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ABSTRACT Land surface temperature (LST) and its annual or inter-annual variations play an important
role in understanding global climate change, urban heat island, and the process of land-atmosphere energy
exchange. Many annual temperature cycle (ATC) models [i.e., ATC with three or five parameters (ACP3
or ACP5)] have been proposed to analyze the annual variations of LST in the past decades. In this study,
two year-to-year continuous and derivable models (YYCD_ACP3 and YYCD_ACP5models) were proposed
to model several years of ATCs. The fitting results of the YYCD_ACP3 model with global Aqua/MODIS
daytime LSTs from 2014 to 2018 show that the YYCD_ACP3 model achieved a good performance in fitting
the time-series LSTs with an overall normalized root-mean-square error (NRMSE) of 0.21, coefficient of
determination (R2) of 0.74, and refined index of agreement (d) of 0.85. In addition, the modeling results of
ten representative samples covering different climatic conditions and land cover worldwide show that, except
for two sites located in tropical and Antarctic, the YYCD_ACP3 model could show a good performance with
R2 greater than 0.6. Although the ACP3 model shows similar performance to the YYCD_ACP3 model, the
fitting curve of the YYCD_ACP3 model is continuous and smooth for describing the interannual variations
of LST. When the LSTs of 2014–2018 are fitted as a whole by using both models, the YYCD_ACP3 model
shows a slightly better performance than that of the ACP3model. The application of the YYCD_ACP3model
with the global MODIS LSTs from 2003 to 2018 indicates that the results of the YYCD_ACP3 model have
the potential to reveal the interannual variations of LST. Therefore, we conclude that the YYCD models are
valuable for modeling the variations of LST over several years and can be widely applied.

INDEX TERMS Land surface temperature, annual temperature cycle, modeling, MODIS.

I. INTRODUCTION
Land surface temperature (LST), which is measured using
a remote sensor from the ground or space to represent the
radiative skin temperature of the land surface, is one of the
most important parameters in global and regional processes
of surface energy and water balance [1]–[3]. It is widely used
in various applications, for example, accurate knowledge of
LST can provide important information on climate change,
hydrological cycle, vegetation monitoring, and urban heat
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island studies [4]–[7]. However, LST is a physical quantity
that changes in both time and space owing to the variations
in solar radiation, land use/cover changes, and also changes
in climate. Compared with conventional ground single-point
measurements, satellite-based remote sensing can measure
the LST continuously over time worldwide with sufficiently
high temporal resolution.

Over the past decades, a number of temporal models have
been built to describe the variations of LST over time; these
include the diurnal temperature cycle (DTC) models and
annual temperature cycle (ATC) models [8]–[10]. The DTC
models describe the variations of LST over a short period
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(one day or several days). Notably, the DTC models can only
fit the LST data of almost complete cloud-free days, thus
limiting their promotion and application [11]. In contrast,
the ATC models usually describe the seasonal or interannual
variations of LST. The parameters in the ATC model are
closely related to the physical properties of the land sur-
face [12], [13]. For example, the annual mean surface tem-
perature and annual amplitude are important parameters in
urbanization studies and urban heat island analysis [14]–[16].
The phase shifts from the start day in the annual cycle are
related to changes in climate [17]. For instance, some studies
have shown that phase shifts in the annual temperature cycle
during the past decades are related to atmospheric CO2 con-
centrations [18], [19]. These parameters can also be used as
disaggregation kernels for downscaling LST to enhance its
spatial resolution [20], [21]. Compared with other methods
that combine multiple surface parameters to downscaling
land surface temperatures [22], [23], the ATC model method
is simpler because it does not require the participation of other
surface parameters, such as land cover types and vegetation
index. In addition, the ATC models can be used to produce
spatiotemporal continuous LSTs [24]. Therefore, modeling
the annual LST cycle is very important for many research
fields.

