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An Artificial Neuron Network With Parameterization
Scheme for Estimating Net Surface Shortwave

Radiation From Satellite Data Under Clear
Sky—Application to Simulated GF-5 Data Set

Menglin Si , Student Member, IEEE, Bo-Hui Tang , Senior Member, IEEE,
Zhao-Liang Li, Senior Member, IEEE, Françoise Nerry, Xia Zhang, and Guofei Shang

Abstract— Net surface shortwave radiation (NSSR) is a key
parameter that drives the surface material exchange and energy
balance. Herein, we propose an improved artificial neuron
network (ANN) with parameterized (ANN-P) method to first
calculate the albedo at the top of atmosphere (TOA) by
considering the surface non-Lambertian effect. Subsequently,
the NSSR is estimated based on the relationship between TOA
broadband albedo and the Earth’s surface-absorbed shortwave
radiation using a parameterized method under clear sky. The
modeling process is implemented with Chinese Gaofen-5 (GF-5)
visible/near-infrared channels data simulated via MODTRAN.
For comparison, a previously reported lookup table (LUT) with
parameterized (LUT-P) method and an ANN method are also
employed. The performances of all these methods are evalu-
ated. In terms of model simulation part, the root-mean-square
errors (RMSEs) are 15.01 (17.07), 10.04 (13.67), and 20.39 (29.99)
W/m2 for land, water, and snow/ice surfaces, respectively, for the
ANN-P (versus LUT-P) method. Their mean bias errors (MBEs)
are within 0.9 W/m2. With respect to the direct ANN method,
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it shows the highest accuracy yet relatively large deviation for
water surface. Additionally, the sensitivity analysis of water vapor
content (WVC) confirms that the ANN-P method is more stable
than the LUT-P and ANN methods and is, thereby, recommended
for clear-sky NSSR estimation. Finally, the ground validations
indicate that the mean RMSEs (MBEs) for the LUT-P, ANN-P,
and ANN methods are 49.33 (−3.01), 47.55 (1.75), and 104.24
(−75.72) W/m2, respectively.

Index Terms— Artificial neuron network (ANN), Chinese
Gaofen-5 (GF-5), net surface shortwave radiation (NSSR), top
of atmosphere (TOA) broadband albedo.

I. INTRODUCTION

NET surface shortwave radiation (NSSR) is defined as the
difference between the downwelling and upwelling short-

wave (0.3–5 μm) radiation fluxes on the Earth’s surface [1].
It is a key parameter for estimating the surface energy budget,
and its quantification over heterogeneous land surfaces is cru-
cial for examining land–atmosphere interactions [2]. Remote
sensing can provide land surface attributes with unparalleled
spatiotemporal resolution and coverage, and thus a series of
studies attempted to estimate NSSR by exploiting remote
sensing observations [3]. To date, several surface radiation
budget (SRB) products, including the International Satellite
Cloud Climatology Project data set (ISCCP-FD) [4], Clouds
and the Earth’s Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) data [5], [6], and Global Energy
and Water Cycle Experiment (GEWEX) SRB [7] data were
generated from a number of remote sensing data. Although
the products contain radiation components with fine temporal
resolutions (1–3 h), the spatial resolutions are relatively coarse
and range from ∼30 km to 2.5◦ [8], [9], thereby hindering
relevant land applications like high-resolution (about 1–5 km)
forecast systems and mesoscale (about 5–30 km) land surface
or environmental models [10], [11]. Therefore, it is important
to develop new methods for retrieving NSSR with finer
spatiotemporal resolution and high accuracy based on satellite
remote sensing technology.

Over the past decades, considerable methods are proposed
to estimate NSSR from satellite-derived radiative data at
the top of atmosphere (TOA) or along with ancillary land
and atmospheric information. The majority of the methods
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are categorized into parametric methods, empirical methods,
physical methods, and hybrid methods.

1) Parametric methods typically calculate NSSR by para-
meterized formulae involving atmospheric variables,
such as water vapor content WVC) and aerosol extinc-
tion. Key meteorological parameters are adopted from
satellite remotely sensed data [12], [13], wherein exist-
ing uncertainties propagate error in the subsequent
process.

2) Empirical methods generally establish simple empirical
relationships between satellite level radiance and NSSR.
The methods are site- and/or data-specific and are not
easily applied to other regions [14].

3) Physics-based methods exhibit optimal accuracy.
itslimitscomplexityHowever, computational

application [15].
4) Hybrid methods typically incorporate a large amount

of radiative transfer simulations and then implement
statistical regression or artificial neuron network (ANN)
model based on the simulated database [16]–[21].

Hybrid methods maintain intact physical fundamentals and
avoid a complex intermediate process and correspond to
the relatively most popular methodology. The majority of
the aforementioned methods assume the surface as homoge-
neous and completely ignore the topographic effects. Several
algorithms are developed by combining satellite data and
digital elevation model (DEM) to correct pivotal shortwave
components on unobstructed surfaces [22]–[28]. However,
calculation of a large amount of complicated terrain factors
is time-consuming and thus impractical. The requisite DEM
product typically corresponds to poor quality.

