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ABSTRACT: Despite being a member of the zircon type silicate family, the conditions allowing the hydrothermal synthesis of 

HfSiO4 were not well constrained. A multiparametric study was performed in order to follow the synthesis of this phase under soft 

hydrothermal conditions and thus to determine the most efficient conditions to form single phase samples. Among the experimental 

parameters investigated, concentration of reactants, pH of the reactive media, temperature and duration of the hydrothermal treat-

ment impacted significantly the formation rate of hafnon and its crystallization state. Pure HfSiO4 was obtained in acid reactive 

media with an acidity ranging from CHCl = 1.5 M to pH = 1.0 and for CSi ≈ CHf ≥ 0.21 mol·L
-1

. The silicate phase was obtained after 

a 24-hours treatment at temperatures ranging from 150°C to 250°C. However, the rise of temperature and extension of the duration 

of the hydrothermal treatment favored the crystallization state of the final HfSiO4 samples. 

INTRODUCTION  

Hafnon, HfSiO4, is one of the end-members belonging to the 

zircon-type silicate group (tetragonal, I41/amd) like ZrSiO4, 

CeSiO4, ThSiO4, PaSiO4, USiO4, NpSiO4, PuSiO4 and 

AmSiO4.
1,2-4

 As a consequence, hafnon is reported to form a 

solid solution with ZrSiO4.
5-7

 It is usually observed as a minor 

component in natural zircons 
8-10

 and less frequently as the 

major phase in natural assemblies where zircon appears as a 

minor secondary phase.
11

 

Owing to its interesting thermal and electric properties (such 

as thermal shock resistance, low dilatation coefficient on a 

wide temperature range, high thermal conductivity, low rela-

tive permittivity and low dielectric loss), 
12, 13

 hafnon is often 

considered as promising high-temperature refractory material 
12

 for semiconductor devices 
14

 or microwave substrate for 

electronic data transmission.
13

 

Moreover, as zircon-type ceramics (e.g. ZrSiO4 and HfSiO4) 

are isostructural with actinide silicates, An
IV

SiO4 and due to its 

high chemical stability, they have been suggested as potential 

actinide-specific matrices for the immobilization of 

radionuclides associated to high level nuclear waste and more 

specifically of plutonium excess coming from dismantled 

nuclear weapons.
15-19

 In this context, (Hf,Pu)SiO4 compounds 

were prepared by Burakov et al. using sol-gel method.
20

 

However, these experiments suggest that plutonium content 

cannot exceed 7 wt.% in such materials. 

From a general point of view, the synthesis of HfSiO4 was 

reported by high temperature solid state chemistry,
1, 5, 7, 13, 21-25

 

sol-gel methods,
12, 26, 27

 chemical transport reaction,
14, 28, 29

 

physical vapor deposition 
30

 and hydrothermal synthesis.
31, 32

 

However, the only hydrothermal syntheses were reported by 

Caruba et al. under acid conditions at T = 800°C, 75 MPa,
31

 

and by McNeil et al. in very acid conditions, i.e. 

CHF = 6 mol·L
-1

 and CH2SO4 = 0.5 mol·L
-1

 at T = 850°C, 

200 MPa.
32

 These conditions appear to be quite surprising 

taking into account the possibility to prepare isostructural 

silicates, e.g. ZrSiO4,
31, 33-46

 CeSiO4,
4, 47-49

 ThSiO4,
2, 34, 50-65

 

USiO4,
2, 59, 60, 66-76

 NpSiO4,
2
 PuSiO4 

2
 and AmSiO4 

2
 under soft 

hydrothermal conditions (i.e. for T ≤ 250°C). However, it may 

be also noticed that the formation of amorphous hafnon has 

been observed by alteration, in aqueous solution, of Hf-

bearing borosilicate glasses at 90°C and pH = 1.
77

 More spe-

cifically, we recently reported that modifications of the start-

ing pH and elementary concentrations allowed to decrease the 

temperature of formation of ThSiO4 and CeSiO4 under hydro-

thermal conditions.
49, 64

 Therefore, the aim of this study was to 

determine an efficient way of synthesis allowing the formation 

of HfSiO4 under soft hydrothermal conditions. 

