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We present the first complete axiomatisation for quantifier-free separation logic. The logic is equipped with the standard concrete heaplet semantics and the proof system has no external feature such as nominals/labels. It is not possible to rely completely on proof systems for Boolean BI as the concrete semantics needs to be taken into account. Therefore, we present the first internal Hilbert-style axiomatisation for quantifier-free separation logic. The calculus is divided in three parts: the axiomatisation of core formulae where Boolean combinations of core formulae capture the expressivity of the whole logic, axioms and inference rules to simulate a bottom-up elimination of separating connectives, and finally structural axioms and inference rules from propositional calculus and Boolean BI with the magic wand.

Introduction

The virtue of axiomatising program logics. Designing a Hilbert-style axiomatisation for your favourite logic is usually quite challenging. This does not lead necessarily to optimal decision procedures, but the completeness proof usually provides essential insights to better understand the logic at hand. That is why many logics related to program verification have been axiomatised, often requiring non-trivial completeness proofs. By way of example, there are axiomatisations for the linear-time µ-calculus [START_REF] Kaivola | Axiomatising linear time mu-calculus[END_REF][START_REF] Doumane | Constructive completeness for the linear-time µ-calculus[END_REF], the modal µ-calculus [START_REF] Walukiewicz | Completeness of Kozen's axiomatisation of the propositional µ-calculus[END_REF] or for the alternating-time temporal logic ATL [START_REF] Goranko | Complete axiomatization and decidability of alternatingtime temporal logic[END_REF], the full computation tree logic CTL ˚ [START_REF] Reynolds | An axiomatization of full computation tree logic[END_REF], for probabilistic extensions of µ-calculus [START_REF] Larsen | Probabilistic mu-calculus: Decidability and complete axiomatization[END_REF] or for a coalgebraic generalisation [START_REF] Schröder | Completeness of flat coalgebraic fixpoint logics[END_REF]. Concerning the separation logics that extend Hoare-Floyd logic to verify programs with mutable data structures (see e.g. [OP99, Rey02, IO01, O'H12, PSO18]), a Hilbert-style axiomatisation of Boolean BI has been introduced in [START_REF] Galmiche | Expressivity properties of boolean BI through relational models[END_REF], but remained at the abstract level of Boolean BI. More recently, HyBBI [START_REF] Brotherston | Parametric completeness for separation theories[END_REF], a hybrid version of Boolean BI has been introduced in order to axiomatise various classes of abstract separation logics; HyBBI naturally considers classes of abstract models (typically preordered partial monoids) but it does not fit exactly the heaplet semantics of separation logics. Furthermore, the addition of nominals (in the sense of hybrid modal logics, see e.g. [START_REF] Areces | Hybrid logics: characterization, interpolation and complexity[END_REF]) extends substantially the object language. Other frameworks to axiomatise classes of abstract separation logics can be found in [START_REF] Docherty | Modular tableaux calculi for separation theories[END_REF][START_REF] Docherty | Bunched logics: a uniform approach[END_REF] and in [START_REF] Hóu | Modular labelled sequent calculi for abstract separation logics[END_REF], respectively with labelled tableaux calculi and with sequent-style proof systems.

Our motivations. Since the birth of separation logics, there has been a lot of interest in the study of decidability and computational complexity issues, see e.g. [COY01, BDL09, BIP10, CHO `11, DGLWM17, BK18, DLM18a, Man18, Man20], and comparatively less attention to the design of proof systems, and even less with the puristic approach that consists in discarding any external feature such as nominals or labels in the calculi. The well-known advantages of such an approach include an exhaustive understanding of the expressive power of the logic and discarding the use of any external artifact referring to semantical objects. For instance, a tableaux calculus with labels for quantifier-free separation logic is designed in [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF], whereas Hilbert-style calculi for abstract separation logics with nominals are defined in [START_REF] Brotherston | Parametric completeness for separation theories[END_REF]. Similarly, display calculi for bunched logics are provided in [START_REF] Brotherston | Bunched logics displayed[END_REF] but such calculi extend Gentzen-style proof systems by allowing new structural connectives, which provides an elegant means to simulate labels. In this paper, we advocate a puristic approach and aim at designing a Hilbert-style proof system for quantifier-free separation logic SLp˚, ´q (which includes the separating conjunction ˚and implication ´, as well as all Boolean connectives) and more generally for other separation logics, while remaining within the very logical language (see the second part of [START_REF] Demri | Internal calculi for separation logics[END_REF]). 1 Consequently, in this work, we only focus on axiomatising separation logics, and we have no claim for practical applications in the field of program verification with separation logics. Aiming at internal calculi is a non-trivial task as the general frameworks for abstract separation logics make use of labels, see e.g. [START_REF] Docherty | Modular tableaux calculi for separation theories[END_REF][START_REF] Hóu | Modular labelled sequent calculi for abstract separation logics[END_REF]. We cannot rely on label-free calculi for BI, see e.g. [START_REF] Pym | The Semantics and Proof Theory of the Logic of Bunched Implications[END_REF][START_REF] Galmiche | Expressivity properties of boolean BI through relational models[END_REF], as separation logics are usually understood as Boolean BI interpreted on models of heap memory and therefore require calculi that cannot abstract as much as it is the case for Boolean BI. Finally, there are many translations from separation logics into logics or theories, see e.g. [START_REF] Calcagno | From separation logic to first-order logic[END_REF][START_REF] Piskać | Automating separation logic using SMT[END_REF][START_REF] Brochenin | On the almighty wand[END_REF][START_REF] Reynolds | A decision procedure for separation logic in SMT[END_REF]. However, completeness cannot in general be inherited by sublogics as the proof system should only use the sublogic and therefore the axiomatisation of sublogics may lead to different methods. A more detailed discussion about the related work can be found in Section 7.

Our contribution. We propose a modular axiomatisation of quantifier-free separation logic, starting with a complete axiomatisation of a Boolean algebra of core formulae, and incrementally adding support for the spatial connectives: the separating conjunction and the separating implication (a.k.a. the magic wand). The same approach could be followed for other fragments of separation logic, as we did in the conference version of this paper [START_REF] Demri | Internal calculi for separation logics[END_REF] (see also a similar approach in [START_REF] Demri | Axiomatising logics with separating conjunction and modalities[END_REF]). Thus, our approach can be considered with the broader perspective of a generic method for axiomatising separation logics. Let us be a bit more precise.

In Section 3, we present the first Hilbert-style proof system for SLp˚, ´q that uses axiom schemas and rules involving only formulae of this logic. We mainly introduce our approach and present the notations that are used throughout the paper. Each formula of SLp˚, ´q is equivalent to a Boolean combination of core formulae: simple formulae of the logic expressing elementary properties about the models [START_REF] Lozes | Separation logic preserves the expressive power of classical logic[END_REF]. Though core formulae (also called test formulae) have been handy in several occasions for establishing complexity results for separation logics, see e.g. [START_REF] Brochenin | Reasoning about sequences of memory states[END_REF][START_REF] Demri | The effects of adding reachability predicates in propositional separation logic[END_REF][START_REF] Mansutti | Extending propositional separation logic for robustness properties[END_REF][START_REF] Echenim | The Bernays-Schönfinkel-Ramsey class of separation logic on arbitrary domains[END_REF], in the paper, these formulae are instrumental for the axiomatisation. Indeed, the axiomatisation of SLp˚, ´q is designed starting from an axiomatisation of Boolean combinations of core formulae (introduced in Section 4), and adding axioms and rules that allow to syntactically transform every formula of SLp˚, ´q into such Boolean combinations. This transformation is introduced in Section 5 and in Section 6: the former section shows how to eliminate the separating conjunction ˚, whereas the latter one treat the separating implication ´. Schematically, for a valid formula ϕ, we conclude $ ϕ from $ ϕ 1 and $ ϕ 1 ô ϕ, where ϕ 1 is a Boolean combination of core formulae. Our methodology leads to a calculus that is divided in three parts: (1) the axiomatisation of Boolean combinations of core formulae, (2) axioms and inference rules to simulate a bottomup elimination of separating the separating conjunction, and (3) axioms and inference rules to simulate a bottom-up elimination of the magic wand. Such an approach that consists in first axiomatising a syntactic fragment of the whole logic (in our case, the core formulae), is best described in [START_REF] Doumane | Constructive completeness for the linear-time µ-calculus[END_REF] (see also [START_REF] Walukiewicz | Completeness of Kozen's axiomatisation of the propositional µ-calculus[END_REF][START_REF] Van Benthem | Logical Dynamics of Information and Interaction[END_REF][START_REF] Wang | On axiomatizations of public announcement logic[END_REF][START_REF] Lück | Axiomatizations of team logics[END_REF][START_REF] Demri | Axiomatising logics with separating conjunction and modalities[END_REF]). Section 7 compares works from the literature with our contribution, either for separation logics (abstract versions, fragments, etc.) or for knowledge logics for which the axiomatisation has been performed by using a reduction to a strict syntactic fragment though expressively complete.

This paper is the complete version of the first part of [START_REF] Demri | Internal calculi for separation logics[END_REF] dedicated to quantifierfree separation logic SLp˚, ´q. The complete version of the second part of [START_REF] Demri | Internal calculi for separation logics[END_REF] dedicated to the new separation logic SLp˚, D:ùq is too long to be included in the present document. A technical appendix contains syntactic derivations omitted from the body of the paper.

Preliminaries

2.1. Quantifier-free separation logic. We present the quantifier-free separation logic SLp˚, ´q, that includes standard features such as the separating conjunction ˚, the separating implication ´and closure under Boolean connectives. Let VAR " tx, y, . . .u be a countably infinite set of program variables. The formulae ϕ of SLp˚, ´q and its atomic formulae π are built from the grammars below where x, y P VAR. The connectives ñ, ô and _ are defined as usually. In the heaplet semantics, the formulae of SLp˚, ´q are interpreted on memory states that are pairs ps, hq where s : VAR Ñ LOC is a variable valuation (the store) from the set of program variables to a countably infinite set of locations LOC " t 0 , 1 , 2 , . . .u, whereas h : LOC Ñ fin LOC is a partial function with finite domain (the heap). We write domphq to denote its domain and ranphq to denote its range. A memory cell of h is understood as a pair of locations p , 1 q such that P domphq and 1 " hp q. As usual, the heaps h 1 and h 2 are said to be disjoint, written h 1 7h 2 , if domph 1 q X domph 2 q " H; when this holds, we write h 1 `h2 to denote the heap corresponding to the disjoint union of the graphs of h 1 and h 2 , hence domph 1 `h2 q " domph 1 q Z domph 2 q.

When the domains of h 1 and h 2 are not disjoint, the composition h 1 `h2 is not defined. Moreover, we write h 1 Ď h to denote that domph 1 q Ď domphq and for all locations P domph 1 q, we have h 1 p q " hp q. If h 1 Ď h then h 1 is said to be a subheap of h. The satisfaction relation |ù is defined as follows (we omit standard clauses for the Boolean connectives and ^): def ô there are h 1 , h 2 such that h 1 7h 2 , ph 1 `h2 q " h, ps, h 1 q |ù ϕ 1 and ps, h 2 q |ù ϕ 2 , ps, hq |ù ϕ 1 ´ϕ2 def ô for all h 1 such that h 1 7h and ps, h 1 q |ù ϕ 1 , we have ps, h `h1 q |ù ϕ 2 .

We denote with K the contradiction x ‰ x, and with J its negation K. The septraction operator f (kind of dual of ´), defined by ϕ f ψ def " pϕ ´ ψq, has the following semantics:

ps, hq |ù ϕ f ψ def ô there is a heap h 1 such that h7h 1 , ps, h 1 q |ù ϕ, and ps, h `h1 q |ù ψ.

We adopt the standard precedence between classical connectives, and extend it for the connectives of separation logic as follows: t u ą t^, _, ˚u ą tñ, ´, fu ą tôu. Notice that the separating conjunction ˚has a higher precedence than the separating implication ´, and it has the same precedence as the (classical) conjunction ^. For instance, ϕ ˚ψ ñ χ and ϕ ´ψ ˚ψ stand for pϕ ˚ψq ñ χ and p ϕq ´pψ ˚ψq, respectively.

A formula ϕ is valid if ps, hq |ù ϕ for all memory states ps, hq (and we write |ù ϕ). For a complete description of separation logic, see e.g. [START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF]. Given a set of formulae Γ, we write Γ |ù ϕ (semantical entailment) whenever ps, hq |ù ϕ holds for every memory state ps, hq satisfying every formula in Γ.

It is worth noting that quantifier-free SLp˚, ´q axiomatised in the paper admits a PSpace-complete validity problem, see e.g. [START_REF] Calcagno | Computability and complexity results for a spatial assertion language for data structures[END_REF], and should not be confused with propositional separation logic with the stack-heap models shown undecidable in [START_REF] Brotherston | Undecidability of propositional separation logic and its neighbours[END_REF]Corollary 5.1] (see also [START_REF] Demri | Separation logics and modalities: A survey[END_REF]Section 4]), in which there are propositional variables interpreted by sets of memory states.

2.2. Core formulae. We introduce the following well-known shortcuts, that play an important role in the sequel. Let x P VAR and β P N.

Shortcut:

Definition: Semantics: We use size"β as a shorthand for sizeěβ ^ sizeěβ`1. We also write cardpXq to denote the cardinality of the set X.

The core formulae are expressions of the form x " y, allocpxq, x ãÑ y and size ě β, where x, y P VAR and β P N. As we can see, the core formulae are simple SLp˚, ´q formulae.

It is well-known, see e.g. [START_REF] Yang | Local Reasoning for Stateful Programs[END_REF][START_REF] Lozes | Expressivité des Logiques Spatiales[END_REF], that these formulae capture essential properties of the memory states. In particular, every formula of SLp˚, ´q is logically equivalent to a Boolean combination of core formulae [START_REF] Lozes | Expressivité des Logiques Spatiales[END_REF].

As a simple but crucial insight, since the core formulae are formulae of SLp˚, ´q, we can freely use them to help us defining the proof system for SLp˚, ´q, and preventing us from going outside the original language. Having this in mind, the resulting proof system is Hilbert-style and completely internal (the formal definition of these types of systems is recalled below).

Given X Ď fin VAR and α P N, we define CorepX, αq as the set tx " y, allocpxq, x ãÑ y, size ě β | x, y P X, β P r0, αsu. BoolpCorepX, αqq is defined as the set of Boolean combinations of formulae from CorepX, αq, whereas ConjpCorepX, αqq is the set of conjunctions of literals built upon CorepX, αq. As usual, a literal is understood as a core formula or its negation. Let ϕ " L 1 ^¨¨¨^L n P ConjpCorepX, αqq be a conjunction of literals L 1 , . . . , L n . We write Ltpϕq to denote tL 1 , . . . , L n u. In forthcoming developments, we are interested in the maximum β (if any) of formulae of the form size ě β occurring positively in a conjunction of literals, if any. For this reason, we write max size pϕq for maxptβ P N | size ě β P Ltpϕqu Y t0uq. For instance, given ϕ " allocpxq ^size ě 2 ^ size ě 4, we have Ltpϕq " tallocpxq, size ě 2, size ě 4u, and max size pϕq " 2. Given two conjunctions of literals ϕ P ConjpCorepX, α 1 qq and ψ P ConjpCorepX, α 2 qq, ψ Ď Lt ϕ stands for Ltpψq Ď Ltpϕq. Finally, we introduce a few more shortcuts and we write

' χ Ď Lt tϕ | ψu for "χ Ď Lt ϕ or χ Ď Lt ψ", ' tϕ | ψu Ď Lt χ for "ϕ Ď Lt χ or ψ Ď Lt χ".
' χ Ď Lt tϕ ; ψu for "χ Ď Lt ϕ and χ Ď Lt ψ", Given a finite set of formulae Γ " tϕ 1 , . . . , ϕ n u, we write Ź Γ as a shorthand for ϕ 1 ^¨¨¨^ϕ n . Similarly, ˚Γ stands for ϕ 1 ˚. . . ˚ϕn . It is important to notice that, similarly to the classical conjunction, the separating conjunction ˚is associative and commutative (see the axioms (A 8) and (A 7) in Figure 1), and therefore the semantics of ˚Γ is uniquely defined, regardless of the choice of ordering for ϕ 1 , . . . , ϕ n . 2.3. Hilbert-style proof systems. A Hilbert-style proof system H is defined as a set of tuples ppΦ 1 , . . . , Φ n q, Ψq with n ě 0, where Φ 1 , . . . , Φ n , Ψ are formula schemata (a.k.a axiom schemata). When n ě 1, ppΦ 1 , . . . , Φ n q, Ψq is called an inference rule, otherwise it is an axiom. As usual, formula schemata generalise the notion of formulae by allowing metavariables for formulae (typically ϕ, ψ, χ), for program variables (typically x, y, z) or for any type of syntactic objects in formulae, depending on the context. The set of formulae derivable from H is the least set S such that for all ppΦ 1 , . . . , Φ n q, Ψq P H and for all substitutions σ, if Φ 1 σ, . . . , Φ n σ P S then Ψσ P S. We write $ H ϕ if ϕ is derivable from H. A proof system H is sound if all derivable formulae are valid. H is complete if all valid formulae are derivable. We say that H is adequate whenever it is both sound and complete. Lastly, H is strongly complete whenever for all sets of formulae Γ and formulae ϕ, we have Γ |ù ϕ (semantical entailment) if and only if $ HYΓ ϕ.