Currently, a novel perspective is presented to estimate the
global radiation budget by considering the atmosphere–Earth
surface as a whole system. Given the development of satellite
remote sensing, it is possible to directly measure the albedo
of the system and subsequently the reflected flux at TOA
is easily obtained [29]. Then, based on the parameterized
relationship of the TOA broadband albedo or flux and the
SRB, the NSSR can be deduced [17], [30]. Several algorithms
have been developed to measure the TOA radiation budget
[31], [32]. Nevertheless, typically, the preliminary step of
these algorithms directly converts narrowband reflectances
to broadband albedo via a simple regression operation [33].
Although the models can be constructed for different solar-
view geometry, the anisotropy of land surface is not fully
considered. Given the non-Lambertian characteristic of natural
surface and the whole Earth–atmosphere system, an angle
directional model is proposed to obtain a better estimate of
TOA broadband albedo [34]–[38]. Algorithms are developed
based on large amount of radiative transfer calculations for
different classifications of surface, atmosphere, and geomet-
rical conditions. Finally, a lookup table (LUT) is constructed
in detail at discrete angle bins to describe the relationship
between TOA directional reflectance and broadband albedo.
The method is relatively complicated and relies on specific
satellite product. The emerging ANN method has also been
proven feasible in terms of estimating the TOA broadband
albedo [39]. Additionally, most of the current schemes to

estimate NSSR are appropriate for relatively coarse-resolution
satellite-based data such as TOA radiance and atmospheric
water vapor products from the Moderate Resolution Imaging
Spectroradiometer (MODIS) that exhibit certain uncertainties.
Thus, the NSSR estimation results are too rough to feature
heterogeneous surface characterization [40]. In summary, it
poses an urgent requirement to estimate shortwave radiation
budget when applied to nonuniform natural surfaces with finer
resolution.

The Chinese Gaofen-5 (GF-5) is a polar-orbiting satellite of
a series of China High-Resolution Earth Observation System
(CHEOS) satellites of the China National Space Administra-
tion launched in 2018 [41], and has been recently proven to
be practical in terms of retrieving key surface parameters [42].
It is configured with six payloads, in which the multiple
spectral imager (MSI) is designed to collect land information
at high spatial resolution for disaster monitoring. The MSI
provides 13 channels that cover the spectral range from
visible/near-infrared (VIS/NIR) (20-m spatial resolution) to
thermal infrared (40-m spatial resolution) [43], from which the
first six VIS/NIR channels covering the range corresponding
to 0.45–2.35 μm exhibit a potential to estimate NSSR at 20-
m spatial resolution. Therefore, the objective of this study is
to develop an improved hybrid method by considering the
non-Lambertian characteristics of the natural surface to first
obtain TOA broadband albedo and then estimate NSSR with
GF-5 data under clear sky. This study is limited to cloudless
days because the cloudy-sky situation is complicated, and in
majority of cases, the sky is sparsely or partially cloudy. The
cloud optical properties or microphysical characteristics are
difficult to measure accurately, especially when the liquid
water exists. Furthermore, the radiative transfer simulation
model (e.g., MODTRAN) can only offer fully cloudy data set
with a limited variety of cloud types. Hence, only the clear
sky condition is selected in this study.

The remainder of this article is organized as follows.
Section II describes the basic materials required and then
the proposed integrated method is presented. The results of
estimation and validation against satellite and ground measure-
ments are detailed in Sections III and IV. In Section V, nec-
essary discussion is stated and relevant main conclusions are
listed.

II. MATERIALS AND METHODS

A. Bidirectional Reflectance Distribution Function
Parameters

MODIS onboard the NASA Terra and Aqua satellites pro-
vides an opportunity to retrieve the operational bidirectional
reflectance distribution function (BRDF) and albedo prod-
ucts [44]. The algorithm uses a kernel-driven BRDF model
that is linear in its parameters and relies on the weighted sum
of an isotropic parameter and two kernels of viewing and illu-
mination geometry to determine reflectance [45], as expressed
in the following equation:
R(θs, υ, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, υ, ϕ, λ)