The currently available ATC models can be divided into
two groups. The first group uses a constant term plus a
trigonometric function (i.e., the ACP3 and ACP5 models) to
fit LST dynamics for an annual cycle. For instance, Bechtel
(2011) used a simple sine function to model one-year LSTs
of clear-sky for one pixel at the same time of each day [8].
After that, a newmodel with two sine functionswas suggested
to model tropical scenarios, where the performance could
be improved [25]. These two models are simple and have a
robust physical basis [26]. Later, some researchers proposed a
hybrid frameworkwith the related surface parameters, such as
air temperature, soil moisture, albedo, and the relative humid-
ity for modeling the annual dynamics of satellite-derived
LST [27], [28]. Although this framework can achieve higher
accuracy, it is complicated because of the input of a large
amount of auxiliary data. The second group of ATC models
uses a decomposition model to analyze landscape thermal
patterns for multiple years. The first group of models can
only capture the averaged LST variation for one year, and
ignore gradual or abrupt changes over several years. There-
fore, Fu and Weng (2015) and Quan et al. (2016) proposed a
decomposition model with different parameters to deal with
the unevenly distributed time-series data to understand both
the annual and inter-annual LST variations [29], [30]. In these
decomposition models, the remotely sensed LST time series
can be decomposed into the trend, seasonal, and noise com-
ponents. Although the decomposition model can achieve the
annual mean surface temperature trends, it cannot obtain
the annual amplitude and annual phase trends, which are
very important for related research. Therefore, such a model
cannot capture the detailed variations of LST for specific
years. Moreover, if we use the first group models, i.e., the

ACP3 or ACP5models to simulate the LST data for each year,
the fitting curve of the adjacent years is discontinuous with
respect to time. Ideally, the fitted curve of LST changes over
several years should be continuous and smooth with time.
Therefore, a new ATC model is needed to describe the inter-
annual variations of LST.

In view of the fact that the current ATC models are usually
used to fit the LST change in a single year, in order to increase
the adaptability of the ATC models to fit the LST change
for several years, the objective of this study is to develop
a year-to-year continuous and derivable model for model-
ing the inter-annual variations of LST from MODIS data.
In this paper, the authors propose year-to-year continuous and
derivable ATC models (YYCD) based on ACP3 and ACP5 to
model the LST variations over several years. The paper is
organized as follows. Section 2 presents the ACP3, ACP5,
and YYCD models. Section 3 introduces the data used in this
study. In Section 4, we present and discuss the fitting results
of the ATC models. Finally, the conclusions are derived in
Section 5.

II. METHODOLOGY
The ACP3 and ACP5 models are usually used for model-
ing the variations of LST for a single year. In this section,
the ACP3 and ACP5 models are introduced first. Then,
the YYCD_ACP3 and YYCD_ACP5 models are derived by
taking into account the physical continuity and derivability of
LST between the adjacent years. Finally, we introduced three
indicator formulas for model evaluation.

A. ACP3 MODEL
Bechtel (2011) proposed a simple ATC model with three
annual cycle parameters (ACP3) to fit the variations of LST
for long time-series [8]. The model consists of a constant
and a sine function with the reference day of the spring
equinox. To better explain the physical meaning of the phase
in the model, we used the cosine function instead of the sine
function in this study and the reference day is the first day of
the year:

LST (t) = a+ bcos
[
2π
ω

(t − c)
]

(1)

where LST is the cloud-free LST at the same time each day,
t is the day of the year, a is the annual mean surface temper-
ature, b is the annual amplitude of the surface temperature, c
is the phase, that is, the day when LST reaches its maximum
values of the year, and ω is the annual cycle, which is 365 in
common years and 366 in leap years.

B. ACP5 MODEL
Based on the ACP3model, Bechtel (2018) suggested an alter-
native ATCmodel with five parameters (referred as ACP5) to
improve the performance of the fit in the tropical areas [25].
The model is formulated as follows:

LST (t) = a+ b1cos
[
2π
ω

(t − c1)
]
+ b2cos

[
4π
ω

(t − c2)
]
(2)
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where a is the annual mean surface temperature, b1 and b2
are the amplitudes of the annual and biannual variations,
respectively; and c1 and c2 are the respective phases.

