
HAL Id: hal-03005905
https://hal.science/hal-03005905

Submitted on 14 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Value Functions and Optimality Conditions for
Nonconvex Variational Problems with an Infinite

Horizon in Banach Spaces
Hélène Frankowska, Nobusumi Sagara

To cite this version:
Hélène Frankowska, Nobusumi Sagara. Value Functions and Optimality Conditions for Nonconvex
Variational Problems with an Infinite Horizon in Banach Spaces. Mathematics of Operations Research,
In press. �hal-03005905�

https://hal.science/hal-03005905
https://hal.archives-ouvertes.fr


Value Functions and Optimality Conditions for

Nonconvex Variational Problems with an Infinite

Horizon in Banach Spaces∗

Hélène Frankowska†
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Abstract

We investigate the value function of an infinite horizon variational
problem in the infinite-dimensional setting. Firstly, we provide an
upper estimate of its Dini–Hadamard subdifferential in terms of the
Clarke subdifferential of the Lipschitz continuous integrand and the
Clarke normal cone to the graph of the set-valued mapping describing
dynamics. Secondly, we derive a necessary condition for optimality in
the form of an adjoint inclusion that grasps a connection between the
Euler–Lagrange condition and the maximum principle.

Key Words: Infinite horizon, Dini–Hadamard subdifferential, Gelfand
integral, differentiability of the value function, Euler–Lagrange condi-
tion, maximum principle, spatial Ramsey growth model.

MSC2010 Subject Classification: Primary: 34A60, 49J50, 49J52;
Secondary: 49J53, 49K15, 90C39

OR/MS Subject Classification: Dynamic programming/optimal
control: Applications; Deterministic; Programming: Nondifferentiable

1 Introduction

Optimal control and dynamic programming are instrumental cornerstones
of modern economic growth theory originated in Ramsey [46]. In the gen-
eral reduced model of capital accumulation, necessary (and sufficient) con-
ditions for optimality are employed under the convexity assumptions on
utility functions and technologies for the investigation of the existence of
competitive equilibria and support prices; see Benveniste and Scheinkman
[8], Magill [44], Takekuma [52, 53]. Such well-behaving properties are promi-
nent in convex problems of optimal control explored in the classical work
by Rockafeller [48] with the full power of duality theory in convex analysis.
In particular, one of the advantages in convex economic models lies in the
crucial observation that the differentiability of the value function is guar-
anteed under the smoothness assumptions on the data; see Benveniste and
Scheinkman [7, 8], Bonnisseau and Le Van [9], Rincón-Zapatero and Santos
[47], Takekuma [53].

On the contrary, the absence of convexity and smoothness are two major
sources of complex economic dynamics in continuous time as illustrated in
Askenazy and Le Van [3], Davidson and Harris [25], Hartl and Kort [37],
Skiba [51], Wagener [55]. More to the point, the difficulty with the lack of
convexity assumptions results in the failure of differentiability of the value
function even if the underlying data are smooth. Without convexity, one can
expect at best the Lipschitz continuity of the value function even for smooth
problems. This causes problems with expressing optimality conditions in
many nonconvex economic growth models when one attempts to apply the
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Hamilton–Jacobi–Bellman (HJB) equation. Recall that the value function
is its unique solution whenever it is smooth.

The well-known failure of differentiability of the value function has stim-
ulated two alternative approaches in optimal control theory. One is the ap-
plication of a “generalized” subdifferential calculus along the lines of Clarke
[20], which eventually leads to the formulation of a relation between the max-
imum principle and dynamic programming whenever the value function is
locally Lipschitz continuous; see Clarke and Vinter [21, 22]. The other inde-
pendent development is the concept of “viscosity solutions” to the HJB equa-
tion initiated by Lions [43] (see also Crandall, Evans and Lions [23], Crandall
and Lions [24]), which makes use of the notion of Fréchet super- and subd-
ifferentials to claim that the value function is the unique viscosity solution
of the HJB equation. For the connections between the maximum principle
and the superdifferentials of the value function, see Frankowska [31, 34].

With this background in mind, we investigate the value function of an
infinite horizon variational problem in the setting of an infinite-dimensional
generalized control system. Our primary concern here is to go beyond con-
vexity, smoothness, and finite dimensionality aiming the possible applica-
tions to dynamic optimization in economic theory. Since the optimal eco-
nomic growth models are identified with a specific form of the general equi-
librium model with single representable consumer and firm, we can deal with
a rich class of commodity spaces for capital stock, which appears as a Sobolev
space. In particular, spatial Ramsey growth models involve a location of each
agent along the lines of Hotelling [38], in which infinite-dimensional commod-
ity spaces naturally arise; see Boucekkine et al. [10, 11], Brito [12], Brock et
al. [13]. Applying our general result, we obtain another necessary condition
for optimality in spatial Ramsey growth models.

The purpose of this paper is twofold. Firstly, we provide an upper es-
timate of the Dini–Hadamard subdifferential of the value function in terms
of the Clarke subdifferential of the Lipschitz continuous integrand and the
Clarke normal cone to the set-valued mapping describing dynamics. As a
result, we obtain the strict differentiability of the value function under the
Fréchet differentiability of the integrand, which removes completely the con-
vexity assumptions of the earlier works by Benveniste and Scheinkman [7,
8], Bonnisseau and Le Van [9], Rincón-Zapatero and Santos [47], Takekuma
[53]. For the (sub)differentiability of the value function in the context of fi-
nite dimensional control systems with a finite horizon, see the lecture notes
Frankowska [34].

Secondly, under an interiority assumption we derive a necessary condi-
tion for optimality in the form of an adjoint inclusion that grasps a connec-
tion between the Euler–Lagrange condition and the maximum principle. Our
interiority assumption is weaker than those in Benveniste and Scheinkman
[7, 8], Bonnisseau and Le Van [9], Takekuma [52, 53]. On the other hand,
when dynamics are described by a control system, such interiority assump-
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tion may be omitted. To deal with the adjoint variable in dual spaces, we
introduce the Gelfand integrals of the Dini–Hadamard and Clarke subdiffer-
ential mappings, which is a new feature that does not arise in the context
of finite-dimensional control systems.

For the finite-dimensional control systems, necessary conditions with or
without convexity assumptions using limiting subdifferentials were obtained
in Ioffe [40], Vinter and Zheng [54] in the finite horizon setting. The ones in
the infinite horizon setting using Dini–Hadamard, Clarke, and limiting subd-
ifferentials were derived in Aubin and Clarke [4], Cannarsa and Frankowska
[16], Sagara [49], Ye [56]. For control systems in Hilbert spaces, a neces-
sary condition under the convexity assumptions was obtained in Barbu [6]
in the infinite horizon setting. For Banach spaces and semilinear control
systems, the necessary and sufficient conditions were derived in Cannarsa
and Frankowska [15] in the finite horizon setting when the set of velocities
is convex.

The organization of the paper is as follows. Section 2 collects prelimi-
nary results on subdifferential calculus on Banach spaces. In Section 3 we
formulate the nonconvex variational problem under investigation with the
standing hypotheses and demonstrate the Lipschitz continuity and subdif-
ferentiability of the value function. We derive in Section 4 necessary condi-
tions for the variational and optimal control problems. Section 5 applies our
main result to spatial Ramsey growth models. Appendices I and II discuss
Gelfand integral of multifunctions and the Gelfand integrability of the Dini–
Hadamard and Clarke subdifferential mappings, and the proofs of auxiliary
results and lemmas needed to obtain the main results.

2 Preliminaries

Let (E, ∥ · ∥) be a real Banach space with the dual system ⟨E∗, E⟩, where
E∗ is the norm dual of E. A real-valued function φ : E → R is said to be
Gateaux differentiable at x̄ ∈ E if there exists an element ∇φ(x̄) ∈ E∗ such
that

lim
θ→0

φ(x̄+ θv)− φ(x̄)

θ
= ⟨∇φ(x̄), v⟩ (2.1)

for every v ∈ E; ∇φ(x̄) is called the Gateaux derivative of φ at x̄. If the
convergence in (2.1) is uniform in v ∈ C for every bounded subset C of
E, then φ is said to be Fréchet differentiable at x̄ and ∇φ(x̄) is called the
Fréchet derivative of φ at x̄. A function φ is said to be strictly differentiable
at x̄ if there exists ∇φ(x̄) ∈ E∗ such that

lim
x→x̄
θ→0

φ(x+ θv)− φ(x)

θ
= ⟨∇φ(x̄), v⟩ (2.2)

and the convergence in (2.2) is uniform in v ∈ C for every compact subset
C of E. Then ∇φ(x̄) is called the strict derivative of φ at x̄. If φ is strictly
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differentiable at x̄, then φ is Lipschitz near x̄; see Clarke [20, Proposition
2.2.1]. A function φ is said to be continuously differentiable at x̄ if φ is
Gateaux differentiable at every x in a neighborhood O of x̄ and the mapping
x 7→ ∇φ(x) is continuous from O to E∗; φ is called a C1-function on E if
φ is continuously differentiable at any point in E. If φ is continuously
differentiable at x̄, then φ is strictly differentiable at x̄; see Clarke [20,
Corollary, p. 32]. A norm ∥ · ∥ on a Banach space E is said to be Gateaux
(resp. Fréchet) differentiable if ∥ · ∥ is Gateaux (resp. Fréchet) differentiable
on the open set E \ {0}.

The support function s(·, C) : E∗ → R ∪ {+∞} of a nonempty subset C
of E is given by s(x∗, C) = supx∈C⟨x∗, x⟩. The polar C0 of C is the set C0 =
{x∗ ∈ E∗ | s(x∗, C) ≤ 0}. The support function s : (·,K) : E → R ∪ {+∞}
of a nonempty subset K of E∗ is defined by s(x,K) = supx∗∈K⟨x∗, x⟩. The
polar K0 of K is the set K0 = {x ∈ E | s(x,K) ≤ 0}.

Let φ : E → R ∪ {+∞} be an extended real-valued function on E. The
effective domain of φ is the set of points where φ is finite and is denoted by
domφ := {x ∈ E | φ(x) < +∞}. If φ is Lipschitz near x̄ ∈ domφ, then its
Clarke directional derivative at x̄ in the direction v ∈ E is defined by

φ◦(x̄; v) := lim sup
x→x̄
θ↓0

φ(x+ θv)− φ(x)

θ

and the Clarke subdifferential of φ at x̄ is defined by

∂◦φ(x̄) := {x∗ ∈ E∗ | ⟨x∗, v⟩ ≤ φ◦(x̄; v) ∀v ∈ E}.

Since the function v 7→ φ◦(x̄; v) is positively homogeneous and subadditive,
the set ∂◦φ(x̄) is nonempty by the Hahn–Banach theorem, weakly∗ compact,
and convex in E∗. Furthermore, the Clarke directional derivative is the
support function of the Clarke subdifferential

φ◦(x̄; v) = s(v, ∂◦φ(x̄))

for every v ∈ E; see Clarke [20, Propositions 2.1.1 and 2.1.2]. Recall that the
function φ that is Lipschitz near x̄ is said to be regular at x̄ if the classical
directional derivative

φ′(x̄; v) := lim
θ↓0

φ(x̄+ θv)− φ(x̄)

θ

exists and φ′(x̄; v) = φ◦(x̄; v) for every v ∈ E.
Let dC : E → R be the distance function from a nonempty subset C of E

defined by dC(x) := infξ∈C ∥x− ξ∥. Then dC is nonexpansive (i.e., Lipschitz
of rank one) on E. Let x̄ be a point in C. A vector v ∈ E is called a tangent
to C at x̄ if d◦C(x̄; v) = 0. The set of all tangents to C at x̄ is called the
Clarke tangent cone to C at x̄ and is denoted by

TC(x̄) := {v ∈ E | d◦C(x̄; v) = 0}.
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Then TC(x̄) is a closed convex cone because v 7→ d◦C(x̄; v) is nonnegative,
positively homogeneous, and continuous. An intrinsic characterization of
TC(x̄) that is independent of the use of a distance function is as follows:
v ∈ TC(x̄) if and only if for every sequence {xn}n∈N in C with xn → x̄
and every sequence {θn}n∈N of positive real numbers with θn ↓ 0, there is a
sequence {vn}n∈N in E with vn → v such that xn+θnvn ∈ C for each n ∈ N;
see Clarke [20, Theorem 2.4.5]. Let B be the open unit ball in E. Define
the contingent cone KC(x̄) of tangents to C at x̄ by

KC(x̄) := {v ∈ E | ∀ε > 0 ∃θ ∈ (0, ε)∃w ∈ v + εB : x̄+ θw ∈ C} .

Then v ∈ KC(x̄) if and only if there exist a sequence {θn}n∈N of positive
real numbers with θn ↓ 0 and a sequence {vn}n∈N in E with vn → v such
that x̄ + θnvn ∈ C for each n ∈ N. It is evident that TC(x̄) ⊂ KC(x̄), but
KC(x̄) is not necessarily convex. The set C is said to be regular at x̄ if
TC(x̄) = KC(x̄). The polar of TC(x̄) is called the Clarke normal cone to C
at x̄, which is given by

NC(x̄) = {x∗ ∈ E∗ | ⟨x∗, v⟩ ≤ 0 ∀v ∈ TC(x̄)}.