+ fgeo(λ)Kgeo(θs, υ, ϕ, λ) (1)
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where θs, υ, and ϕ denote the solar zenith angle (SZA),
view zenith angle (VZA), and relative azimuth angle (RAA),
respectively. Specifically, fiso(λ) denotes the Lambertian scat-
tering component and is equal to the bidirectional reflectance
for θs = 0◦ and υ = 0◦. Furthermore fiso(λ) denotes
the coefficient for the Ross thick volume scattering ker-
nel Kvol(θs, υ, ϕ, λ) derived from volume scattering radiative
transfer models. fgeo(λ) denotes the coefficient of the Li
sparse-reciprocal geometric scattering kernel Kgeo(θs, υ, ϕ, λ)
from surface scattering and geometric shadow casting theory.
The kernel combination model is observed to perform well
with reliable and consistent surface reflectances over a wide
range of surface covers. The global BRDF/Albedo model
parameters Daily product MCD43A1 in 2018 is employed.
It provides the three parameters in Ross–Li BRDF model for
MODIS bands 1–7 (0.62–2.15 μm) as well as for three broad
bands (0.3–0.7, 0.7–5.0, and 0.3–5.0 μm). It is currently one
of the best products that provide comprehensive BRDF
parameters within the shortwave radiation spectral range
for Ross-Li model, which is consistent with that embed-
ded in MODTRAN, to calculate the surface directional
reflectances. Given the seasonal variation of land surface fea-
tures, the BRDF parameters of each land type will also change
within the year. The products over all year are averaged as final
BRDF parameters. Additionally, the MODIS land cover prod-
uct MCD12 in 2018 (https://ladsweb.modaps.eosdis.nasa.gov/)
is selected as a mask to extract the BRDF parameters for each
land type.

B. Training Database Preparation

Key variables, such as TOA broadband albedo and short-
wave fluxes at TOA and surface, are retrieved by running
an atmospheric radiative transfer model (MODTRAN 5.2) to
construct the database at first. Seven surface types depict-
ing representative reflectance spectral are employed based
on the International Geosphere-Biosphere Programme (IGBP)
land type classification [46], including barren or sparsely
vegetated, evergreen broadleaf forest, grassland, cropland,
permanent wetland, water, and snow and ice. The direc-
tional reflectance is calculated by the MODTRAN internal
“Ross–Li” BRDF model consistent with the MODIS BRDF
algorithm. Under six MODTRAN standard atmospheric pro-
files (i.e., tropical atmosphere, middle latitude summer
atmosphere, mid latitude winter atmosphere, subarctic summer
atmosphere, subarctic winter atmosphere, and United States
1976 standard atmosphere), the WVCs correspond to 0.42,
0.85, 1.42, 2.08, 2.92, 4.11, 5.76, and 6.58 g/cm2, respectively.
Two aerosol extinction types (rural, maritime) with six differ-
ent visibilities (VISs) (5, 10, 15, 23, 50, and 150 km) are also
considered. Furthermore, based on different view geometry,
seven RAAs (0◦–180◦ at an interval of 30◦) and seven SZAs
(0◦, 10◦, 20◦, 40◦, 50◦, 60◦, 70◦) are deployed. Considering
the MSI onboard GF-5 observes the Earth almost at nadir,
the VZA is set to 0◦. Finally, 37 044 cases are prepared for the
MODTRAN simulation code. The GF-5 channel radiance is
then obtained with the simulated database based on its spectral
response function. The responses of its first six bands are
shown in Fig. 1.

Fig. 1. Spectral response curves of first six bands for GF-5.

C. TOA Broadband Albedo Estimation

To improve the accuracy in TOA broadband albedo estima-
tion, a genetic algorithm (GA)-based back propagation (BP)
neural network (GA-BP) is employed. In machine learning
and cognitive science domain, ANN correspond to a family
of statistical learning models inspired by biological neural
networks. Specifically, ANN is a robust empirical statistical
method to estimate or approximate functions that depend on
a large number of inputs and are generally unknown, and
it is applied in a variety of applications including classi-
fication, pattern recognition, forecasting, signal processing,
and geosciences [47]. The BP neural network is a multilayer
feedforward network trained based on error BP algorithm
(which is a common method of teaching artificial neural
networks on how to perform a given task) and is one of
the most widely applied neural network models. The GA is
a method inspired by the process of natural selection and
biological evolution for solving both constrained and uncon-
strained optimization problems, and thus, is generally imported
to determine the initial weight (which is a sensitive factor
to affect the performance of an ANN model). Additionally,
the number of nodes (N) in the hidden layer can also evidently
affect simulation accuracy. An ANN model with an excessive
number of neurons frequently leads to overfitting while an
insufficient number of neurons typically leads to underfitting
or low correlation. Two ANN schemes with and without
visibility as input parameter are executed separately and yield
similar model performances. It indicates that the influence of
aerosol on TOA broadband albedo in the ANN model could
be ignored. To keep the model conciseness and reduce the
uncertainty caused by superfluous parameters, the VIS is not
considered and TOA channel reflectances, WVC, RAA, and
SZA are set as inputs and TOA broadband albedo as output to
execute the ANN model. Finally, the GA-BP simulations are
iteratively conducted by only changing the N in the hidden
layer from 1 to 100 and the optimal ANN network with the
least root-mean-square error (RMSE) is determined.