Interestingly enough, there is no strongly complete proof system for SLp˚, ´q, as strong completeness implies compactness and separation logic is not compact. Indeed, tsize ě β | β P Nu is unsatisfiable, as heaps have finite domains, but all finite subsets

˚-Intro: ϕ ñ χ ϕ ˚ψ ñ χ ˚ψ ˚-Adj: ϕ ˚ψ ñ χ ϕ ñ pψ ´χq
´-Adj: ϕ ñ pψ ´χq ϕ ˚ψ ñ χ (axioms and modus ponens from propositional calculus are omitted) of it are satisfiable. Even for the weaker notion of completeness, deriving an Hilbertstyle axiomatisation for SLp˚, ´q remains challenging. Indeed, the satisfiability problem for SLp˚, ´q reduces to its validity problem, making SLp˚, ´q an unusual logic from a proof-theoretical point of view. Let us develop a bit further this point.

Let ϕ be a formula built over program variables in X Ď fin VAR, and let « be an equivalence relation on X. The formula ψ « def " pemp ^Źx«y x " y ^Źxffy x ‰ yq ñ pϕ f Jq can be shown to be valid iff for every store s agreeing on «, there is a heap h such that ps, hq |ù ϕ. It is known that for all stores s, s 1 agreeing on «, and every heap h, the memory states ps, hq and ps 1 , hq satisfy the same set of formulae having variables from X. Since the antecedent of ψ « is satisfiable, we conclude that ψ « is valid iff there are a store s agreeing on « and a heap h such that ps, hq |ù ϕ. To check whether ϕ is satisfiable, it is sufficient to find an equivalence relation « on X such that ψ « is valid. As the number of equivalence relations on X is finite, we obtain a Turing reduction from satisfiability to validity. Consequently, it is not possible to define sound and complete axiom systems for any extension of SLp˚, ´q admitting an undecidable validity problem (as long as there is a reduction from satisfiability to validity, as above). A good example is the logic SLp˚, ´, lsq [START_REF] Demri | The effects of adding reachability predicates in propositional separation logic[END_REF] (extension of SLp˚, ´q with the well-known list-segment predicate ls); see also the first-order separation logic in [START_REF] Brochenin | On the almighty wand[END_REF]. Indeed, to obtain a sound and complete axiom system, the validity problem has to be recursively enumerable (r.e.). However, this would imply that the satisfiability problem is also r.e.. As a formula ϕ is not valid if and only if ϕ is satisfiable, we then conclude that the set of valid formulae is recursive, hence decidable, a contradiction.

Hilbert-style proof system for SLp˚, ´q

In Figure 1, we present the proof system H C p˚, ´q that shall be shown to be sound and complete for quantifier-free separation logic SLp˚, ´q. H C p˚, ´q and all the subsequent fragments of H C p˚, ´q contain the axiom schemata and modus ponens for the propositional calculus (we omit these rules in the presentation). In the axioms (A 14 ), (A 21 ) and (A 23 ), the notation ϕ đrBs refers to the axiom schema ϕ assuming that the Boolean condition B holds. We highlight the fact that, in these three axioms, B is a simple syntactical condition.

In the axiom (A 19 ), a . ´b, where a, b P N, stands for maxp0, a ´bq. Though the full proof system H C p˚, ´q is presented quite early in the paper, its final design remains the outcome of a refined analysis on principles behind SLp˚, ´q tautologies. Fortunately, we do not start from scratch as the calculus must contain the axioms and rules from the Hilbert-style proof system for Boolean BI [START_REF] Galmiche | Expressivity properties of boolean BI through relational models[END_REF]. At first glance the system H C p˚, ´q may seem quite arbitrary, but the role of the different axioms shall become clearer during the paper. In designing the system, we tried to define axioms that are as simple as possible, which helps highlighting the most fundamental properties of SLp˚, ´q. Note that we have not formally proved that our proof system H C p˚, ´q is minimal (though we have tried our best to have a small amount of small axioms). Such an investigation would be out of the scope of the paper, mainly for lack of space. The standard way to proceed would be to design models different from memory states and to establish that all axioms but one are valid (which would prove that this axiom is needed when all the other axioms are present).

We insist: the core formulae in H C p˚, ´q should be understood as mere abbreviations, which makes all the axioms in Figure 1 belong to the original language of SLp˚, ´q. In order to show the completeness of H C p˚, ´q, we first establish the completeness for subsystems of H C p˚, ´q, with respect to syntactical fragments of SLp˚, ´q. In particular, we consider ' H C : an adequate proof system for the propositional logic of core formulae (see Figure 4), ' H C p˚q: an extension of H C that is adequate for the logic SLp˚, allocq, i.e. the logic obtained from SLp˚, ´q by removing the separating implication ´at the price of adding the formula allocpxq (see Figure 5). ' The full H C p˚, ´q, which can be seen as an extension of H C p˚q that allows to reason about the separating implication (see Figure 7). For the completeness of H C and H C p˚q, we add intermediate axioms that reveal to be useless when the full proof system H C p˚, ´q is considered, as they become derivable. By convention, the axioms whose name is of the form A ? i are axioms that remain in H C p˚, ´q (see Figure 1) whereas those named I ? i are intermediate axioms that are instrumental for the proof of completeness of a subsystem among H C and H C p˚q (and therefore none of them occur in Figure 1). The numbering of the axioms in Figure 1 is not consecutive, as intermediate axioms shall be placed within the holes. It is worth noting that the axiom (A 13 ) had an intermediate status in [START_REF] Demri | Internal calculi for separation logics[END_REF] but we realised that actually this axiom does need to be considered as a first-class axiom in the proof system H C p˚, ´q.

The choice of introducing H C and H C p˚q naturally follows from the main steps required for the completeness of H C p˚, ´q. In particular, the main "task" of H C p˚q is to produce a bottom-up elimination of the separating conjunction ˚, at the price of introducing Boolean combinations of core formulae, which can be proved valid thanks to H C . Similarly, the axioms and rules added to H C p˚q to define H C p˚, ´q are dedicated to perform a bottom-up elimination of the separating implication. A merit of this methodology is that only the completeness of the calculus H C is proved using the standard countermodel method. The additional steps required to prove the completeness of H C p˚q and H C p˚, ´q are (almost) completely syntactical. For instance, to show the completeness of H C p˚q, we consider arbitrary Boolean combinations of core formulae ϕ and ψ, and exhibiting a Boolean combination of core formulae χ such that ϕ ˚ψ ô χ is valid. We show that this validity can be syntactically proved within H C p˚q, and then rely on the fact that H C is complete for Boolean combination of core formulae to deduce that H C p˚q is complete for SLp˚, allocq.

Along the paper, we shall have the opportunity to explain the intuition between the axioms and rules. Below, we provide a few hints. The axioms (A C 1 )-(A C 4 ) deal with the core formulae and are quite immediate to grasp. More interestingly, whereas the axioms (A 7)-(A 11 ) are quite general about separating conjunction and are inherited from Boolean BI, the axioms (A 14 )-(A 20 ) state how separating conjunction behaves with the core formulae. As for Boolean combinations of core formulae involved in the axioms (A C 1 )-(A C 4 ), these axioms (A 14 )-(A 20 ) are also not difficult to understand. Besides, the inference rules ˚-Adj and ´-Adj simply reflect that separating conjunction and separating implication are adjoint operators, and are taken from Boolean BI, see e.g. [START_REF] Galmiche | Expressivity properties of boolean BI through relational models[END_REF]. The axioms (A 21 )-(A 23 ) dedicated to the interaction between the separating implication and core formulae are expressed with the help of the septraction operator f to ease the understanding but as well-known, septraction is defined with the help of the separating implication and Boolean negation. For instance, the axiom (A 22 ) states that it is always possible to add some one-memory-cell heap h 1 to some heap h while none of the variables from a finite set X is allocated in h 1 . This natural property in our framework would not hold in general if LOC were not infinite. Obviously, the septraction f is also understood as an abbreviation.

As a sanity check, we show that the proof system H C p˚, ´q is sound with respect to SLp˚, ´q. The proof does not pose any specific difficulty (as usual with most soundness proofs) but this is the opportunity for the reader to further get familiar with the axioms and rules from H C p˚, ´q.

Lemma 3.1. H C p˚, ´q is sound.

The validity of the axioms (A C

1 ), (A C 2 ), (A C 3 ) and (A C 4 ) is straightforward. Moreover, the validity of the axioms (A 7), (A 8) and (A 11 ) and the three inference rules (˚-Intro, ˚-Adj and ´-Adj) is inherited from Boolean BI (see [START_REF] Brotherston | Parametric completeness for separation theories[END_REF] and [GLW06, Section 2]). Below, we show the validity of the remaining axioms, thus proving Lemma 3.1.

Validity of the axiom (A 13

). Let us show that pallocpxq˚allocpxqq is not satisfiable. Ad absurdum, suppose there is a memory state ps, hq such that ps, hq |ù pallocpxq ˚allocpxqq. By definition of |ù, there are h 1 , h 2 such that h 1 Kh 2 , ph 1 `h2 q " h, ps, h 1 q |ù allocpxq and ps, h 2 q |ù allocpxq. Thus, spxq P domph 1 q and spxq P domph 2 q, which leads to a contradiction with h 1 Kh 2 .

Validity of the axiom (A 14 ). The proof of the validity of every instantiation of (A 14 ) is similar (and quite easy), therefore we show just the case with x ãÑ y ˚J ñ x ãÑ y. Suppose ps, hq |ù x ãÑ y ˚J. Then, there is a subheap h 1 Ď h such that ps, h 1 q |ù x ãÑ y. Hence, h 1 pspxqq " spyq. As h 1 Ď h, we obtain hpspxqq " spyq, which implies ps, hq |ù x ãÑ y.

Validity of the axiom (A 15 ). Suppose ps, hq |ù allocpxq˚ allocpxq. Then, there are two disjoint heaps h 1 , h 2 such that h " h 1 `h2 , ps, h 1 q |ù allocpxq and ps, h 2 q |ù allocpxq. Then spxq R domph 1 q and spxq R domph 2 q. Since h " h 1 `h2 , domphq " domph 1 q Y domph 2 q and therefore spxq R domphq. We conclude that ps, hq |ù allocpxq.

Validity of the axiom (A 16

). Suppose ps, hq |ù pallocpxq ^ x ãÑ yq ˚J. Then there is a subheap h 1 Ď h such that ps, h 1 q |ù allocpxq ^ x ãÑ y. Hence, spxq P domph 1 q and 1 emp ñ size ě 1 ( I) and def. of size ě 1 2 allocpxq ^size " 1 ñ size ě 2 (^Er) " tspxq Þ Ñ hpspxqqu As spxq P domphq, h 1 Ď h and ps, h 1 q |ù allocpxq ^size " 1. We define h 2 as the unique heap such that h 2 `h1 " h. As ps, h 2 q |ù J, we have ps, hq |ù pallocpxq ^size " 1q ˚J.

3 emp ˚pallocpxq ^size " 1q ñ size ě 1 ˚ size ě 2 ˚-
The proof of axiom (A 18 ) is similar to the one of (A 17 ), and hence omitted herein.

Validity of the axiom (A 19

). Suppose ps, hq |ù size ě β 1 ˚ size ě β 2 , where β 1 , β 2 ě 0. Since size ě 0 is not satisfiable, this implies that necessarily β 1 , β 2 ě 1. Hence, the axiom (A 19 ) is trivially valid when β 1 " 0 or β 2 " 0. In the sequel, β 1 , β 2 ě 1. Then, there are heaps h 1 , h 2 such that h 1 7h 2 , h 1 `h2 " h, ps, h 1 q |ù size ě β 1 and ps, h 2 q |ù size ě β 2 . By definition, cardpdomph 1 qq ď β 1 ´1 and cardpdomph 2 qq ď β 2 ´1. Since domphq " domph 1 q Y domph 2 q, we obtain cardpdomphqq ď β 1 `β2 ´2, which implies ps, hq |ù size ě β 1 `β2 . ´1.

Validity of the axiom (A 20 ). Suppose ps, hq |ù allocpxq ^allocpyq ^x ‰ y. By definition, spxq ‰ spyq, and spxq, spyq P domphq. Hence, cardpdomphqq ě 2, and ps, hq |ù size ě 2.

Validity of the axiom (A 21 ). Let X Ď fin VAR and ps, hq be a memory state. Let h 1 be a heap of size one such that h 1 p q " for some R domphq Y spXq. We write spXq to denote the set tspxq | x P Xu. Trivially ps, h 1 q |ù size " 1 ^ŹxPX allocpxq. Moreover h 1 7h holds, hence h 1 `h2 is defined and ps, h`h 1 q |ù J. Then, ps, hq |ù psize " 1^Ź xPX allocpxqqfJ.

Validity of the axiom (A 22 ). Suppose ps, hq |ù allocpxq. Let h 1 be the heap of size one such that h 1 pspxqq " spyq. Trivially, ps, h 1 q |ù x ãÑ y ^size " 1. Moreover, as spxq R domphq, h 1 7h holds. Therefore, h 1 `h is defined, and ps, h `h1 q |ù J. Then, ps, hq |ù px ãÑ y ^size " 1q f J.

Validity of the axiom (A 23 ). Suppose ps, hq |ù allocpxq. Let X Ď fin VAR and h 1 def " tspxq Þ Ñ u, where R spXq. Hence, ps, h 1 q |ù allocpxq ^size " 1 ^ŹyPX x ãÑ y. Since spxq R domphq, h 1 7h. Therefore, the heap h `h1 is defined and ps, h `h1 q |ù J. Then, ps, hq |ù pallocpxq ^size " 1 ^ŹyPX x ãÑ yq f J.

Example 3.2. To further familiarise with the axioms and the rules of H C p˚, ´q, in Figure 2, we present a proof of emp ñ `allocpxq ^size " 1 ´ size ě 2 ˘. In the proof, a line "j | χ A, i 1 , . . . , i k " states that χ is a theorem denoted by the index j and derivable by the axiom or the rule A. If A is a rule, the indices i 1 , . . . , i k ă j denote the theorems used as premises in order to derive χ. When a formula is obtained as a propositional tautology or by propositional reasoning from other formulae, we may write "PC" (standing for short 'Propositional Calculus'). Similarly, we provide any useful piece of information justifying the derivation, such as "Ind. hypothesis", "See . . . " or "Previously derived". In the example, we use the rule ˚-Adj, which together with the rule ´-Adj states that the connectives ˚and ´are adjoint operators, as well as the axiom (A 19 ), stating that cardpdomphqq ď β 1 `β2 holds whenever a heap h can be split into two subheaps whose domains have less than β 1 `1 and β 2 `1 elements, respectively. We also use the following theorems and rules:

(^Er) ψ ^ϕ ñ ϕ ( I) ϕ ñ ϕ ñ-Tr: ϕ ñ χ χ ñ ψ ϕ ñ ψ ˚-Ilr: ϕ ñ ϕ 1 ψ ñ ψ 1 ϕ ˚ψ ñ ϕ 1 ˚ψ1
The first two theorems and the first rule are derivable by pure propositional reasoning. By way of example, we show that the inference rule ˚-Ilr is admissible.

1 ϕ ñ ϕ 1 Hypothesis 2 ψ ñ ψ 1 Hypothesis 3 ϕ ˚ψ ñ ϕ 1 ˚ψ ˚-Intro, 1 4 ψ ˚ϕ1 ñ ψ 1 ˚ϕ1 ˚-Intro, 2 5 ϕ 1 ˚ψ ñ ψ ˚ϕ1 (A 7 ) 6 ψ 1 ˚ϕ1 ñ ϕ 1 ˚ψ1 (A 7 ) 7 ϕ ˚ψ ñ ψ ˚ϕ1 ñ-Tr, 3, 5 8 ϕ ˚ψ ñ ϕ 1 ˚ψ1 ñ-Tr twice, 7, 4, 6
Remark 3.3. Note that an alternative proof of theorem 5 in Figure 2 consists in applying ñ-Tr to theorem 2 and emp ˚`allocpxq ^size"1 ˘ñ allocpxq ^size"1, which holds by the axioms (A 11 ) and (A 7).