The Clarke normal cone is characterized by NC(x̄) = w∗-cl{
∪

λ≥0 λ∂
◦dC(x̄)}

(see Clarke [20, Proposition 2.4.2]), where the right-hand side of the above
equality means the weak∗ closure of the set. It follows from the bipolar
theorem (see Aubin and Frankowska [5, Theorem 2.4.3]) that TC(x̄) is the
polar of NC(x̄), i.e., TC(x̄) = {v ∈ E | ⟨x∗, v⟩ ≤ 0 ∀x∗ ∈ NC(x̄)}. Denote by
epiφ = {(x, r) ∈ E ×R | φ(x) ≤ r} the epigraph of φ. If φ is Lipschitz near
x̄ ∈ domφ, then Tepiφ(x̄, φ(x̄)) = epiφ◦(x̄; ·) (see Aubin and Frankowska [5,
Theorem 2.4.9]), and hence, φ◦(x̄; v) = inf{r ∈ R | (v, r) ∈ Tepiφ(x̄, φ(x̄))}.
Therefore, if φ is Lipschitz near x̄, then

∂◦φ(x̄) = {x∗ ∈ E∗ | (x∗,−1) ∈ Nepiφ(x̄, φ(x̄))}.

The lower directional derivative (or contingent, or Dini–Hadamard di-
rectional subderivative) of φ : E → R∪{+∞} at x̄ ∈ domφ in the direction
v ∈ E is defined by

φ−(x̄; v) := lim inf
u→v
θ↓0

φ(x̄+ θu)− φ(x̄)

θ
∈ R ∪ {±∞}

and the upper directional derivative (or Dini–Hadamard directional super-
derivative) of φ at x̄ in the direction v ∈ E is defined by

φ+(x̄; v) := lim sup
u→v
θ↓0

φ(x̄+ θu)− φ(x̄)

θ
∈ R ∪ {±∞}.

The Dini–Hadamard subdifferential of φ at x̄ is defined by

∂−φ(x̄) := {x∗ ∈ E∗ | ⟨x∗, v⟩ ≤ φ−(x̄; v) ∀v ∈ E}
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and the Dini–Hadamard superdifferential of φ at x̄ is defined by

∂+φ(x̄) := {x∗ ∈ E∗ | ⟨x∗, v⟩ ≥ φ+(x̄; v) ∀v ∈ E}.

Because of the plus-minus symmetry with φ−(x; v) = −(−φ)+(x; v) and
∂−φ(x̄) = −∂+(−φ)(x̄), it is enough to investigate lower directional deriva-
tives and Dini–Hadamard subdifferentials in what follows. Since

Kepiφ(x̄, φ(x̄)) = epiφ−(x̄; ·)

(see Aubin and Frankowska [5, Propositions 6.1.3 and 6.1.4]),

φ−(x̄; v) = inf{r ∈ R | (v, r) ∈ Kepiφ(x̄, φ(x̄))} ∈ R ∪ {±∞}

with the convention that inf ∅ = +∞. Therefore, if x̄ ∈ domφ, then

∂−φ(x̄) = {x∗ ∈ E∗ | (x∗,−1) ∈ Kepiφ(x̄, φ(x̄))
0}.

Unlike Clarke directional derivatives, the lower directional derivative
mapping v 7→ φ−(x̄; v) fails to be convex although it is positively homo-
geneous. Thus, except for a smooth or a convex function φ, it is rather
typical that ∂−φ(x̄) is empty at some points for a lower semicontinuous or
even a locally Lipschitz function. Note that ∂−φ(x̄) is weakly∗ closed and
convex. If φ is locally Lipschitz, then φ−(x̄, v) ≤ φ◦(x̄; v) for every v ∈ E,
and hence, ∂−φ(x̄) ⊂ ∂◦φ(x̄). In particular, if φ is also regular at x̄, then
φ−(x̄, v) = φ◦(x̄; v) for every v ∈ E and ∂−φ(x̄) = ∂◦φ(x̄). Note also that
if φ has the strict derivative ∇φ(x̄) at x̄ ∈ E, then ∂−φ(x̄) = {∇φ(x̄)}.

A generic existence of Dini–Hadamard subdifferentials is assured in the
following result.

Theorem 2.1 (Ioffe [39, 41]). Let E be a Banach space admitting an equiv-
alent Gateaux differentiable norm and φ : E → R ∪ {+∞} be a lower semi-
continuous function. Then the set {x ∈ E | ∂−φ(x) ̸= ∅} is dense in domφ.

We recall that any separable Banach space has an equivalent Gateaux dif-
ferentiable norm; see Fabian et al. [28, Theorem 8.2].

The next extends the well-known representation of the normal cone to
the set determined by the inequality constraint.

Proposition 2.1. Let φi : E → R, i = 1, 2, . . . ,m, be continuous real-valued
functions and

C := {x ∈ E | φi(x) ≤ 0, i = 1, 2, . . . ,m} .

Define the active constraint indices at x̄ ∈ C by I(x̄) := {i ∈ {1, 2, . . . ,m} |
φi(x̄) = 0}. If φi is strictly differentiable at x̄ for each i ∈ I(x̄) and the
constraint qualification 0 ̸∈ co {∇φi(x̄) | i ∈ I(x̄)} is satisfied, then

NC(x̄) =

 ∑
i∈I(x̄)

λi∇φi(x̄) ∈ E∗ | λi ≥ 0 ∀i ∈ I(x̄)

 .
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The proof is provided in Subsection A.1 because we could not find this result
in the literature for arbitrary Banach spaces.

3 Value Functions for an Infinite Horizon Problem

3.1 Nonconvex Variational Problems

Denote by R+ = [0,∞) the unbounded interval of the real line with the
Lebesgue measure and the Lebesgue σ-algebra L. A function x : R+ → E
is said to be simple if there exist x1, x2, . . . , xn ∈ E and I1, I2, . . . , In ∈ L
such that x(·) =

∑n
i=1 xiχIi , where χIi(t) = 1 if t ∈ Ii and χIi(t) = 0

otherwise. A function x(·) is said to be strongly measurable if there exists a
sequence of simple functions {xn(·)}n∈N from R+ to E such that ∥xn(t) −
x(t)∥ → 0 a.e. t ∈ R+. A strongly measurable function x(·) is locally Bochner
integrable if it is Bochner integrable on every compact subset I of R+, that
is,
∫
I ∥x(t)∥dt < ∞, where the Bochner integral of x(·) over I is defined by∫

I x(t)dt := limn

∫
I xn(t)dt. Let L

1
loc(R+, E) be the space of (the equivalence

classes of) locally Bochner integrable functions from R+ to E.
A function x(·) : R+ → E is said to be strongly differentiable at t > 0 if

there exists v ∈ E such that

lim
h→0

x(t+ h)− x(t)

h
= v.

The vector v is denoted by ẋ(t) and called the strong derivative of x at t.
Denote by W 1,1

loc (R+, E) the Sobolev space, which consists of locally Bochner
integrable functions x : R+ → E whose strong derivative ẋ(t) exists a.e.
t ∈ R+ \ {0} with ẋ(·) ∈ L1

loc(R+, E) and x(t) =
∫ t
0 ẋ(s)ds + x(0) for every

t ∈ R+. For each n ∈ N, define the seminorm µn on W 1,1
loc (R+, E) by

µn(x(·)) =
∫ n
0 (∥x(t)∥ + ∥ẋ(t)∥)dt. Since {µn}n∈N is a countable separating

family of seminorms, W 1,1
loc (R+, E) is a Fréchet space under the compatible

metric d given by

d(x(·), y(·)) = max
n∈N

µn(x(·)− y(·))
2n(1 + µn(x(·)− y(·)))

, x(·), y(·) ∈ W 1,1
loc (R+, E).

An element in W 1,1
loc (R+, E) is called an arc. When R+ is replaced by a

compact interval I of R+, the above definition simply leads to that of the
Sobolev space W 1,1(I, E) normed by ∥x(·)∥1,1 =

∫
I(∥x(t)∥+ ∥ẋ(t)∥)dt.

Let L : R+ × E × E → R ∪ {+∞} be an integrand. Given an arc
x(·) ∈ W 1,1

loc (R+, E), the improper integral is defined by∫ ∞

t
L(s, x(s), ẋ(s))ds = lim

T→∞

∫ T

t
L(s, x(s), ẋ(s))ds

for every t ∈ R+ provided that the above limit does exist. Let Γ : R+ ×
E ⇝ E be a multifunction. The variational problem under investigation is
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to minimize the improper integral functional over the feasibility constraint
governed by the differential inclusion:

inf
x(·)∈W 1,1

loc ([t,∞),E)

∫ ∞

t
L(s, x(s), ẋ(s))ds

s.t. ẋ(s) ∈ Γ(s, x(s)) a.e. s ∈ [t,∞), x(t) = ξ.

(Pt)

An arc satisfying the above differential inclusion is called an admissible tra-
jectory. Define the set of admissible trajectories starting at time t ∈ R+

from a given initial condition ξ ∈ E by

A(t,ξ) :=
{
x(·) ∈ W 1,1

loc ([t,∞), E) | ẋ(s) ∈ Γ(s, x(s)) a.e. s ∈ [t,∞), x(t) = ξ
}
.

Then the value function V : R+ × E → R ∪ {±∞} is defined by

V (t, ξ) := inf
x(·)∈A(t,ξ)

∫ ∞

t
L(s, x(s), ẋ(s))ds.

Here, we set inf ∅ = +∞ if A(t,ξ) is empty or if for every x(·) ∈ A(t,ξ) the
integral

∫∞
t L(s, x(s), ẋ(s))ds is not well-defined. The effective domain of

V is given by domV = {(t, x) ∈ R+ × E | V (t, x) < +∞}; V is said to be
proper if domV is nonempty and V (t, ξ) > −∞ for every (t, ξ) ∈ R+ × E.
For every (t, ξ) ∈ domV , an admissible trajectory x(·) ∈ A(t,ξ) is said to
be optimal for (Pt) if it satisfies

∫∞
t L(s, x(s), ẋ(s))ds = V (t, ξ) > −∞. For

given x ∈ E, the multifunction Γ(·, x) ⇝ E is said to be measurable if the
set {t ∈ R+ | Γ(t, x) ∩O ̸= ∅} belongs to L for every open subset O of E.

The standing hypothesis are described as follows.

(H1) A(t,ξ) is nonempty for every (t, ξ) ∈ R+ × E.

(H2) L(·, x, y) is measurable for every (x, y) ∈ E × E.

(H3) There exist an integrable function l1 : R+ → R+ and a locally bounded,
integrable function l2 : R+ → R+ such that

|L(t, 0, 0)| ≤ l1(t)

and

|L(t, x, y)− L(t, x′, y′)| ≤ l1(t)∥x− x′∥+ l2(t)∥y − y′∥

for every t ∈ R+ and every (x, y), (x′, y′) ∈ E × E.

(H4) Γ has nonempty closed values.

(H5) Γ(·, x) is measurable for every x ∈ E.
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(H6) There exist a locally integrable function γ : R+ → R+ such that

Γ(t, 0) ⊂ γ(t)B

and
Γ(t, x) ⊂ Γ(t, x′) + γ(t)∥x− x′∥B

for every t ∈ R+ and x, x′ ∈ E.

(H7) The Lipschitz modulus functions satisfy the integrability conditions:∫ ∞

0

[
exp

(∫ s

0
γ(τ)dτ

)(
1 +

∫ s

0
γ(τ)dτ

)
(l1(s) + l2(s)γ(s))

]
ds < ∞.

Since the integrand L is assumed to be a Carathéodory function in (H2) and
(H3), it is jointly measurable on R+ × E × E with respect to the product
σ-algebra L ⊗ Borel(E, ∥ · ∥) ⊗ Borel(E, ∥ · ∥) whenever E is a separable
Banach space; see Aubin and Frankowska [5, Lemma 8.2.6]. Hence, L is
a normal integrand; see Appendix A.3 for the definition. Hypothesis (H7)
guarantees the integrable boundedness of {L(·, x(·), ẋ(·)) | x(·) ∈ A(t,ξ)} over
the interval [t,∞) for every (t, ξ) ∈ R+×E and is needed to prove Theorem
3.1 below.

In the rest of the paper, E is assumed to be separable.

Theorem 3.1. If (H1)–(H7) hold, then V is bounded and lower semicontin-
uous on R+×E, and V (t, · ) is Lipschitz of rank k(t) on E for every t ∈ R+

with a continuous decreasing function k : R+ → R+ satisfying k(t) → 0 as
t → ∞.

The proof is deferred to Subsection B.1.

Remark 3.1. Since we impose the conditions which guarantee the inte-
grability of the integrand on the set of admissible trajectories, the opti-
mality criterion is unambiguous. When the integrability condition over the
infinite horizon fails, there are several optimality criteria; see Carlson et
al. [17], Seirstad and Sydsæter [50], Zaslavski [57]. For the derivation of
the necessary condition under (weak) overtaking optimality in the finite-
dimensional setting, see Halkin [36], Takekuma [52, 53].

3.2 Subdifferentials of the Value Function

In the following we always assume that optimal trajectories for (P0) exist.
To obtain an existence result in our framework, one needs standard convex-
ity hypotheses. For the case with finite-dimensional control systems with
an infinite horizon, see Cannarsa and Frankowska [16]. For the case with
reflexive, separable Banach space valued semilinear control systems with a
finite horizon, see Cannarsa and Frankowska [15].
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Let us denote by L+
x (t, x̄, ȳ; v) the upper partial directional derivative

of L(t, ·, ȳ) at x̄ ∈ E in the direction v ∈ E; L+
y (t, x̄, ȳ; v) has an obvious

meaning. Then ∂+
x L(t, x̄, ȳ) is the Dini–Hadamard partial superdifferential

of L(t, ·, ȳ) at x̄; ∂+
y L(t, x̄, ȳ) has a similar meaning. The Clarke partial

directional derivatives L◦
x(t, x̄, ȳ; v) and L◦

y(t, x̄, ȳ; v), and the Clarke partial
subdifferentials ∂◦

xL(t, x̄, ȳ) and ∂◦
yL(t, x̄, ȳ) are defined in a similar way.