The TOA shortwave narrowband reflectance at certain direc-
tion μi (μs, μv, ϕ) is calculated from TOA radiance for each
band, respectively,

μi (μs, μv, ϕ) = π Li (μs, μv, ϕ)d2

μs Eband_i
(2)

where μs denotes the cosine of SZA, μv denotes the cosine of
VZA, and ϕ denotes RAA. Additionally, Li (μs, μv, ϕ) denotes
the TOA radiance corresponding to the reflection direction at
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band i , d denotes the Earth–Sun distance in astronomical units,
and Eband_i denotes the mean exoatmospheric irradiance at
band i, which could be derived from MODTRAN simulation
results. Finally, The TOA shortwave broadband albedo r is
calculated as follows:

r = Fud2

E0μs
(3)

in which Fu denotes the TOA shortwave upward flux (W/m2),
and E0 denotes the TOA solar irradiance at one astronomical
unit (W/m2).

For comparison purposes, the linear conversion from nar-
rowband reflectance to broadband albedo at TOA is also imple-
mented. A new LUT is reconstructed. The detailed operation
is based on Tang et al. [17]. Based on the new LUT, the TOA
broadband albedo is estimated. The cases whose SZAs and
RAAs are absent in the LUT are linearly interpolated from
those derived from the neighboring angle bins.

D. NSSR Estimation

Li and Leighton [30] proposed a linear model to describe
the relationship between the TOA upward shortwave flux and
NSSR based on radiative transfer calculation where the SZA
and water vapor amount correspond to the only input parame-
ters. As noted by Masuda et al. [13], the flux absorbed at the
surface is related to the normalized TOA upward shortwave
flux. The surface absorption coefficient as is defined as a
fraction of the flux incident. By exploiting the MODTRAN
simulated data, as is retrieved based on the following linear
relationship with TOA broadband albedo r as follows:

as(μs, w, r) = α� − β �r (4)

where as is defined based on the following formula:
as = NSSRd2

E0μs
. (5)

The intercept term α� and slope coefficient β � are expressed
as follows:
α�= 1 − a1μ

−1
s − a2μ

−x
s − (1 − exp(−μs))(a3 + a4w

y)μ−1
s

(6)

and

β �= (1 + a5 + a6 ln μs + a7w
z) (7)

where w denotes the atmospheric precipitable water vertical
content (g/cm2). For different surface types, a1−a7 and x, y, z
denote various constants.

To obtain the ten coefficients in (6) and (7), the MODTRAN
simulated data in Section II-B is first categorized into three
types, namely land, water, and snow and ice surfaces, and
then employed to separately determine the parameters. The
dependent as is calculated using (4). The independent r is
the TOA broadband albedo simulated by MODTRAN. Finally,
coefficients for land surface are retrieved based on 26 460 pairs
of as and r . Similarly, 5292 sets of samples are separately
generated for the water and snow and ice surfaces.

Tang et al. [17] primitively developed a direct method
and reparameterized Li’s model to estimate NSSR by using
MODIS TOA narrowband radiance and reflectance data, which

Workflow of the LUT-P, ANN-P, and ANN methods for NSSRFig. 2.
estimation.

is also introduced in this section for continuity. In this section,
variable r is also from the MODTRAN simulation. The
parameterized coefficients are recalculated based on the GF-5
simulation database.

Finally, the ANN method is also directly employed to
estimate NSSR based on satellite radiance data, atmospheric
parameters, and geometry conditions for further compari-
son with the proposed ANN with parameterization (ANN-P)
method. An optimization scheme for GA-based initial weight
and selection of best N in hidden layers is also exerted in
a manner similar to the TOA broadband albedo estimation
in Section II-C. In this study, we take the atmosphere–Earth
surface as a whole system and the difference between the
incident solar energy and the satellite captured energy is
the total absorption through the system, which includes the
atmosphere absorption and surface absorption. The NSSR is
the surface absorbed energy, which could be retrieved by
removing the atmosphere absorption from the total absorption
of this system. The atmosphere absorbs solar energy through
atmospheric molecules (e.g., water vapor), aerosol, and cloud.
The cloud was not considered in this study. The absorp-
tion effect of atmospheric aerosol on shortwave radiation is
negligible. Therefore, the absorption through the atmosphere
was characterized specifically by the variable WVC. To retain
the model conciseness and reduce the uncertainty caused by
superfluous parameters, the VIS is not considered and TOA
channel reflectances, WVC, RAA, and SZA are set as inputs
and NSSR as output to execute the ANN model. An ANN
training is executed by putting all data set together while the
accuracy is observed as worse than when different land types
are operated separately. Specifically, all three types of land
surfaces are separately operated. The workflow of the LUT
with parameterization (LUT-P) method, ANN-P, and ANN
method for NSSR estimation is presented in Fig. 2.