Example 3.4. In Figure 3, we develop the proof of emp ñ pallocpxq^size " 1´size " 1q as a more complete example. We use the following theorems and rules:

(´^-DistrL) pϕ ´ψq ^pϕ ´χq ñ pϕ ´ψ ^χq (^JIL) ϕ ñ J ^ϕ ^-InfL: ϕ ñ χ ϕ ^ψ ñ χ ^ψ

The rightmost axiom and the only rule are derivable by propositional reasoning. We show the admissibility of the axiom (´^-DistrL). Main ingredients of the method. Before showing completeness of H C p˚, ´q, let us recall the key ingredients of the method we follow, not only to provide a vade mecum for axiomatising other separation logics (which, in the second part of [START_REF] Demri | Internal calculi for separation logics[END_REF], we illustrate on the newly introduced logic SLp˚, D:ùq), but also to identify the essential features and where variations are still possible. The Hilbert-style axiomatisation of SLp˚, ´q shall culminate with Theorem 6.5 that states the adequateness of the proof system H C p˚, ´q.

In order to axiomatise SLp˚, ´q internally, as already emphasised several times, the core formulae play an essential role. The main properties of these formulae is that their Boolean combinations capture the full logic SLp˚, ´q [START_REF] Lozes | Expressivité des Logiques Spatiales[END_REF] and all the core formulae can be expressed in SLp˚, ´q. Generally speaking, our axiom system naturally leads to a form (recall that size " β is a shortcut for size ě β ^ size ě β`1)

Figure 3: A proof of emp ñ pallocpxq ^size " 1 ´size " 1q.

of constructive completeness, as advocated in [START_REF] Doumane | Constructive completeness for the linear-time µ-calculus[END_REF][START_REF] Lück | Axiomatizations of team logics[END_REF]: the axiomatisation provides proof-theoretical means to transform any formula into an equivalent Boolean combination of core formulae, and it contains also a part dedicated to the derivation of valid Boolean combinations of core formulae (understood as a syntactical fragment of SLp˚, ´q). What is specific to each logic is the design of the set of core formulae and in the case of SLp˚, ´q, this was already known since [START_REF] Lozes | Expressivité des Logiques Spatiales[END_REF]. Derivations in the proof system H C p˚, ´q shall simulate the bottom-up elimination of separating connectives (see forthcoming Lemmata 5.5 and 6.2) when the arguments are two Boolean combinations of core formulae. To do so, H C p˚, ´q contains axiom schemas that perform such an elimination in multiple "small-step" derivations, e.g. by deriving a single allocpxq predicate from allocpxq ˚J (with forthcoming intermediate axiom (I 12 )). Alternatively, it would have been possible to include "big-step" axiom schemas that, given the two Boolean combinations of core formulae, derive the equivalent formula in one single derivation step (see e.g. [START_REF] Echenim | The Bernays-Schönfinkel-Ramsey class of separation logic on arbitrary domains[END_REF]). The main difference is that small-step axioms provide a simpler understanding of the key properties of the logic.

(A C 1 ) x " x (A C
2 ) ϕ ^x " y ñ ϕryÐxs (A C

3 ) x ãÑ y ñ allocpxq 

(A C 4 ) x ãÑ y ^x ãÑ z ñ y " z (I C 5 ) size ě β`1 ñ size ě β (I C 6 ) Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ size ě cardpXq

A simple calculus for the core formulae

To axiomatise SLp˚, ´q, we start by introducing the proof system H C dedicated to Boolean combinations of core formulae, see Figure 4. As explained earlier, it also contains the axiom schemata and modus ponens for the propositional calculus. Moreover, the axioms whose name is of the form A C i are axioms that remain in the global system for SLp˚, ´q, whereas those named I C i are intermediate axioms that are removed when considering the axioms dealing with the separating connectives. As explained before, the intermediate axioms are handy to establish results about the axiomatisation of Boolean combinations of core formulae but are not needed when all the axioms and rules of H C p˚, ´q are considered.

In the axiom (A C 2 ), ϕryÐxs stands for the formula obtained from ϕ by replacing with the variable x every occurrence of y. Let ps, hq be a memory state. The axioms state that " is an equivalence relation (first two axioms), hpspxqq " spyq implies spxq P domphq (axiom (A C

3 )) and that h is a (partial) function (axiom (A C 4 )). Furthermore, there are two intermediate axioms about size formulae: (I C 5 ) states that if domphq has at least β`1 elements, then it has at least β elements, whereas (I C 6 ) states instead that if there are β distinct memory cells corresponding to program variables, then indeed domphq ě β. It is easy to check that H C is sound (see also Lemma 3.1). In order to establish its completeness with respect to Boolean combinations of core formulae, we first show that H C is complete for a subclass of Boolean combinations of core formulae, namely for core types defined below. Then, we show that every formula in BoolpCorepX, αqq is provably equivalent to a disjunction of core types (Lemma 4.2).

Introduction to core types. Let XĎ fin VAR and α P N `. We write CoreTypespX, αq to denote the set of core types defined by 2 ), there is an equivalence relation « on X such that x « y iff x " y occurs positively in ϕ. We write rxs to denote the equivalence class of x with respect to «. By the axioms (A C

2 ) and (A C 4 ), there is a partial map f : pX{ «q Ñ pX{ «q on equivalence classes such that x ãÑ y occurs positively iff f prxsq is defined and f prxsq " rys. Let D " trxs | allocpxq occurs positively in ϕu. By the axiom (A C

3 ), dompf q Ď D. Let n " max size pϕq. We recall that, by definition of max size p.q, n is the greatest β such that size ě β occurs positively in ϕ (or zero if there are none).

Let us show that n ě cardpDq. Ad absurdum, suppose that n ă cardpDq. From the axiom (I C 6 ), $ H C ϕ ñ size ě cardpDq and by definition of n and the fact that α ě cardpXq ě cardpDq, $ H C ϕ ñ size ě n and $ H C ϕ ñ psize ě pn `1qq since both size ě n and psize ě pn `1qq (possibly negated) occur in ϕ as α ě cardpXq. By using the axiom (I C 5 ) and propositional reasoning, we can get that $ H C ϕ ñ psize ě cardpDqq since $ H C ϕ ñ psize ě pn `1qq, which leads to a contradiction. Consequently, n ě cardpDq.

Let 0 , 1 , . . . , n P LOC be n `1 distinct locations, and let us fix an enumeration C 1 , . . . , C cardpDq on the equivalence classes of «. Let ps, hq be defined by

' spxq def " i if rxs is the ith equivalence class C i , ' hp i q def " j if 0 ă i ď cardpDq
and the ith equivalence class is mapped to the jth one by f , ' hp i q def " 0 if either 0 ă i ď cardpDq and the ith equivalence class is not in the domain of f , or i ą cardpDq. Then, by construction, ps, hq satisfies all positive literals of the form x " y or x ãÑ y or allocpxq that occur positively in ϕ, and all negative literals that occur in ϕ. It also satisfies size ě n, falsifies size ě n `1 (assuming n `1 ď α), and by the axiom (I C 5 ), it satisfies all size literals in ϕ.

By classical reasoning, one can show that every ϕ P BoolpCorepX, αqq is provably equivalent to a disjunction of core types. Together with Lemma 4.1, this implies that H C is adequate with respect to the propositional logic of core formulae.

To prove forthcoming Theorem 4.3, let us first establish the following simple lemma.

Lemma 4.2 (Core Types Lemma). Let ϕ P BoolpCorepX, αqq. There is a disjunction ψ " ψ 1 _ . . . _ ψ n with ψ i P CoreTypespX, maxpcardpXq, αqq for all i such that $ H C ϕ ô ψ.

Proof. Let ψ 1 _ . . . _ ψ n be a formula in disjunctive normal form logically equivalent to ϕ. If ψ i is not a core type in CoreTypespX, maxpcardpXq, αqq, there is a core formula χ P CorepX, maxpcardpXq, αqq that occurs neither positively nor negatively in ψ i . Replacing ψ i with pψ i ^χq _ pψ i ^ χq, and repeating this for all missing core formulae and for all i, we obtain a disjunction of core types of the expected form. Since all equivalences follow from pure propositional reasoning, the equivalence between ϕ and the obtained formula can be proved in H C .

Theorem 4.3 (Adequacy). A Boolean combination of core formulae ϕ is valid iff $ H C ϕ.
Proof. Let ϕ be a Boolean combination of core formulae in CoreTypespX, αq for some X and α. As all the axioms are valid (Lemma 3.1), $ H C ϕ implies that ϕ is valid. Let us assume that ϕ is valid, and let us prove that $ H C ϕ. By Lemma 4.2, there is a disjunction ψ " ψ 1 _ . . . _ ψ n of core types in CoreTypespX, maxpcardpXq, αqq such that $ H C p ϕq ô ψ. As ϕ is valid, the formulae ϕ, ψ and all the ψ i 's are unsatisfiable. By Lemma 4.1, $ H C ψ i ñ K, for all i. By propositional reasoning, $ H C ϕ.

Axiomatisation for SLp˚, allocq

We write SLp˚, allocq to denote the fragment of SLp˚, ´q in which the separating implication is removed at the price of adding the atomic formulae of the form allocpxq. We define an Hilbert-style axiomatisation for SLp˚, allocq, obtained by enriching H C with axioms and one inference rule that handle the separating conjunction ˚, leading to the proof system H C p˚q. 

(A 18 ) emp ñ size " 1 ˚J (A 19 ) size ě β1 ˚ size ě β2 ñ size ě β1`β2 . ´1 (A 20 ) allocpxq ^allocpyq ^x ‰ y ñ size ě 2 (a .
´b " maxp0, a ´bq) Fundamentally, as we work now within SLp˚, allocq, the core formula size ě β can be encoded in the logic. According to its definition, given in Section 2.2, we see size ě 0 as J, size ě 1 as emp and size ě β`2 as emp ˚size ě β`1.

The axioms and the rule added to H C in order to define H C p˚q are presented in Figure 5. Their soundness has been proved in Lemma 3.1, with the exception of the three intermediate axioms (I 9), (I 10 ) and (I 12 ), which are used for the completeness of H C p˚q with respect to SLp˚, allocq, but are discharged from the proof system for SLp˚, ´q (Figure 1), as they become derivable (Lemma 6.1).

Lemma 5.1. H C p˚q is sound.

Proof. The axioms (I 9) and (I 10 ) are inherited from Boolean BI (see [START_REF] Brotherston | Parametric completeness for separation theories[END_REF] and [GLW06, Section 2]). The soundness of (I 12 ) is straightforward. Indeed, suppose ps, hq |ù allocpxq˚J. So, there is h 1 Ďh such that ps, h 1 q |ù allocpxq. By definition of allocpxq, spxq P domph 1 q. By h 1 Ďh, spxq P domphq. We conclude that ps, hq |ù allocpxq.

Let us look further at the axioms in Figure 5. The axioms deal with the commutative monoid properties of p˚, empq and its distributivity over _ (as for Boolean BI, see e.g. [START_REF] Galmiche | Expressivity properties of boolean BI through relational models[END_REF]). The rule ˚-Intro, sometimes called "frame rule" by analogy with the rule of the same name in program logic, states that logical equivalence is a congruence for ˚. H C p˚q is designed with the idea of being as simple as possible. On one side, this helps understanding the key ingredients of SLp˚, allocq. On the other side, this makes the proof of completeness of H C p˚q more challenging. To work towards this proof while familiarising with the new axioms, we first show a set of intermediate theorems (see Appendix A).

Lemma 5.2. The following rules and axioms are admissible in H C p˚q: (I 5.2.1 ) x " y ^pϕ ˚ψq ñ pϕ ^x " yq ˚ψ, where " stands for " or ‰. (I 5.2.2 ) x " y ^ppϕ ^allocpxqq ˚ψq ñ pϕ ^allocpyqq ˚ψ. (I 5.2.3 ) pϕ ^allocpxqq ˚ψ ñ ϕ ˚pψ ^ allocpxqq. (I 5.2.4 ) allocpxq ^pϕ ˚ψq ñ pϕ ^ allocpxqq ˚ψ. (I 5.2.5 ) allocpxq ^pϕ ˚p allocpxq ^ψqq ñ pϕ ^allocpxqq ˚p allocpxq ^ψq (I 5.2.6 ) x ãÑ y ^ppϕ ^allocpxqq ˚ψq ñ pϕ ^x ãÑ yq ˚ψ. (I 5.2.7 ) x ãÑ y ^pϕ ˚ψq ñ pϕ ^ x ãÑ yq ˚ψ.

In H C p˚q, the axioms (I C 5 ) and (I C 6 ) of H C are superfluous and can be removed. Indeed, notice that both axioms do not appear in the proof system H C p˚, ´q given in Figure 1.

Lemma 5.3. The axioms (I C 5 ) and (I C 6 ) are derivable in H C p˚q. Validity of (I C 5 ). The proof is by induction on β. base case: β " 0: The instance of the axiom (I C 5 ) with β " 0 amounts to derive the formula size ě 1 ñ size ě 0. By definition size ě 1 " emp and size ě 0 " J, and therefore, by propositional reasoning, $ H C p˚q size ě 1 ñ size ě 0. induction step: β ą 0: By induction hypothesis, assume $ H C p˚q size ě β ñ size ě β´1.

The formula size ě β `1 ñ size ě β is derived as follows:

1 size ě β ñ size ě β ´1 Induction hypothesis 2 psize ě βq ˚ emp ñ psize ě β ´1q ˚ emp ˚-Intro, 1 3 size ě β `1 ñ size ě β 2, def. of size
Before proving the validity of (I C 6 ), we derive the intermediate theorem below. Let X Ď fin VAR. (I 5.3.1 ) Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ p˚x PX pallocpxq ^size " 1qq ˚J. Validity of (I 5.3.1 ). The proof is by induction on the size of X. We distinguish two base cases, for cardpXq " 1 and cardpXq " 0. base case: cardpXq " 1: In this case, (I 5.3.1 ) is exactly (A 17 ). base case: cardpXq " 0: In this case, (I 5.3.1 ) is J ñ J ˚J. By propositional reasoning, χ is equivalent to Ž uPXztzu p allocpuq _ Ž vPXztu,zu u " vq. Due to the complexity of this formula, we proceed now rather informally, but our arguments entail the existence of a proper derivation. We aim at showing that

1 emp ñ J PC 2 J ñ J ˚emp (A 11 ) 3 J ˚emp ñ emp ˚J (A 7 ) 4 emp ˚J ñ J ˚J ˚-Intro, 1 5 J ñ J ˚J ñ-
$ H C p˚q ľ xPX pallocpxq ^ľ yPXztxu x ‰ yq ^ppallocpzq ^size " 1q ˚ χq ñK . ( : 
)
By propositional calculus and (I 9), we can distribute conjunctions and separating conjunctions over disjunctions. We derive:

$ H C p˚q ľ xPX pallocpxq ^ľ yPXztxu x ‰ yq ^ppallocpzq ^size " 1q ˚ χq ñ γ 1 _ γ 2 ,
where γ 1 and γ 2 are defined, respectively, as

Ž uPXztzu ´ŹxPX pallocpxq ^ŹyPXztxu x ‰ yq ^ppallocpzq ^size " 1q ˚ allocpuqq ¯, Ž uPXztzu vPXztz,uu
´ŹxPX pallocpxq ^ŹyPXztxu x ‰ yq ^ppallocpzq ^size " 1q ˚u " vq ¯.

In order to deduce (:) it is sufficient to prove, in H C p˚q, that every disjunct of γ 1 and γ 2 implies K. Clearly, if γ 1 and γ 2 do not have any disjunct, i.e. when Xztzu is empty, then the formula is propositionally equivalent to K, which allows us to conclude (:). Otherwise, let us consider each disjunct in γ 1 and γ 2 (separately), and prove their inconsistency. case: γ 1 : Let u P Xztzu. We show the inconsistency of Since γ is an arbitrary disjunct appearing in γ 1 , we conclude that $ H C p˚q γ 1 ñK.

case: γ 2 : Let u P Xztzu and v P Xztz, uu. Notice that if u or v do not exist, then γ 2 is defined as K and so the proof is complete. Otherwise, we show the inconsistency of

p γ def " Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ^ppallocpzq ^size " 1q ˚u " vq. 17 Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ u ‰ v PC 18 allocpzq ^size " 1 ñ J PC 19 pallocpzq ^size " 1q ˚u " v ñ u " v ˚J ˚-Intro, 18, (A 7 ) 20 u " v ˚J ñ u " v (A 14 ) 21 ppallocpzq ^size " 1q ˚u " vq ñ u " v ñ-Tr, 19, 20 22 p γ ñK PC, 17, 21
Since p γ is an arbitrary disjunct appearing in γ 2 , we conclude that $ H C p˚q γ 2 ñK. From $ H C p˚q γ 1 ñK and $ H C p˚q γ 2 ñK we conclude that (:) holds. From the theorem 5 derived in this proof, this allows us to conclude that $ H C p˚q Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ pallocpzq ^size " 1q ˚χ, which concludes the proof, as explained at the beginning of the induction step.