Recall that dΓ(t,x) : E → R is the distance function from the set Γ(t, x) and
denote by NΓ(t,x)(y) ⊂ E∗ the Clarke normal cone to Γ(t, x) at y ∈ Γ(t, x).

We need another continuity assumption on Γ that replaces (H5):

(H′
5) Γ(·, x) is lower semicontinuous for every x ∈ E.

Our results below concern the subdifferentiability of the value function.
We neither impose any convexity assumptions, nor request the interior-
ity of the optimal trajectory. This improves results from Benveniste and
Scheinkman [7, 8], Bonnisseau and Le Van [9], Rincón-Zapatero and Santos
[47], Takekuma [53].

Theorem 3.2. Let x0(·) ∈ A(0,ξ) be an optimal trajectory for (P0). If (H1)–

(H4), (H
′
5), (H6), and (H7) hold, then:

(i) V −
x (t, x0(t); ẋ0(t) − v) ≤ L(t, x0(t), v) − L(t, x0(t), ẋ0(t)) a.e. t ∈ R+

for every v ∈ Γ(t, x0(t));

(ii) −∂−
x V (t, x0(t)) ⊂ ∂◦

yL(t, x0(t), ẋ0(t)) +NΓ(t,x0(t))(ẋ0(t)) a.e. t ∈ R+.

Moreover, if L(t, x0(t), ·) is Gateaux differentiable at ẋ0(t), then:

−∂−
x V (t, x0(t)) ⊂ ∇yL(t, x0(t), ẋ0(t)) +NΓ(t,x0(t))(ẋ0(t)) a.e. t ∈ R+.

Furthermore, if V (t, ·) is regular at x0(t) and ∂−
x V (t, x0(t)) is a singleton,

then V (t, ·) is strictly differentiable at x0(t) with:

−∇xV (t, x0(t)) = ∇yL(t, x0(t), ẋ0(t)) + q(t) a.e. t ∈ R+,

where q : R+ → E∗ is a Borel measurable selector from NΓ(·,x0(·))(ẋ0(·)) :
R+ ⇝ E∗ with respect to the weak∗ topology of E∗.

For the proof, see Subsection B.2.

Example 3.1. Let gi : R+ ×E ×E → R, i = 1, 2, . . . ,m, be Carathéodory
functions and define the velocity multifunction Γ : R+ × E ⇝ E by

Γ(t, x) := {y ∈ E | gi(t, x, y) ≤ 0, i = 1, 2, . . . ,m} .

Let x0(·) ∈ W 1,1
loc (R+, E) and

I(t) := {i ∈ {1, 2, . . . ,m} | gi(t, x0(t), ẋ0(t)) = 0}
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be the active constraint indices at (t, x0(t), ẋ0(t)) ∈ R+ × E × E. Assume
that gi(t, x0(t), ·) has the strict derivative at ẋ0(t) for each i ∈ I(t) and
the constraint qualification 0 ̸∈ co{∇ygi(t, x0(t), ẋ0(t)) | i ∈ I(t)} holds. It
follows from Proposition 2.1 that:

NΓ(t,x0(t))(ẋ0(t)) =

∑
i∈I(t)

λi∇ygi(t, x0(t), ẋ0(t)) ∈ E∗ | λi ≥ 0 ∀i ∈ I(t)

 .

Under the hypotheses of Theorem 3.2, we have

−∇xV (t, x0(t)) = ∇yL(t, x0(t), ẋ0(t)) +
∑
i∈I(t)

λi(t)∇ygi(t, x0(t), ẋ0(t))

for some λi(t) ≥ 0 with i ∈ I(t). By the measurable selection theorem,
the mapping t 7→ λi(t) can be chosen in a measurable way. Under the
convexity hypothesis with the constraint qualification, Rincón-Zapatero and
Santos [47] provided sufficient conditions for the differentiability of the value
function with the finite-dimensional state constraint without the interiority
conditions (H8) below.

4 Euler–Lagrange Conditions and the Maximum
Principle

4.1 Necessary Conditions under the Interiority Assumption

A function p : R+ → E∗ is said to be locally absolutely continuous if its
restriction to the bounded closed interval [0, τ ] is absolutely continuous for
every τ > 0, i.e., for every τ > 0 and ε > 0 there exists δ > 0 such that
0 ≤ t1 < τ1 ≤ t2 < τ2 < · · · ≤ tn < τn ≤ τ and

∑n
i=1 |ti − τi| < δ imply∑n

i=1 ∥p(ti)− p(τi)∥ < ε. A function p(·) is said to be weakly∗ differentiable
at t > 0 if there exists x∗ ∈ E∗ such that

lim
h→0

⟨
p(t+ h)− p(t)

h
, x

⟩
= ⟨x∗, x⟩ for every x ∈ E.

Then vector x∗ is called the weak∗ derivative of p at t and is denoted by ṗ(t)
with d⟨p(t), x⟩/dt = ⟨ṗ(t), x⟩ for every x ∈ E.

We impose a feasibility assumption on the perturbation around a specific
optimal trajectory x0(·) ∈ A(0,ξ) as follows.

(H8) For every T > 0 there exists η > 0 such that

(x0(t) + ηB, ẋ0(t)) ⊂ gphΓ(t, ·) a.e. t ∈ [0, T ].
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This is equivalent to saying that for every T > 0 there exists η > 0 such
that a.e. t ∈ [0, T ] we have ẋ0(t) ∈ Γ(t, x0(t) + ηv) for every v ∈ B. (H8)
is a weaker condition than the interiority condition imposed in Benveniste
and Scheinkman [8]:

(H′
8) There exists η > 0 such that

(x0(t) + ηB, ẋ0(t)) ⊂ gphΓ(t, ·) a.e. t ∈ R+.

Furthermore, (H8) is a partial improvement of the interiority condition im-
posed in Benveniste and Scheinkman [7]:

(H′′
8) There exist T > 0 and η > 0 such that

(x0(t) + ηB, ẋ0(t) + ηB) ⊂ gphΓ(t, ·) a.e. t ∈ [0, T ].

Define the Hamiltonian H : R+ × E × E∗ → R ∪ {+∞} by

H(t, x, x∗) := sup
y∈Γ(t,x)

{⟨x∗, y⟩ − L(t, x, y)} .

Now we are ready to present an extension of the Euler–Lagrange neces-
sary condition and the maximum principle with the transversality condition
at infinity. In the theorem below we use the notions of weak∗ scalar mea-
surability and Gelfand integrals whose definitions are recalled in Appendix
A.2.

Theorem 4.1. Suppose that (H1)–(H4), (H
′
5), (H6), (H7), and (H8) hold.

If ∂−
x V (0, x0(0)) is nonempty and ∂+

x L(t, x0(t), ẋ0(t)) is nonempty a.e. t ∈
R+, then for every x∗ ∈ ∂−

x V (0, x0(0)) and weakly∗ scalarly measurable se-
lector f : R+ → E∗ from the Dini–Hadamard superdifferential mapping
∂+
x L(·, x0(·), ẋ0(·)) : R+ ⇝ E∗, the locally absolutely continuous function

p : R+ → E∗ defined by p(t) :=
∫ t
0 f(s)ds − x∗ as a Gelfand integral satis-

fies:

(i) −p(t) ∈ ∂−
x V (t, x0(t)) for every t ∈ R+;

(ii) p(t) ∈ ∂◦
yL(t, x0(t), ẋ0(t)) +NΓ(t,x0(t))(ẋ0(t)) a.e. t ∈ R+;

(iii) ṗ(t) ∈ ∂+
x L(t, x0(t), ẋ0(t)) a.e. t ∈ R+;

(iv) H(t, x0(t), p(t)) = ⟨p(t), ẋ0(t)⟩ − L(t, x0(t)), ẋ0(t)) a.e. t ∈ R+;

(v) lim
t→∞

p(t) = 0,

where ṗ(t) denotes the weak∗ derivative of p(·) at t ∈ R+. In particular, if
∂−
x V (0, x0(0)) is nonempty, then ∂−

x V (t, x0(t)) is nonempty for every t ∈
R+.
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For the proof, see Subsection B.3.
If gphΓ(t, ·) is convex on which L(t, ·, ·) is convex for every t ∈ R+,

then H(t, ·, x∗) is concave on E for every x∗ ∈ E∗ and H(t, x, ·) is convex
on E∗ for every x ∈ E. It thus follows from the Fenchel duality that the
Euler–Lagrange conditions (ii) and (iii) of Theorem 4.1 are equivalent to
the familiar Hamiltonian conditions ẋ0(t) ∈ ∂pH(t, x0(t), p(t)) and −ṗ(t) ∈
∂xH(t, x0(t), p(t)) respectively; see Rockafeller [48, Theorem 6].

Remark 4.1. Theorem 4.1 yields that “singular” points propagate for-
ward along optimal trajectories, i.e., if the Dini–Hadamard subdifferential
∂−
x V (0, x0(0)) ̸= ∅ is not a singleton, then so does ∂−

x V (t, x0(t)) for every
t ∈ R+. In the finite-dimensional control systems, this observation is done
also in Takekuma [52] for fully convex variational problems and in Cannarsa
and Frankowska [16] for optimal control problems whose set of velocities
are convex. Note that the nonemptiness of ∂−

x V (0, x0(0)) is an innocuous
assumption because the set of points at which ∂−

x V (0, ·) is Dini–Hadamard
subdifferentiable is dense in the separable Banach space E by Theorem 2.1.

Remark 4.2. Even if the Dini–Hadamard subdifferential ∂−
x V (t, x0(t)) is

a singleton, the strict derivative ∇xV (t, x0(t)) might not exist because of
the lack of convexity of the lower directional derivative v 7→ V −

x (t, x0(t); v).
This observation makes a sharp contrast with the case where the Clarke sub-
differential ∂◦

xV (t, x0(t)) is a singleton, in which case ∂◦
xV (t, x0(t)) coincides

with ∇xV (t, x0(t)); see for detail the proof of Clarke [20, Proposition 2.2.4].

4.2 Necessary Conditions without the Interiority Assump-
tion

Hypothesis (H8) in Theorem 4.1 is stringent, mostly because the velocity
multifunction Γ is too general. Hence, a “structural assumption” on the
optimal trajectory x0(·) compensates this generality. If instead some “struc-
tural” assumptions are imposed on Γ, then hypothesis (H8) can be omitted.
To illustrate this observation, we consider standard optimal control prob-
lems.

Let X be a complete separable metric space, f : R+ × E × X → E be
a velocity function, and U : R+ ⇝ X be a control multifunction. Denote
by M(R+, X) the space of measurable functions on R+ with values in X.
Define the integrand L̃ : R+ ×E ×X → R by L̃(t, x, u) := L(t, x, f(t, x, u)).

The optimal control problem under consideration is as follows:

inf
x(·)∈W 1,1

loc (R+,E)
u(·)∈M(R+,X)

∫ ∞

0
L̃(t, x(t), u(t))dt

s.t. u(t) ∈ U(t) a.e. t ∈ R+,

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ R+, x(0) = ξ.

(P̃0)

13



The Hamiltonian for problem (P̃0) is given by:

H(t, x, x∗) = sup
u∈U(t)

{
⟨x∗, f(t, x, u)⟩ − L̃(t, x, u)

}
.

The velocity multifunction is defined by Γ(t, x) := f(t, x, U(t)). Now impose
“usual” assumptions on f and U in order that Γ satisfies (H1)–(H4), (H

′
5),

(H6), and (H7). Note that ∂
+
x L̃(t, x, u) is nonempty at (t, x, u) ∈ R+×E×X

whenever so is ∂+
x,yL(t, x, f(t, x, u)) and f(t, ·, u) is Gateaux differentiable at

x.
Denote by L(E) the space of bounded linear operators on E.
The following reasonable hypothesis is a “structural assumption” on f

that dispenses with (H8).

(H9) (i) f is a Carathéodory function, i.e., f(·, x, u) is measurable for
every (x, u) ∈ E ×X and f(t, ·, ·) is continuous for every t ∈ R+.

(ii) For every R > 0 and T > 0 there exists an integrable function
k : [0, T ] → R such that:

(a) ∥f(t, x, u)∥ ≤ k(t) for every t ∈ [0, T ], x ∈ RB, and u ∈ U(t);

(b) f(t, ·, u) is Lipschitz of rank k(t) on RB for every t ∈ [0, T ]
and u ∈ U(t).

(iii) f(t, ·, u) is Fréchet differentiable on E for every (t, u) ∈ R+ ×X
and the mapping (t, x, u) 7→ ∇xf(t, x, u) is continuous in the
uniform operator topology of L(E).

Conditions (H9)-(i), (ii) guarantee the existence of solutions of the integral
equation

x(t) =

∫ t

0
f(s, x(s), u(s))ds+ ξ for every t ∈ R+

for any control u(·) ∈ M(R+, X), where the locally absolutely continuous
function x(·) : R+ → E is a unique mild solution to the ordinary differential
equation (ODE) in (P̃0) (see Fattorini [29, Theorem 5.5.1]), which has the
strong derivative ẋ(t) a.e. t ∈ R+ in view of the separability of E and the
Lebesgue differentiation theorem.

Let (x0(·), u0(·)) ∈ W 1,1
loc (R+, E)×M(R+, X) be an optimal trajectory-

control pair for optimal control problem (P̃0). Denote by∇xf(s, x0(s), u0(s))
∗

in L(E∗) the adjoint operator of ∇xf(s, x0(s), u0(s)) in L(E).