E. Ground Validation With GF-5 Satellite Proxy Data

Currently, the Chinese GF-5 satellite data are unavailable.
To implement the validation, the Landsat 8 Operational Land
Imager (OLI) is employed as proxy of GF-5/MSI. As shown
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TABLE I

COMPARISON OF THE SPECTRAL RANGES AND CONVERSION EQUATIONS OF TOA BAND REFLECTANCES BETWEEN GF-5/MSI AND LANDSAT 8/OLI

in Table I, the spectral ranges of the corresponding OLI’s
band 2–band 7 are similar to those in MSI’s band 1–band 6,
which are selected as the alternative data. To compensate for
the difference between the spectral response functions in MSI
and OLI, a linear relationship is constructed between the TOA
channel reflectances of MSI and OLI based on the MODTRAN
simulation data set. The conversion equations from MSI to
OLI band reflectances are listed in Table I. Finally, the Landsat
8 OLI data set is collected from June 1, 2018 to December 31,
2019 (https://earthexplorer.usgs.gov/).

Seven stations (i.e., Bondville, IL, USA; Boulder, CO,
USA; Desert Rock, NV, USA; Fort Peck, MT, USA;
Goodwin Creek, MS, USA; Penn State, PA, USA; and
Sioux Falls, SD, USA) in the SURFRAD (SRB) Net-
work (https://www.esrl.noaa.gov/gmd/grad/surfrad/index.html)
are selected as optional ground validation sites from June 1,
2018, to December 31, 2019. The spatial heterogeneity of
NSSRs at each site were analyzed to pick out the proper ones.
The field measurements of NSSR on clear days are selected
synchronously with Landsat 8 overpass time. With respect
to the meteorological information, the MODIS daily product
MOD05_L2 (https://ladsweb.modaps.eosdis.nasa.gov/) is used
to retrieve WVC.

III. RESULTS

A. Performance of TOA Shortwave Broadband Albedos

First, the LUT method is employed with similar config-
uration in Tang et al.’s [17] method and validated via the
GF-5 simulation database. As in Fig. 3(a), the estimations with
the previous LUT method exhibit a larger deviation from the
actual values. Subsequently, the GA-BP is executed and the
Ns in the hidden layer with least RMSEs are 81, 96, and
54 for land, water, and snow and ice surfaces, respectively.
The GA-BP networks with least RMSEs are selected for
the TOA broadband albedo estimation. Fig. 3(b) shows a
comparison of these actual TOA shortwave broadband albedos
simulated by MODTRAN and those estimated by GA-BP. The
ANN model explains more than 99% of the TOA broadband
albedo variations in the simulated data sets. The results are
good with the RMSE less than 0.005 W/m2 and all sample
points are near the 1:1 line except for a few deviations,
thereby indicating a well fit of the TOA broadband albedo
and providing a satisfactory database for the following NSSR

Fig. 3. Comparison of the actual and estimated TOA shortwave broadband
albedos under clear sky using (a) LUT method and (b) ANN method described
in Section II-C.

estimation. The comparison of their performances indicates
that the improved GA-BP method is more suitable for the
non-Lambertian database, which is closer to the real natural
underlying surface features. The proposed GA-BP method
could obtain TOA broadband albedo with increased accuracy,
which is crucial for the NSSR estimation.

B. Performance of NSSR Estimation

The surface absorption coefficient is estimated with (4)
wherein parameters are calibrated with the training database
in Section II-B. Finally, the NSSR is calculated with (5) and
then compared with the simulated (directly obtained from
the MODTRAN 5.2) outputs. The coefficients for estimating
the NSSR with (4)–(6) are listed in Table II. Three indices
are selected to characterize the accuracy of NSSR retrieval,
namely coefficient of determination (R2), mean bias error
(MBE), and RMSE. Fig. 4 shows a comparison of actual
and estimated NSSR under three different types of surfaces.
The upper figures show the evaluation results of previous
LUT-P method and lower figures denote the proposed ANN-
P method. The RMSE values of land, water, and snow and
ice surfaces are around 13–30 W/m2 for the LUT-P method
and 10–20 W/m2 for the improved ANN-P method. In the
first row for LUT-P method, a majority of the scatter points
are near the 1:1 line and slight underestimation is observed for
land surface. The scatter point for water surface is segmentally
deviated which could be due to the discontinuity in the TOA
broadband albedo estimation based on LUT method. For the
snow and ice surface, a few points are deflected irregularly.
With respect to the second row for ANN-P method, the result
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TABLE II

COEFFICIENTS FOR ESTIMATING THE NSSR WITH (4)–(6)

Fig. 4. Comparison of the actual and estimated NSSRs. LUT-P method
for (a) land, (b) water, and (c) snow and ice. ANN-P method for (d) land,
(e) water, and (f) snow and ice.

for land and water surfaces are also fitted well and show some
improvement. For the snow and ice situation, the RMSE is not
equally ideal as that in land and water surfaces while anyhow
improves a little bit. Generally, snow and ice surfaces have
high reflectance and are prone to adjacent terrain reflected
radiation. The relatively large RMSE for snow and ice cases
is probably due to the global minimization error in (6).
In summary, the ANN-P method exhibits better accuracy for
each type of surface.