We complete the proof of Lemma 5.3 by showing a derivation of (I C 6 ). Validity of (I C 6 ). Let X Ď fin VAR. If X " H, then the instance of the axiom (I C 6 ) becomes J ñ size ě 0, which, by definition of size ě 0, is syntactically equivalent to J ñ J and hence valid by propositional reasoning. Below, assume X ‰ H and fix z P X. From now on, we understand H C p˚q as the proof system obtained from H C by adding all schemata from Figure 5 but by removing (I C 5 ) and (I C 6 ). We show that H C p˚q enjoys the ˚elimination property when the argument formulae are core types. That is, given two satisfiable core types ϕ and ψ, in CoreTypespX, αq, we show that the formula ϕ ˚ψ is provably equivalent to the formula x˚ypϕ, ψq in ConjpCorepX, 2αqq, defined in Figure 6. To do so, we build a sequence of formulae ϕ p1q ˚ψp1q , ϕ p2q ˚ψp2q , . . . , ϕ pkq ˚ψpkq satisfying the following conditions:

' for all i P r1, ks, $ H C p˚q x˚ypϕ, ψq ñ ϕ piq ˚ψpiq , the formulae ϕ piq and ψ piq are conjunctions of core formulae, and ' for all j P r1, is, ϕ pjq Ď Lt ϕ piq and ψ pjq Ď Lt ψ piq . ' ϕ " ϕ pkq and ψ " ψ pkq (modulo associativity/commutativity of the classical conjunction). In order to build ϕ i`1 (resp. ψ i`1 ), we identify a literal L in ϕ (resp. in ψ) that does not occur yet in ϕ i and we show that $ H C p˚q x˚ypϕ, ψq ñ ϕ pi`1q ˚ψpi`1q with ϕ i`1 def " ϕ piq ^L (resp. ψ pi`1q def " ψ piq ^L) and ψ pi`1q def " ψ piq (resp. ϕ pi`1q def " ϕ piq ). The case analysis on the shape of the literal L is rather mechanical but it remains to specify how the first formulae ϕ p1q and ψ p1q are designed. In short, ϕ p1q (resp. ψ p1q ) is dedicated to the part of ϕ (resp. ψ) related to the size of the heap domain and to the allocated variables. Details will follow.

To construct these above-mentioned derivations, some additional derivations are instrumental in particular to establish that the formulae below are derivable in H C p˚q:

size ě β 1 `β2 ñ size " β 1 ˚size ě β 2 , size " β 1 `β2 ñ size " β 1 ˚size " β 2 .
Such derivations can be found in Appendix B. We now develop the proof of Lemma 5.4.

Proof of Lemma 5.4. First of all, let us briefly explain what is the rationale for having literals of the form x ‰ x in the definition of x˚ypϕ, ψq. Recall that allocpxq Ď Lt tϕ ; ψu is a shortcut to state that allocpxq occurs in both the core types ϕ and ψ. Since pallocpxq ^ϕ1 q pallocpxq ^ψ1 q is unsatisfiable, allocpxq Ď Lt tϕ ; ψu entails that x˚ypϕ, ψq should be unsatisfiable. That is why, if allocpxq Ď Lt tϕ ; ψu, then x ‰ x is part of x˚ypϕ, ψq.

(ñ): Let us show that $ H C p˚q ϕ ˚ψ ñ x˚ypϕ, ψq. We establish that $ H C p˚q ϕ ˚ψ ñ L holds for every literal L of x˚ypϕ, ψq. We reason by a case analysis on L Ď Lt x˚ypϕ, ψq. case: L is an (in)equality or L " x ãÑ y: For all the equalities and inequalities in ϕ or ψ, as well as all the literals of the form x ãÑ y, $ H C p˚q ϕ ˚ψ ñ L follows from the rule ˚-Intro and the axiom (A 14 ). Let us provide below the proper derivation when L is a literal in ϕ that is an equality, an inequality or of the form x ãÑ y.

1 ϕ ñ L PC 2 ψ ñ J PC 3 ϕ ˚ψ ñ L ˚J ˚-Ilr, 1, 2 4 L ˚J ñ L (A 14 ) 5 ϕ ˚ψ ñ L ñ-Tr, 3, 4
Assume there is a literal x ‰ x that occurs in x˚ypϕ, ψq. As both ϕ and ψ are satisfiable, and thanks to (A C 1 ), this is necessarily due to allocpxq occurring both in ϕ and ψ. case : L " size ě β 1 `β2 , where size ě β 1 Ď Lt ϕ and size ě β 2 Ď Lt ψ:

1 ϕ ñ size ě β 1 PC 2 ψ ñ size ě β 2 PC 3 ϕ ˚ψ ñ size ě β 1 ˚size ě β 2 ˚-Ilr, 1, 2 4 ϕ ˚ψ ñ size ě pβ 1 `β2 q Def. size
Notice that, as ϕ and ψ are satisfiable core types, size ě 0 appears positively in both these formulae, and thus appears in x˚ypϕ, ψq. case: L " size ě β 1 `β2 . ´1, where size ě β 1 Ď Lt ϕ and size ě β 2 Ď Lt ψ: Alloc def " `allocpx 1 q ^size " 1 ˘˚¨¨¨˚`allocpx n q ^size " 1 ˘.

1 ϕ ñ size ě β 1 PC 2 ψ ñ size ě β 2 PC 3 ϕ ˚ψ ñ size ě β 1 ˚ size ě β 2 ˚-Ilr, 1, 2 4 size ě β 1 ˚ size ě β 2 ñ size ě β 1 `β2 . ´1 (A 19 ) 5 ϕ ˚ψ ñ size ě β 1 `β2 . ´1 ñ-
We have,

1 x˚ypϕ, ψq ñ Ź iPr1,ns pallocpx i q ^ŹjPr1,nsztiu x i ‰ x j q PC, def. of x 1 , . . . , x n 2 Ź iPr1,ns pallocpx i q ^ŹjPr1,nsztiu x i ‰ x j q ñ Alloc ˚J (I 5.3.1 ) 3 x˚ypϕ, ψq ñ Alloc ˚J ñ-Tr, 1, 2
Moreover, we show that $ H C p˚q Alloc ñ size ě n and $ H C p˚q Alloc ñ size ě n`1 (theorems 4 and 7 below), and so $ H C p˚q Alloc ñ size " n. ´1, size ě β 1 Ď Lt ϕ and size ě β 2 Ď Lt ψ. Since ϕ and ψ are satisfiable, by definition of max size p.q, we derive that β 1 ą max size pϕq and β 2 ą max size pψq. This implies that the core formula size ě max size pϕq `1 belongs to CorepX, αq and, analogously, that the core formula size ě max size pψq `1 belongs to CorepX, αq. Since ϕ is in CoreTypespX, αq, this implies that size ě max size pϕq `1 is an atomic formula appearing in ϕ. By definition of max size pϕq, the formula cannot appear positively, i.e. size ě max size pϕq `1 Ď Lt ϕ. Analogously, ψ is in CoreTypespX, αq, which leads to size ě max size pψq `1 Ď Lt ψ.

Proof of (C). Directly from (A) and (B). Indeed, by definition of x˚ypϕ, ψq, we know that for every size ě β Ď Lt ϕ and every size ě β 1 Ď Lt ψ, size ě β `β1 .

´1 Ď Lt x˚ypϕ, ψq.

Now, let us consider β g " max size px˚ypϕ, ψqq . ´n. We define the formula Garb below:

Garb def " # size " β g if size ě β Ď Lt x˚ypϕ, ψq, for some β size ě β g otherwise,
where we recall that size " β g stands for size ě β g ^ psize ě β g `1q. Notice that Garb is a conjunction of literals where at least one size ě β occurs positively (i.e. size ě 0). The objective of this step of the proof is to show that $ H C p˚q x˚ypϕ, ψq ñ Alloc ˚Garb. First, we focus on the positive part of Garb, and prove $ H C p˚q x˚ypϕ, ψq ñ Alloc ˚size ě β g . If β g " 0 then size ě β g " J and we have already shown $ H C p˚q x˚ypϕ, ψq ñ Alloc ˚J. So, let us assume that β g ą 1. Notice that then max size px˚ypϕ, ψqq .

´n " max size px˚ypϕ, ψqq ´n. We have

1 J ñ size ě β g _ size ě β g PC 2 Alloc ˚J ñ Alloc ˚psize ě β g _ size ě β g q ˚-Intro, (A 7 ), 1
3 Alloc ˚psize ě β g _ size ě β g q ñ pAlloc ˚size ě β g q _ pAlloc ˚ size ě β g q (I 9 ), (A 7 ) Step 2, distributing alloc and size literals. In this step, we aim at showing that

4
$ H C p˚q Alloc ˚Garb ñ ϕ p1q ˚ψp1q
where ϕ p1q and ψ p1q are two formulae defined as follows:

ϕ p1q def " # size " max size pϕq ^Źtallocpx i q Ď Lt ϕ | i P r1, nsu if max size pϕq ă α size ě max size pϕq ^Źtallocpx i q Ď Lt ϕ | i P r1, nsu otherwise ψ p1q def " # size " max size pψq ^Źtallocpx i q Ď Lt ψ | i P r1, nsu if max size pψq ă α size ě max size pψq ^Źtallocpx i q Ď Lt ψ | i P r1, nsu otherwise
We use the notations ϕ p1q and ψ p1q since later in the proof, we shall consider sequences of formulae ϕ p1q , . . . , ϕ pkq and ψ p1q , . . . , ψ pkq with increasing amount of literals. That is why, using ϕ p1q and ψ p1q at this early stage is meaningful. Before tackling this derivation, a few more steps are required. First of all, notice that, if there is a formula allocpxq occurring both in ϕ and ψ, then, by definition of x˚ypϕ, ψq, x ‰ x occurs in x˚ypϕ, ψq. This contradicts the fact that x˚ypϕ, ψq is satisfiable. Therefore, we derive that the set of variables x 1 , . . . , x n can be split into two disjoint subsets, the ones "allocated" in ϕ, and the others in ψ. Let n ϕ (resp. n ψ ) denote the number of equivalence classes of variables allocated in ϕ (resp. ψ). Clearly, n " n ϕ `nψ . Moreover, since ϕ and ψ are satisfiable core types in CoreTypespX, αq, where α ě cardpXq, we must have n ϕ ď max size pϕq and n ψ ď max size pψq (see the axiom (I C 6 )). By (A), we conclude that n ď max size px˚ypϕ, ψqq. We define the following formulae

Allocpϕq def " ˚tallocpx i q ^size " 1 | allocpx i q Ď Lt ϕ, i P r1, nsu Garbpϕq def " #
size " max size pϕq ´nϕ if max size pϕq ă α size ě max size pϕq ´nϕ otherwise Notice that, since max size pϕq ě n ϕ , the formula Garbpϕq is well-defined. The formulae Allocpψq and Garbpψq are defined accordingly. Obviously, Alloc is equal to Allocpϕq Ållocpψq modulo associativity and commutativity of the separating conjunction ˚. Hence, by taking advantage of the axioms (A 7) and (A 8), we have

$ H C p˚q Alloc ô Allocpϕq ˚Allocpψq.
Let us now look at Garbpϕq and Garbpψq. We aim at deriving

$ H C p˚q Garb ñ Garbpϕq ˚Garbpψq.
Since ϕ is a core type, we know that if max size pϕq ă α then, by definition of max size pϕq, size ě max size pϕq `1 Ď Lt ϕ. A similar analysis can be done for ψ, which leads to the two following equivalences, by definition of Garbpϕq and Garbpψq: ' size ě max size pϕq `1 Ď Lt ϕ if and only if Garbpϕq " psize " max size pϕq´n ϕ q, ' size ě max size pψq `1 Ď Lt ψ if and only if Garbpψq " psize " max size pψq´n ψ q. By definition of Garb, (B) and (C), we know that Garb " psize " max size px˚ypϕ, ψqq . ´nq holds if and only if size ě max size pϕq `1 Ď Lt ϕ and size ě max size pϕq `1 Ď Lt ψ.

From n ď max size px˚ypϕ, ψqq and by relying on the previous two equivalences, this allows us to conclude that: D. Garbpϕq " psize " max size pϕq´n ϕ q and Garbpψq " psize " max size pψq´n ψ q if and only if Garb " psize " max size px˚ypϕ, ψqq ´nq. To show $ H C p˚q Garb ñ pGarbpϕq ˚Garbpψqq, we split the proof depending on whether Garbpϕq " psize " max size pϕq´n ϕ q and Garbpψq " psize " max size pψq´n ψ q hold. case: Garbpϕq ‰ psize " max size pϕq´n ϕ q and Garbpψq ‰ psize " max size pψq´n ψ q:

We have Garbpϕq " psizeě max size pϕq´n ϕ q and Garbpψq " psizeě max size pψq´n ψ q. By definition of Garb and (D), Garb " psize ě max size px˚ypϕ, ψqq ´nq. By n " n ϕ `nψ and (A), max size px˚ypϕ, ψqq ´n " pmax size pϕq´n ϕ q `pmax size pψq´n ψ q. By definition of the core formula size ě β, Garb is already equivalent to Garbpϕq ˚Garbpψq, modulo associativity and commutativity of the separating conjunction ˚. Hence, by taking advantage of the axioms (A 7) and (A 8), we have $ H C p˚q Garb ñ Garbpϕq ˚Garbpψq. case: Garbpϕq " psize " max size pϕq´n ϕ q and Garbpψq ‰ psize " max size pψq´n ψ q:

We have Garbpψq " psizeě max size pψq´n ψ q and, by definition of Garb and (D), together with n " n ϕ `nψ and (A), Garb " psize ě pmax size pϕq´n ϕ q `pmax size pψq´n ψ qq. In this case, Garb ñ Garbpϕq ˚Garbpψq is an instantiation of the following valid formula with β 1 " max size pϕq´n ϕ and β 2 " max size pψq ´nψ :

size ě β 1 `β2 ñ size " β 1 ˚size ě β 2 .
The derivability of this formula in H C p˚q is proven by induction on β 1 (see Appendix B). case: Garbpϕq ‰ psize " max size pϕq´n ϕ q and Garbpψq " psize " max size pψq´n ψ q:

Analogously to the previous case, we have Garbpϕq " psizeě max size pϕq´n ϕ q and Garb " psize ě pmax size pϕq´n ϕ q `pmax size pψq´n ψ qq. We instantiate the theorem

size ě β 1 `β2 ñ size " β 1 ˚size ě β 2 ,
shown derivable in the previous case of the proof, with β 1 " max size pψq´n ψ and β 2 " max size pϕq ´nϕ . This corresponds to Garb ñ Garbpψq ˚Garbpϕq. Afterwards, by commutativity of the separating conjunction (axiom (A 7)) and propositional reasoning, we conclude that $ H C p˚q Garb ñ Garbpϕq ˚Garbpψq. case: Garbpϕq " psize " max size pϕq´n ϕ q and Garbpψq " psize " max size pψq´n ψ q:

By (D), n " n ϕ `nψ and (A), Garb " psize " pmax size pϕq´n ϕ q `pmax size pψq´n ψ qq.

In this case, Garb ñ Garbpϕq ˚Garbpψq is an instantiation of the following valid formula, with β 1 " max size pϕq´n ϕ and β 2 " max size pψq ´nψ :

size " β 1 `β2 ñ size " β 1 ˚size " β 2 .
Its derivation in H C p˚q can be found in Appendix B. Thanks to the case analysis above, we conclude that $ H C p˚q Garb ñ Garbpϕq ˚Garbpψq. Thus, $ H C p˚q Alloc ˚Garb ñ pAllocpϕq ˚Garbpϕqq ˚pAllocpψq ˚Garbpψqq. Indeed, To conclude this step of the proof, it is sufficient to show $ H C p˚q Allocpϕq ˚Garbpϕq ñ ϕ p1q and $ H C p˚q Allocpψq ˚Garbpψq ñ ψ p1q . Indeed, by relying on the rule ˚-Ilr, we then obtain $ H C p˚q Alloc ˚Garb ñ ϕ p1q ˚ψp1q . Below, we show $ H C p˚q Allocpϕq ˚Garbpϕq ñ ϕ p1q . The developments of $ H C p˚q Allocpψq ˚Garbpψq ñ ψ p1q are analogous. We recall that the formula Allocpϕq is defined as

Allocpϕq " ˚tallocpx i q ^size " 1 | allocpx i q Ď Lt ϕu.
First of all, let us show that $ H C p˚q Allocpϕq ˚J ñ Ź tallocpx i q Ď Lt ϕ | i P r1, nsu. The proof is divided in three cases: case: tallocpx i q ^size " 1 | allocpx i q Ď Lt ϕu " H: In this case, the formula we want to derive is syntactically equal to J ˚J ñ J, which is derivable by propositional reasoning. case: cardptallocpx i q ^size " 1 | allocpx i q Ď Lt ϕuq " 1: In this case, the formula we want to derive is syntactically equal to pallocpxq ^size " 1q ˚J ñ allocpxq. Therefore, it is derivable in H C p˚q by (I 12 ) and ˚-Intro. case: cardptallocpx i q ^size " 1 | allocpx i q Ď Lt ϕuqě2: In the derivation below, we write Allocpϕq ´i for ˚tallocpx j q ^size " 1 | j P r1, nsztiu, allocpx j q Ď Lt ϕu. Roughly speaking, Allocpϕq ´i is obtained from Allocpϕq by removing the subformula allocpx i q ŝize " 1. Since cardptallocpx i q ^size " 1 | allocpx i q Ď Lt ϕuqě2, the formula Allocpϕq ´i is different from J. We have 1 Allocpϕq ˚J ñ pallocpx i q ^size " 1q ˚pAllocpϕq ´i ˚Jq (A 7 ), (A 8 ), def. of Allocpϕq where allocpx i q Ď Lt ϕ and i P r1, ns 2 Allocpϕq ´i ˚J ñ J PC 3 allocpx i q ^size " 1 ñ allocpx i q PC 4 pallocpx i q ^size " 1q ˚pAllocpϕq ´i ˚Jq ñ allocpx i q ˚J ˚-Ilr, 2, 3 5 allocpx i q ˚J ñ allocpx i q (I 12 )

6 Allocpϕq ˚J ñ allocpx i q ñ-Tr, 1, 4, 5

7 Allocpϕq ˚J ñ Ź tallocpx i q Ď Lt ϕ | i P r1, nsu PC, repeating 6
for all i P r1, ns such that allocpx i q Ď Lt ϕ So, we have $ H C p˚q Allocpϕq ˚J ñ Ź tallocpx i q Ď Lt ϕ | i P r1, nsu. Now, recall that cardpti P r1, ns | allocpx i q Ď Lt ϕuq " n ϕ . At the beginning of the proof, we have shown a derivation of $ H C p˚q Alloc ñ size " n, where Alloc is defined as ˚tallocpx i q ^size " 1 | i P r1, nsu. Replacing Alloc by Allocpϕq and n by n ϕ in the derivation of Alloc ñ size " n leads to a derivation in H C p˚q of Allocpϕq ñ size " n ϕ .

