaphic 193 

factor and MAP in lagged type was significant; and (2) the slopes between regressions 194 

in lagged and unlagged types differed significantly. Secondly, permutational 195 

multivariate analysis of variance (perMANOVA, "vegan" package in R) was applied to 196 

determine whether the two types differed significantly when all selected climatic-197 

edaphic factors were taken into account collectively. The perMANOVA is a non-198 

parametric multivariate statistical test to evaluate whether the centroids and dispersions 199 

javascript:;
javascript:;
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of some groups (lagged and unlagged types in this study) are equivalent. It requires no 200 

assumption regarding the number of variables (or distributions) within the groups 201 

(Anderson, 2001). To allow for a comparison of the climatic-edaphic factors with 202 

different units, the normalized values were used in the perMANOVA test. The random 203 

intercept model was further used to compare the difference in the intercepts between 204 

the two types when fixing the slope of linear regression ("lmerTest" package in R). A 205 

Euclidean distance-based similarity percentage (SIMPER) analysis (Clarke, 1993; Ye 206 

et al., 2018a) was employed to determine the contribution of each climatic-edaphic 207 

factor to the overall dissimilarity between the two types. 208 

3 Results 209 

We identified 1111 lagged pixels and 1442 unlagged pixels among 16500 tested pixels 210 

(0.25 spatial resolution) across drylands in the northern hemisphere (Fig. 1). Most of 211 

them were found in grasslands, shrublands, and savanna biomes. The lagged pixels 212 

were mainly located in the Tibetan Plateau of China, the western US, and Kazakhstan. 213 

The sensitivities/slopes of productivity response to precipitation in the lagged were 214 

significantly lower (slope and intercept difference: p < 0.001) than those in the unlagged 215 

at the spatial scale (Fig. 2). Moreover, the differences in productivity sensitivities to 216 

precipitation in the two types decreased with increasing MAP (Fig. 2). The two types 217 

were not significantly different in terms of the variabilities of interannual precipitation 218 

(p = 0.11) (Fig. S2). There were neither significant differences in occurrences of dry 219 

(1SD: p = 0.54) and wet (1SD: p = 0.8, 2SD: p = 0.13) years in the two types, except 220 

for the 2SD dry years (the occurrences in lagged type were less than those in the 221 
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unlagged type, p < 0.01) (Fig. S3-4). 222 

PerMANOVA analysis indicated that the lagged and unlagged types differed 223 

significantly when the climatic (water availability and radiation) and edaphic factors 224 

(SOC, TN, VMC, and silt content) were collectively considered (F =12.96, and p < 225 

0.001). Moreover, the sensitivities of the six climatic and edaphic factors to MAP were 226 

all higher in lagged type than those in the unlagged. Compared with the unlagged type, 227 

water availability increased faster with increasing MAP in the lagged type (Fig. 3a and 228 

Table 2). SOC, TN, and VMC raised across the MAP gradients in the two types, and 229 

the slopes were significantly higher in the lagged type (Fig. 3b-d and Table 2). Silt 230 

content was positively correlated with MAP in both types, and the slope of the 231 

regression between them was greater in the lagged type than unlagged type (Fig. 3e and 232 

Table 2). In contrast, radiation was negatively correlated with MAP in both types, and 233 

the slope of the regression between them was lower in lagged type than unlagged type 234 

(Fig. 3f and Table 2). However, air temperature did not significantly change with 235 

increasing MAP in the lagged (Fig. S5). Water table depth, soil total carbon, and soil 236 

phosphorus were higher in the lagged type than those in the unlagged; however, the 237 

slopes between these regressions did not differ significantly (Fig. S6-7). Likewise, clay 238 

content, sand content, and indicators of N and P availabilities (C/N and C/P ratios) did 239 

not differ significantly between the two types (Fig. S8-9).  240 

The random intercept model showed that the lagged type might have higher TN, VMC, 241 

and silt content than the unlagged when fixing the slope (Table S1), and the differences 242 

between the two types in the means of these environmental factors were small (Fig. 3 243 
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and Table S1). SIMPER analysis showed that water availability was the most important 244 

factor for distinguishing between the two types, followed by SOC, TN, VMC, and silt 245 

content (Fig. 4). The radiation had a minimal contribution. 246 

4 Discussion 247 

Based on satellite-derived productivity and precipitation, we identify two types of 248 

terrestrial ecosystems either with or without lagged precipitation effect in the Northern 249 

Hemisphere drylands and evaluate the difference in climatic and edaphic factors 250 

between them. Consistent with the first hypothesis, our results show that productivity 251 

is less sensitive to precipitation in lagged type than unlagged type along the MAP 252 

gradients. Previous studies attributed lagged precipitation effect to the differences in 253 

productivity-PPT relationships among ecosystems (Bunting et al., 2017; Gong et al., 254 