MATERIALS AND METHODS  

Syntheses 

All the reagents used for the materials preparation were sup-

plied by Sigma-Aldrich. Na2SiO3·5H2O (95%) and HfCl4 

(98%) were used as aqueous silicate and hafnium precursors, 

respectively. 1.5 and 1.0 mol·L
-1

 HCl solutions were prepared 

by dilution of Sigma Aldrich ACS grade mother solutions 

HCl (37%). 8 mol·L
-1

 NaOH solution was freshly prepared 

from Sigma Aldrich ACS grade NaOH (98 %) before the 

experiments. 

The syntheses of HfSiO4 were performed by adapting the 

protocol recently developed for ThSiO4.
64

 Aqueous mixtures 

of hafnium at the oxidation state +IV and silicate were pre-

pared by dissolving HfCl4 and Na2SiO3·5H2O in 1.5 mol·L
-1

 

hydrochloric acid (Table S1). At this stage, a silicate excess of 

3 mol.% was considered to avoid the formation of hafnium 

dioxide or hydroxides during the synthesis. The pH was then 

adjusted to the final value with 8 mol·L
-1

 NaOH. 

All the prepared mixtures were introduced in a 23 mL Tef-

lon lined container. The container was placed in a Parr auto-
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clave in an oven to reach hydrothermal conditions during 1 to 

20 days with a given temperature and under autogenous pres-

sure. The final cooling to room temperature was done within 

one hour. Then, the precipitates were separated from the su-

pernatant by centrifugation at 14 000 rpm for 12 min, washed 

twice with deionized water and once with ethanol. They were 

finally dried overnight at 60°C in an oven. 

Characterization 

PXRD data were collected on the resulting powders using 

the Bruker D8 advance diffractometer equipped with a 

lynxeye detector and working with Cu Kα radiation 

(λ = 1.54184 Å) in a reflection geometry (parallel beam). 

Patterns were recorded between 5° and 100° (2θ) with steps of 

0.019° and a total counting time of 2.5 to 3 hours per sample. 

Pure silicon was used as a standard material to extract the 

instrumental function. The collected data were refined by the 

Rietveld method using the Fullprof_suite package.
78

 During 

the refinements, different profile and structure parameters 

were adjusted, such as the zero shift, unit-cell parameters, 

scale factor, and overall displacement factor. An anisotropic 

size and strain model was also used in order to consider the 

broadening effect. 

Raman spectra were recorded with a Horiba-Jobin Yvon 

Aramis device equipped with an edge filter and a Nd:YAG 

laser (532 nm) that delivered 60 mW at the sample surface. In 

order to avoid any laser-induced degradation of the compound, 

the power was turned down by the means of optical filters. 

The laser beam was then focused on the sample using an 

Olympus BX 41 microscope with an × 50LMP objective, 

resulting in a spot area of ∼1 μm
2
 and a power of 39 mW. For 

each spectrum, a dwell time of 1 to 30 s was used. Four scans 

were recorded for each analyzed area in order to minimize the 

measurement error. 

FTIR spectra were recorded with a Perkin-Elmer FTIR 

Spectrum 100 device in the 300–4000 cm
-1

 range. Powdered 

samples were deposited on the surface of an ATR crystal 

without any prior preparation. The spectra collected in such 

operating conditions exhibited a resolution lower than 4 cm
-1

. 

Four scans were performed to average the measurement error. 

SEM observations were directly conducted using a FEI 

Quanta 200 electronic microscope on small powder samples 

without prior preparation such as metallization. The electronic 

microscope was equipped either with an Everhart-Thornley 

Detector (ETD) or a Back-Scattered Electron Detector 

(BSED), under high vacuum conditions with a low accelerat-

ing voltage (8 kV). These conditions were chosen in order to 

create a beam deceleration effect that led to high resolution 

images. 