C. YYCD MODEL
The aforementioned ACP3 and ACP5 models are generally
used to describe the seasonal variation of LST for a single
year. Here, we show the use of ACP3 and ACP5 models
to model the annual temperature cycles for several years.
Considering the physical continuity and derivability of LST
variations over several years, the fitting curve of the LST
variations for adjacent years is assumed to be continuous and
derivable. According to Eq. (1), the variations of LST for the
year i and i+ 1 can be expressed as:

LST i(t) = ai + bi cos[
2π
ω

(t − ci)] (3)

LST i+1(t) = ai+1 + bi+1 cos[
2π
ω

(t − ci+1)] (4)

where t represents a day of several years and t ∈

[365(i− 1)+ ki + 1, 365i+ ki+1] for year i (Eq. (3)), and ki
is the number of leap years before year i.
To make the fitting curve of the year i and i+1 continuous

and derivable, we need to determine the junction point of the
two fitted curves first. Here, we assume that the fitted curve
is continuous and derivable at the midpoint (t = tm = 365i+
ki+1 + 0.5) between the last day of the year i and the first
day of year i + 1. Thus, the following two equations can be
obtained at the point:

LST i(t)|t=tm = LST i+1(t)|t=tm (5)

(∂LST i/∂t)|t=tm = (∂LST i+1/∂t)|t=tm (6)

Then, we get

ai+1 = ai + bi cos[
2π
ω

(tm − ci)]−bi+1 cos[
2π
ω

(tm−ci+1)]

(7)

bi+1 = bi sin[
2π
ω

(tm − ci)]/sin[
2π
ω

(tm − ci+1)] (8)

By combining Eqs. (3), (4), (7), and (8), the year-to-year
continuous and derivable model can be derived from the
ACP3 (YYCD_ACP3) of LST variations. Eqs. (7) and (8)
are the two constraints that ensure that the fitting curves of
adjacent years are continuous and derivable. The total number
of free parameters in the YYCD_ACP3 model for n (n ≥ 2)
years is n + 2: a and b in the first year and c for each year.
In addition, a and b for each year after the first year can be
calculated using Eqs. (7) and (8).

Considering that the ACP3 model does not perform well
in some cases [25], it is necessary to derive the correspond-
ing YYCD model based on the ACP5 model. Thus, we can
achieve the YYCD_ACP5 model through the following four
equations:

LST i(t) = ai + bi1 cos[
2π
ω

(t − ci1)]

+ bi2 cos[
4π
ω

(t − ci2)] (9)

TABLE 1. Initial values of the free parameters in the YYCD_ACP3 and
YYCD_ACP5 models.

LST n+1(t) = ai+1 + bi+11 cos[
2π
ω

(t − ci+11 )]

+ bi+12 cos[
4π
ω

(t − ci+12 )] (10)

ai+1 = ai+bi cos[
2π
ω

(tm − ci1)]+b
i
2 cos[

4π
ω

(tm−ci2)]

− bi+11 cos[
4π
ω

(tm − c
i+1
1 )]

− bi+12 cos[
4π
ω

(tm − c
i+1
2 )] (11)

bi+11 =
bi1 sin[

4π
ω
(tm−ci1)]+2b

i+1
2 sin[ 4π

ω
(tm−c

i+1
2 )]

sin[ 2π
ω
(tm−c

i+1
1 )]

(12)

Similarly, the total number of free parameters in the
YYCD_ACP5 model for n (n ≥ 2) years is 3n+ 2 (i.e., a and
b1 in the first year and c1, b2, and c2 for each year). Except
for the first year, the values of a and b1 are calculated through
Eqs. (11) and (12).

As the YYCD_ACP3 and YYCD_ACP5 models are non-
linear models, the Powell optimization method proposed by
Seiler (1989) was used to solve their free parameters [31].
The initial values of the free parameters are listed in Table 1.
The closer the initial value is to the final value, the faster is
the model calculation speed.