It should be noted that the result presented is based on
a calibration process with (4), (6), and (7) with the TOA
broadband albedo simulated by MODTRAN. Thus, the errors
in the NSSR model fitting process do not include errors in
the albedo estimation. In order to test the sensitivity of TOA
broadband albedo (r), we also calibrate the parameters in
NSSR estimation model with the estimated r and obtain the
NSSR, which exhibits comparable accuracy and similar error
distribution when compared to that of the result that ignores
error propagation. This further indicates adequate accuracy of
the TOA broadband albedo estimation.

C. ANN Method Estimated NSSR

The ANN method is employed to directly estimate NSSR
with the same samples that are used in Sections III-A and III-
B. The training and testing data set are randomly divided by
rates corresponding to 80% and 20%. Based on the simulation
result, the RMSEs of different cases with incremental N in the
hidden layer are compared as in Fig. 5. At length, 27, 26, and
81 neurons in the hidden layer for land, water, and snow and
ice surfaces are selected. The validation process is performed

Fig. 5. Comparison of the RMSEs for different ANN schemes with
incremental number of nodes in hidden layer. The three vertical dashed lines
denote the points with lowest RMSEs.

Fig. 6. Comparison of the actual NSSR and estimated NSSR based on ANN
method for (a) training data set and (b) testing data set.

to evaluate the ANN method. Fig. 6 shows comparisons
between the simulated and estimated NSSR with direct ANN
method for training and testing data set. Sufficient agreement is
observed between the ANN model fitting and radiative transfer
model computations of NSSR, and most scatter points center at
the 1:1 line for all three land types. Overall, accuracy is similar
in these two parts of the data set, and the ANN model explains
more than 99% of the NSSR variations in all. The RMSEs of
land, water, and snow and ice surface are around 2–7 W/m2

in the testing part. An inconspicuous overestimation exists for
water surface with MBE equals 5.45 W/m2. With respect to
land and snow and ice surface, slight underestimation occurs
with MBEs corresponding to −3 and −0.2 W/m2, respectively.

When compared to the result in Fig. 4, the ANN method
derived NSSR is with prominent higher accuracy for all land
types. With respect to the land and water surfaces, the ANN
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TABLE III

COMPARISON OF PERFORMANCES FOR DIFFERENT
NSSR ESTIMATION METHODS

method exhibits relatively better accuracy with RMSEs cor-
responding to 6.63 and 7.70 W/m2, respectively, and they
are evidently lower than 15.01 and 10.04 W/m2, respectively,
as obtained in ANN-P scheme. Specifically, the RMSEs for
snow and ice surface correspond to 2.70 and 20.39 W/m2,
respectively, in the two methods. It is inevitable that in the
ANN-P method, the error in the first step of TOA broadband
albedo estimation could be transferred into step 2. While in
the ANN method, it only contains a direct global optimization
process. The improvement of RMSE in the ANN method is
probably due to less error propagation in the direct ANN
simulation process. With respect to the MBE, in the proposed
ANN-P method, the biases for all three surfaces are relatively
negligible and more focused on the central line except for
the snow and ice surface. While in the ANN method, a
significant overestimation is observed for the water surface.
The overestimation in the ANN method could be ascribed
to the instability of neural network, which will be analyzed
in Section III-D. A comparison of the performance of the
aforementioned three methods is listed in Table III.

In summary, the proposed ANN-P method significantly
improves the accuracy of NSSR estimation when compared
to the previous LUT-P method. The ANN method reveals
the superior capability of NSSR estimation, especially for
the snow and ice surface. However, it is too early to
draw a conclusion as to which performance is better and
merely based on the simulation data set. The sensitivity of
different methods should be further explored as discussed
in Section III-D.

D. Sensitivity Analysis of WVC

Based on several extant studies, it is not difficult to conclude
that the water vapor in the atmosphere is essential parameter
that perturbs the surface shortwave radiation budget. To further
compare the performance of the LUT-P, ANN-P, and ANN
methods, the sensitivity of WVC which reflects the condition
of atmosphere is analyzed. By introducing relative WVC errors
of −10%, −5%, 0%, +5%, and +10%, the RMSEs in different
land surface types for three methods are calculated and listed
in Table IV.

Fig. 7 shows the difference between the RMSEi after
introducing WVC errors from −10% to +10% and the RMSE
without WVC error for three methods. According to the

TABLE IV

COMPARISON OF RMSES (W/m2) IN DIFFERENT LAND TYPES AFTER

INTRODUCING WVC ERRORS FOR DIFFERENT METHODS

Fig. 7. Difference between RMSEi (after introducing WVC errors) and
RMSE (without WVC error) for (a) LUT-P, (b) ANN-P, and (c) ANN methods.