Thermogravimetric analyses were performed to determine 

the hydration content of the samples prepared at the end of the 

syntheses. All of these analyses were done between room 

temperature and 1000°C under air atmosphere thanks to a 

SETSYS evolution analyzer. These measurements were cou-

pled with mass spectroscopy analyses on the residual gaz. 

RESULTS AND DISCUSSION  

Effect of pH of the starting solution 

The effect of pH of the starting mixture on the nature of the 

resulting precipitate was followed between CHCl = 1.5 mol·L
-1

 

and pH = 8 considering a starting mixture with a hafnium 

concentration of 0.21 mol·L
-1

 and a Si:Hf molar ratio of 1.03. 

Hydrothermal treatments were performed at 250°C during 24 

hours. 

All the samples prepared were characterized by PXRD (Fig-

ure 1). From these data, HfSiO4 (zircon-type structure, space 

group I41/amd) was formed using a starting mixture whose 

acidity was below pH = 1.6. For higher pH values, the precipi-

tation of monoclinic HfO2 (space group P21/c) was obtained 

due to hafnium hydrolysis leading to the precipitation of the 

hafnium hydroxides then hafnium oxide by ageing. In these 

conditions, the unit cell parameters of HfSiO4 reached 

a = 6.596(2) Å and c = 5.958(3) Å (i.e. V = 259.2(1) Å
3
; val-

ues calculated by averaging the data obtained on the samples 

(1) to (4) – syntheses leading to HfSiO4 as single phase). The a 

and c lattice parameters were slightly higher and smaller, 

respectively, than the reference lattice parameters obtained by 

high temperature methods (a = 6.5725(7) Å and c = 5.9632(4) 

Å, i.e. V = 257.60(7) Å
3 28

). According to the recent results 

already reported for ThSiO4, these variations were attributed to 

the insertion of hydroxide groups in the HfSiO4 structure 
64, 79

, 

which may be correlated to the non-ideal crystallization in the 

soft hydrothermal conditions considered. 

Rietveld refinements performed on the PXRD data did not 

allow to observe any significant variation of the HfSiO4 unit-

cell parameters (Table 1) nor of the crystallite size (Figure S1 

and Table 1 and Table S2) according to the initial pH of the 

reactive media. 

Characterization by Raman and IR spectroscopies (Figure 2) 

revealed the presence of symmetric and antisymmetric stretch-

ing modes of SiO4 at 979 cm
-1

 and 1015 cm
-1

, respectively by 

Raman (868 cm
-1

 and 1054 cm
-1

, respectively by IR spectros-

copy). The symmetric bending modes were observed at 

451 cm
-1

. On the contrary, the antisymmetric mode was not 

observed due to its low intensity (both symmetric and 

antisymmetric modes were observed at 433 cm
-1

 and 627 cm
-1

, 

respectively by IR spectroscopy) (Table 2). 

It worth noting that the positions of the HfSiO4’s ν1 and ν3 

vibration bands observed by infrared spectroscopy are signifi-

cantly different to the ones reported in the literature (Table 2). 

However, the values obtained here are in great agreement with 

the ones reported in the literature for the other zircon type 

silicate phases (Table S3) and especially for ZrSiO4 (ν1 = 

866 cm
-1

 and ν3 = 1049 cm
-1

).
80

 Moreover, the position of the 

ν3 vibration bands at around 1050 cm
-1

 should be taken with 

care because this position correspond to the ν4 mode of SiO2. 

Additionally, the presence of small amounts of hydroxide 

groups or water was suggested from the observation of broad 

bands around 3400 cm
-1

 and 1630 cm
-1

 in the IR spectra, 

which was consistent with the hypothesis proposed regarding 

the insertion of hydroxide groups in the HfSiO4 lattice already 

suggested from PXRD analyses. 
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Figure 1. PXRD patterns recorded for samples prepared under hydrothermal conditions (24 hours, T = 250°C) with hafnium and 

silicate concentrations of 0.21 mol·L
-1

 and for various initial pH values: CHCl = 1.5 mol·L
-1

 (1), CHCl = 1.0 mol·L
-1

 (2), pH = 0.5 (3), 

pH = 1.0 (4), pH = 1.6 (5), pH = 2.0 (6), pH = 3.0 (7) and pH = 5.0 (8). Bragg positions of the characteristic peaks of hafnon were 

extracted from 
28

. The presence of HfO2 is pointed out by empty circles in the PXRD patterns.