2020; Petrie et al., 2018). Our results support this viewpoint that the lagged precipitation 255 

effect plays a vital role in modifying the productivity-precipitation relationship. 256 

Moreover, the differences between productivity responses to precipitation in the two 257 

types decrease with increasing MAP, which is likely due to the limitation of resources 258 

other than precipitation (Huxman et al., 2004). This observation is supported by recent 259 

studies, which have reported the strength of vegetation water memory effects decreases 260 

with increasing MAP (Liu et al., 2018), and the legacy effects of water deficits on trees 261 

are highly reliance on MAP, with this effect being most pronounced in dry ecosystems 262 

(Anderegg et al., 2015).  263 

Our study does not support the second hypothesis that the lagged type is characterized 264 

by higher interannual precipitation variability and more occurrences of dry and wet 265 
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years because both types possess similar precipitation variability and occurrences of 266 

dry and wet years. Previous studies suggest that the magnitudes of the short-term 267 

legacies of antecedent precipitation (i.e., drought and wetness legacies) are positively 268 

related to relative precipitation changes between current and previous year (Reichmann 269 

et al., 2013; Yahdjian and Sala, 2006), and greater variability in precipitation leads to 270 

corresponding increases in legacy impacts (Shen et al., 2016). However, the lagged 271 

precipitation effect may not be influenced directly by precipitation variability. 272 

Precipitation amount and variability may indirectly alter other environmental factors, 273 

thus influencing productivity (Hsu and Adler, 2014; Luo et al., 2017; Yahdjian and Sala, 274 

2010). 275 

In our study, climatic and edaphic factors in lagged ecosystems are more sensitive to 276 

precipitation at a spatial scale, supporting the third hypothesis. A similar difference 277 

pattern between the two types is also found in the Southern Hemisphere dry landmass 278 

(Fig. S10-11). Compared to the unlagged type, higher sensitivity in water availability 279 

to precipitation in the lagged type could lead a more deteriorated water condition when 280 

precipitation decreases, resulting in more changes in the plant structure (e.g., leaf and 281 

root), plant reproduction (e.g., seed production and tillers), litter dynamics, and 282 

community composition (Dudney et al., 2017; Reichmann and Sala, 2014; Yahdjian and 283 

Sala, 2006), thus exerting a negative influence on following-year productivity. In 284 

contrast, ecosystems with high sensitivity in water availability may benefit more with 285 

precipitation increasing. 286 

We find that dissimilarity patterns between lagged and unlagged types are consistent in 287 
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terms of soil properties (such as SOC, TN, soil field capacity, and silt content,) and 288 

water availability. Soil water availability is related to soil physical and chemical 289 

properties (Cassel and Nielsen, 1986; Geroy et al., 2011). Low soil water holding 290 

capacity might lead to low available soil water due to high loss of precipitation via 291 

runoff or percolation, especially during large rain events (Ye et al., 2018b). Furthermore, 292 

higher soil organic matter and silt content could increase water retention (Geroy et al., 293 

2011). Consistent with Wang et al. (2017), TN increases along the MAP gradients in 294 

both types. Due to the higher sensitivity of TN to precipitation, changes in precipitation 295 

may lead to more substantial fluctuation in soil N in lagged ecosystems, likely causing 296 

N carry-over between interannual years. Recent studies report that previous-year 297 

precipitation may influence litter dynamic, microbial mineralization and 298 

immobilization, plant N uptake, and N leaching, causing soil mineral N pools to 299 

accumulation or decrease (Dudney et al., 2017; Evans and Burke, 2012; Giese et al., 300 

2010; Shen et al., 2016; Yahdjian and Sala, 2010), thus promote or inhibit current-year 301 

productivity. 302 

In addition, our results show that water availability is the most important factor in 303 

distinguishing between the two types. Water availability is the most determining and 304 

limiting factor to the functioning of arid and semiarid ecosystems (Lauenroth, 1979; 305 

Noy-Meir, 1973). Soil properties (e.g., soil field capacity, soil texture, and soil organic 306 

carbon) have an association with water availability; in turn, the changes in water 307 

availability could influence the dynamics of soil organic carbon and nitrogen. The 308 

importance of water availability in these connections among environmental factors in 309 
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drylands may explain its highest contributions to the lagged precipitation effects. 310 

5 Conclusion 311 

Lagged precipitation effect plays an essential role in the productivity-precipitation 312 

relationship. In our study, we found the ecosystems with a significant lagged 313 

precipitation effect had lower sensitivity of productivity response to precipitation than 314 

those of unlagged ones, and the differences in productivity sensitivities to precipitation 315 

in the two types decreased with increasing MAP. Moreover, the increase in the 316 

sensitivities of environmental factors to precipitation might contribute to the lags in the 317 

response of productivities to changes in precipitation at the interannual scale. With 318 

increasing interannual precipitation variability and frequency of dry and wet years, it is 319 

necessary to consider would the sensitivity of other environmental factors to 320 

precipitation be significantly influenced by changes in precipitation in dryland. 321 