Fig. 8. RB between the in situ measurement at each site and the mean NSSR
around neighboring 5 km × 5 km region.

information in Table IV and Fig. 7, for LUT-P and ANN-P
methods, the RMSEs increase with absolute WVC errors for
land surface and the uncertainty is generally smallest. While
for water and snow and ice surfaces, the RMSEs increase
with negative WVC errors whereas decrease slightly with
positive WVC errors. With respect to the ANN method,
the RMSEs change a little with negative WVC errors, while
larger uncertainty occurs with positive WVC errors, for land
and water surface. As for the snow and ice surface, the ANN
method shows relatively large variation in RMSE with WVC
errors.

In summary, it is reasonable to say that for land and water
surfaces, the LUT-P and ANN-P methods are analogously
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Fig. 9. Comparison between the measured NSSR and estimated NSSR with different methods (a)–(f) for six sites in SURFRAD network.

stable because of their similarly small RMSE changes. For
snow and ice surface, the LUT-P method shows better sta-
bility in view of WVC errors. However, the ANN method
shows much more uncertainty especially for snow and ice
surface, in spite of the relatively better performance in model
simulation. Overall, it is not beyond speculation that the
proposed ANN-P method denotes the preference option for
NSSR estimation under clear sky condition, for land and water
surfaces. While in snow and ice cases, the ANN-P method may
present greater uncertainty than LUT-P method considering
WVC errors.

IV. VALIDATION

A. Spatial Heterogeneity of in Situ Measurement

To examine the reliability of the in situ measurement,
a relative bias (RB) indicator was constructed to quantify
the spatial representativeness. The spatial heterogeneity of
the seven SURFRAD sites was further quantified by relative
standard deviation (RSD) within a 5 km × 5 km neighbor
around the ground station [48]. The RB and RSD are is
expressed as follows:

RB =
∣
∣NSSR − NSSR

∣
∣

NSSR
× (8)100%

RSD = NSSRSD

NSSR
× 100% (9)

where NSSR is the ground measured NSSR, NSSR and
NSSRSD are the mean NSSR and the standard deviation (SD)
of NSSR within a 5 km × 5 km neighbor around the ground
station, respectively. It could be used to indicate the degree of
approximation of the ground-based NSSR and satellite-based
NSSR estimation. Based on the proposed ANN-P method,

the NSSR in 5 km × 5 km of each SURFRAD site could be
estimated to calculate the RB at different months to indicate
the seasonal variation. Finally, six stations with RSD under 5%
and a majority of RBs under 10% were selected as proper in
situ measurement. As in Fig. 8, except for the spring situation
at Bondville and Fort Peck, and the winter situation at Fort
Peck, all other RBs are under 10%, which indicate a well
spatial representativeness and small spatial heterogeneity for
the six stations.

B. Validation With Satellite Data

To validate the feasibility of using GF-5 to estimate NSSR,
all the three aforementioned methods are validated with
ground measurements. Additionally, the previous method that
employed MODTRAN simulated samples without considering
surface non-Lambertian effect (LUT-P-L) is also introduced to
compare [49]. Most of the selected ground measurements are
located in land surface with several snow days. The result
is shown in Fig. 9(a)–(f) with the snow samples denoted
specifically. Given the LUT-P method, a few sites exhibit better
accuracy (lower RMSE and MBE) when compared with the
previous LUT-P-L method while some exhibit paralleled or
slightly lower accuracy. By comparing the RMSEs between
the LUT-P-L and LUT-P methods at each station, the mean
relative error caused by not considering the BRDF effect
is around 20%. It indicates the importance of considering
the non-Lambertian effect in NSSR estimation. The RMSEs
of ANN-P method range between 16 and 65 W/m2, which
correspond to acceptable accuracy when compared to previous
studies. The relatively worse accuracy of ANN-P in Boulder
and Fort Peck is mainly due to the underestimation in snow
days. Generally, the RMSEs and biases of most sites suggest
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Fig. 10. Histogram of overall NSSR errors between the estimated NSSR
(NSSRest) and measured NSSR (NSSRact) (NSSRest− NSSRact) with different
methods for the six ground measurement sites.

that the proposed ANN-P scheme exhibits relatively better or
paralleled accuracy when compared with the aforementioned
LUT-P-L and LUT-P methods. The RMSE and bias of ANN
method are the highest among all these methods, which is in
accordance with the previous sensitivity analysis of WVC that
the uncertainty in ANN method is the largest. In summary,
the ANN-P method exhibits optimal accuracy in validation,
which is consistent with the result in simulation data set in
Sections III-B and III-C.

Fig. 10 shows a histogram of the overall bias distribution.
The proposed ANN-P scheme exhibits the largest frequency
concentrated in center zero line, and this is followed by
LUT-P and previous LUT-P-L schemes. With respect to the
ANN method, a large bias is observed, and this could be
due to the instability of the network trained by simulation
data set, as explained in the WVC sensitivity analysis part
in Section III-D. Overall, the mean RMSEs (MBEs) of all
sites for the LUT-P-L, LUT-P, ANN-P, and ANN methods
are, 63.06 (3.75), 49.33 (−3.01), 47.55 (1.75), and 104.24
(−75.72) W/m2, respectively. The proposed ANN-P method
exhibits a better performance in NSSR estimation under clear
sky with GF-5 data.