To show $ H C p˚q Allocpϕq ˚Garbpϕq ñ ϕ p1q , we split the proof in two cases: case: max size pϕq " α: By definition of ϕ p1q and Garbpϕq, we have: This concludes the proof of $ H C p˚q Allocpϕq ˚Garbpϕq ñ ϕ p1q . As already stated, one can analogously show that $ H C p˚q Allocpψq ˚Garbpψq ñ ψ p1q . Afterwards, by ˚-Ilr and from $ H C p˚q Alloc ˚Garb ñ pAllocpϕq ˚Garbpϕqq ˚pAllocpψq ˚Garbpψqq, we conclude that $ H C p˚q Alloc ˚Garb ñ ϕ p1q ˚ψp1q .

' ϕ p1q " size ě max size pϕq ^Źtallocpx i q Ď Lt ϕ | i P r1, nsu, ' Garbpϕq " size ě max size pϕq ´nϕ , Then, 1 Allocpϕq ˚J ñ Ź tallocpx i q Ď Lt ϕ | i P r1,
Step 3, add the missing literals. From the first and second step of the proof, and by propositional reasoning, $ H C p˚q x˚ypϕ, ψq ñ ϕ p1q ˚ψp1q . We now rely on x˚ypϕ, ψq to add to ϕ p1q and ψ p1q missing literals from ϕ and ψ, respectively. We add the literals progressively, building a sequence of formulae ϕ p1q ˚ψp1q , ϕ p2q ˚ψp2q , . . . , ϕ pkq ˚ψpkq , where for all i P r1, ks, ϕ piq and ψ piq are conjunctions of core formulae such that $ H C p˚q x˚ypϕ, ψq ñ ϕ piq ˚ψpiq , and for all j P r1, is, ϕ pjq Ď Lt ϕ piq and ψ pjq Ď Lt ψ piq . Fundamentally, we obtain ϕ " ϕ pkq and ψ " ψ pkq (modulo associativity and commutativity of the classical conjunction), which allows us to derive $ H C p˚q x˚ypϕ, ψq ñ ϕ ˚ψ, ending the proof. Below, we focus on the formula ϕ piq and ϕ. Since x˚ypϕ, ψq is equal to x˚ypψ, ϕq (by definition) and the separating conjunction is commutative (axiom (A 7)), a similar analysis can be done for ψ piq and ψ. Thus, we assume that $ H C p˚q x˚ypϕ, ψq ñ ϕ piq ˚ψpiq holds, where in particular ϕ p1q Ď Lt ϕ piq and ψ p1q Ď Lt ψ piq , and that there is a literal L Ď Lt ϕ that does not appear in ϕ piq . By relying on the theorems in Lemma 5.2, we show that $ H C p˚q x˚ypϕ, ψq ñ pϕ piq ^Lq ˚ψpiq by a case analysis on L. case: L " x " y, where "P t", ‰u: By definition of x˚ypϕ, ψq, x " y Ď Lt x˚ypϕ, ψq.

case: L " allocpxq: Since allocpxq Ď Lt ϕ, by definition, allocpxq Ď Lt x˚ypϕ, ψq. By definition of x 1 , . . . , x n , there is j P r1, ns such that x j " x Ď Lt x˚ypϕ, ψq. Since ϕ is a core type, allocpx j q Ď Lt ϕ. By definition of ϕ p1q , allocpx j q Ď Lt ϕ p1q . From ϕ p1q Ď Lt ϕ piq , we have allocpx j q Ď Lt ϕ piq . Afterwards, 1 ϕ piq ñ ϕ piq ^allocpx j q PC, see above 2 x˚ypϕ, ψq ñ ϕ piq ˚ψpiq Hypothesis 3 ϕ piq ˚ψpiq ñ pϕ piq ^allocpx j qq ˚ψpiq ˚-Intro, 1 4 x˚ypϕ, ψq ñ x j " x PC, see above 5 x˚ypϕ, ψq ñ x j " x ^ppϕ piq ^allocpx j qq ˚ψpiq q PC, 2, 3, 4 6 x j " x ^ppϕ piq ^allocpx j qq ˚ψpiq q ñ pϕ piq ^allocpxqq ˚ψpiq (I 5.2.2 ) 7 x˚ypϕ, ψq ñ ppϕ piq ^allocpxqq ˚ψpiq q ñ-Tr, 5, 6

Without loss of generality, thanks to the derivation above dealing with allocpxq literals, we now assume that for all allocpxq Ď Lt ϕ and all allocpyq Ď Lt ψ, we have allocpxq Ď Lt ϕ piq and allocpyq Ď Lt ψ piq . case: L " allocpxq: We distinguish two main subcases. By the distributivity axiom (I 9), Corollary 5.5 is extended from core types to arbitrary Boolean combinations of core formulae. H C p˚q is therefore complete for SLp˚, allocq. In order to derive a valid formula ϕ P SLp˚, allocq, we repeatedly apply the elimination of ˚in a bottom-up fashion, starting from the leaves of ϕ (which are Boolean combinations of core formulae) and obtaining a Boolean combination of core formulae ψ that is equivalent to ϕ. Then, we rely on the completeness of H C (Theorem 4.3) to prove that ψ is derivable.

Theorem 5.6. A formula ϕ in SLp˚, allocq is valid iff $ H C p˚q ϕ.

Proof. Soundness of the proof system H C p˚q has been already established earlier.

As far as the completeness proof is concerned, we need to show that for every formula ϕ in SLp˚, allocq, there is a Boolean combination of core formulae ψ such that $ H C p˚q ϕ ô ψ. In order to conclude the proof, when ϕ is valid for SLp˚, allocq, by soundness of H C p˚q, we obtain that ψ is valid too and therefore $ H C p˚q ψ as H C is a subsystem of H C p˚q and H C is complete by Theorem 4.3. By propositional reasoning, we get that $ H C p˚q ϕ.

To show that every formula ϕ has a provably equivalent Boolean combination of core formulae, we heavily rely on Corollary 5.5. The proof is by simple induction on the number of occurrences of ˚in ϕ that are not involved in the definition of some core formula of the form size ě β. For the base case, when ϕ has no occurrence of the separating conjunction, x " y and x ãÑ y are already core formulae, and emp is logically equivalent to size ě 1.

Before performing the induction step, let us observe that in H C p˚q, the replacement of provably equivalent formulae holds true, which is stated as follows: R0 Let ϕ, ϕ 1 and ψ be formulae of SLp˚, allocq such that $ H C p˚q ϕ ô ϕ 1 . Then, $ H C p˚q ψrϕs ρ ñ ψrϕ 1 s ρ Above, ψrϕs ρ refers to the formula ψ in which the subformula at the occurrence ρ (in the standard sense) is replaced by ϕ. (ϕ and ϕ 1 are therefore placed at the same occurrence.)

To prove R0, we first note that the following rules can be shown admissible in H C p˚q:

ϕ ô ϕ 1 ϕ ô ϕ 1 ϕ ô ϕ 1 ϕ _ ψ ô ϕ 1 _ ψ ϕ ô ϕ 1 ϕ ^ψ ô ϕ 1 ^ψ
Admissibility of such rules is a direct consequence of the presence of axioms and modus ponens for the propositional calculus. As a consequence of the presence of the rule ˚-Intro in H C p˚q, the rule below is also admissible: ϕ ô ϕ 1 ϕ ˚ψ ô ϕ 1 ˚ψ Consequently, by structural induction on ψ, one can conclude that $ H C p˚q ϕ ô ϕ 1 implies $ H C p˚q ψrϕs ρ ñ ψrϕ 1 s ρ (the axiom (A 7) needs to be used here).

Assume that ϕ is a formula in SLp˚, allocq with n `1 occurrences of the separating conjunction not involved in the definition of some size ě β (n ě 0). Let ψ be a subformula of ϕ (at the occurrence ρ) of the form ψ 1 ˚ψ2 such that ψ 1 and ψ 2 are Boolean combinations of core formulae, in BoolpCorepX, α 1 qq and BoolpCorepX, α 2 qq. By pure propositional reasoning, one can show that there are formulae in disjunctive normal form

ψ 1 1 _ ¨¨¨_ ψ n 1 1 and ψ 1 2 _ ¨¨¨_ ψ n 2 2 such that $ H C ψ i ô ψ 1 i _ ¨¨¨_ ψ n i i for i P t1, 2u
and moreover, all the ψ j i 's are core types in CoreTypespX, maxpcardpXq, α 1 , α 2 qq. Again, by using propositional reasoning but this time using also the axiom (I 9) for distributivity, we have

$ H C p˚q ψ 1 ˚ψ2 ô ł j 1 Pr1,n 1 s,j 2 Pr1,n 2 s ψ j 1 1 ˚ψj 2 2 .
We now rely on Corollary 5.5 and derive that there is a conjunction of core formulae ψ j 1 ,j 2 in ConjpCorepX, 2 maxpcardpXq, α 1 , α 2 qqq such that $ H C p˚q ψ j 1 1 ˚ψj 2 2 ô ψ j 1 ,j 2 . By propositional reasoning, we get $ H C p˚q ψ 1 ˚ψ2 ô ł j 1 Pr1,n 1 s,j 2 Pr1,n 2 s ψ j 1 ,j 2 . Consequently (thanks to the property R0), we obtain

$ H C p˚q ϕ ô ϕr ł j 1 Pr1,n 1 s,j 2 Pr1,n 2 s ψ j 1 ,j 2 s ρ
Note that the right-hand side formula has n occurrences of the separating conjunction that are not involved in the definition of some core formula of the form size ě β. The induction hypothesis applies, which concludes the proof.

A constructive elimination of ´leading to full completeness

In order to obtain the final proof system H C p˚, ´q, we add the axioms and rules from Figure 7 to the proof system H C p˚q. These new axioms and rules are dedicated to the separating implication. The axioms involving f (kind of dual of ´, introduced in Section 2) express that it is always possible to extend a given heap with an extra cell, and that the address and the content of this cell can be fixed arbitrarily (provided it is not already allocated). The adjunction rules ˚-Adj and ´-Adj are from the Hilbert-style axiomatisation of Boolean BI [GLW06, Section 2]. One can observe that, in H C p˚, ´q, the axioms (I 9), (I 10 ) and (I 12 ) of H C p˚q are derivable.

Lemma 6.1. The axioms (I 9), (I 10 ) and (I 12 ) are derivable in H C p˚, ´q.

The derivations of (I 9), (I 10 ) and (I 12 ) that lead to Lemma 6.1 are given in Appendix C. Fundamentally, H C p˚, ´q enjoys the ´elimination property, as shown below. Actually, we state the property with the help of f as we find the related statements and developments more intuitive. Lemma 6.2. Let X Ď fin VAR and α ě cardpXq. Let ϕ and ψ in CoreTypespX, αq. There is a conjunction χ P ConjpCorepX, αqq such that $ H C p˚,´q pϕ f ψq ô χ.

Structure of the proof of Lemma 6.2. In the proof of Lemma 6.2, the formula χ is explicitly constructed from ϕ and ψ, following a pattern analogous to the construction of x˚yp. , .q in Figure 6 (see forthcoming Figure 8). The derivation of the equivalence pϕ f ψq ô χ is shown as follows. First, the formulae χ ˚ϕ ñ ψ and χ ˚ϕ ñ ψ are shown valid (by using semantical means). As H C p˚q is complete for SLp˚, allocq, it is a subsystem of H C p˚, ´q, and the formulae ϕ, ψ and χ are Boolean combinations of core formulae, we get $ H C p˚,´q χ ˚ϕ ñ ψ and $ H C p˚,´q χ ˚ϕ ñ ψ. The latter theorem leads to $ H C p˚,´q pϕ f ψq ñ χ by using the definition of f and the rule ˚-Adj. For the other direction, in order to show that $ H C p˚,´q χ ñ pϕ f ψq holds, we take advantage of the admissibility of the theorem (I 6.3.9 ) (see Lemma 6.3) for which an instance is pϕ f Jq ^pϕ ´ψq ñ pϕ f pJ ^ψqq. From $ H C p˚,´q χ ˚ϕ ñ ψ and by ˚-Adj we have $ H C p˚,´q χ ñ pϕ ´ψq. Therefore, the main technical development lies in the proof of $ H C p˚,´q χ ñ pϕ f Jq, which allows us to take advantage of (I 6.3.9 ), and leads to $ H C p˚,´q χ ñ pϕ f ψq by propositional reasoning.

In order to formalise the proof of Lemma 6.2 sketched above, we start by establishing several admissible axioms and rules (Lemma 6.3). Afterwards, we define the formula χ and show the validity of χ ˚ϕ ñ ψ and χ ˚ϕ ñ ψ (Lemma 6.4). Then, come the final bits of the proof of Lemma 6.2 (see page 35).

Lemma 6.3. The following rules and axioms are admissible in H C p˚, ´q:

(I 6.3.1 ) K f ϕ ñ K (I 6.3.2 ) ϕ f K ñ K (I 6.3.3 ) ϕ ˚pϕ ´ψq ñ ψ (I 6.3.4 ) ϕ ñ ψ ϕ f χ ñ ψ f χ (I 6.3.5 ) ϕ ñ ψ χ f ϕ ñ χ f ψ (I 6.3.6 ) ϕ f pψ f χq ô pϕ ˚ψq f χ (I 6.3.7 ) pϕ _ ψq f χ ô pϕ f χq _ pψ f χq (I 6.3.8
) χ f pϕ _ ψq ô pχ f ϕq _ pχ f ψq (I 6.3.9 ) pϕ f ψq ^pϕ ´χq ñ pϕ f ψ ^χq (I 6.3.10 ) x " y ^pϕ f ψq ñ pϕ ^x " y f ψq (I 6.3.11 ) x ‰ y ^pϕ f ψq ñ pϕ ^x ‰ y f ψq (I 6.3.12 ) pϕ size ^ŹxPX allocpxqq f J, where, in axiom (I 6.3.12 ), X Ď fin VAR and ϕ size is a satisfiable conjunction of literals of the form size ě β 1 or size ě β 2 .

The proof of Lemma 6.3 can be found in Appendix D. Let ϕ and ψ be two satisfiable core types in ConjpCorepX, αqq. Following the developments of Section 5, we define a formula xsepypϕ, ψq in ConjpCorepX, αqq, for which we show that ϕfψ ô xsepypϕ, ψq is provable in H C p˚, ´q. The formula xsepypϕ, ψq is defined in Figure 8. Lemma 6.4. Let X Ď fin VAR, α ě cardpXq and ϕ, ψ be satisfiable core types in CoreTypespX, αq. The formulae xsepypϕ, ψq ˚ϕ ñ ψ and p xsepypϕ, ψqq ˚ϕ ñ ψ are valid.