Theorem 4.2. Suppose that (H1)–(H4), (H′
5), (H6), (H7), and (H9) hold

with Γ(t, x) = f(t, x, U(t)). If ∂−
x V (0, x0(0)) is nonempty and the Dini–

Hadamard superdifferential mapping ∂+
x L̃(·, x0(·), u0(·)) : R+ ⇝ E∗ admits

a locally Bochner integrable selector, then there exists a locally absolutely
continuous function p : R+ → E∗ such that:
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(i) −p(t) ∈ ∂−
x V (t, x0(t)) for every t ∈ R+;

(ii) p(t) ∈ ∂◦
yL(t, x0(t), f(t, x0(t), u0(t)))+NΓ(t,x0(t))(f(t, x0(t), u0(t))) a.e.

t ∈ R+;

(iii) −ṗ(t) ∈ ∇xf(t, x0(t), u0(t))
∗p(t)− ∂+

x L̃(t, x0(t), u0(t)) a.e. t ∈ R+;

(iv) H(t, x0(t), p(t)) = ⟨p(t), f(t, x0(t), u0(t))⟩ − L̃(t, x0(t), u0(t)) a.e. t ∈
R+;

(v) lim
t→∞

p(t) = 0,

where ṗ(t) denotes the strong derivative of p(·) at t ∈ R+. In particular,
if ∂−

x V (0, x0(0)) is nonempty, then ∂−
x V (t, x0(t)) is nonempty for every t ∈

R+.

The proof is provided in Subsection B.3.

Remark 4.3. The existence of locally Bochner integrable selectors from the
Dini–Hadamard superdifferential mapping t ⇝ ∂+

x L̃(t, x0(t), u0(t)) follows
from (H3) and (H9) whenever E∗ is separable in the dual norm. For the
case with nonseparable E∗, the Fréchet differentiability of the integrand
L(t, ·, ·) on E×E and the continuity of (t, x, y) 7→ (∇xL(t, x, y),∇yL(t, x, y))
in the dual norm of E∗ × E∗ guarantee the local Bochner integrability of
t 7→ ∇xL̃(t, x0(t), u0(t)) in E∗ under (H3) and (H9). If ∂+

x,yL(t, x0(t), ẋ0(t))
is nonempty, then take any (p, q) ∈ ∂+

x,yL(t, x0(t), ẋ0(t)) and observe that
for every v ∈ E and u ∈ U(t), we have:

L̃+
x (t, x, u; v) ≤ L+

x,y(t, x, f(t, x, u); v,∇xf(t, x, u)v)

≤ ⟨p, v⟩+ ⟨q,∇xf(t, x, u)v⟩ = ⟨p+∇xf(t, x, u)
∗q, v⟩.

Thus, instead of using the function g : R+ → E∗ in the proof of Theo-
rem 4.2 below, we could use as well any locally Bochner integrable selector
(α(t), β(t)) ∈ ∂+

x,yL(t, x0(t), ẋ0(t)) and write the adjoint equation involving
g(t) = α(t) +∇xf(t, x0(t), u0(t))

∗β(t).

5 An Application: Spatial Ramsey Growth Mod-
els

5.1 Ramsey Meets Hotelling

Consider the spatial Ramsey growth model with a general reduced form
explored in Boucekkine et al. [10, 11], Brock et al. [13], Brito [12], Camacho
et al. [14] in the specific form. Let I = [0, 1] be the unit interval such that
the endpoints 0, 1 ∈ I are identified. Then I is homeomorphic to the unit
circle in which a spatial parameter θ ∈ I is a location of agents along the
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lines of Hotelling [38]. Let W : R+ × R+ × I → R be a function such that
W (·, ·, θ) is an instantaneous utility function at location θ ∈ I satisfying
W (a, b, 0) = W (a, b, 1) for every (a, b) ∈ R+×R+, where a denotes a capital
stock and b a net investment. Let F : R+×R+×I → R+ be a function such
that F (·, ·, θ) is a production function at θ satisfying F (a, c, 0) = F (a, c, 1)
for every (a, c) ∈ R+ × R+, where c denotes a consumption and output
F (a, c, θ) is a net investment at θ for every (a, c). Let r > 0 be a discount
rate. For simplicity, we assume no depreciation of capital stock.

Let x : R+ × I → R+ be a capital stock trajectory in which x(t, θ) is
a current capital stock, ∂x(t, θ)/∂t is a current capital accumulation, u :
R+× I → R+ denotes a consumption trajectory in which u(t, θ) is a current
consumption, and τ : R+×I → R denotes a net transfer trajectory in which
τ(t, θ) is a current net transfer, respectively at period t ∈ R+ and location
θ ∈ I. The capital accumulation process is described by

∂x(t, θ)

∂t
= F (x(t, θ), u(t, θ), θ) + τ(t, θ)

for a.e. t ∈ R+ and for every θ ∈ I. If τ(t, θ) ≡ 0, then the model describes
an autarkic economy in which no capital movement occurs among locations;
see Brito [12]. For the case where τ(t, θ) is a parabolic term, see Boucekkine
et al. [10, 11], Brito [12], Camacho et al. [14]. The choice of function spaces
depends upon the specification of a transfer term. Following the foremen-
tioned works, we focus here on the autarkic case in which capital stock and
consumption change smoothly in locations.

Let C2(I) be the space of twice continuously differentiable functions on I
with their values equal at the end points θ = 0, 1, endowed with the C2-norm
∥x∥C2(I) := supθ∈I{|x(θ)|+ |x′(θ)|+ |x′′(θ)|}, which makes C2(I) a separable
Banach space. Denote by C2

+(I) the positive cone of C2(I) consisting of all
nonnegative functions in C2(I). The problem under investigation is:

max

∫ ∞

0

∫
I
e−rtW

(
x(t, θ),

∂x(t, θ)

∂t
, θ

)
dθdt

s.t.
∂x(t, θ)

∂t
= F (x(t, θ), u(t, θ), θ), u(t) ∈ U(t)

a.e. t ∈ R+ for every θ ∈ I,

x(t, 0) = x(t, 1), u(t, 0) = u(t, 1) a.e. t ∈ R+,

x(0, θ) = ξ(θ) for every θ ∈ I.

(Q0)

Here, the control set U(t) is a subset of C2
+(I) for every t ∈ R+. The

maximization is taken over all nonnegative functions x(·, ·) in the function
space such that x(·, θ) is a.e. differentiable on R+ for every θ ∈ I with
x(t, ·) and ∂x(t, ·)/∂t belonging to C2(I) a.e. t ∈ R+, and over all functions
u(·, ·) such that u(t, ·) ∈ U(t) and u(·, θ) is measurable on R+ for every
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θ ∈ I satisfying the parametrized ODE above, where the initial condition at
location θ is given by ξ(θ) with ξ ∈ C2

+(I).
Throughout this section, we assume the following.

Assumption 5.1. (i) W has an extension to R×R× I (which we do not
relabel) such that W (a, b, ·) is measurable on I for every (a, b) ∈ R×R,
W (·, ·, θ) is continuously differentiable on R × R for every θ ∈ I, and
its partial derivatives are bounded uniformly in (a, b, θ) ∈ R× R× I.

(ii) F has a thrice continuously differentiable extension to R×R×I (which
we do not relabel) such that every partial derivative of any order less
or equal 3 is bounded uniformly in (a, c, θ) ∈ R× R× I.

(iii) There exists a bounded closed subset X of C2
+(I) such that U(t) ⊂ X

for every t ∈ R+.

Define the integrands L : R+ × C2(I)× C2(I) → R by

L(t, x(·), y(·)) := −e−rt

∫
I
W (x(θ), y(θ), θ)dθ

and L̃ : R+ × C2(I)×X → R by

L̃(t, x(·), u(·)) := −e−rt

∫
I
W (x(θ), F (x(θ), u(θ), θ), θ)dθ

respectively. Consider the velocity function f : C2(I)×X → C2(I) defined
by

f(x(·), u(·)) := F (x(·), u(·), ·).

Here, f(·, u(·)) is Frèchet differentiable on C2(I) and its Frèchet derivative
∇xf(x(·), u(·)) ∈ L(C2(I)) can be calculated as

∇xf(x(·), u(·))v(·) =
∂F (x(·), u(·), ·)

∂a
v(·)

for every v(·) ∈ C2(I). By construction, it is evident that

L̃(t, x(·), u(·)) = L(t, x(·), f(x(·), u(·)))

for every (x(·), u(·)) ∈ C2(I) × X. Define the velocity multifunction Γ :
R+ × C2(I)⇝ C2(I) by Γ(t, x(·)) := f(x(·), U(t)).

We then convert the problem (Q0) into the minimization one of the
form (P̃0) in the setting with E = C2(I) and X ⊂ C2

+(I). If (x0(·), u0(·)) ∈
W 1,1

loc (R+, C
2(I))×M(R+, X) is an optimal trajectory-control pair of (P̃0),

then (x0(·), u0(·)) is a solution to the associated problem (Q0), and vice versa
because any admissible trajectory of (P̃0) stays in the nonnegative orthant.
It is easy to see that Assumption 5.1 guarantees hypotheses in Theorem 4.2.
In particular, Hypothesis (H7) is satisfied whenever r > 0 is large enough.
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5.2 Necessary Conditions for Optimality

Let C(I) be the space of continuous functions on I endowed with the sup
norm and ca(I) be the space of signed Borel measures on I. Since each
x ∈ C2(I) is represented by

x(θ) = x(0) + x′(0)θ +

∫ θ

0

∫ σ

0
x′′(ω)dωdσ for every θ ∈ I

with x(0), x′(0) ∈ R and x′′ ∈ C(I), the Banach space C2(I) is identified
with the direct sum R⊕R⊕C(I). Hence, C2(I)∗ = R⊕R⊕ ca(I) and each
x∗ ∈ C2(I)∗ has the form

⟨x∗, x⟩ = α0x(0) + α1x
′(0) +

∫
I
x′′(θ)dµ for every x ∈ C2(I)

for some constants α0, α1 ∈ R and a signed Borel measure µ ∈ ca(I); see
Dunford and Schwartz [27, Exercise IV.13.36]. Hence, the adjoint variables
in the spatial Ramsey growth model take values in R⊕ R⊕ ca(I).

Let (x0(·), u0(·)) ∈ W 1,1(R+, C
2(I))×M(R+, X) be an optimal trajecto-

ry-control pair of (P̃0) and V : R+ × C2(I) → R be the value function. A
direct calculation shows that for every v ∈ C2(I) we have

⟨∇xL(t, x0(t), ẋ0(t)), v⟩ = −e−rt

∫
I

∂W (x0(t, θ), ẋ0(t, θ), θ)

∂a
v(θ)dθ.

To evaluate the above integral, define α(θ) := ∂W (x0(t, θ), ẋ0(t, θ), θ)/∂a,
A(θ) := −

∫ 1
θ α(ω)dω, and B(θ) := −

∫ 1
θ A(ω)dω. The double use of integra-

tion by parts yields∫
I
α(θ)v(θ)dθ = [A(θ)v(θ)]10 −

∫
I
A(θ)v′(θ)dθ

= −A(0)v(0) +B(0)v′(0) +

∫
I
B(θ)v′′(θ)dθ

=

∫
I

∂W (x0(t, θ), ẋ0(t, θ), θ)

∂a
dθv(0)

+

∫
I

[∫ 1

θ

∂W (x0(t, θ), ẋ0(t, ω), ω)

∂a
dω

]
dθv′(0)

+

∫
I

[∫ 1

θ

∫ 1

σ

∂W (x0(t, θ), ẋ0(t, ω), ω)

∂a
dωdσ

]
v′′(θ)dθ.

Henceforth, we obtain

⟨∇xL(t, x0(t), ẋ0(t)), v⟩ = a0(t)v(0) + a1(t)v
′(0) +

∫
I
v′′(θ)dµ(t)

with

a0(t) = −e−rt

∫
I

∂W (x0(t, θ), ẋ0(t, θ), θ)

∂a
dθ,
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a1(t) = −e−rt

∫
I

∫ 1

θ

∂W (x0(t, θ), ẋ0(t, ω), ω)

∂a
dωdθ,

dµ0(t)

dθ
(θ) = −e−rt

∫ 1

θ

∫ 1

σ

∂W (x0(t, θ), ẋ0(t, ω), ω)

∂a
dωdσ,

where µ0(t) ∈ ca(I) is given by its Radon–Nikodym derivative dµ0(t)/dθ.
Hence, ∇xL(t, x0(t), ẋ0(t)) = a0(t)⊕a1(t)⊕µ0(t) ∈ R⊕R⊕ca(I). Similarly,
replacing α by α(θ) := ∂W (x0(t, θ), ẋ0(t, θ), θ)/∂b in the above argument
with integration by parts yields

⟨∇yL(t, x0(t), ẋ0(t)), v⟩ = −e−rt

∫
I

∂W (x0(t, θ), ẋ0(t, θ), θ)

∂b
v(θ)dθ

= b0(t)v(0) + b1(t)v
′(0) +

∫
I
v′′(θ)dν0(t)

with

b0(t) = −e−rt

∫
I

∂W (x0(t, θ), ẋ0(t, θ), θ)

∂b
dθ,

b1(t) = −e−rt

∫
I

∫ 1

θ

∂W (x0(t, θ), ẋ0(t, ω), ω)

∂b
dωdθ,

dν0(t)

dθ
(θ) = −e−rt

∫ 1

θ

∫ 1

σ

∂W (x0(t, θ), ẋ0(t, ω), ω)

∂b
dωdσ.