It is difficult to retrieve precise auxiliary meteorological
information at the SURFRAD ground site, and thus the
satellite product MOD05_L2 with a spatial resolution of 1 km
is employed to extract WVC, which could introduce some
uncertainties in the NSSR estimation. This leads to relatively
large bias like the underestimation in most sites for the ANN-P
and ANN method. Specifically, the validation results further
prove that the proposed ANN-P method that considers non-
Lambertian characteristics of a natural surface is feasible for
GF-5 satellite data to estimate NSSR and improves accuracy.

V. DISCUSSION AND CONCLUSION

In this study, an improved method for estimating NSSR
from Chinese GF-5 data is developed. The method is
implemented based on the MODTRAN 5.2 simulations.
By considering the surface-atmosphere as a whole system
and the non-Lambertian feature of natural underlying surface,

the effect of surface directional reflectance is embodied
via importing BRDF parameters from MODIS product to
the MODTRAN procedure. A parameterization scheme is
employed to estimate NSSR based on the linear relationship
between surface absorption and TOA reflected flux. Given that
most of the current satellites provide only narrowband data,
the TOA broadband albedo is first retrieved based on a GA-BP
network. The results indicate that the GA-BP network explains
more than 99% of the TOA broadband albedo variations in the
simulated data sets and that the RMSE is as low as 0.005 and
reduced to over half when compared to the evaluation result
with LUT parameters recalibrated with a new set of GF-5
simulation data set with surface directional reflectance. This
indicates that the previous LUT-P method is not ideal in terms
of estimating TOA broadband albedo for the non-Lambertian
database. With respect to the NSSR estimation, the RMSEs of
land, water, and snow and ice surfaces correspond to 17.07,
13.67, and 29.99 W/m2, respectively, for the previous LUT-P
method. The corresponding values are 15.01, 10.04, and
20.39 W/m2, respectively, for the improved ANN-P method.
Their MBEs are within 0.9 W/m2. In summary, the ANN-P
method exhibits better accuracy than previous LUT-P scheme
for each type of surface.

For further comparison, the ANN method is also employed
to directly estimate NSSR by ignoring the calculation of TOA
broadband albedo. Overall, the ANN method explains more
than 99% of the NSSR variations in the simulated test data
sets. The RMSEs of land, water, and snow and ice surface
approximately correspond to 6.63, 7.70, and 2.70 W/m2,
respectively, in the testing data set. However, the sensitivity
analysis result indicates that the proposed ANN-P method
and previous LUT-P method is relatively stable. In summary,
the proposed ANN-P method correspond to the preferred
option for NSSR estimation under clear-sky condition.

In this study, we employed a novel perspective to take the
atmosphere-Earth surface as a whole system. As the incident
solar energy is absorbed by the system, NSSR could be readily
retrieved by removing the atmospheric absorption from the
total absorption through the atmosphere-Earth surface system.
Due to the negligible absorption effect by aerosol on NSSR
in the model, and the absence of cloud under the clear-
sky premise, only the variable absorptive gas molecule (e.g.,
WVC) was considered to indicate the atmospheric absorption
in the methods.

By employing the Landsat 8 data as proxy of GF-5,
the ground validation result reveals that the RMSEs of different
sites range between 16 and 65 W/m2, thereby indicating
that the proposed ANN-P method that considers the non-
Lambertian characteristics of natural surface is feasible for
GF-5 satellite data to estimate NSSR. Although some larger
bias can occur in some cases, it is important to consider the
effect of surface directional reflectance given that the result
indicates that it plays an important role in the TOA broadband
albedo estimation, which can further affect NSSR accuracy
and should not be neglected in the NSSR estimation. It should
be noted that the terrain effects should not be ignored in the
high spatial resolution data set. In fact, we have considered
the elevation effect implicitly by employing different WVCs,
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which is generally affected by the surface elevation, both in the
MODTRAN simulation and the parameterization process. The
effect of terrain geometries, such as the terrain slope, aspect,
and shadow, are not considered at present. It is a meaningful
research prospect and would be considered in future study.

This study includes a significant experiment to manifest the
feasibility of NSSR study with Chinese GF-5. Furthermore,
the 20-m high spatial resolution of MSI onboard GF-5 exhibits
unprecedented advantages for potential applications including
climate research, energy balance studies, and estimation of
global evapotranspiration. It is necessary to incorporate the
BRDF product to MODTRAN to simulate the reflectance
of non-Lambertian surface and contribute to NSSR study in
remote sensing realm. Furthermore, some available BRDF
information should be potentially gathered to test the repre-
sentativeness and accuracy of MODTRAN simulated surface
directional reflectance in the future.
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