Before presenting the proof for Lemma 6.4, let us observe that since we aim at proving the derivability of ϕ f ψ ô xsepypϕ, ψq in H C p˚, ´q, the validity of the formula p xsepypϕ, ψqq ˚ϕ ñ ψ should not surprise the reader. Indeed, by replacing xsepypϕ, ψq with ϕfψ we obtain p pϕfψqq˚ϕ ñ ψ which, unfolding the definition of f, is equivalent to the valid formula pϕ ´ ψq ˚ϕ ñ ψ (see (I 6.3.3 ) in Lemma 6.3). On the other hand, the fact that xsepypϕ, ψq ˚ϕ ñ ψ is valid can be puzzling at first, as the formula pϕ f ψq ˚ϕ ñ ψ is not valid (in general). In its essence, Lemma 6.4 shows that pϕ f ψq ˚ϕ ñ ψ is valid whenever ϕ and ψ are restricted to core types.

Below, we prove that xsepypϕ, ψq ˚ϕ ñ ψ and p xsepypϕ, ψqq ˚ϕ ñ ψ are valid, thus establishing Lemma 6.4. Notice that the proof is carried out through semantical arguments. Since ϕ, ψ and xsepypϕ, ψq are conjunctions of literals built from core formulae, derivability of these two tautologies in H C p˚, ´q follows from the completeness of H C p˚q (Theorem 5.6).

Validity of xsepypϕ, ψq ˚ϕ ñ ψ. If xsepypϕ, ψq ˚ϕ is inconsistent, then xsepypϕ, ψq ˚ϕ ñ ψ is straightforwardly valid. Below, we assume that xsepypϕ, ψq ˚ϕ is satisfiable. In particular, none of the conditions depicted in Figure 8 that result in xsepypϕ, ψq having a literal x ‰ x applies. Let ps, hq |ù xsepypϕ, ψq ˚ϕ. Therefore, there are two disjoint heaps h 1 and h 2 such that h " h 1 `h2 , ps, h 1 q |ù xsepypϕ, ψq and ps, h 2 q |ù ϕ. We show that ps, hq satisfies each Ź

x " y Ď Lt tϕ | ψu ˇˇ"P t", ‰u ( literal L in ψ. We perform a simple case analysis on the shape of L. Notice that, below, we have x, y P X and β 2 P r0, αs, as ψ is a core type in CoreTypespX, αq. case: L " x " y, where "P t", ‰u: By definition of xsepypϕ, ψq, x " y Ď Lt xsepypϕ, ψq and so ps, h 1 q |ù x " y. We conclude that spxq " spyq, and thus ps, hq |ù x " y. case: L " allocpxq: If allocpxq Ď Lt ϕ, then ps, h 2 q |ù allocpxq, which implies spxq P domphq directly from h 2 Ďh. Thus, ps, hq |ù allocpxq. Otherwise, if allocpxq Ď Lt ϕ then, since ϕ is a core type in CoreTypespX, αq, we have allocpxq Ď Lt ϕ. By definition of xsepypϕ, ψq, we derive that allocpxq Ď Lt xsepypϕ, ψq. So, ps, h 1 q |ù allocpxq and thus, by h 1 Ďh, spxq P domphq. We conclude that ps, hq |ù allocpxq. case: L " allocpxq: In this case, by definition of xsepypϕ, ψq, we have allocpxq Ď Lt xsepypϕ, ψq, which implies ps, h 1 q |ù allocpxq. Ad absurdum, suppose ps, h 2 q |ù allocpxq. Since ϕ is a core type in CoreTypespX, αq, we conclude that allocpxq Ď Lt ϕ. However, by definition of xsepypϕ, ψq, this implies x ‰ x Ď Lt xsepypϕ, ψq, which contradicts the fact that xsepypϕ, ψq is satisfiable. Thus, ps, h 2 q |ù allocpxq, which implies spxq R domph 2 q. From h " h 1 `h2 and spxq R domph 1 q we conclude that spxq R domphq. Validity of p xsepypϕ, ψqq ˚ϕ ñ ψ. Let us assume ps, hq |ù p xsepypϕ, ψqq ˚ϕ. Consequently, there is a literal L of xsepypϕ, ψq such that ps, hq |ù p Lq ˚ϕ holds. We show that ps, hq |ù ψ. Let h 1 and h 2 be two disjoint heaps such that h " h 1 `h2 , ps, h 1 q |ù L and ps, h 2 q |ù ϕ. We perform a case analysis on the shape of L. As in the previous part of the proof, recall that x, y P X and β 1 , β 2 P r0, αs. case: L " x ‰ x: Since ϕ and ψ are satisfiable, by definition of xsepypϕ, ψq, the fact that

^Ź " allocpxq ˇˇˇ allocpxq Ď Lt ϕ allocpxq Ď Lt ψ * ^Ź t allocpxq Ď Lt ψu ^Ź allocpxq ˇˇallocpxq Ď Lt ϕ ( ^Ź t xãÑy Ď Lt ψu ^Ź " x ãÑ y ˇˇˇ allocpxq Ď Lt ϕ x ãÑ y Ď Lt ψ * ^Ź " x ‰ x ˇˇˇa llocpxq ^ x ãÑ y Ď Lt ϕ x ãÑ y Ď Lt ψ * ^Ź " size ě β 2 `1 . ´β1 ˇˇˇ size ě β 1 Ď Lt ϕ size ě β 2 Ď Lt ψ * ^Ź " x ‰ x ˇˇˇx ãÑ y Ď Lt ϕ x ãÑ y Ď Lt ψ * ^Ź " size ě β 2 . ´β1 ˇˇˇs ize ě β 1 Ď Lt ϕ size ě β 2 Ď Lt ψ * ^Ź " x ‰ x ˇˇˇa llocpxq Ď Lt ϕ allocpxq Ď Lt ψ *
x ‰ x Ď Lt xsepypϕ, ψq implies that one of the following three cases holds: 1: allocpxq ^ x ãÑ y Ď Lt ϕ and x ãÑ y Ď Lt ψ.

From allocpxq ^ x ãÑ y Ď Lt ϕ and h 2 Ďh, we have spxq P domphq and hpspxqq ‰ spyq. Thus ps, hq |ù x ãÑ y, and so, by x ãÑ y Ď Lt ψ, ps, hq |ù ψ. 2: x ãÑ y Ď Lt ϕ and x ãÑ y Ď Lt ψ.

From x ãÑ y Ď Lt ϕ and h 2 Ďh, hpspxqq " spyq. Thus ps, hq |ù x ãÑ y and so, by x ãÑ y Ď Lt ψ, ps, hq |ù ψ. 3: allocpxq Ď Lt ϕ and allocpxq Ď Lt ψ.

From allocpxq Ď Lt ϕ and h 2 Ďh, spxq P domphq. Thus ps, hq |ù allocpxq and so, by allocpxq Ď Lt ψ, ps, hq |ù ψ. case: L " x " y, where "P t", ‰u: In this case, since ps, h 1 q |ù L, then we have ps, hq |ù L. Now, it cannot be that L Ď Lt ϕ, as it would imply ps, hq |ù L, which is contradictory. Therefore, by definition of xsepypϕ, ψq, we must have L Ď Lt ψ. This implies ps, hq |ù ψ. case: L " allocpxq: By definition of xsepypϕ, ψq, allocpxq Ď Lt ϕ and allocpxq Ď Lt ψ.

From ps, h 1 q |ù allocpxq we conclude that spxq R domph 1 q. By allocpxq Ď Lt ϕ, spxq R domph 2 q. By h " h 1 `h2 , spxq R domphq. As allocpxq Ď Lt ψ, ps, hq |ù ψ. case: L " allocpxq: As ps, h 1 q |ù L, we have spxq P domph 1 q. According to the definition of xsepypϕ, ψq, either allocpxq Ď Lt ϕ or allocpxq Ď Lt ψ. The first case cannot hold, as it implies spxq P domph 2 q which contradicts the fact that h 1 and h 2 are disjoint. In the second case, from spxq P domph 1 q and h 1 Ďh, we have ps, hq |ù allocpxq. So, ps, hq |ù ψ. case: L " x ãÑ y: Then by definition of xsepypϕ, ψq, allocpxq Ď Lt ϕ and x ãÑ y Ď Lt ψ.

From ps, h 1 q |ù L, if spxq P domph 1 q then h 1 pspxqq ‰ spyq. As allocpxq Ď Lt ϕ, spxq R domph 2 q and therefore, by h " h 1 `h2 , hpspxqq ‰ spyq. From x ãÑ y Ď Lt ψ, we conclude that ps, hq |ù ψ. case: L " x ãÑ y: Then, by definition of xsepypϕ, ψq, x ãÑ y Ď Lt ψ. From ps, h 1 q |ù L and h 1 Ďh, we derive hpspxqq " spyq. From x ãÑ y Ď Lt ψ, we derive ps, hq |ù ψ. case: L " size ě β 2 `1 . ´β1 , where size ě β 2 Ď Lt ψ and size ě β 1 Ď Lt ϕ: Since it holds that ps, h 1 q |ù L and ps, h 2 q |ù ϕ, we derive (respectively) cardpdomph 1 qq ď β 2 . ´β1 and cardpdomph 2 qq ă β 1 . From h " h 1 `h2 , we conclude that cardpdomphqq ă β 2 . From size ě β 2 Ď Lt ψ, we derive ps, hq |ù ψ. case: L " size ě β 2 . ´β1 , where size ě β 2 Ď Lt ψ and size ě β 1 Ď Lt ϕ: Since we have ps, h 1 q |ù L and ps, h 2 q |ù ϕ, we conclude that cardpdomph 1 qq ě β 2 . ´β1 and cardpdomph 2 qq ě β 1 . So, h " h 1 `h2 implies cardpdomphqq ě β 2 . By size ě β 2 Ď Lt ψ, we derive ps, hq |ù ψ.

We are now ready to tackle the proof of Lemma 6.2.

Proof of Lemma 6.2. As in the statement of the lemma, let us consider X Ď fin VAR and α ě cardpXq, and two core types ϕ and ψ in CoreTypespX, αq. We want to show that there is a conjunction χ P ConjpCorepX, αqq such that $ H C p˚,´q pϕ f ψq ô χ.

First of all, if ϕ or ψ is unsatisfiable, then $ H C p˚,´q ϕ f ψ ñ K by using Lemma 4.1 and the admissible axioms (I 6.3.4 ) and (I 6.3.5 ) from Lemma 6.3. Therefore, in this case, it is enough to take χ equal to x " x to complete the proof. Otherwise, let us assume that ϕ and ψ are satisfiable. We consider χ def " xsepypϕ, ψq (see Figure 8), and show that $ H C p˚,´q pϕ f ψq ô xsepypϕ, ψq. We derive each implication separately.

(ñ): Given Lemma 6.4, the proof of $ H C p˚,´q ϕ f ψ ñ xsepypϕ, ψq is straightforward: Structure of the remaining part of the proof. Before presenting the technical arguments for the derivation of $ H C p˚,´q xsepypϕ, ψq ñ ϕfJ when xsepypϕ, ψq is satisfiable, let us explain what are the main ingredients. The proof establishing that $ H C p˚,´q xsepypϕ, ψq ñ ϕ f J is by induction on the number j of variables x P X for which allocpxq Ď Lt ϕ holds. As ϕ, ψ and xsepypϕ, ψq are currently assumed to be satisfiable, they have exactly the same equalities and inequalities and this is used in the proof. The base case j " 0 can be handled using several derivations taking advantage of Lemma 6.3. For the induction step j ą 0, some more substantial work is needed and this is briefly described below. We distinguish the case max size pϕq ă α from the case max size pϕq " α. Both cases, we introduce the formula Atompx i q where allocpx i q Ď Lt ϕ.

Atompx i q def " #
x i ãÑ y ^size " 1 if x i ãÑ y Ď Lt ϕ, for some y P X allocpx i q ^size " 1 ^ŹyPX x i ãÑ y otherwise In the case max size pϕq ă α, we introduce a formula ϕ 1 as a very slight variant of ϕ such that ϕ 1 enjoys the following essential properties. (A) ϕ 1 is a satisfiable core type in CoreTypespX, αq. (B) pAtompx i q ˚ϕ1 q ñ ϕ is valid. (C) pxsepypϕ, ψq ˚Atompx i qq ñ xsepypϕ 1 , ψq is valid. In order to conclude $ H C p˚,´q xsepypϕ, ψq ñ pϕfJq, we take advantage of the completeness of H C p˚q to derive the tautologies in (B) and (C). Moreover, as by construction of ϕ 1 , we have allocpx i q Ď Lt ϕ 1 and, for every y P X, allocpyq Ď Lt ϕ implies allocpyq Ď Lt ϕ 1 , we shall be able to apply the induction hypothesis on ϕ 1 to get $ H C p˚,´q xsepypϕ 1 , ψq ñ pϕ 1 f Jq, which will be essential in the final derivation for xsepypϕ, ψq ñ pϕ f Jq.

In the remaining case max size pϕq " α, we are still looking for some formula ϕ 1 such that ϕ 1 ˚Atompx i q ñ ϕ is valid but we cannot hope for ϕ 1 to be a core type in CoreTypespX, αq. Instead, we introduce two core types ϕ 1 α and ϕ 1 α´1 , and define ϕ 1 as ϕ 1 α _ ϕ 1 α´1 . The only difference between ϕ 1 α and ϕ 1 α´1 rests on the fact that size ě α Ď Lt ϕ 1 α whereas size ě α Ď Lt ϕ 1 α´1 (both formulae contain size ě α ´1). Similarly to the previous case, the properties below shall be shown. (D) ϕ 1 α and ϕ 1 α´1 are satisfiable core types in CoreTypespX, αq

(E) pAtompx i q ˚pϕ 1 α _ ϕ 1 α´1 qq ñ ϕ is valid. (F) pxsepypϕ, ψq ˚Atompx i qq ñ xsepypϕ 1 α , ψq _ xsepypϕ 1 α´1
, ψq is valid. The derivation of $ H C p˚,´q xsepypϕ, ψq ñ pϕ f Jq follows then a principle similar to one for the case max size pϕq ă α. Now, let us present the technical developments. Directly from the definition of xsepypϕ, ψq, the following simple facts hold. 1. ϕ, ψ and xsepypϕ, ψq have exactly the same equalities and inequalities. 2. size ě 0 is not part of xsepypϕ, ψq, and therefore, following the definition of xsepypϕ, ψq, there are no size ě β 1 Ď Lt ϕ and size ě β 2 Ď Lt ψ with β 1 ě β 2 . 3. x ‰ x does not belong to xsepypϕ, ψq. In particular, by definition of xsepypϕ, ψq, none of the following conditions apply:

there is x P X such that allocpxq Ď Lt ϕ and allocpxq Ď Lt ψ, there are x, y P X such that x ãÑ y P ϕ and x ãÑ y Ď Lt ψ, there are x, y P X such that allocpxq ^ x ãÑ y Ď Lt ϕ and x ãÑ y Ď Lt ψ.