Moreover, current land surface models have a weak ability to represent the lagged 322 

precipitation effects on plant growth and the carbon cycle (Jiang et al., 2019; Kolus et 323 

al., 2019). Thus, consideration of other climatic and edaphic factors may be necessary 324 

to better predict terrestrial ecosystem productivity in model simulation, and to study the 325 

productivity-precipitation relationship in precipitation manipulation experiments. 326 
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 556 

Fig. 1. Distributions of lagged ecosystems where productivities are significantly correlated with 557 

previous-year precipitation and unlagged ecosystems where productivities are not correlated with 558 

previous-year precipitation in Northern Hemisphere drylands. 559 

 560 

Fig. 2. The response of iEVI (annual integrated EVI) to annual precipitation across MAP gradient 561 

in the lagged and unlagged types (slope difference: p < 0.001). Significant codes for linear 562 

regressions: ***, p < 0.001. 563 

 564 

 565 
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 566 

Fig. 3. Comparisons of six climatic and edaphic factors between the lagged and unlagged types. (a) 567 

The lagged type has higher sensitivity in AET/PET (a measure of water availability), (b) soil organic 568 

carbon content, (c) soil total N content, (d) volumetric water content (at -10 kPa), (e) silt content, 569 

and (f) annual cloudless skies (a measure of radiation) in comparison with the unlagged type along 570 

gradients of MAP. Significant codes for linear regressions: ***, p < 0.001. Statistical differences in 571 

the slopes and intercepts of linear regression lines between the two types are shown in Table2. 572 
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 580 

Fig. 4. Percentage contributions of six climatic and edaphic factors to the divergence between the 581 

lagged and unlagged types based on SIMPER analysis. The bars are the average percentage 582 

contribution of selected pixels (n = 100 randomly sampled, repeated 10000 times). The error bars 583 

are the average standard errors of 100 randomly selected pixels in 10000 times. The contribution of 584 

each climatic-edaphic factor is significantly different from those of another factor. 585 
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Table 1 Method for dividing pixels of the Northern Hemisphere dry landmass into lagged and 597 

unlagged types. The lagged pixels fitted the multiple-year regression (i.e., p < 0.05 for the multiple-598 

year model [iEVI𝑡 = 𝑎 × PPT𝑡 + 𝑏 × PPT𝑡−1 + 𝑐] and p ≥ 0.05 for current-year [𝑡] model [iEVI𝑡 =599 

𝑎 × PPT𝑡 + 𝑐] ), or previous-year (𝑡 − 1) regression (i.e., p < 0.05 for previous-year model [iEVI𝑡 =600 

𝑎 × PPT𝑡−1 + 𝑐] and p ≥ 0.05 for the current-year model). The unlagged pixels only fitted current-601 

year regression (i.e., p < 0.05 for the current-year model and p ≥ 0.05 for the multiple-year model 602 

and previous-year model). 603 

 Regression models 

iEVI𝑡, PPT𝑡 iEVI𝑡, PPT𝑡−1 iEVI𝑡, PPT𝑡, PPT𝑡−1 

Lagged type p ≥ 0.05 p < 0.05 p < 0.05 

Unlagged type p < 0.05 p ≥ 0.05 p ≥ 0.05 
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 605 
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Table 2 Regressions between mean annual precipitation and climatic-edaphic factors, as shown in 615 

Fig. 3. Statistical differences in the slopes and intercepts of regression lines between the lagged and 616 

unlagged types were compared based on the procedure of Zar (2009).  617 

Factors a Regression of lagged type Regression of unlagged type Slope difference Intercept difference 

AET/PET y=0.037x+2.6 y=0.029x+3.6 p < 0.001 p < 0.001 

p < 0.001 p < 0.001 

SOC y=0.0038x+0.2 y=0.0017x+0.65 p < 0.001 p < 0.001 

p < 0.001 p < 0.001 

TN y=0.00022x+0.06 y=0.0001x+0.08 p < 0.001 p < 0.001 

p < 0.001 p < 0.001 

VMC y=0.011x+21.2 y=0.007x+21.7 p < 0.01 p < 0.001 

p < 0.001 p < 0.001 

SILT y=0.0066x+31.7 y=0.0011x+32.3 p < 0.05 p < 0.001 

p < 0.001 p = 0.56 

Cloudless y=-0.012x+56.2 y=-0.006x+54 p < 0.01 p =0.42 

p < 0.001 p < 0.001 

a AET/PET is the ratio of actual to potential evapotranspiration (%); SOC is soil organic carbon content (%); TN is 618 

soil total nitrogen contents (%); VMC is the volumetric water content at -10 kPa (%), a proxy of soil field capacity; 619 

and SILT is silt content of soil (%); and Cloudless is annual cloudless skies (%), a measure of radiation. 620 
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