Hence, ∇yL(t, x0(t), ẋ0(t)) = b0(t)⊕ b1(t)⊕ ν0(t) ∈ R⊕ R⊕ ca(I).
If ξ ∈ C2

+(I) is a point such that ∂−
x V (0, ξ) is nonempty (see Remark

4.1), then in view of Theorem 4.2 there exists a locally absolutely continu-
ous function p : R+ → C2(I)∗ such that (i) −p(t) ∈ ∂−

x V (t, x0(t)) for every
t ∈ R+; (ii) p(t) = ∇yL(t, x0(t), ẋ0(t)) + q(t) a.e. t ∈ R+, where q : R+ →
C2(I)∗ is a Borel measurable selector from t ⇝ NΓ(t,x0(t))(ẋ0(t)) with re-
spect to the weak∗ topology of C2(I)∗; (iii) −ṗ(t) = ∇xf(x0(t), u0(t))

∗p(t)−
∇xL̃(t, x0(t), ẋ0(t)) a.e. t ∈ R+; (iv)H(t, x0(t), p(t)) = ⟨p(t), f(x0(t), u0(t))⟩−
L̃(t, x0(t), u0(t)) a.e. t ∈ R+; (v) limt→∞ p(t) = 0. Since q is represented as
q(t) = β0(t)⊕ β1(t)⊕ ν1(t) ∈ R⊕R⊕ ca(I), condition (ii) can be written as
p(t) = (b0(t) + β0(t))⊕ (b1(t) + β1(t))⊕ (ν0(t) + ν1(t)) a.e. t ∈ R+. Since

∇xL̃(t, x0(t), u0(t))

= ∇xL(t, x0(t), ẋ0(t)) +∇yL(t, x0(t), ẋ0(t))∇xf(x0(t), u0(t))

= ∇xL(t, x0(t), ẋ0(t)) +∇xf(x0(t), u0(t))
∗(p(t)− q(t)),

condition (iii) yields −ṗ(t) = −(a0(t)⊕a1(t)⊕µ0(t))+q(t)∇xf(x0(t), u0(t)),
and hence, ṗ(t) = (a0(t)−α0(t))⊕(a1(t)−α1(t))⊕(µ0(t)−µ1(t)) with setting
q(t)∇xf(x0(t), u0(t)) = α0(t)⊕ α1(t)⊕ µ1(t) ∈ R⊕ R⊕ ca(I).

Define the new adjoint variable by π(t) := ertp(t) and denote it by
π(t) = π0(t) ⊕ π1(t) ⊕ λ(t) ∈ R ⊕ R ⊕ ca(I). The transversality condition
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at infinity can be written as limt→∞ e−rtπ(t) = 0. It follows from condition
(iii) that

π̇0(t) = rπ0(t)−
∫
I

∂W (x0(t, θ), ẋ0(t, θ), θ)

∂a
dθ − ertα0(t) (5.1)

π̇1(t) = rπ1(t)−
∫
I

∫ 1

θ

∂W (x0(t, ω), ẋ0(t, ω), ω)

∂a
dωdθ − ertα1(t) (5.2)

λ̇(t)(A) = rλ(t)(A)−
∫
A

∫ 1

θ

∫ 1

σ

∂W (x0(t, ω), ẋ0(t, ω), ω)

∂a
dωdσdθ

− ertµ1(t)(A)

(5.3)

a.e. t ∈ R+ for every A ∈ L. Hence, any stationary point (x̄, π̄) ∈ C2(I) ×
C2(I)∗ of the dynamical system corresponding to ẋ0(t) ≡ 0 and π̇(t) ≡ 0
with the adjoint equations (5.1)–(5.3) is determined by the following condi-
tions:

F (x̄(·), ū(·), ·) = 0,

π̄0 = r−1

(∫
I

∂W (x̄(θ), 0, θ)

∂a
dθ + α0(0)

)
,

π̄1 = r−1

(∫
I

∫ 1

θ

∂W (x̄(ω), 0, ω)

∂a
dωdθ + α1(0)

)
,

λ̄(A) = r−1

(∫
A

∫ 1

θ

∫ 1

σ

∂W (x̄(ω), 0, ω)

∂a
dωdσdθ + µ1(0)(A)

)
for every A ∈ L

along with (α0(t), α1(t), µ1(t)) = (α0(0), α1(0), µ1(0))e
−rt.

A Appendix I

A.1 Proof of Proposition 2.1

Since TC(x̄) ⊂ KC(x̄), if v ∈ TC(x̄), then there exists a sequence {θn}n∈N of
positive real numbers with θn ↓ 0 and a sequence {vn}n∈N in E with vn → v such
that x̄+ θnvn ∈ C for each n ∈ N. Thus, φi(x̄+ θnvn) ≤ 0 for each i ∈ I(x̄). Since
φi is strictly differentiable (and hence Gateaux differentiable) at x̄, we have

⟨∇φi(x̄), v⟩ = lim
n→∞

φi(x̄+ θnv)− φi(x̄)

θn
≤ lim

n→∞

(
φi(x̄+ θnvn)

θn
+ αi∥vn − v∥

)
≤ 0

for each i ∈ I(x̄), where αi is a Lipschitz modulus of φi. Hence, TC(x̄) ⊂ {v ∈ E |
⟨∇φi(x̄), v⟩ ≤ 0 ∀i ∈ I(x̄)}. Since 0 ̸∈ co {∇φi(x̄) | i ∈ I(x̄)}, by the separation
theorem, there exists v̄ ∈ E such that supi∈I(x̄)⟨∇φi(x̄), v̄⟩ =: −ε < 0. Let {xn}n∈N
be a sequence in C with xn → x̄ and {θn}n∈N be a sequence of positive real numbers
with θn ↓ 0. Then φi(xn) ≤ 0 and

lim sup
n→∞

φi(xn + θnv̄)

θn
≤ lim sup

n→∞

φi(xn + θnv̄)− φi(xn)

θn
= ⟨∇φi(x̄), v̄⟩ < 0.
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Thus, for every n sufficiently large, we have φi(xn + θnv̄) < 0 for each i ∈ I(x̄).
Consequently, xn + θnv̄ ∈ C for every n sufficiently large, and hence, v̄ ∈ TC(x̄).
Let v ∈ E be such that ⟨∇φi(x̄), v⟩ ≤ 0 for each i ∈ I(x̄). For α ∈ (0, 1) define
vα := αv̄ + (1 − α)v. Then ⟨∇φi(x̄), vα⟩ < 0 for each i ∈ I(x̄). Similar to the
case for v̄, we have vα ∈ TC(x̄). Since vα → v as α → 0+, taking the limit yields
v ∈ TC(x̄). Therefore, TC(x̄) = {v ∈ E | ⟨∇φi(x̄), v⟩ ≤ 0 ∀i ∈ I(x̄)}.

Set A =
∑

i∈I(x̄) R+∇φi(x̄). Clearly, ⟨x∗, v⟩ ≤ 0 for every x∗ ∈ A and

v ∈ TC(x̄), and hence, A ⊂ NC(x̄). We claim that A = NC(x̄). Toward this end,
we first show that A is weakly∗ closed. Let {x∗

ν} be a net in A converging weakly∗

to x∗ with x∗
ν =

∑
i∈I(x̄) λ

ν
i ∇φi(x̄) for each ν. Then ⟨x∗

ν , v̄⟩ → ⟨x∗, v̄⟩. Since∑
i∈I(x̄) λ

ν
i ⟨∇φi(x̄), v̄⟩ ≤ −ε

∑
i∈I(x̄) λ

ν
i ≤ 0 for each ν, the net {(λν

i1
, . . . , λν

ik
)}

is bounded in Rk
+, where I(x̄) = {i1, . . . ik} with k ≤ m. Thus it has a sub-

net converging to some (λi1 , . . . , λik) in Rk
+. Hence, x∗

ν converges weakly∗ to
x∗ =

∑
i∈I(x̄) λi∇φi(x̄) ∈ A. Assume for a moment that there exists p ∈ NC(x̄)

such that p ̸∈ A. By the separation theorem, there exists y ∈ E such that
0 ≤ supy∗∈A⟨y∗, y⟩ < ⟨p, y⟩. Since A is a cone, we must have supy∗∈A⟨y∗, y⟩ = 0 im-
plying that ⟨∇φi(x̄), y⟩ ≤ 0 for each i ∈ I(x̄). Therefore, y ∈ TC(x̄) and ⟨p, y⟩ ≤ 0.
The obtained contradiction yields A = NC(x̄).

A.2 Gelfand Integrals of Multifunctions

Let I be a nonempty closed subset of the real line R with the Lebesgue measure
and the Lebesgue σ-algebra L. Denote by Borel(E∗,w∗) the Borel σ-algebra of the
dual space E∗ generated by the weak∗ topology. A function f : I → E∗ is said
to be weakly∗ scalarly measurable if the scalar function ⟨f(·), x⟩ is measurable for
every x ∈ E. If E is a separable Banach space, then E∗ is a locally convex Suslin
space under the weak∗ topology. In this case, a function f : I → E∗ is weakly∗

scalarly measurable if and only if it is measurable with respect to Borel(E∗,w∗);
see Castaing and Valadier [19, Theorem III.36]. A weakly∗ scalarly measurable
function f is said to be weakly∗ scalarly integrable if ⟨f(·), x⟩ is integrable for every
x ∈ E. Further, a weakly∗ scalarly measurable function f is said to be Gelfand
integrable (or weakly∗ integrable) over a given set A ∈ L if there exists x∗

A ∈ E∗

such that ⟨x∗
A, x⟩ =

∫
A
⟨f(t), x⟩dt for every x ∈ E. The element x∗

A is called the
Gelfand (or weak∗) integral of f over A and is denoted by

∫
A
fdt. Note that

every weakly∗ scalarly integrable function is Gelfand integrable over I as shown in
Aliprantis and Border [1, Theorem 11.52].

A multifunction Φ : I ⇝ E∗ is said to be upper measurable if the set {t ∈
I | Φ(t) ⊂ O} belongs to L for every weakly∗ open subset O of E∗; Φ is said to
be graph measurable if the set gphΦ := {(t, x∗) ∈ I × E∗ | x∗ ∈ Φ(t)} belongs
to L ⊗ Borel(E∗,w∗); Φ is said to be weakly∗ scalarly measurable if the scalar
function s(x,Φ(·)) : I → R ∪ {±∞} is measurable for every x ∈ E, where we set
s(x, ∅) := −∞. When Φ has empty values on a null set N , we can extend it to I
with nonempty values at every point by setting Φ(t) := {0} for t ∈ N , preserving
its upper, graph, and weak∗ scalar measurability. A function f : I → E∗ is called a
selector of Φ if f(t) ∈ Φ(t) a.e. t ∈ I. If E is separable, then an a.e. nonempty-valued
multifunction Φ : I ⇝ E∗ with measurable graph in L ⊗ Borel(E∗,w∗) admits a
Borel(E∗,w∗)-measurable selector; see Castaing and Valadier [19, Theorem III.22].
If E is separable and Φ has a.e. nonempty, weakly∗compact, convex values, then Φ is
weakly∗ scalarly measurable if and only if it is upper measurable (see Aliprantis and
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Border [1, Theorem 18.31]), and in this case, Φ admits a Borel(E∗,w∗)-measurable
(or equivalently, weakly∗ scalarly measurable) selector; see Aliprantis and Border
[1, Theorem 18.33] or Cascales et al. [18, Corollary 3.1].

A multifunction Φ : I ⇝ E∗ with a.e. nonempty values is integrably bounded if
there exists an integrable function γ : I → R such that supx∗∈Φ(t) ∥x∗∥ ≤ γ(t) a.e.
t ∈ I. If Φ is integrably bounded with measurable graph, then it admits a Gelfand
integrable selector whenever E is separable. Denote by S1

Φ the set of Gelfand in-
tegrable selectors of Φ. The Gelfand integral of Φ is conventionally defined as∫
Φdt := {

∫
fdt | f ∈ S1

Φ}. If Φ is an integrably bounded, weakly∗ closed, convex-
valued multifunction with measurable graph, then

∫
Φdt is nonempty, weakly∗ com-

pact, and convex with s(x,
∫
Φdt) =

∫
s(x,Φ(t))dt for every x ∈ E whenever E is

separable; see Cascales et al. [18, Proposition 2.3 and Theorem 4.5].

A.3 Gelfand Integrals of Clarke and Dini–Hadamard Subd-
ifferential Mappings

An L ⊗ Borel(E, ∥ · ∥)-measurable function L : I × E → R ∪ {+∞} is called a
normal integrand if L(t, ·) is lower semicontinuous on E for every t ∈ I. For a
given measurable function x(·) : I → E, let L : I × E → R be a function such that
(i) L(·, x) is measurable for every x ∈ E; (ii) there exist ε > 0 and an integrable
function k : I → R such that |L(t, x)−L(t, y)| ≤ k(t)∥x−y∥ for every x, y ∈ x(t)+εB
and t ∈ I. The Clarke subdifferential mapping t ⇝ ∂◦

xL(t, x(t)) is an integrably
bounded multifunction from I to E∗ with weakly∗ compact, convex values. In view
of the fact that L◦

x(t, x(t); v) = s(v, ∂◦
xL(t, x(t))) for every t ∈ I and v ∈ E, the

Clarke subdifferential mapping ∂◦
xL(·, x(·)) : I ⇝ E∗ is weakly∗ scalarly measurable

if and only if the Clarke directional derivative function L◦
x(·, x(·); v) : I → R is

measurable for every v ∈ E. This holds in particular when E is separable (see
Clarke [20, Lemma, p. 78 and the proof of Theorem 2.7.8]), and hence, in this case,
∂◦
xL(·, x(·)) admits a Gelfand integrable selector.