From (1), we know that xsepypϕ, ψq and ϕ satisfy the same (in)equalities. Similarly to the proof of Lemma 5.4, let x 1 , . . . x n be a maximal enumeration of representatives of the equivalence classes (one per equivalence class) such that allocpx i q occurs in ϕ. As it is maximal, for every allocpxq in Ltpϕq there is i P r1, ns such that x i is syntactically equal to x. Moreover, by definition of xsepypϕ, ψq, for every i P r1, ns, allocpx i q Ď Lt xsepypϕ, ψq. The proof of $ H C p˚,´q xsepypϕ, ψq ñ ϕ f J is by induction on the number j of variables x P X for which allocpxq Ď Lt ϕ holds. base case: j " 0: In the base case, no formula allocpxq occurs positively in ϕ. Since ϕ is a core type, this implies that for every x P X, allocpxq Ď Lt ϕ. Moreover, since ϕ is satisfiable, for every x, y P X, x ãÑ y Ď Lt ϕ (see the axiom (A C 3 )). Therefore, the core type ϕ is syntactically equivalent (up to associativity and commutativity of conjunction) to the formula ϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq , where

' ϕ size def " Ź `tsize ě β Ď Lt ϕu Y t size ě β Ď Lt ϕu ˘, ' ϕ alloc def " Ź xPX allocpxq, ' ϕ ãÑ def " Ź x,yPX x ãÑ y, ' ϕ (in)eq def " Ź
tx " y Ď Lt ϕ |"P t", ‰uu. Since ϕ is satisfiable, so is ϕ size . We show that $ H C p˚,´q pϕ size ^ϕ alloc ^ϕ ãÑ q f J:

1 ϕ size ^ϕ alloc f J (I 6.3.12 ) 2 allocpxq ñ x ãÑ y (A C
3 ), PC 3 ϕ alloc ñ ϕ ãÑ PC, repeated 2 4 ϕ size ^ϕ alloc ñ ϕ size ^ϕ alloc ^ϕ ãÑ PC, 3 5 pϕ size ^ϕ alloc f Jq ñ pϕ size ^ϕ alloc ^ϕ ãÑ f Jq (I 6.3.4 ), 4 6 ϕ size ^ϕ alloc ^ϕ ãÑ f J Modus Ponens, 1, 5

Now, let us treat the formula ϕ (in)eq . From the definition of xsepypϕ, ψq, we have ϕ (in)eq Ď Lt xsepypϕ, ψq, and so by propositional reasoning, $ H C p˚,´q xsepypϕ, ψq ñ ϕ (in)eq . This allows us to conclude that $ H C p˚,´q xsepypϕ, ψq ñ `pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq q f J ˘, (:) by induction on the number of literals x " y appearing in ϕ (in)eq , and by relying on the two theorems (I 6.3.10 ) and (I 6.3.11 ). In the base case, ϕ (in)eq " J, and so 7 ϕ size ^ϕ alloc ^ϕ ãÑ ñ ϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq PC 8 pϕ size ^ϕ alloc ^ϕ ãÑ f Jq ñ pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq f Jq (I 6.3.4 ), 7 9 ϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq f J Modus Ponens, 6, 8 10 xsepypϕ, ψq ñ pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq f Jq PC, 9

In the induction step, let ϕ (in)eq " ϕ 1 (in)eq ^x " y, where x " y Ď Lt ϕ 1 (in)eq . We have, 1 xsepypϕ, ψq ñ pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ1 (in)eq f Jq Induction Hypothesis xsepypϕ, ψq ñ x " y PC, as ϕ (in)eq Ď Lt xsepypϕ, ψq

x " y ^pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ1 (in)eq f Jq ñ pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ1 (in)eq ^x " y f Jq (I 6.3.10 )/(I 6.3.11 )

xsepypϕ, ψq ñ pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ1 (in)eq ^x " y f Jq PC, 1, 2, 3 xsepypϕ, ψq ñ pϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq f Jq Def. of ϕ 1 (in)eq , 4

Since ϕ size ^ϕ alloc ^ϕ ãÑ ^ϕ(in)eq is equivalent to ϕ, from (:) and by (I 6.3.4 ), we conclude that $ H C p˚,´q xsepypϕ, ψq ñ ϕ f J. induction step: j ě 1: In this case, let i P r1, ns such that allocpx i q Ď Lt ϕ and thus, by definition of xsepypϕ, ψq, allocpx i q Ď Lt xsepypϕ, ψq. As announced earlier, we define the formula:

Atompx i q def " # x i ãÑ y ^size " 1 if x i ãÑ y Ď Lt ϕ
, for some y P X allocpx i q ^size " 1 ^ŹyPX x i ãÑ y otherwise Notice that, if there is y P X such that x i ãÑ y Ď Lt ϕ, then the axiom schema (A 22 ) can be instantiated to allocpx i q ñ pAtompx i q f Jq. Otherwise (for all y P X, x i ãÑ y Ď Lt ϕ) this formula is an instantiation of the axiom schema (A 23 ). This allows us to show the following theorem: xsepypϕ, ψq ñ `Atompx i q f pxsepypϕ, ψq ˚Atompx i qq ˘(;) allocpx i q ñ pAtompx i q f Jq (A 22 )/(A 23 ) xsepypϕ, ψq ñ allocpx i q Def. of xsepypϕ, ψq, PC xsepypϕ, ψq ñ pAtompx i q f Jq ñ-Tr, 1, 2 xsepypϕ, ψq ˚Atompx i q ñ xsepypϕ, ψq ˚Atompx i q PC xsepypϕ, ψq ñ pAtompx i q ´xsepypϕ, ψq ˚Atompx i qq ˚-Adj, 4 xsepypϕ, ψq ñ pAtompx i q f xsepypϕ, ψq ˚Atompx i qq (I 6.3.9 ), 3, 5, PC

From the hypothesis cardpXq ď α, together with allocpx i q Ď Lt ϕ and the fact that ϕ is satisfiable, we have max size pϕq ě 1 (see (I C 6 ), instantiated with X " tx i u). In order to show that $ H C ˚,´x sepypϕ, ψq ñ pϕ f Jq, we split the proof depending on whether max size pϕq ă α holds. case: max size pϕq ă α: Since ϕ is a satisfiable core type in CoreTypespX, αq, by definition of max size p.q, we have size ě max size pϕq ^ size ě max size pϕq `1 Ď Lt ϕ. Below, we consider the formula ϕ 1 obtained from ϕ by: ' replacing size ě max size pϕq Ď Lt ϕ with size ě max size pϕq, ' for every x P X such that x " x i Ď Lt ϕ, replacing every literal allocpxq Ď Lt ϕ with allocpxq, and every literal x ãÑ y Ď Lt ϕ with x ãÑ y, where y P X.

Explicitly,

ϕ 1 def " ľ tx " y Ď Lt ϕ |"P t", ‰uu ^ľtallocpxq Ď Lt ϕ | x ‰ x i Ď Lt ϕuľ t allocpxq Ď Lt ϕu ^ľt allocpxq | x " x i Ď Lt ϕu ^ľtx ãÑ y Ď Lt ϕ | x ‰ x i Ď Lt ϕuľ t x ãÑ y Ď Lt ϕu ^ľt x ãÑ y | x " x i ^x ãÑ y Ď Lt ϕu ^ size ě max size pϕqľ tsize ě β Ď Lt ϕ | β ă max size pϕqu ^ľt size ě β Ď Lt ϕu.
The formula ϕ 1 enjoys the following properties (to be shown below):

A. ϕ 1 is a satisfiable core type in CoreTypespX, αq. B. pAtompx i q ˚ϕ1 q ñ ϕ is valid. C. pxsepypϕ, ψq ˚Atompx i qq ñ xsepypϕ 1 , ψq is valid.

Fundamentally, ϕ 1 enjoys the induction hypothesis, which reveals to be useful later on. Proof of (A). Since ϕ 1 is obtained from ϕ simply by changing the polarity of some of the literals in Ltpϕq, clearly ϕ 1 is in CoreTypespX, αq. To show that ϕ 1 is satisfiable, we rely on the fact that ϕ is satisfiable. Let ps, hq be a memory state satisfying ϕ. Since allocpx i q Ď Lt ϕ, we conclude that spx i q P domphq. Let us consider the disjoint heaps h 1 and h 2 such that h " h 1 `h2 and domph 1 q " tspx i qu. We show that ps, h 2 q |ù ϕ 1 by considering every L P Ltpϕ 1 q and showing that ps, h 2 q |ù L. case: L " x " y, where "P t", ‰u: By definition of ϕ 1 , ps, hq |ù L and therefore spxq " spyq. Thus, ps, h 2 q |ù L. case: L " allocpxq: If x " x i Ď Lt ϕ then spxq P domph 1 q, and therefore, by h 1 7h 2 , spxq R domph 2 q. So, ps, h 2 q |ù allocpxq. Otherwise (x ‰ x i Ď Lt ϕ), by definition of ϕ 1 , we have allocpxq Ď Lt ϕ. So spxq R domphq and, from h 2 Ďh, we conclude that ps, h 2 q |ù allocpxq. case: L " x ãÑ y: Similar to the previous case. Briefly, if x " x i Ď Lt ϕ then, by definition of Atompx i q, ps, h 2 q |ù allocpxq, which implies ps, h 2 q |ù x ãÑ y. Otherwise, by definition of ϕ 1 , x ãÑ y Ď Lt ϕ and thus ps, hq |ù x ãÑ y. From h 2 Ďh, we conclude that ps, h 2 q |ù x ãÑ y. case: L " allocpxq: By definition of ϕ 1 , allocpxq ^x ‰ x i Ď Lt ϕ. Therefore spxq P domphq and, by definition of Atompx i q, spxq R domph 1 q. Since h " h 1 `h2 , we conclude that ps, h 2 q |ù allocpxq. case: L " x ãÑ y: Similar to the previous case. By definition of ϕ 1 , we have x ãÑ y x ‰ x i Ď Lt ϕ. Thus, hpspxqq " spyq. By definition of Atompx i q, spxq P domph 2 q and thus h 2 pspxqq " spyq. So, ps, h 2 q |ù x ãÑ y. case: L " size ě β: By definition of ϕ 1 , β ă max size pϕq. Since ps, hq |ù ϕ, we have cardpdomphqq ě max size pϕq. By definition of Atompx i q and from h " h 1 `h2 , we have cardpdomph 2 qq " cardpdomphqq´1 ě max size pϕq´1 ě β. Therefore, ps, h 2 q |ù size ě β. case: L " size ě β: By definition of ϕ 1 , size ě β Ď Lt ϕ or β " max size pϕq. In the former case, since ϕ is satisfiable, we know that β ą max size pϕq. Therefore, in both cases we have β ě max size pϕq. Moreover, as ps, hq |ù ϕ and size ě max size pϕq `1 Ď Lt ϕ, we have cardpdomphqq ď max size pϕq. Since cardpdomph 1 qq " 1, by h " h 1 `h2 we derive cardpdomph 2 qq ă max size pϕq ď β. Therefore, ps, h 2 q |ù size ě β.

Ź

x " y Ď Lt tϕ 1 | ψu ˇˇ"P t", ‰u ( Proof of (B). Let ps, hq |ù Atompx i q˚ϕ 1 . So, there are h 1 and h 2 such that h " h 1 `h2 , ps, h 1 q |ù Atompx i q and ps, h 2 q |ù ϕ 1 . By definition of Atompx i q, domph 1 q " tspx i qu.

^Ź " allocpxq ˇˇˇ allocpxq Ď Lt ϕ 1 allocpxq Ď Lt ψ * ^Ź t allocpxq Ď Lt ψu ^Ź allocpxq ˇˇallocpxq Ď Lt ϕ 1 ( ^Ź t xãÑy Ď Lt ψu ^Ź " x ãÑ y ˇˇˇ allocpxq Ď Lt ϕ 1 x ãÑ y Ď Lt ψ * ^Ź " x ‰ x ˇˇˇa llocpxq ^ x ãÑ y Ď Lt ϕ 1 x ãÑ y Ď Lt ψ * ^Ź " size ě β 2 `1 . ´β1 ˇˇˇ size ě β 1 Ď Lt ϕ 1 size ě β 2 Ď Lt ψ * ^Ź " x ‰ x ˇˇˇx ãÑ y Ď Lt ϕ 1 x ãÑ y Ď Lt ψ * ^Ź " size ě β 2 . ´β1 ˇˇˇs ize ě β 1 Ď Lt ϕ 1 size ě β 2 Ď Lt ψ * ^Ź " x ‰ x ˇˇˇa llocpxq Ď Lt ϕ 1 allocpxq Ď Lt ψ *
In order to prove (B), we show that ps, hq |ù L, for every literal L P Ltpϕq. case: L " x " y, where "P t", ‰u: By definition of ϕ 1 , ps, h 2 q |ù L and therefore spxq " spyq. Hence, ps, hq |ù L. case: L " allocpxq: By definition of Atompx i q, allocpx i q Ď Lt ϕ and therefore spxq R domph 1 q. By definition of ϕ 1 , for every y P X, allocpyq Ď Lt ϕ 1 implies allocpyq Ď Lt ϕ. Therefore, spxq R domph 2 q. We conclude that spxq R domphq, and so ps, hq |ù allocpxq. case: L " x ãÑ y: Similar to the previous case. Briefly, by definition of Atompx i q, ps, h 1 q |ù x ãÑ y. By definition of ϕ 1 , ps, h 2 q |ù x ãÑ y. So, ps, hq |ù x ãÑ y. case: L " allocpxq: If x " x i Ď Lt ϕ, then spxq " spx i q (first case of the proof), and by definition of Atompx i q, spxq P domph 1 q. As h 1 Ďh, we conclude that ps, hq |ù allocpxq. Otherwise, if x ‰ x i Ď Lt ϕ, then by definition of ϕ 1 we have allocpxq Ď Lt ϕ 1 . This implies that spxq P domph 2 q and so, from h 2 Ďh, we conclude that ps, hq |ù allocpxq. case: L " x ãÑ y: Similar to the previous case. Briefly, if x " x i Ď Lt ϕ then, by definition of Atompx i q, ps, h 1 q |ù x ãÑ y and so ps, hq |ù x ãÑ y. Otherwise (x ‰ x i Ď Lt ϕ), x ãÑ y Ď Lt ϕ 1 and therefore ps, h 2 q |ù x ãÑ y. So, ps, hq |ù x ãÑ y. case: L " size ě β: If β ă max size pϕq, then directly by definition of ϕ 1 , we have ps, h 2 q |ù size ě β. From h 2 Ďh, we conclude that ps, hq |ù size ě β. Otherwise, β " max size pϕq. Recall that max size pϕq ě 1 and so, by definition of ϕ 1 , size ě max size pϕq ´1 Ď Lt ϕ 1 . Thus, cardpdomph 2 qq ě max size pϕq ´1. By definition of Atompx i q we have cardpdomph 1 qq " 1. As h " h 1 `h2 , we conclude that ps, hq |ù size ě max size pϕq. case: L " size ě β: As ϕ is satisfiable, β ą max size pϕq. By definition of the formula ϕ 1 , size ě max size pϕq Ď Lt ϕ 1 and thus cardpdomph 2 qq ă max size pϕq.

From cardpdomph 1 qq " 1 we derive cardpdomphqq ď max size pϕq ă β, which allows us to conclude that ps, hq |ù size ě β. Proof of (C). Figure 9 Therefore, by definition of Atompx i q, we conclude that spxq R domph 2 q. From h " h 1 `h2 , we derive spxq R domphq, and thus ps, hq |ù allocpxq.

In the second case, (allocpxq Ď Lt ϕ 1 ), by definition of ϕ 1 we have allocpxq Ď Lt ϕ and x ‰ x i Ď Lt ϕ. By definition of Atompx i q, spxq R domph 2 q. By definition of xsepypϕ, ψq, allocpxq Ď Lt xsepypϕ, ψq, and therefore spxq R domph 1 q. Again, by h " h 1 `h2 , we have ps, hq |ù allocpxq. case: L " x ãÑ y: Following the definition of xsepypϕ 1 , ψq, x ãÑ y Ď Lt ψ and therefore x ãÑ y Ď Lt xsepypϕ, ψq. Therefore, ps, h 1 q |ù x ãÑ y. Since xsepypϕ, ψq is satisfiable, x ãÑ y Ď Lt ϕ. By definition of Atompx i q, we derive ps, h 2 q |ù x ãÑ y. From h " h 1 `h2 , ps, hq |ù x ãÑ y. case: L " allocpxq: By definition of xsepypϕ 1 , ψq, we have allocpxq Ď Lt ϕ 1 and allocpxq Ď Lt ψ. First, let us suppose allocpxq Ď Lt ϕ. By definition of ϕ 1 , x " x i Ď Lt ϕ and so, by definition of Atompx i q, spxq P domph 2 q. From h 2 Ďh, ps, hq |ù allocpxq. Otherwise ( allocpxq Ď Lt ϕ), by definition of xsepypϕ, ψq, allocpxq Ď Lt xsepypϕ, ψq. So, spxq P domph 1 q, and by h 1 Ďh, ps, hq |ù allocpxq. case: L " x ãÑ y: Similar to the previous case. By definition of xsepypϕ 1 , ψq, allocpxq Ď Lt ϕ 1 and x ãÑ y Ď Lt ψ. First, let us assume allocpxq Ď Lt ϕ. By definition of ϕ 1 , x " x i Ď Lt ϕ. By definition of Atompx i q, spxq P domph 2 q. Ad absurdum, suppose hpspxqq ‰ spyq. By definition of Atompx i q, we have that allocpxq ^ x ãÑ y Ď Lt ϕ. However, from x ãÑ y Ď Lt ψ, this implies x ‰ x Ď Lt xsepypϕ, ψq, which contradicts the satisfiability of xsepypϕ, ψq. Therefore, hpspxqq " spyq and, from h 2 Ďh, we conclude that ps, hq |ù x ãÑ y. Notice that, by the completeness of H C p˚q (Theorem 5.6), we conclude that the tautologies in (B) and (C) are derivable in H C p˚, ´q. Moreover, notice that allocpx i q Ď Lt ϕ 1 and, for every y P X, allocpyq Ď Lt ϕ implies allocpyq Ď Lt ϕ 1 . This allows us to rely on the induction hypothesis, and conclude that $ H C p˚,´q xsepypϕ 1 , ψq ñ pϕ 1 fJq. The derivation of xsepypϕ, ψq ñ pϕ f Jq is given below:

xsepypϕ 1 , ψq ñ pϕ 1 f Jq

Induction hypothesis

Atompx i q ˚ϕ1 ñ ϕ (B), Theorem 5.6

xsepypϕ, ψq ˚Atompx i q ñ xsepypϕ 1 , ψq (C), Theorem 5.6 pxsepypϕ, ψq ˚Atompx i qq ñ pϕ 1 f Jq ñ-Tr, 1, 3 xsepypϕ, ψq ñ pAtompx i q f xsepypϕ, ψq ˚Atompx i qq (;) pAtompx i q f xsepypϕ, ψq ˚Atompx i qq ñ `Atompx i q f pϕ 1 f Jq ˘(I 6.3.5 ), 4

`Atompx i q f pϕ 1 f Jq ˘ñ pAtompx i q ˚ϕ1 f Jq (I 6.3.6 ) pAtompx i q ˚ϕ1 f Jq ñ pϕ f Jq (I 6.3.4 ), 2

xsepypϕ, ψq ñ pϕ f Jq ñ-Tr, 5, 6, 7, 8 case: max size pϕq " α: In this case, we have size ě α Ď Lt ϕ, where we recall that α " max size pϕq ě 1. Following the developments of the previous case, we would like to define a formula ϕ 1 for which the formula ϕ 1 ˚Atompx i q ñ ϕ is valid. However, since ϕ is in CoreTypespX, αq, we cannot hope for ϕ 1 to be a core type in CoreTypespX, αq. Indeed, because of size ě α Ď Lt ϕ, in order to achieve the valid formula above we must differentiate between the case where ϕ is satisfied by a memory state ps, hq such that cardpdomphqq ą α, to the case where cardpdomphqq " α. Therefore, below we introduce two core types ϕ 1 α and ϕ 1 α´1 , and define ϕ 1 as ϕ 1 α _ϕ 1 α´1 . Since the separating conjunction distributes over disjunctions, after defining these two core types, we can easily adapt the arguments of the previous case to prove that xsepypϕ, ψq ñ pϕ f Jq. The formula ϕ 1 α is obtained from ϕ by replacing, for every x P X such that x " x i Ď Lt ϕ, every literal allocpxq Ď Lt ϕ with allocpxq, and every x ãÑ y Ď Lt ϕ with x ãÑ y, where y P X. Notice that ϕ 1 α is defined similarly to ϕ 1 (in the previous case of the proof), with the exception that we do not modify the polarity of size literals. Explicitly, ϕ 1 α is defined as follows.