Table 1. Lattice parameters and crystallite size determined by Rietveld refinement for HfSiO4 samples. 

Label 
Unit cell parameters 

Crystallite size (nm) 
a (Å) c (Å) V (Å3) 

(1) 6.5946(1) 5.9605(1) 259.22(1) 20 ± 11 

(2) 6.5935(1) 5.9594(1) 259.08(1) 36 ± 13 

(3) 6.5956(1) 5.9561(1) 259.11(1) 24 ± 7 

(4) 6.5988(1) 5.9544(1) 259.27(1) 22 ± 8 

(5) 6.5869(1) 5.9575(1) 258.47(1) 48 ± 4 

(6) 6.5945(2) 5.9583(2) 259.11(1) 27 ± 2 

(7) 6.5912(4) 5.9555(4) 258.73(3) 15 ± 1 

(8) 6.594(2) 5.947(3) 258.6(2) ND 

(9) 6.5939(1) 5.9542(1) 258.89(1) 381 ± 237 

(10) 6.5913(1) 5.9602(1) 258.94(1) 88 ± 14 

(11) 6.5995(1) 5.9575(1) 259.47(1) 17 ± 8 

(12) 6.6447(3) 5.9801(9) 264.03(4) 16 ± 14 

(13) 6.6217(1) 5.9511(2) 260.94(1) 16 ± 9 

(14) 6.5961(1) 5.9611(1) 259.36(1) 31 ± 6 

(15) 6.5935(1) 5.9606(1) 259.13(1) 80 ± 18 

(3) after TGA 6.5714(8) 5.9685(11) 257.74(7) ND 

ND : Not Determined     
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Figure 2. Raman (a) and IR (b) spectra recorded for HfSiO4 

samples prepared under hydrothermal conditions during 24 hours 

at T = 250°C starting from hafnium and silicate concentrations of 

0.21 mol·L-1 and with pH = 0.5 (3). 
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Figure 3. PXRD patterns recorded for samples prepared under 

hydrothermal conditions (24 hours, T = 250°C) with pH = 0.5 and 

various hafnium and silicate concentrations (with a molar ratio of 

Si:Hf = 1.03): CHf = 8.4 × 10-3 mol·L-1 (9), CHf =4.2 × 10-2 

mol·L-1 (10), CHf = 0.21 mol·L-1 (11) and CHf = 1.0 mol·L-1 (12). 

The characteristic Bragg positions of hafnon were extracted from 

28 and the XRD lines associated to HfO2 are pointed out by empty 

circles in the PXRD patterns. 
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Figure 4. Variation of the HfSiO4 crystallite size determined by 

Rietveld refinement as a function of the starting hafnium and 

silicate concentrations, obtained for samples under hydrothermal 

conditions (250°C, 24 hours) and with pH = 0.5. 

 

 

 

Table 2. Assignment of the vibration bands (expressed in cm
-1

) associated to silicate groups observed in the Raman and IR spectra 

of HfSiO4. 

 Raman Spectroscopy Infrared spectroscopy 

 ν2 ν4 ν1 ν3 ν2 ν4 ν1 ν3 

HfSiO4 
81 448 --- 984 1018 --- --- --- --- 

HfSiO4 
14

  450.3 639.5 985.7 1021.5 --- --- --- --- 

HfSiO4 
31 --- --- --- --- 430 610 890 1020 

HfSiO4 
13 --- --- --- --- 440 615 915 1020 

HfSiO4 (this study) 451 --- 979 1015 433 627 868 1054 
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Effect of the starting hafnium and silicate concentrations 