We summarize the above result on the Gelfand integrability of the Clarke sub-
differential mapping together with the results in Subsection A.2 as follows.

Proposition A.1 (Cascales et al. [18], Clarke [20]). Let E be a separable Banach
space and I be a nonempty closed subset of R. If, for a given measurable function
x : I → E, the function L : I × E → R satisfies the following conditions:

(i) L(·, x) is measurable for every x ∈ E;

(ii) There exist ε > 0 and an integrable function k : I → R such that |L(t, x) −
L(t, y)| ≤ k(t)∥x− y∥ for every x, y ∈ x(t) + εB and t ∈ I;

then the Clarke subdifferential mapping ∂◦
xL(·, x(·)) : I ⇝ E∗ has a Gelfand in-

tegrable selector and the Gelfand integral
∫
∂◦
xL(t, x(t))dt is weakly∗ compact and

convex with

s

(
v,

∫
I

∂◦
xL(t, x(t))dt

)
=

∫
I

s (v, ∂◦
xL(t, x(t))) dt =

∫
I

L◦
x(t, x(t); v)dt

for every v ∈ E.

A similar result holds for Dini–Hadamard subdifferential mappings, but the
proof is rather different from the one for Clarke subdifferential mappings since it
involves a geometric aspect using the contingent cone and its polar.
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Theorem A.1. Under the hypothesis of Proposition A.1, if L is a normal integrand
with ∂−

x L(t, x(t)) ̸= ∅ a.e. t ∈ I, then the Dini–Hadamard subdifferential mapping
∂−
x L(·, x(·)) : I ⇝ E∗ has a Gelfand integrable selector and the Gelfand integral∫
∂−
x L(t, x(t))dt is weakly∗ compact and convex with

s

(
v,

∫
I

∂−
x L(t, x(t))dt

)
=

∫
I

s
(
v, ∂−

x L(t, x(t))
)
dt

for every v ∈ E.

Recall that a multifunction Γ : I ⇝ E is said to be measurable if the set
{t ∈ I | Γ(t) ∩ O ̸= ∅} belongs to L for every open subset O of E. Denote by
Γ0 : I ⇝ E∗ the polar mapping of Γ defined by Γ0(t) := Γ(t)0.

Lemma A.1. Let E be a separable Banach space. If Γ : I ⇝ E is a measurable
multifunction with nonempty closed values, then its polar mapping Γ0 : I ⇝ E∗

has the graph in L ⊗ Borel(E∗,w∗) and Γ0 admits a weakly∗ scalarly measurable
selector.

Proof. Let {gn}n∈N be a Castaing representation of Γ, that is, each gn : I → E
is a measurable selector of Γ such that cl{gn(t) | n ∈ N} = Γ(t) for every t ∈ I.
Since (t, x∗) 7→ ⟨x∗, gn(t)⟩ is L ⊗ Borel(E∗,w∗)-measurable for each n ∈ N (see
Castaing and Valadier [19, Theorem III.36]) and s(x∗,Γ(t)) = supn⟨x∗, gn(t)⟩ for
every x∗ ∈ E∗ and t ∈ I, gphΓ0 is L ⊗ Borel(E∗,w∗)-measurable. Therefore,
Γ0 admits a Borel(E∗,w∗)-measurable, and hence, weakly∗ scalarly measurable
selector.

Proof of Theorem A.1. Define the multifunction Γ : I ⇝ E × R by

Γ(t) := KepiL(t,·)(x(t), L(t, x(t))).

Since L is a normal integrand, the epigraph mapping t⇝ epiL(t, ·) is a nonempty,
closed-valued multifunction with its graph in L⊗Borel(E×R, ∥·∥); see Castaing and
Valadier [19, Lemma VII.1]. It follows from Aubin and Frankowska [5, Theorem
8.5.1] that Γ is a measurable multifunction with nonempty closed values. Then
by Lemma A.1, the polar mapping Γ0 : I ⇝ E∗ × R of Γ has the graph in L ⊗
Borel(E∗ × R,w∗). Define the multifunction Φ : I ⇝ E∗ × R by

Φ(t) := Γ0(t) ∩ (E∗ × {−1}) =
{
(x∗,−1) ∈ KepiL(t,·)(x(t), L(t, x(t)))

0
}
.

Then Φ(t) ̸= ∅ a.e. t ∈ I and gphΦ belongs to L ⊗ Borel(E∗ × R,w∗). Therefore,
Φ admits a weakly∗ scalarly measurable selector, and hence, there exists a weakly∗

scalarly measurable function f : I → E∗ such that (f(t),−1) ∈ Φ(t) a.e. t ∈ I. Since
f(t) ∈ ∂−

x L(t, x(t)) and the Dini–Hadamard subdifferential mapping ∂−
x L(·, x(·)) is

integrably bounded, f is Gelfand integrable. Under the assumptions of the theorem,
∂−
x L(t, x(t)) is nonempty, weakly∗ compact, and convex a.e. t ∈ I. Therefore, the

Gelfand integral of ∂−
x L(·, x(·)) is nonempty, weakly∗ compact and convex, and the

desired equality holds as noted in Subsection A.2.

Remark A.1. Note that unlike Clarke directional derivatives, the lack of convexity
of the function v 7→ L−

x (t, x(t); v) leads to the failure of the equality L−
x (t, x(t); v) =

s(v, ∂−
x L(t, x(t))) even if ∂−

x L(t, x(t)) is nonempty. This is a disadvantage of the
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use of Dini–Hadamard subdifferentials because ∂−
x L(t, x(t)) may be empty even if

L(t, ·) is Lipschitz on x(t)+εB. On the other hand, if L(t, ·) is strictly differentiable
at x(t), then its Dini–Hadamard subdifferential is the singleton {∇xL(t, x(t))}. See
also Remark 4.2 for a further discussion.

B Appendix II

B.1 Lipschitz Continuity of the Value Function

The following result is a special case of Frankowska [33, Theorem 1.2], which is an
infinite-dimensional analogue of the celebrated Filippov theorem; see Filippov [30].
Note that the solution concept adopted in Frankowska [33] is a mild solution to an
evolution differential inclusion involving semigroups of unbounded linear operators.
As in our case the semigroup is given by the identity operator, it follows from the
Lebesgue differentiation theorem that the mild solution has a strong derivative that
is Bochner integrable whenever E is separable.

Lemma B.1 (Frankowska [33]). Let E be a separable Banach space and [t0, t1] be
any closed interval in R+. If (H4), (H5), and (H6) hold, and y(·) ∈ W 1,1([t0, t1], E)
is such that t 7→ dΓ(t,y(t))(ẏ(t)) is integrable with y(t0) = ξ ∈ E, then for every
ξ′ ∈ E and ε > 0 there exists x(·) ∈ W 1,1([t0, t1], E) such that:

(i) ẋ(t) ∈ Γ(t, x(t)) a.e. t ∈ [t0, t1] with x(t0) = ξ′;

(ii) ∥x(t)− y(t)∥ ≤ exp

(∫ t

t0

γ(s)ds

)
×
(
∥ξ − ξ′∥+

∫ t

t0

dΓ(s,y(s))(ẏ(s))ds+ ε(t− t0)

)
for every t ∈ [t0, t1];

(iii) ∥ẋ(t)− ẏ(t)∥ ≤ exp

(∫ t

t0

γ(s)ds

)
γ(t)(∥ξ− ξ′∥+ ε(t− t0))+ dΓ(t,y(t))(ẏ(t))+ ε

a.e. t ∈ [t0, t1].

Proof of Theorem 3.1. Take any (t, ξ) ∈ R+ × E. Since, by (H6), every admissible
trajectory x(·) ∈ A(t,ξ) satisfies the inequality ∥ẋ(s)∥ ≤ γ(s) + γ(s)∥x(s)∥ a.e.
s ∈ [t,∞) by (H6), the Gronwall’s inequality yields

∥x(s)∥ ≤ exp

(∫ s

0

γ(τ)dτ

)(
∥ξ∥+

∫ s

0

γ(τ)dτ

)
=: γ∥ξ∥(s) < ∞

for every s ∈ [t,∞). It follows from (H3) and (H7) that

|L(s, x(s), ẋ(s))| ≤ l1(s) + l1(s)γ∥ξ∥(s) + l2(s)(γ(s) + γ(s)γ∥ξ∥(s)) =: k∥ξ∥(s)

and k∥ξ∥(·) is integrable over [t,∞). Therefore, V is bounded. Furthermore, it

follows from |
∫∞
t

L(s, x(s), ẋ(s))ds| ≤
∫∞
t

k∥ξ∥(s)ds that for every ε > 0 there exists

t0 ∈ R+ such that |
∫∞
T

L(s, x(s), ẋ(s))ds| < ε for every T > t0 and x(·) ∈ A(t,ξ).
This implies that supx(·)∈A(t,ξ)

|V (T, x(T ))| → 0 as T → ∞ for every (t, ξ) ∈ R+×E.

Next, we demonstrate the Lipschitz continuity of V (t, ·). Let ξ, ξ′ ∈ E be arbi-
trary. Take any ε > 0 and T ∈ [t,∞). Then by (H1) and the Bellman principle of
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optimality, there exists x(·) ∈ A(t,ξ) such that
∫ T

t
L(s, x(s), ẋ(s))ds+V (T, x(T )) <

V (t, ξ) + ε. It follows from Lemma B.1 that there exists xT (·) ∈ W 1,1([t, T ], E)
such that:

(i) ẋT (s) ∈ Γ(s, xT (s)) a.e. s ∈ [t, T ] with xT (t) = ξ′;

(ii) ∥xT (s)− x(s)∥ ≤ exp

(∫ s

t

γ(τ)dτ

)
(∥ξ′ − ξ∥+ ε(s− t)) for every s ∈ [t, T ];

(iii) ∥ẋT (s)− ẋ(s)∥ ≤ exp

(∫ s

t

γ(τ)dτ

)
γ(s)(∥ξ′ − ξ∥+ ε(s− t))+ ε a.e. s ∈ [t, T ].

Take any xT (·) ∈ A(T,xT (T )) and define yT (·) ∈ A(t,ξ′) by yT (·) = xT (·) on [t, T ]
and yT (·) = xT (·) on (T,∞). As observed in the above, we obtain

lim
T→∞

|V (T, xT (T ))| = lim
T→∞

|V (T, yT (T ))| ≤ lim
T→∞

sup
z(·)∈A(t,ξ′)

|V (T, z(T ))| = 0.

Similarly, limT→∞ V (T, x(T )) = 0. By the Bellman principle of optimality, we have

V (t, ξ′)− V (t, ξ) ≤
∫ T

t

L(s, xT (s), ẋT (s))ds+ V (T, xT (T ))

−
∫ T

t

L(s, x(s), ẋ(s))ds− V (T, x(T )) + ε

≤
∫ T

t

[
l1(s)∥xT (s)− x(s)∥+ l2(s)∥ẋT (s)− ẋ(s)∥

]
ds

+ V (T, xT (T ))− V (T, x(T )) + ε

≤ k1(t)(∥ξ′ − ξ∥+ ε(T − t)) + k2(t)(∥ξ′ − ξ∥+ ε(T − t))

+ V (T, xT (T ))− V (T, x(T )) + ε,

where we set in the last inequality k1(t) :=
∫∞
t

exp(
∫ s

t
γ(τ)dτ)l1(s)ds and k2(t) :=∫∞

t
exp(

∫ s

t
γ(τ)dτ)l2(s)γ(s)ds. Since ε is arbitrary, we obtain

V (t, ξ′)− V (t, ξ) ≤ k(t)∥ξ′ − ξ∥+ V (T, xT (T ))− V (T, x(T ))

for every T ∈ [t,∞) with k(t) := k1(t) + k2(t). Then k : R+ → R+ is a continuous
decreasing function with k(t) → 0 as t → ∞. Letting T → ∞ in this inequality
yields V (t, ξ′)− V (t, ξ) ≤ k(t)∥ξ′ − ξ∥. Since the role of ξ and ξ′ is interchangeable
in the above argument, we have demonstrated that V (t, ·) is Lipschitz of rank k(t)
on E for every t ∈ R+.

Finally, we show the lower semicontinuity of V . Toward this end, fix t ∈ R+. It
suffices to show that V (·, ξ) is lower semicontinuous on R+ for every ξ ∈ E. Indeed,
since we have

V (t′, ξ)− k(t′)∥ξ′ − ξ∥ ≤ V (t′, ξ′)

for every (t′, ξ′) ∈ R+ × E, taking the limit inferior in the both sides of the above
inequality yields

lim inf
t′→t

V (t′, ξ) ≤ lim inf
(t′,ξ′)→(t,ξ)

V (t′, ξ′).

Take any t′ ∈ R+. If t
′ ∈ [t,∞), then

V (t, ξ) ≤
∫ t′

t

L(s, x(s), ẋ(s))ds+ V (t′, x(t′)) (B.1)
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for every x(·) ∈ A(t,ξ). Since V (t′, ·) is Lipschitz of rank k(t′) ≤ k(t), we obtain
|V (t′, x(t′)) − V (t′, ξ)| ≤ k(t)∥x(t′) − ξ∥ → 0 as t′ ↓ t. Taking the limit inferior in
the both sides of (B.1) yields

V (t, ξ) ≤ lim inf
t′↓t

V (t′, ξ).