D. MODEL EVALUATION
The modeling results were evaluated by normalized root-
mean-square error (NRMSE), coefficient of determination
(R2), and refined index of agreement (d, [32]), which are
commonly used asmeasurable indicators for fitting problems.
The expressions are given as follows:

NRMSE =

√
1
n

n∑
i=1

(LSTp − LSTo)2

IQR
(13)
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FIGURE 1. Land-cover types throughout the world obtained from the MODIS product MCD11C1 in 2014. The blue crosses
represent the selected sample sites.

R2 = 1−

n∑
i=1

(LSTp − LSTo)2

n∑
i=1

(LSTp − LSTo)2
(14)

d =



1−

n∑
i=1

∣∣LSTp − LSTo∣∣
2

n∑
i=1

∣∣LSTo − LSTo∣∣ , when

n∑
i=1

∣∣LSTp − LSTo∣∣
≤ 2

n∑
i=1

∣∣LSTo − LSTo∣∣
2

n∑
i=1

∣∣LSTo − LSTo∣∣
n∑
i=1

∣∣LSTp − LSTo∣∣ − 1, when

n∑
i=1

∣∣LSTp − LSTo∣∣
> 2

n∑
i=1

∣∣LSTo − LSTo∣∣

(15)

where LSTp refers to the predicated LST from the ATC
model, LSTo represents the observed MODIS LSTs, LSTo
is the mean value of the observed LST in the time series,
IQR is the interquartile range (IQR = Q3−Q1, with Q1 =

CDF−1(0.25) and Q3 = CDF−1(0.75), where CDF−1 is the
quantile function), and n represents the total number of sam-
ples involved in the modeling. The reason we chose IQR to
normalize RMSE is that there are outliers and extreme values
in the LST series.

III. DATA
Satellite data obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS) daily LST product
MYD11C1 Version 6 (onboard Aqua satellite) were used in
this study. This MODIS product can be acquired from the
NASAEarth ScienceData (https://search.earthdata.nasa.gov)
and is directly derived from the MYD11B1 product. The
MYD11C1 product is generated through a physics-based
day/night algorithm and it provides daily LST and land sur-
face emissivity (LSE) values at 0.05◦ (5600m for the equator)
latitude/longitude climate modeling grid (CMG) [33]. The
CMG cells follow a geographic grid with 7200 columns and
3600 rows, representing the entire Earth.

The daytime LSTs (about 1:30 pm) from 2014 to
2018 were used to evaluate the YYCD model. The MODIS
LSTs used in this studywere filtered through its quality assur-
ance (QA) file to ensure the average LST error is less than 2.0
◦. In addition, in order to further display the fitting results of
the ATC models, ten representative locations were selected,
each with different land covers. The detailed information of
the selected sites is shown in Table 2.

IV. RESULTS AND DISCUSSION
A. ACCURACY ASSESSMENTS OF THE YYCD_ACP3 MODEL
The performance of the YYCD_ACP3 model was evaluated
using the Aqua/MODIS daytime LSTs from January 1, 2014,
to December 31, 2018. Figure 2(a)–2(j) illustrates the fitting
result of the YYCD_ACP3 (red curve) and ACP3 models
(blue curve) for five years at ten representative samples (sites
A–J). This selected five-year period is taken as an example of
continuous and derivable years of time.

The NRMSE of the YYCD_ACP3 model at the ten sites
are 0.43, 0.37, 0.43, 0.30, 0.35, 0.25, 0.80, 0.29, 0.25, and
0.38, respectively. Lower NRMSE values indicate less resid-
ual variance. The R2 values of the YYCD_ACP3 model are
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FIGURE 2. YYCD_ACP3 model fitting Aqua/MODIS daytime LSTs from 2014 to 2018 at sites A–J and ACP3 model fitting the LSTs
independently for each year. The red and blue curves are the fitting results of the YYCD_ACP3 and ACP3 models, respectively. The
subscripts 1 and 2 of NRMSE, R2, and d represent the YYCD_ACP3 model and the ACP3 model, respectively.

greater than 0.6 except for site G at the equator with a value
of 0.02. In terms of d , except for site G with d of 0.50,
the d values of all other sites are greater than 0.70. Overall,

the fitting results indicate that theYYCD_ACP3model shows
good performance to fit theMODIS LSTs at site A, B, D, E, F,
I and J. However, these sites located tropical (i.e. site C andG)
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TABLE 2. Description of the selected samples.