Since the concentration of the reactants were crucial parame-

ter for the synthesis of ThSiO4 and CeSiO4,
49, 64, 65

 it was sus-

pected that the concentration of the hafnium and silicate pre-

sent in the starting mixture could affect the saturation indexes 

in solution, and thus the formation of HfSiO4. In this frame, 

several syntheses were performed under hydrothermal condi-

tions with different concentrations. The impact of the concen-

trations of both reactants was followed between 

8.4 × 10
-3

 mol·L
-1

 and 1.0 mol·L
-1

, keeping constant the Si:Hf 

molar ratio (1.03), the initial pH value (pH = 0.5) and the 

conditions of the hydrothermal treatment (T =250°C, t = 

24 hours). As a result, pure HfSiO4 was obtained for CHf 

≥ 0.21 mol·L
-1

 whereas the formation of HfO2 was observed as 

a by-product for lower concentrations (Figure 3). In the less 

concentrated media, the silicate concentrations in solution 

were not sufficient to fully counterbalance the hydrolysis of 

hafnium. Therefore, the formation of hafnium silicate was 

favored for CHf ≥ 0.21 mol·L
-1

. 

Moreover, the considered concentration significantly affect-

ed the crystallization state of HfSiO4. Specifically, decreasing 

the hafnium and silicate ions concentration in the reactive 

media induced the increase of the crystallite size of HfSiO4 

(Figure 4 and Table 1). This behavior is similar to what was 

observed previously for ThSiO4.
64

 It may be attributed to the 

faster kinetics of nucleation in the more concentrated reactive 

media, leading to the formation of numerous nucleation cen-

ters, whose growth may be hindered by the limited amounts of 

reactants in the synthesis medium. Additionally, the Rietveld 

refinements allowed to observe the increase of the HfSiO4’s 

lattice parameters and volume cell and the decrease of the 

crystallite size (Table 1 and Figure S3). Furthermore, the 

decrease of the crystallite size could be observed in each crys-

talline planes (Table S2), especially the low size value ob-

tained in the (hkl) planes with l ≠ 0 at high concentration could 

explain the anisotropic effect which could be observed with 

the widening of the corresponding peaks. 

Impact of the hydrothermal treatment (temperature and 
duration) 

In order to identify the impact of the temperature of the hy-

drothermal treatment on the formation of HfSiO4, several 

experiments were performed at 150°C, 200°C and 250°C, 

keeping constant the concentration of the starting hafnium 

(0.21 mol·L
-1

), the molar Si:Hf ratio (1.03), the starting pH 

value (pH = 0.5) and the heating time (t = 24 hours). From 

PXRD analyses, HfSiO4 was formed whatever the temperature 

of synthesis (Figure 5), which was also confirmed by IR spec-

troscopy (Figure S3). Additional experiments performed in 

the same conditions at 100°C did not lead to the formation of 

HfSiO4 after 24 hours holding time. 

However, working at the lower temperatures led to the for-

mation of HfSiO4 compounds exhibiting a very strong aniso-

tropic effect (Figure 5). Indeed, the (hkl) reflections involving 

the c axis were strongly broadened and attenuated whereas the 

(hk0) reflections were finer and more intense when the tem-

perature of the hydrothermal treatment decreased, which un-

derlined the formation of platelet crystallites. Considering that 

the decreasing temperature was associated to slower kinetics 

of reaction, this phenomenon was assigned to the growth pro-

cess of HfSiO4 crystallites, involving first the formation of 

bidimensional crystallites and then crystal growth to form 

three-dimensional particles. Finally, varying the starting pH 

value at 150°C or 200°C confirmed that HfSiO4 was always 

obtained for pH < 1.6 (Figure S4 and Figure S5), as already 

discussed for the experiments at 250°C. 

Moreover, the preferential growth observed in this study is 

in agreement with the results reported recently by Calas et al. 

for the alteration of Hf-bearing borosilicate glasses at 90°C 

and pH = 1 in aqueous solution, showing the (200) reflection 

of hafnon as the only observable diffraction peak in their con-

ditions.
77

 The reflections (220), (400) and (420) are invisible 

due to their low intensity compared to the (200), while the 

(hkl) peaks with l ≠ 0 are invisible due to an anisotropic effect. 