Similarly, if t′ ∈ [0, t) with t > 0, then for every ε > 0 there exists y(·) ∈ A(t′, ξ)
such that ∫ t

t′
L(s, y(s), ẏ(s))ds+ V (t, y(t)) ≤ V (t′, ξ) + ε (B.2)

Since V (t, ·) is Lipschitz of rank k(t), we have

|V (t, y(t))− V (t, ξ)|

≤ k(t)∥y(t)− ξ∥ = k(t)

∥∥∥∥∫ t

t′
ẏ(s)ds

∥∥∥∥
≤ k(t)

∫ t

t′
[γ(s) + γ(s)∥y(s)∥] ds ≤ k(t)

∫ t

t′

[
γ(s) + γ(s)γ∥ξ∥(s)

]
ds → 0

as t′ ↑ t and ∣∣∣∣∫ t

t′
L(s, y(s), ẏ(s))ds

∣∣∣∣ ≤ ∫ t

t′
k∥ξ∥(s)ds → 0

as t′ ↑ t. Hence, taking the limit inferior in (B.2) yields

V (t, ξ) ≤ lim inf
t′↑t

V (t′, ξ) + ε.

Since ε is arbitrary, we obtain

V (t, ξ) ≤ lim inf
t′→t

V (t′, ξ).

Therefore, V (·, ξ) is lower semicontinuous at every t ∈ R+.

B.2 Subdifferentiability of the Value Function

Denote by o(h) > 0 the Landau symbol with limh↓0 h
−1o(h) = 0.

Lemma B.2. Suppose that (H4), (H
′
5), and (H6) hold. Let t ∈ R+ be such that

the strong derivative ẋ0(t) exists and v ∈ Γ(t, x0(t)) be arbitrarily fixed. Then for
every h > 0 there exists xh(·) ∈ W 1,1([t, t+ h], E) such that:

(i) ẋh(s) ∈ Γ(s, xh(s)) a.e. s ∈ [t, t+ h] with xh(t+ h) = x0(t+ h);

(ii) ∥xh(t)− x0(t)− h(ẋ0(t)− v)∥ = o(h);

(iii) ∥ẋh(·)− v∥L1([t,t+h]) = o(h).

Proof. Define yh(s) := x0(t + h) − sv for s ∈ [0, h] and the multifunction Γh :
R× E ⇝ E by

Γh(s, x) :=

{
−Γ(t+ h− s, x) if s ∈ [0, h],

−Γ(t, x) if s ∈ (h,∞).
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By (H6), we have Γh(s, yh(s)) ⊂ Γh(s, x0(t))+γ(t+h−s)(∥x0(t+h)−x0(t)∥+h∥v∥)B
for every s ∈ [0, h], which yields the inequality

dΓh(s,yh(s))(ẏh(s)) ≤ dΓh(s,x0(t))(−v) + γ(t+ h− s)(∥x0(t+ h)− x0(t)∥+ h∥v∥).

Since the multifunction (s, h) ⇝ Γh(s, x0(t)) is lower semicontinuous, the dis-
tance function (s, h) 7→ dΓh(s,x0(t))(−v) is upper semicontinuous; see Aubin and
Frankowska [5, Corollary 1.4.17]. Let φ(s, h) := dΓh(s,x0(t))(−v) and φ̂(h) :=
sups∈[0,h] φ(s, h). Then for every ε > 0 and h ≥ 0 there exists sh ∈ [0, h] such
that φ̂(h) < φ(sh, h) + ε. Since sh → 0 as h ↓ 0 and φ is upper semicontinu-
ous at the origin with φ(0, 0) = dΓ(t,x0(t))(v) = 0, taking the limit superior of the
above inequality yields lim suph↓0 φ̂(h) ≤ lim suph↓0 φ(sh, h) + ε ≤ ε. Since ε is
arbitrary, we have limh↓0 φ̂(h) = 0. Consequently, it follows from the inequality
∥x0(t+ h)− x0(t)∥ ≤ h∥ẋ0(t)∥+ o(h) that

dΓh(s,yh(s))(ẏh(s)) ≤ φ̂(h) + γ(t+ h− s)(h(∥ẋ0(t)∥+ ∥v∥) + o(h)).

By Lemma B.1 applied with ε = h, there exists z(·) ∈ W 1,1([0, h], E) such that
ż(s) ∈ Γh(s, z(s)) a.e. s ∈ [0, h] with z(0) = yh(0) = x0(t+ h) satisfying

∥z(s)− yh(s)∥ ≤ exp

(∫ h

0

γ(t+ h− τ)dτ

)(∫ h

0

dΓh(τ,yh(τ))(ẏh(τ))dτ + h2

)

≤ exp

(∫ t+h

t

γ(τ)dτ

)

×

(
hφ̂(h) + (h(∥ẋ0(t)∥+ ∥v∥) + o(h))

∫ t+h

t

γ(τ)dτ + h2

)
= o(h)

and

∥ż(s)− ẏh(s)∥ ≤ h2 exp

(∫ h

0

γ(t+ h− τ)dτ

)
γ(t+ h− s) + dΓh(s,yh(s))(ẏh(s)) + h

≤ h2 exp

(∫ t+h

t

γ(τ)dτ

)
γ(t+ h− s) + φ̂(h)

+ γ(t+ h− s)(h(∥ẋ0(t)∥+ ∥v∥) + o(h)) + h

for a.e. s ∈ [0, h]. Integrating the both sides of the above inequality over [0, h] yields

∥ż(·)− ẏh(·)∥L1([0,h])

=

∫ t+h

t

γ(τ)dτ

(
h2 exp

(∫ t+h

t

γ(τ)dτ

)
+ h(∥ẋ0(t)∥+ ∥v∥) + o(h)

)
+ hφ̂(h) + h2 = o(h).

Set xh(τ) := z(t + h − τ) for τ ∈ [t, t + h]. Then xh(t + h) = z(0) = x0(t + h)
and ẋh(τ) = −ż(t+ h− τ) ∈ −Γh(t+ h− τ, xh(τ)) = Γ(τ, xh(τ)) a.e. τ ∈ [t, t+ h].
Thus, condition (i) is verified. Since ∥xh(t) − yh(h)∥ = ∥z(h) − yh(h)∥ = o(h), we
have ∥xh(t) − x0(t + h) + hv∥ = o(h). Hence, ∥xh(t) − x0(t) − h(ẋ0(t) − v)∥ ≤
∥xh(t) − x0(t + h) + hv∥ + ∥x0(t + h) − x0(t) − hẋ0(t)∥ = o(h) and we obtain
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condition (ii). In view of ẋh(τ) = −ż(t + h − τ) and ẏh(t + h − τ) = −v, we
obtain ∥ẋh(·)− v∥L1([t,t+h]) = ∥ẏh(·)− ż(·)∥L1([0,h]) = o(h), which implies condition
(iii).

Proof of Theorem 3.2. (i): Let t > 0, v ∈ Γ(t, x0(t)), and xh(·) ∈ W 1,1([t, t+h], E)
be as in the claim of Lemma B.2. By condition (ii) of Lemma B.2, for every
s ∈ [t, t+ h] we have

∥xh(s)− x0(t)∥ ≤ ∥xh(s)− xh(t)∥+ ∥xh(t)− x0(t)∥
≤ h∥ẋh(t)∥+ o(h) + h∥ẋ0(t)− v∥
≤ h(γ(t) + γ(t)∥xh(t)∥) + h∥ẋ0(t)− v∥+ o(h)

≤ h(γ(t) + γ(t)(∥x0(t)∥+ h∥ẋ0(t)− v∥+ o(h)) + h∥ẋ0(t)− v∥
+ o(h)

= h(γ(t) + γ(t)∥x0(t)∥) + h∥ẋ0(t)− v∥+ o(h),

which yields the following estimates:∣∣∣∣∣
∫ t+h

t

L(s, xh(s), ẋh(s))ds−
∫ t+h

t

L(s, x0(t), v)ds

∣∣∣∣∣
≤
∫ t+h

t

[l1(s)∥xh(s)− x0(t)∥+ l2(s)∥ẋh(s)− v∥] ds

≤ (h(γ(t) + γ(t)∥x0(t)∥) + h∥ẋ0(t)− v∥+ o(h))

∫ t+h

t

l1(s)ds

+ sup
s∈[t,t+h]

l2(s)∥ẋh(·)− v∥L1([t,t+h]) = o(h).

By the separability of E and Frankowska, Plaskacz and Rzeżuchowski [35, Theorem
2.5], there exists a subset I of R+ such that the Lebesgue measure of its complement

R+ \ I is zero with limh↓0 h
−1
∫ t+h

t
L(s, x, v)ds = L(t, x, v) for every (t, x, v) ∈

I × E × E. We thus obtain

lim
h↓0

1

h

∫ t+h

t

L(s, xh(s), ẋh(s))ds = lim
h↓0

1

h

∫ t+h

t

L(s, x0(t), v)ds = L(t, x0(t), v)

for every t ∈ I. Let t ∈ R+ be a Lebesgue point of L(·, x0(·), ẋ0(·)). By the Bellman
principle of optimality, we have

V (t, xh(t)) ≤
∫ t+h

t

L(s, xh(s), ẋh(s))ds+ V (t+ h, x0(t+ h)).

Subtracting V (t, x0(t)) =
∫ t+h

t
L(s, x0(s), ẋ0(s))ds + V (t + h, x0(t + h)) from the

both sides of the above inequality yields∫ t+h

t

L(s, xh(s), ẋh(s))ds−
∫ t+h

t

L(s, x0(s), ẋ0(s))ds

≥ V (t, xh(t))− V (t, x0(t)) ≥ V (t, x0(t) + h(ẋ0(t)− v))− V (t, x0(t))− o(h)

because of the Lipschitz continuity of V (t, ·). Dividing the both sides of the above
inequality by h > 0 and taking the limit inferior as h → 0 yield the inequality

V −
x (t, x0(t); ẋ0(t)− v) ≤ L(t, x0(t), v)− L(t, x0(t), ẋ0(t)).
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Since v ∈ Γ(t, x0(t)) is arbitrary, the above holds true for any such v.
(ii): Take any x∗ ∈ ∂−

x V (t, x0(t)). If u ∈ KΓ(t,x0(t))(ẋ0(t)), then there exist a
sequence {θn}n∈N of positive real numbers with θn → 0 and a sequence {un}n∈N
in E with un → u such that ẋ0(t) + θnun ∈ Γ(t, x0(t)) for each n ∈ N. Since it
follows from condition (i) that V −

x (t, x0(t);−θnun) ≤ L(t, x0(t), ẋ0(t) + θnun) −
L(t, x0(t), ẋ0(t)), we have

⟨x∗,−un⟩ ≤
L(t, x0(t), ẋ0(t) + θnun)− L(t, x0(t), ẋ0(t))

θn
.

Letting n → ∞ in the both sides of the above inequality yields

⟨−x∗, u⟩ ≤ L+
y (t, x0(t), ẋ0(t);u) ≤ L◦

y(t, x0(t), ẋ0(t);u) (B.3)

for every u ∈ KΓ(t,x0(t))(ẋ0(t)). Suppose, by way of contradiction, that −x∗ ̸∈
∂◦
yL(t, x0(t), ẋ0(t))+NΓ(t,x0(t))(ẋ0(t)). Since ∂

◦
yL(t, x0(t), ẋ0(t)) is weakly

∗ compact
and convex and NΓ(t,x0(t))(ẋ0(t)) is weakly

∗ closed and convex, ∂◦
yL(t, x0(t), ẋ0(t))+

NΓ(t,x0(t))(ẋ0(t)) is weakly∗ closed and convex. Then by the separation theorem,
there exists v ∈ E such that

⟨−x∗, v⟩ > sup
y∗∈∂◦

yL(t,x0(t),ẋ0(t))

⟨y∗, v⟩+ sup
z∗∈NΓ(t,x0(t))(ẋ0(t))

⟨z∗, v⟩.

Since NΓ(t,x0(t))(ẋ0(t)) is a cone in E∗, we must have ⟨z∗, v⟩ ≤ 0 for every z∗ ∈
NΓ(t,x0(t))(ẋ0(t)). This means that v ∈ TΓ(t,x0(t))(ẋ0(t)) ⊂ KΓ(t,x0(t))(ẋ0(t)) by the
bipolar theorem; see Aubin and Frankowska [5, Theorem 2.4.3]. Since the support
function of the Clarke subdifferential ∂◦

yL(t, x0(t), ẋ0(t)) coincides with the Clarke
directional derivative L◦

y(t, x0(t), ẋ0(t); v), the inequality above finally implies that
⟨−x∗, v⟩ > L◦

y(t, x0(t), ẋ0(t); v) with v ∈ KΓ(t,x0(t))(ẋ0(t)), in contradiction with in-
equality (B.3). Consequently, we have −x∗ ∈ ∂◦

yL(t, x0(t), ẋ0(t))+NΓ(t,x0(t))(ẋ0(t)).
If L(t, x0(t), ·) is Gateaux differentiable at ẋ0(t), then (B.3) can be replaced by the
inequality

⟨−x∗, u⟩ ≤ ∇yL(t, x0(t), ẋ0(t);u)

for every u ∈ KΓ(t,x0(t))(ẋ0(t)). This implies that the above argument is also
valid when we replace ∂◦

yL(t, x0(t), ẋ0(t)) and L◦
y(t, x0(t), ẋ0(t); v) respectively by

∇yL(t, x0(t), ẋ0(t)) and ⟨∇yL(t, x0(t), ẋ0(t)), v⟩.