FIGURE 3. Histogram of the (a) NRMSE, (b) R2, and (c) d of the
YYCD_ACP3 model for fitting global MODIS LSTs from 2014 to 2018.

and cold regions (i.e. site H) show a different variation of LST
with R2 of lower than 0.7. As can be seen in Figure 2(c), 2(h),
the YYCD_ACP3 model does not describe well the annual
variations of LST at site C and site H. For site C (79◦E, 25◦N),
which is located in tropical zone, LST shows a decreasing
trend due to the cooling effect of the high coverage vegetation
in the rainy season and LSTwill be increasing rapidly because
of the harvest of farmland, where the fractional vegetation
cover drops rapidly in a short time. For site G (Figure 2(g)),
which is located at the equator, the annual amplitude through-
out the year is very small because the solar radiation changes
little throughout the year. For station H located in Antarctica,
the YYCD_ACP3 model performs poorly in describing the
variation of LST during the polar days. The reason for this
is that the phenomenon of polar day/night. The sunrise and
sunset dates for site E are October 5 and March 7, respec-
tively (https://www.esrl.noaa.gov/gmd/grad/solcalc/sunrise.
html). During the polar nights (from March 7 to October 5),

FIGURE 4. YYCD_ACP5 model fitting Aqua/MODIS daytime LSTs from
2014 to 2018 at site C (a) and site H (b).

LST fluctuates less because there is no solar radiation. How-
ever, LST increases as the sun’s altitude increases during the
polar days. For these sites located in tropical and polar, we can
use the YYCD_ACP5 model with more free parameters to
simulate the inter-annual variation of LST. As shown in
Figure 4(a) and 4(b), the YYCD_ACP5 model performs
better than the YYCD_ACP3 model at site C and site H
(i.e. Figure 2(c) and 2(h)) with NRMSE of 0.37 and 0.18,
respectively and R2 of 0.71 and 0.91, respectively. Compared
with the YYCD_ACP3 model, the YYCD_ACP5 model can
significantly improve the fitting accuracy in terms of NRMSE
and R2 values at site C and site H. Therefore, it is recom-
mended to use the YYCD_ACP5 model to simulate the inter-
annual variations of LST in the tropical and polar regions.

We also used the YYCD_ACP3 model to fit the annual
variation of globalMODIS daytime LSTs. Figure 3 shows the
histograms of NRMSE, R2, and d of the YYCD_ACP3model
for fitting global MODIS LSTs from 2014 to 2018. As can be
seen in Figure 3, the range of NRMSE values is mostly less
than 0.4 with a mean value of 0.21. In terms of R2, the R2

values are mostly great than 0.5 with a mean value of 0.74.
And most d values are greater than 0.6 with a mean value
of 0.85. The results indicate that the YYCD_ACP3model can
be widely applied to simulate the global annual variations of
LST, although it performs poorly in a few locations, such as
points in the tropics.

Compared with the ACP3 model, which fits the
interannual variations of LST separately for each year,
the NRMSE, R2, and d values are approximately equal
to that of the YYCD_ACP3 model. These results indi-
cate that the YYCD_ACP3 model shows a similar perfor-
mance with the ACP3 model. However, the fitting curve
of the YYCD_ACP3 model is continuous and smooth
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FIGURE 5. YYCD_ACP3 and ACP3 models fitting Aqua/MODIS daytime LSTs from 2014 to 2018 at site A–J. The red and green curves
show the fitting results of the YYCD_ACP3 and ACP3 models, respectively.

for fitting the inter-annual variation of LST. As shown
in Figure 2(a)–2(j), the fitting curve of the ACP3 model is
physically segmented around the adjacent years, while the
results of the YYCD_ACP3 model are not. The discontinuity

of the fitted curves between years was resolved. This is
because the ACP3 model fits each year’s LST changes
separately without considering the temporal progression of
the inter-annual variation of LST. The fitting of the LST
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FIGURE 6. YYCD_ACP3 model fitting MODIS 5-days moving average LST data from 2014 to 2018 at site A–J. The red curve shows
the fitting results of the YYCD_ACP3 model.