Increasing the temperature of the hydrothermal treatment led 

to the decrease of the unit-cell parameters of HfSiO4 (Figure 

S8 and Table 1). No significant variation of the average crys-

tallite size was observed (Figure S8). However, Rietveld 

refinements performed on the PXRD patterns allowed to con-

firm the qualitative results suspected on the anisotropy which 

could be explained by the crystallite growth along the (hkl) 

planes with l ≠ 0 (Figure 6 and Table S2) when the tempera-

ture of the hydrothermal treatment increased. 
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Figure 5. PXRD pattern and corresponding Miller index obtained 

for samples prepared under hydrothermal conditions with starting 

silicon and hafnium concentrations of 0.21 mol·L-1 and pH = 0.5, 

after hydrothermal treatment performed for 24 hours at T = 150°C 

(12), at T = 200°C (13) and at T = 250°C (3). The characteristic 

XRD lines of HfSiO4 were extracted from 28. 
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under hydrothermal conditions (t = 24 hours, pH = 0.5 and 

CHf = 0.21 mol·L-1). 

Thermogravimetric analyses, coupled with mass spectrosco-

py, performed between room temperature and 1000°C under 

air atmosphere, with the samples dried overnight at 60°C, 

allowed to observe the loss of water in two steps. The first one 

around 100°C corresponded to the elimination of free water 

and the second one between 200°C and 850°C was probably 

associated to the elimination of water inserted in HfSiO4 struc-

ture (as H2O or HO
-
 group). 

The characterizations performed on the TGA analyses resi-

dues allowed to confirm that the final phase obtained corre-

sponded to HfSiO4 as single crystalline phase, whatever the 

temperature of hydrothermal treatment considered. It worth 

noting that the HfSiO4 lattice parameters evolved during the 

thermogravimetric analysis to reach parameters close to refer-

ence values: a = 6.5714(8) Å, c = 5.9685(11) Å and 

V = 257.74(7) Å
3
 (against a = 6.5725(7) Å, c = 5.9632(4) Å, 

i.e. V = 257.60(7) Å
3 28

) (Table 1). Raman and infrared spec-

troscopy characterizations did not lead to significant differ-

ences compared to the spectra measured before the 

thermogravimetric analyses.  

In order to evidence the impact of the duration of the hydro-

thermal treatment on the formation of HfSiO4, several experi-

ments were also performed at 250°C, for pH = 0.5 and 

CHf = 0.21 mol·L
-1

 with holding times spread from 1 day to 20 

days. From PXRD analysis, it was clear that HfSiO4 was al-

ways single phase and was not degraded by extending the 

holding time (Figure 7). 

Moreover, extending the duration of the hydrothermal treat-

ment did not lead to significant change of the HfSiO4 unit cell 

parameters determined by Rietveld refinement (Table 1). The 

HfSiO4 lattice parameters reached a = 6.5937(1) Å, 

c = 5.9605(1) Å and V = 259.14(1) Å
3
 for 20 days of hydro-

thermal treatment (Figure 8). As already described, the lattice 

parameters obtained were slightly different to those obtained 

by high temperature methods (a = 6.5725(7) Å, 

c = 5.9632(4) Å and V = 257.60(7) Å
3 28

), which might corre-

spond to the insertion of hydroxide groups in the HfSiO4 struc-

ture.
64, 79

 The extension of the heating time tended to reduce 

the anisotropic effect evidenced by PXRD. Therefore, initial 

HfSiO4 platelets crystallites may evolve to form 3D particles 

through crystal growth process. 

The determination of the size of the HfSiO4 crystallites per-

formed by Rietveld refinement indicated that increasing the 

duration of the hydrothermal treatment promoted their growth 

(Figure 9). 