B.3 Proof of Necessary Conditions for Optimality

It should be underlined that unlike the real-valued case, locally absolutely con-
tinuous functions with values in Banach spaces fail to be strongly differentiable
almost everywhere; see Petrakis and Uhl [45, Examples 1 and 2] or Deimling [26,
Example 4.2] for such examples. The failure of the strong differentiability of lo-
cally absolutely continuous functions disappears under the reflexivity assumption.
Specifically, every locally absolutely function p : R+ → E∗ has the Bochner inte-

grable strong derivative ṗ(t) a.e. t ∈ R+ \ {0} with p(t) =
∫ t

0
ṗ(s)ds+ p(0) for every

t ∈ R+ whenever E is reflexive; see Kōmura [42, Lemma, p. 505].
We construct an adjoint variable p : R+ → E∗ as a locally absolutely con-

tinuous function to express optimality conditions. However, we dispense with the
reflexivity of E. The weak∗ differentiability of locally absolutely continuous func-
tions is fundamental in the sequel and is virtually contained in the argument of the
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proof of Kōmura [42, Lemma]. We provide a proof for the sake of completeness to
make clear why the reflexivity of E is irrelevant to weak∗ differentiability. See also
Ambrosio and Kirchheim [2, Theorem 3.5] for a strengthened version of the weak∗

differentiability of Lipschitz functions.

Lemma B.3 (Kōmura [42]). Let E be a separable Banach space. Then every locally
absolutely continuous function p : R+ → E∗ possesses the weak∗ derivative ṗ(t) a.e.
t ∈ R+.

Proof. Define the variation of p : R+ → E∗ over the compact interval [0, τ ] by
var(p, [0, τ ]) := sup

∑n
i=1 ∥p(ti) − p(τi)∥, where the supremum is taken over all

finite sets of points ti, τi ∈ [0, τ ] with 0 ≤ t1 < τ1 ≤ t2 < τ2 ≤ · · · ≤ tn < τn ≤ τ .
Since p is locally absolutely continuous, var(p, [0, τ ]) < ∞ for every τ > 0. Define
ph(t) := h−1(p(t+h)−p(t)) for t ∈ [0, τ ] and h ̸= 0, and P+(t) := lim suph↓0 ∥ph(t)∥
and P−(t) := lim suph↑0 ∥ph(t)∥. Since p is continuous, so is ph. Hence, P+ and P−

are measurable on [0, τ ]. We claim that P+(t) and P−(t) are finite a.e. t ∈ [0, τ ].
Suppose to the contrary that the Lebesgue measure λ of the set {t ∈ [0, τ ] | P+(t) =
∞} is positive. Let

An :=

t ∈ [0, τ ]

∣∣∣∣∣∣∣
sup

[∥∥∥∥p(t+ h)− p(t)

h

∥∥∥∥ ∣∣∣∣ h ≥ 1

n
, 0 ≤ t < t+ h ≤ τ

]
≥ 2

λ
var(p, [0, τ ])

 .

Then each An is a closed set and {t ∈ [0, τ ] | P+(t) = ∞} ⊂
∪

n∈N An. Since
{An}n∈N is an increasing sequence, |An| > λ/2 for some n ∈ N, where |An| denotes
the Lebesgue measure of An. Let {ti}i∈N and {hi}i∈N be defined inductively by

t1 := inf An,

ti+1 := inf{t ∈ An | t ≥ ti + hi}, and

hi := sup

{
h > 0 | ti + h ≤ τ,

∥∥∥∥p(ti + h)− p(ti)

h

∥∥∥∥ ≥ 2

λ
var(p, [0, τ ])

}
.

Then by construction, we have An ⊂
∪

i∈N[ti, ti + hi], and hence, |An| ≤
∑

i∈N hi.
Consequently,∑
i∈N

∥p(ti + hi)− p(ti)∥ ≥ 2

λ
var(p, [0, τ ])

∑
i∈N

hi ≥
2

λ
var(p, [0, τ ])|An| > var(p, [0, τ ]),

a contradiction. In the same way we show that the set {t ∈ [0, τ ] | P−(t) = ∞} is
of Lebesgue measure zero. Therefore, there exists a null set N0 ⊂ [0, τ ] such that
for every t ∈ [0, τ ] \N0 the set {ph(t) | h ̸= 0} is bounded in E∗.

In view of the separability of E, there is a countable dense subset {vi}i∈N of E.
Since each scalar function φi(t) := ⟨p(t), vi⟩ is absolutely continuous on [0, τ ], its
derivative φ̇i(t) exists except at a point of a null set Ni ⊂ [0, τ ]. This means that
φ̇i(t) = limh→0⟨ph(t), vi⟩ for every i ∈ N and t ∈ [0, τ ] \

∪
j∈N Nj . Recalling that

{ph(t) | h ̸= 0} is relatively weakly∗ compact for every t ∈ [0, τ ]\N0, it has a subnet
(which we do not relabel) that converges weakly∗ to an element in E∗. Therefore,
ṗ(t) = w∗- limh→0 ph(t) exists for every t ∈ [0, τ ] \

∪∞
i=0 Ni because {vi}i∈N is a

total family of E.
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Proof of Theorem 4.1. Let t ∈ R+ be arbitrarily given and η > 0 be as in (H8).
Take any x∗ ∈ ∂−

x V (0, x0(0)) and let f : R+ → E∗ be a Gelfand integrable selector
of the Dini–Hadamard superdifferential mapping s ⇝ ∂+

x L(s, x0(s), ẋ0(s)), whose

existence is guaranteed in Theorem A.1. Define p(t) =
∫ t

0
f(s)ds− x∗ as a Gelfand

integral. We claim that −p(t) ∈ ∂−
x V (t, x0(t)). To this end, fix any v ∈ E and

consider the local perturbation of x0(·) over [0, t] given by xθ(s) := x0(s) + θv for
s ∈ [0, t]. By construction, ẋθ(s) = ẋ0(s) a.e. s ∈ [0, t] and xθ(s) ∈ x0(s) + ηB
whenever 0 < θ ≤ (1+∥v∥)−1η, and hence, (xθ(s), ẋθ(s)) ∈ gphΓ(s, ·) a.e. s ∈ [0, t].
By the Bellman principle of optimality, we have

V (0, xθ(0)) ≤
∫ t

0

L(s, xθ(s), ẋθ(s))ds+ V (t, xθ(t)).

Subtracting V (0, x0(0)) =
∫ t

0
L(s, x0(s), ẋ0(s))ds + V (t, x0(t)) from the both sides

of the above inequality yields

V (0, xθ(0))− V (0, x0(0)) ≤
∫ t

0

[L(s, xθ(s), ẋθ(s))− L(s, x0(s), ẋ0(s))] ds

+ V (t, xθ(t))− V (t, x0(t)).

Let {θn}n∈N be a sequence of positive real numbers with θn → 0 such that

V −
x (t, x0(t); v) = lim

n→∞

V (t, x0(t) + θnv)− V (t, x0(t))

θn
.

Dividing the both sides of the above inequality by θn and taking the limit as n → ∞
yields

V −
x (0, x0(0); v) ≤

∫ t

0

L+
x (s, x0(s), ẋ0(s); v)ds+ V −

x (t, x0(t); v)

≤
∫ t

0

⟨f(s), v⟩ds+ V −
x (t, x0(t); v)

= ⟨p(t), v⟩+ ⟨x∗, v⟩+ V −
x (t, x0(t); v)

for every v ∈ E, where we employ the Lebesgue dominated convergence theorem
and Fatou’s lemma to derive that

lim sup
n→∞

∫ t

0

L(s, x0(s) + θnv, ẋ0(s))− L(s, x0(s), ẋ0(s))

θn
ds

≤
∫ t

0

L+
x (s, x0(s), ẋ0(s); v)ds.

On the other hand, ⟨x∗, v⟩ ≤ V −
x (0, x0(0); v). Hence, ⟨−p(t), v⟩ ≤ V −

x (t, x0(t); v)
for every v ∈ E and thus our claim is true.

Since ⟨p(t), y⟩ =
∫ t

0
⟨f(s), y⟩ds − ⟨x∗, y⟩ for every t ∈ R+ and y ∈ E with

|⟨f(s), y⟩| ≤ ∥f(s)∥∥y∥ ≤ l1(s)∥y||, we get |⟨p(t + h) − p(t), y⟩| ≤ ∥y∥
∫ t+h

t
l1(s)ds,

and therefore, ∥p(t + h) − p(t)∥ ≤
∫ t+h

t
l1(s)ds for every h > 0. This means that

the function p : R+ → E∗ constructed above is locally absolutely continuous. In
view of Lemma B.3, the weak∗ derivative ṗ(t) = f(t) exists a.e. t ∈ R+. This
demonstrates that the adjoint inclusions (i) and (iii) hold. Since Theorem 3.2
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and condition (i) yield ⟨p(t), ẋ0(t)⟩ − L(t, x0(t), ẋ0(t)) ≥ ⟨p(t), y⟩ − L(t, x0(t), y)
for every y ∈ Γ(t, x0(t)), the maximum principle (iv) holds. Thus, for a.e. t ∈
R+ and every v ∈ TΓ(t,x0(t))(ẋ0(t)), we have ⟨p(t), v⟩ ≤ L−

y (t, x0(t), ẋ0(t); v) ≤
L◦
y(t, x0(t), ẋ0(t); v) and condition (ii) follows from the separation argument as in

the proof of Theorem 3.2(ii). To verify the transversality condition (v) at infinity,
recall that by Theorem 3.1, V (t, ·) is Lipschitz of rank k(t) with k(t) → 0 as t → ∞.
Therefore, ∥p(t)∥ ≤ k(t) → 0.

Proof of Theorem 4.2. Let t ∈ R+ and v ∈ E. Consider the variational equation:

ẇ(s) = ∇xf(s, x0(s), u0(s))w(s) a.e. s ∈ [0, t], w(t) = v. (B.4)

In view of the separability of E and (H9), a unique mild solution w(·) ∈ W 1,1([0, t], E)
to (B.4) satisfies

w(s) = v −
∫ t

s

∇xf(τ, x0(τ), u0(τ))w(τ)dτ for every s ∈ [0, t]

and its strong derivative ẇ(s) exists a.e. s ∈ [0, t] and satisfies (B.4) by the Lebesgue
differentiation theorem. It follows from Frankowska [33, Theorem 4.2] (applied to
F (s, x) ≡ {f(s, x, u0(s))} and A ≡ 0) that for every θ > 0 there exists a mild
solution xθ(·) to

ẋ(s) = f(s, x(s), u0(s)) a.e. s ∈ [0, t], x(t) = x0(t) + θv

such that (xθ(s)− x0(s))/θ → w(s) uniformly in s ∈ [0, t] as θ → 0.
Take any x∗ ∈ ∂−

x V (0, x0(0)) and let g : R+ → E∗ be a locally Bochner
integrable selector from s⇝ ∂+

x L̃(s, x0(s), u0(s)). Consider the adjoint system:

− ṗ(s) = ∇xf(s, x0(s), u0(s))
∗p(s)− g(s) a.e. s ∈ [0, t], p(0) = −x∗. (B.5)

Since the mapping (s, x, u) 7→ ∇xf(s, x, u)
∗ has separable values in E∗ in view of

(H9), a unique mild solution to (B.5) does exist. As in the proof of Theorem 4.1
(via the Bellman principle of optimality), we obtain the inequality

V (0, xθ(0))− V (0, x0(0))

≤
∫ t

0

[L(s, xθ(s), f(s, xθ(s), u0(s))− L(s, x0(s), f(s, x0(s), u0(s))] ds

+ V (t, x0(t) + θv)− V (t, x0(t)).

Divide the both sides of the above inequality by θ and let θ → 0 to get

⟨x∗, w(0)⟩ ≤
∫ t

0

⟨g(s), w(s)⟩ds+ V −
x (t, x0(t); v).

It follows from the a.e. strong differentiability of p(·) and w(·) that∫ t

0

⟨g(s), w(s)⟩ds =
∫ t

0

⟨ṗ(s) +∇xf(s, x0(s), u0(s))
∗p(s), w(s)⟩ds

=

∫ t

0

[⟨ṗ(s), w(s)⟩+ ⟨p(s),∇xf(s, x0(s), u0(s))w(s)⟩] ds
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=

∫ t

0

[⟨ṗ(s), w(s)⟩+ ⟨p(s), ẇ(s)⟩] ds

=

∫ t

0

d

ds
⟨p(s), w(s)⟩ds = ⟨p(t), v⟩ − ⟨p(0), w(0)⟩.

Hence, ⟨−p(t), v⟩ ≤ V −
x (t, x0(t); v) for every v ∈ E. This means that −p(t) ∈

∂−
x V (t, x0(t)). This being true for every t ∈ R+, we deduce the adjoint inclusions

(i) and (iii). The rest of the conditions follows as in the proof of Theorem 4.1.
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rems and the Hamilton–Jacobi–Bellman equations”, J. Differential Equations
116 (1995), 263–305.

[36] Halkin, H., “Necessary conditions for optimal control problems with infinite
horizon”, Econometrica 42 (1974), 267–272.

[37] Hartl, R. F. and P.M. Kort, “History dependence without unstable steady
state: A non-differentiable framework”, J. Math. Econom. 39 (2003), 891–
900.

[38] Hotelling, H., “Stability in competition”, Econom. J. 39 (1929), 41–57.

[39] Ioffe, A.D., “Calculus of Dini subdifferentials of functions and contingent
coderivatives of set-valued maps”, Nonlinear Anal. 8 (1984), 517–539.

[40] Ioffe, A.D., “Euler–Lagrange and Hamiltonian formalism in dynamic opti-
mization”, Trans. Amer. Math. Soc. 349 (1997), 2871–2900.

[41] Ioffe, A.D., Variational Analysis of Regular Mappings: Theory and Applica-
tions, Springer, Cham, Switzerland, 2017.
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