variations over several years into the YYCD_ACP3 model
describes the continuous thermal conditions of land sur-
face for many years and generates representative and
informative ACPs [25]. The YYCD_ACP3 model could
be beneficial to the analysis of inter-annual changes

in ACPs. These ACPs depend on daily LSTs and are
not influenced by some gaps due to cloud contamina-
tion [12]. These informative parameters can be used to
study the LST climatology [12], [16] or to downscale LST
images [27].
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B. COMPARISON OF YYCD_ACP3 AND ACP3 MODELS
According to some previous studies, the ACP3 model can be
used to model the inter-annual variation of LST [16], [25],
and an important assumption being that the LST data series
are cyclic-stationary over several years. Thus, the ACPs cal-
culated from the ACP3 model fitting of the time–series LSTs
reflect the average status over the years. However, the real
changes of the LSTs over the years may not be the same sine
or cosine function. For instance, the urbanization process,
occurrence of wildfire, or climate changes over the years may
affect the variation of LST. Figure 5(a)–(j) shows the fitting
results of the YYCD_ACP3 and ACP3 models for modeling
the variations of the LSTs from 2014 to 2018 at sites A–J. It is
worth noting that the ACP3 model fits the five years of LST
as a whole. The results show that the fitting curves of both the
YYCD_ACP3 and ACP3 models are continuous and smooth
over the five years. However, the YYCD_ACP3 model shows
a slightly better performance than the ACP3 model at the six
sites in terms of the NRMSE values. The NRMSE values of
the YYCD_ACP3 model at sites A–J are 0.43, 0.37, 0.43,
0.30, 0.35, 0.25, 0.80, 0.29, 0.25, and 0.38, respectively,
whereas those of the ACP3 model are 0.44, 0.36, 0.43, 0.31,
0.36, 0.25, 0.79, 0.29, 0.25, and 0.26, respectively. This differ-
ence in the results is mainly due to the YYCD_ACP3 model
having more free parameters than the ACP3 model for mod-
eling the five years of LST. The YYCD_ACP3 model com-
prises nine free parameters, whereas the ACP3 model has
only three free parameters. The YYCD_ACP3 model can
reflect the LST variation in each year, while the ACP3 model
can only reflect an average LST variation for these five
years. Taking site A as an example, the YYCD_ACP3 model
can describe the detailed variations in the LSTs for each
year, while the ACP3 model significantly overestimates the
actual LST when the LST was highest in the first year.
If the LSTs are cyclic-stationary over the five years, such
as at site C, the two models perform similarly. Therefore,
the YYCD_ACP3 model is suitable for analyzing the inter-
annual variations in the LSTs.

C. APPLY THE YYCD_ACP3 MODEL WITH 5-DAYS MOVING
DATA
Here, we applied the YYCD_ACP3 model with 5-days mov-
ing average LST data at site A-J. Figure 6(a)-(j) shows the
fitting results of the YYCD_ACP3 model using the 5-days
moving average LSTs from 2014 to 2018 at site A-J. Com-
pare with the YYCD_ACP3 model fit the raw LST data, the
NRMSE values at site A, B, C, E, F, H, I and J decreased by
0.10, 0.06, 0.05, 0.06, 0.05, 0.02, 0.06, and 0.16 respectively.
However, its values at site D and G increase by 0.04 and
0.13 respectively. In terms of R2, the value of site A, B, C, E,
F, G,H, I, and J has increased and it decreases at site D. For the
indicator d , the value of the two does not change much. These
results show that using the YYCD_ACP3 model to fit the
5-days moving LST data can improve the fitting accuracy for
some sites. The reason may be that after taking the average,

FIGURE 7. Trends of the (a) annual mean LST, (b) amplitude and (c) phase
of the YYCD_ACP3 model from 2003 to 2018 at site B. The blue straight
line is the trend line.

the LST variability of the time series becomes smaller. But for
some other sites, it will slightly reduce the fitting accuracy.
The reason may be related to the uneven distribution of valid
LST data in the time series.