The direct comparison by SEM of the samples prepared at 

250°C clearly confirmed the growth of HfSiO4 grains from ~ 

60 nm after 1 day to ~ 200 nm after 7 days and ~ 450 nm after 

20 days (Figure 10). It also exhibited the evolution of the 

grain morphology with the clear identification of a square 

based bipyramid morphology characteristic of zircon-type 

materials, for the hydrothermal treatments extended for 7 days 

and more.
82

 This evolution of morphology may be correlated 

to the crystalline growth of the HfSiO4 grains. Moreover, 

HfSiO4 particles also appeared to be very flattened and may be 

correlated to the anisotropic effect previously observed. How-

ever, it is worth noting that a size discrepancy was observed 

between the crystallite size determined by XRD method (Fig-

ure 9) and grain size measured thanks to SEM. Therefore, it 

can be concluded that these grains observed are polycrystal-

line, This behavior was already observed for other silicate 

based compounds including ThSiO4.
64

 Additionally, SEM-

EDX characterization allowed to confirm the sample composi-

tion, without any metallic insertion in HfSiO4 (Figure S13).  
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Figure 7. PXRD patterns recorded for samples prepared under 

hydrothermal conditions (T = 250°C) starting with pH = 0.5 and 

CHf = 0.21 mol·L-1 and for various heating times: 1 day (3), 7 days 

(14) and 20 days (15). The XRD lines characteristic of HfSiO4 

were extracted from 28. 
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Figure 8. PXRD diagram of HfSiO4 prepared under hydrothermal 

conditions (T = 250°C, t = 20 days) starting with pH = 0.5 and 

CHf = 0.21 mol·L-1, and associated calculated and difference 

profile obtained by Rietveld refinement. 
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Figure 9. HfSiO4 crystallite size determined by Rietveld re-

finement as a function of the duration of the hydrothermal 

treatment for samples prepared under hydrothermal conditions 

(T = 250°C, pH = 0.5 and CHf = 0.21 mol·L
-1

). 
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(a) 

 

(b) 

 

(c) 

 

Figure 10. SEM micrographs recorded for HfSiO4 samples pre-

pared under hydrothermal conditions at T = 250°C, starting with 

pH = 0.5 and CHf = 0.21 mol·L-1, and for heating times of 1 day 

(3) (a), 7 days (14) (b) and 20 days (15) (c). 

 

CONCLUSION  

The multiparametric study of HfSiO4 synthesis allowed de-

termining an appropriate set of hydrothermal conditions to 

prepare single phase samples, which are listed below:  

- acidic reactive media (typically with pH ≤ 1.6, fixed to 

pH = 0.5 in this study); 

- hafnium and silicate concentrations over 0.21 mol·L
-1

 

with a molar Si/Hf ratio of 1.03 in order to avoid the formation 

of hafnium dioxide in the final mixtures; 

- hydrothermal treatment for 24 hours at T ≥ 150°C. In-

creasing the temperature and the duration of the hydrothermal 

treatment promoted the formation and then the growth of the 

square based bipyramid feature. 

The formation of HfO2 in the place of HfSiO4 at high pH and 

low reactant concentration was easily explained by the compe-

tition between the formation of hafnium hydroxide and hafni-

um silicate. This behavior and more generally the conditions 

associated to the synthesis of HfSiO4 are very similar to those 

of thorite (ThSiO4) in ligand free reactive media. 

Moreover, it worth noting that such kind of synthesis of 

HfSiO4 in soft hydrothermal conditions or hydrothermally 

assisted synthesis could be considered as a potential option to 

increase the solubility of tetravalent actinides in zircon-type 

materials or to prepare hafnon based materials doped by 

divalent or trivalent elements. 
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The conditions allowing the preparation of single phase HfSiO4 has been determined through a multiparametric study by 

varying the concentrations of the reactants, the pH of the reactive media or the temperature and duration of the hydrothermal 

treatment. HfSiO4 was prepared through relatively soft conditions (pH ≤ 1.6, CSi ≈ CHf ≥
 
0.21 mol·L

-1
, T ≥ 150°C for t ≥ 24 

hours).  

 