D. AN EXAMPLE APPLICATION OF THE
YYCD_ACP3 MODEL
The YYCD models can be applied to observe the changes
in the annual mean LST, amplitude, and phase for several
years. Here, we used the YYCD_ACP3 model to fit the
MODIS/Aqua daytime LSTs from 2003 to 2018 to produce
ACPs. Then, we used the widely used Theil–Sen linear
regression [34] and the Mann–Kendall (MK) test [35]–[37]
for predicting the trends and performing a significance test
of the three ACPs. Figure 7(a)–(c) show the trends of the
annual mean LST, amplitude, and phase from 2003 to 2018 at
site B based on the YYCD_ACP3 model. The annual mean
LST and amplitude at site B show a significantly positive
trend from 2003 to 2018 for the Theil-Sen slope of 0.1447
and 0.0770 ◦/year, respectively, and their corresponding P
values are 0.000 and 0.031. According to land cover types
at site B from 2003 to 2018, the site’s land cover type has
always been mixed forest and has not changed. Therefore,
the reason for the apparent increase in the annual average LST
and amplitude at this site may be related to global warming.
However, the annual phase at site B does not show significant
changes with the Theil–Sen slope of 0.0012 days/year and
P-value of 1.000. A previous study showed that the changes in
the annual phaseweremainly related to the natural variability,
such as the changes in phenology of vegetation or the changes
in land cover types [17]. Therefore, a possible reason why
the phase of station B has no obvious change trend is that
the land cover type has not changed over the study period.
The specific reason needs to further check the phenological
change information of vegetation in this area.

We also used the proposed YYCD_ACP3 model to cal-
culate the ACPs globally from 2003 to 2018 with MODIS

VOLUME 8, 2020 114549



Z. Xing et al.: Modeling Year-to-Year Variations of Clear-Sky Land Surface Temperature Using Aqua/MODIS Data

FIGURE 8. Global trends and MK test results of the annual mean LST, amplitude, and phase of the YYCD_ACP3 model from 2003 to 2018, (a),
(b) and (c) are the Theil-Sen slope, respectively, (d), (e) and (f) are the corresponding MK test results, respectively (red: significant increase
(p<0.05); blue: significant decrease (p<0.05); gray: no significant changes (p ≥ 0.05)).

LSTs as the input. Figure 8(a)–(f) shows the global trends
and MK test results of the annual mean LST, amplitude, and
phase of theYYCD_ACP3model from 2003 to 2018. Regard-
ing the annual mean LST, the regions that are obviously
warming are mainly distributed in eastern Brazil (4–19◦S,
35–46◦W), eastern Europe (44–54◦N, 20–50◦E), and north-
central Russia (52◦–77◦N, 85–128◦E). In contrast, the areas
that became significantly colder are mainly distributed in
Central Asia (43–58 ◦N, 60–82◦E) and northernUnited States
(39–53◦N, 93–114◦W). As previously reported, changes in
precipitation, vegetation, land cover types, and global warm-
ing trends may be the causes of climate warming or cooling
in these areas [38]. For example, Francini-Filho’s research
shows that the destruction of vegetation and reduced rainfall

in eastern Brazil have led to warming of the region [39].
However, for high latitude areas, such as northern Rus-
sia, the increase in temperature will promote the growth
of vegetation [40]. In terms of the annual amplitude, the
regions showing a significant increase are mainly distributed
in northern Canada (55–72◦ N, 86–121◦W), western Asia
(34–56◦N, 35–65◦E) and north-central Russia (51–70◦N,
94–130◦E). While the regions with significantly reduced
of the annual amplitude are mainly distributed in Central
Asia (48–56◦N, 64–82◦W) and the northern United States
(36– 51◦N, 98–110◦W). For the global annual phase of the
YYCD_ACP3model, the areas with large significant changes
are mainly located in Central Brazil (3–23◦S, 40–60◦W),
Central Mongolia (42–50◦N, 102–118◦E), Central China
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(32–35◦N, 103–115◦E). According to Stine’s research,
the changes in the annual phase were mainly related to the
natural variability, such as the changes in phenology of veg-
etation or the changes in land cover type [17]. Therefore,
the specific reason needs to further check the phenological
change information of vegetation in these areas. However,
we need to comprehensively consider the changes of these
several parameters. Overall, the causes of these trends are
poorly understood, and thus further analysis is required. For
example, we should consider the impact of other variables
such as land use type, vegetation, relative humidity and solar
radiation on the surface temperature. In addition, because the
study is relatively short, adding LST data from other sen-
sors (such as Advanced Very High-Resolution Radiometer,
AVHRR) to increase the LST of a longer time–series will help
analyze the long-term sequence changes of LST.

E. LIMITATIONS
In this paper, the proposed YYCD_ACP3 model performs
well in analyzing the inter-annual variation of LST. However,
the YYCD_ACP3 model comprises several limitations that
require attention in the future. First, the data used in the
YYCD models are instantaneous LSTs recorded at a fixed
time of a day (about 01:30 pm). Thus, the derived ACPs
are not the real values of the annual mean LST, amplitude,
and phase. A possible solution is to use the daily mean LST
in the YYCD models. However, currently, few studies have
reported on the estimations of daily mean LST. Therefore,
the development of algorithms for calculating the daily mean
LST from the satellite instantaneous observations could con-
tribute to ATC modeling. Moreover, the overpass times of
Aqua satellite in the afternoon range from ∼00:30 pm to
∼02:30 pm, and the view angles vary from−55◦ to 55◦ [41];
this may introduce some uncertainty to the YYCD models.
Thus, the process of temporal or angular normalization of
MODISLSTsmay help to improve the accuracy of theYYCD
model [42].

Second, the LSTs used in the YYCD models represent
clear-sky conditions; this may introduce uncertainties in the
ACPs. When the surface is covered by clouds, the thermal
infrared sensor (i.e. MODIS) will not be able to calculate
the LSTs. The different cloud cover conditions in different
regions and seasons will make the annual distribution of
LSTs different. The accuracy of the retrieved ACPs should
be widely validated with respect to the ground measurements
in the near future. Furthermore, the errors in the LSTs caused
by the surface covered by partial clouds will increase. One
possible solution is to combine the LSTs from the microwave
data to fill the gaps formed owing to cloud coverage [43].

V. CONCLUSION
The ATC models are useful tools in modeling the seasonal
variation of LSTs. By considering the physical continuity
and derivability of the LST variations over several years,
the ACP3 and ACP5 models were used in the YYCD models
to model year-to-year LST cycles. The examination of global

Aqua/MODIS daytime LSTs from 2014 to 2018 showed that
the YYCD_ACP3 model achieved a good performance in
fitting the time-series LSTs with overall NRMSE of 0.21,
R2 of 0.74, and d of 0.85. The fitting results of ten represen-
tative samples show that, except for the two sites located in
tropical and South Polar, the YYCD_ACP3 model can obtain
a good fitting accuracy with R2 greater than 0.6. However, the
YYCD_ACP5 model with more free parameters can improve
the fitting accuracy of the two sites located in the tropical
and Antarctic, respectively. Compared with the ACP3 model,
which fits the inter-annual LSTs of each year separately,
the YYCD_ACP3 model shows a similar performance. How-
ever, the fitting curve of the YYCD_ACP3 model is continu-
ous and smooth for the modeling of the inter-annual variation
of LST. When fitting the LST variation from 2014 to 2018 as
a whole, the YYCD_ACP3 model shows a slightly better
performance than the ACP3 model at the ten sites in terms
of the NRMSE and R2. The YYCD_ACP3 model can reflect
the variation of LST for each year, while the ACP3 model
can only reflect an average variation of LST in these five
years. In addition, the YYCD_ACP3 model was applied to
reveal the inter-annual variation trend of global LST with
MODIS daytime LSTs from 2003 to 2018. Therefore, we
recommend using the YYCD models to fit the variations of
LST for multiple-years.
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