ϕ 1 α def " ľ tx " y Ď Lt ϕ |"P t", ‰uu ^ľtallocpxq Ď Lt ϕ | x ‰ x i Ď Lt ϕu ^ľt allocpxq Ď Lt ϕuľ t allocpxq | x " x i Ď Lt ϕu ^ľtx ãÑ y Ď Lt ϕ | x ‰ x i Ď Lt ϕu ^ľt x ãÑ y Ď Lt ϕuľ t x ãÑ y | x " x i ^x ãÑ y Ď Lt ϕu ^ľtsize ě β | β P r0, α ´1su ^size ě α.
The formula ϕ 1 α´1 is obtained from ϕ 1 α by replacing size ě α (highlighted in the definition of ϕ 1 α above), by size ě α. The following properties are satisfied: D. ϕ 1 α and ϕ 1 α´1 are satisfiable core types in CoreTypespX, αq, E. pAtompx i q ˚pϕ 1 α _ ϕ 1 α´1 qq ñ ϕ is valid. F. pxsepypϕ, ψq ˚Atompx i qq ñ xsepypϕ 1 α , ψq _ xsepypϕ 1 α´1 , ψq is valid. Proof of (D). The proof is very similar to the one of the property (A). Here, we pinpoint the main differences. First of all, since both ϕ 1 α and ϕ 1 α´1 are obtained from ϕ by changing the polarity of some of the literals in Ltpϕq, they are both in CoreTypespX, αq. To show that ϕ 1 α and ϕ 1 α´1 are satisfiable, we rely on the fact that ϕ is satisfiable. Let ps, hq be a memory state satisfying ϕ. Since size ě α Ď Lt ϕ, cardpdomphqq ě α. Without loss of generality, we can assume cardpdomphqq ą α. Indeed, if cardpdomphqq " α it is sufficient to add a memory cell p , q to h, such that does not correspond to a program variable x P X. It is straightforward to check that the resulting memory state still satisfies ϕ. We introduce a second heap h 1 . Let L " domphq X tspxq | x P Xu be the set of locations in domphq that corresponds to variables in X. Since cardpXq ď α, cardpLq ď α. Let h 1 Ďh such that L Ď domph 1 q and cardpdomph 1 qq " α. Again, it is straightforward to see that ps, h 1 q satisfies ϕ. Intuitively, we rely on ps, hq to show that ϕ 1 α is satisfiable, and on ps, h 1 q to show that ϕ 1 α´1 is satisfiable. As allocpx i q Ď Lt ϕ, we have spxq P domphq and spxq P domph 1 q. We consider heaps h 1 and h 2 such that h " h 1 `h2 and domph 1 q " tspx i qu. Similarly, we consider heaps h 1 1 and h 1 2 such that h 1 " h 1 1 `h1 2 and domph 1 1 q " tspx i qu. We show that ps, h 2 q |ù ϕ 1 α and ps, h 1 2 q |ù ϕ 1 α´1 . Let us first discuss the former result. Let L P Ltpϕ 1 α q. If L is not of the form size ě β or size ě β, then ps, h 2 q |ù L follows exactly as in the proof of (A). Otherwise, case: L " size ě β: By definition of h 2 , cardpdomph 2 qq " cardpdomphqq ´1 ě α.

Since β ď α (as ϕ 1 α is in CoreTypespX, αq), we conclude that ps, h 2 q |ù size ě β. case: L " size ě β: By definition of ϕ 1 α , no literals of the form size ě β belongs to Ltpϕ 1 α q. Therefore, this case does not occur. This concludes the proof of ps, h 2 q |ù ϕ 1 α . For the proof of ps, h 1 2 q |ù ϕ 1 α´1 , let us consider L P Ltpϕ 1 α´1 q. Again, if L is not of the form size ě β or size ě α, then ps, h 1 2 q |ù L follows exactly as in the proof of (A) (replacing h by h 1 and h 2 by h 1 2 ). Otherwise, case: L " size ě β: By definition of ϕ 1 α´1 , we have β ă α. By definition of h 1 2 , cardpdomph 1 2 qq " cardpdomph 1 qq ´1 " α ´1. Therefore, ps, h 1 2 q |ù size ě β. case: L " size ě β: By definition of ϕ 1 α´1 , β " α. Since cardpdomph 1 2 qq " α ´1, we conclude that ps, h 1 2 q |ù size ě β. Proof of (E). The proof is very similar to the one of the property (B). We show that pAtompx i q ˚ϕ1 α q ñ ϕ and pAtompx i q ˚ϕ1 α´1 q ñ ϕ. Then, (E) follows as the separating conjunction distributes over disjunction. First, let us consider pAtompx i q ˚ϕ1 α q ñ ϕ, and a memory state ps, hq satisfying Atompx i q ˚ϕ1

α . There are h 1 and h 2 such that h " h 1 `h2 , ps, h 1 q |ù Atompx i q and ps, h 2 q |ù ϕ 1 α . Let L P Ltpϕq. Notice that ϕ does not contain negated size ě β literals. If L is not size ě β, for some β P r0, αs, then ps, hq |ù L follows exactly as it is shown in the proof of (B). Otherwise, suppose L " size ě β, where β P r0, αs. By definition of ϕ 1 α , size ě α Ď Lt ϕ 1 α . Hence, cardpdomph 2 qq ě α and, from h 2 Ďh, we derive ps, hq |ù size ě β. So, ps, hq |ù ϕ. Let us now consider pAtompx i q ˚ϕ1 α´1 q ñ ϕ and a memory state ps, hq satisfying Atompx i q ˚ϕ1

α´1 . There are h 1 and h 2 such that h " h 1 `h2 , ps, h 1 q |ù Atompx i q and ps, h 2 q |ù ϕ 1 α´1 . Let L P Ltpϕq. Again, ϕ does not contain negated size ě β literals, and if L is not size ě β, for some β P r0, αs, then ps, hq |ù L follows exactly as is shown in the proof of (B). Otherwise, suppose L " size ě β, where β P r0, αs. By definition of ϕ 1 α´1 , size ě α . ´1 Ď Lt ϕ 1 α´1 . Therefore, cardpdomph 2 qq ě α ´1. By definition of Atompx i q, cardpdomph 1 qq " 1. From h " h 1 `h2 , we conclude that cardpdomphqq ě α and thus ps, hq |ù size ě β. Therefore, ps, hq |ù ϕ.

Proof of (F). Recall that xsepypϕ, ψq is satisfiable. In particular, from its definition together with size ě α Ď Lt ϕ, this implies that size ě α Ď Lt ψ, as otherwise we would have size ě 0 Ď Lt xsepypϕ, ψq. So, as ψ is a satisfiable core type in CoreTypespX, αq, for all β P r0, αs, size ě β Ď Lt ψ. Alternatively, ψ does not contain size ě β literals. We look at the definitions of xsepypϕ 1 α , ψq and xsepypϕ 1 α´1 , ψq. a. Since for all β P r0, αs, size ě β Ď Lt ϕ 1 α and size ě β Ď Lt ψ, we derive that xsepypϕ 1 α , ψq does not contain size ě β nor size ě β literals (for all β P r0, αs). This holds directly by definition of xsepypϕ 1 α , ψq, which can be retrieved by substituting ϕ 1 by ϕ 1 α in Figure 9. b. Analogously, we know that size ě α Ď Lt ϕ 1 α´1 whereas for every β P r0, α ´1s, size ě β Ď Lt ϕ 1 α´1 , and therefore among all the literals size ě β or size ě β (β P r0, αs), xsepypϕ 1 α´1 , ψq only contains size ě 1 (occurring positively). By definition and with the sole exception of the polarity of the formula size ě α (occurring positively in ϕ 1 α and negatively in ϕ 1 α´1 ), the two core types ϕ 1 α´1 and ϕ 1 α are equal. Directly by definition of xsepypϕ 1 α , ψq and xsepypϕ 1 α´1 , ψq, together with (a) and (b), this implies that xsepypϕ 1 α´1 , ψq is syntactically equal to xsepypϕ 1 α , ψq ^size ě 1 (up to commutativity and associativity of conjunction). This means that the formula xsepypϕ 1 α´1 , ψq ñ xsepypϕ 1 α , ψq is valid, and suggests us that, in order to show (F), we can simply establish that pxsepypϕ, ψq ˚Atompx i qq ñ xsepypϕ 1 α , ψq is valid. As we already stated, ϕ 1 α is defined as ϕ 1 (in the previous step of the proof), with the exception that we do not modify the polarity of size ě β literals. Because of this, we can rely on the proof of (C). Briefly, we consider a memory state ps, hq satisfying xsepypϕ, ψq ˚Atompx i q. There are h 1 and h 2 such that h " h 1 `h2 , ps, h 1 q |ù xsepypϕ, ψq and ps, h 2 q |ù Atompx i q. Let L P Ltpxsepypϕ 1 α´1 , ψqq. By (a), L is neither of the form size ě β nor of the form size ě β. Therefore, ps, hq |ù L follows exactly as shown in the proof of (C). We are now ready to prove that xsepypϕ, ψq ñ pϕ f Jq. By Theorem 5.6, the tautologies in (D) and (F) are derivable in H C p˚, ´q. Moreover, since allocpx i q Ď Lt tϕ 1 α ; ϕ 1 α´1 u and, for every y P X, allocpyq Ď Lt ϕ implies allocpyq Ď Lt tϕ 1 α ; ϕ 1 α´1 u, we rely on the induction hypothesis to derive $ H C p˚,´q xsepypϕ 1 α , ψq ñ pϕ 1 α f Jq, $ H C p˚,´q xsepypϕ 1 α´1 , ψq ñ pϕ 1 α´1 f Jq. We derive xsepypϕ, ψq ñ pϕ f Jq (see Figure 10) concluding the proof of Lemma 6.2 R1 Let ϕ, ϕ 1 and ψ be formulae of SLp˚, ´q such that $ H C p˚,´q ϕ ô ϕ 1 . Then, $ H C p˚,´q ψrϕs ρ ñ ψrϕ 1 s ρ In order to prove R1, we are almost done as we have already shown R0 in the proof of Theorem 5.6 and the same properties hold for SLp˚, ´q though the language is richer.

As a direct consequence of the admissibility of the rules (I 6.3.4 ) and (I 6.3.5 ) from Lemma 6.3, the rules below are also admissible:

ϕ ô ϕ 1 ϕ ´ψ ô ϕ 1 ´ψ ϕ ô ϕ 1 ψ ´ϕ ô ψ ´ϕ1
We need the two rules as ´is not commutative. Consequently, by structural induction on ψ, one can conclude that $ H C p˚,´q ϕ ô ϕ 1 implies $ H C p˚,´q ψrϕs ρ ñ ψrϕ 1 s ρ . Now, assume ϕ is a formula in SLp˚, ´q. Without loss of generality, we can assume that the separating connectives in ϕ are restricted to ˚and f for the occurrences that are not related to abbreviations for core formulae. Indeed, ψ 1 f ψ is a shortcut for pψ 1 ´ ψq and therefore one can replace every occurrence of ψ 1 ´ψ by pψ 1 f ψq assuming that ψ 1 and ψ are already of the appropriate shape. Such a replacement is possible thanks to R1.

Assume that ϕ is a formula in SLp˚, fq with n `1 occurrences of ˚or f not involved in the definition of core formulae.

Let ψ be a subformula of ϕ (at the occurrence ρ) of the form ψ 1 fψ 2 such that ψ 1 and ψ 2 are in BoolpCorepX, α 1 qq and BoolpCorepX, α 2 qq, respectively. By propositional reasoning, one can show that there are formulae in disjunctive normal form ψ 1 1 _ ¨¨¨_ ψ n 1 1 and ψ 1 2 _ ¨¨¨_ ψ n 2 2 such that $ H C ψ i ô ψ 1 i _ ¨¨¨_ ψ n i i for i P t1, 2u, and moreover every ψ j i 's is a core type in CoreTypespX, maxpcardpXq, α 1 , α 2 qq. Again, by using propositional reasoning but this time establishing also distributivity of _ over f, we have

$ H C p˚,´q ψ 1 f ψ 2 ô ł j 1 Pr1,n 1 s,j 2 Pr1,n 2 s ψ j 1 1 f ψ j 2 2 .
We rely on Lemma 6.2, and conclude that there is a conjunction of core formulae ψ j 1 ,j 2 in ConjpCorepX, maxpcardpXq, α 1 , α 2 qqq such that $ H C p˚,´q ψ j 1 1 f ψ j 2 2 ô ψ j 1 ,j 2 . By propositional reasoning, we get

$ H C p˚,´q ψ 1 f ψ 2 ô ł j 1 Pr1,n 1 s,j 2 Pr1,n 2 s ψ j 1 ,j 2 .
Consequently (thanks to the property R1), we obtain

$ H C p˚,´q ϕ ô ϕr ł j 1 Pr1,n 1 s,j 2 Pr1,n 2 s ψ j 1 ,j 2 s ρ
Note that the right-hand side formula has n occurrences of the separating connnectives that are not involved in the definition of some core formula. The induction hypothesis applies, which concludes the proof. The case when ψ is a subformula of ϕ (at the occurrence ρ) of the form ψ 1 ˚ψ2 is treated as in the proof of Theorem 5.6 and therefore is omitted herein.

Related work

In this section, we briefly compare our Hilbert-style proof system H C p˚, ´q with existing proof systems for SLp˚, ´q, fragments or extensions and we recall a few landmark works proposing proof systems for abstract separation logics or for logics that are variants of Boolean BI. Those latter proof systems are not necessarily Hilbert-style and may contain labels or other similar machineries. So, this section completes the presentation of the context from Section 1 while pinpointing the main original features of our calculus. Finally, we also evoke several works that use the idea of axiomatising a fragment of a logic and to provide in the proof system means to transform any formula into an equivalent formula from that fragment. This is clearly similar to the approach we have followed, but we aim at picking examples from outside the realm of spatial and resource logics. In order to keep the length of this section reasonable, we limit ourselves to the main bibliographical entries but additional relevant works can be found in the cited materials.

Proof systems for quantifier-free separation logic. Surprisingly, as far as we know, sound and complete proof systems for SLp˚, ´q are very rare and the only system we are aware of is a tableaux-based calculus from [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF] with labelled formulae (each formula is enriched with a label to be interpreted by some heap) and with resource graphs to encode symbolically constraints between heap expressions (i.e. labels). Of course, translations from separation logics into logics or theories have been designed, see e.g. [START_REF] Calcagno | From separation logic to first-order logic[END_REF][START_REF] Reynolds | A decision procedure for separation logic in SMT[END_REF], but the finding of proof systems for SLp˚, ´q with all Boolean connectives and the separating connectives ˚and ´has been quite challenging. Unlike [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF], H C p˚, ´q uses only SLp˚, ´q formulae and therefore can be viewed as a quite orthodox Hilbert-style calculus with no extra syntactic objects. In particular, H C p˚, ´q has no syntactic machinery to refer to heaps or to other semantical objects related to SLp˚, ´q. In [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF], the resource graphs attached to the tableaux are designed to reason about heap constraints, and to provide control for designing strategies that lead to termination. Interestingly, the calculus in [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF] is intended to be helpful to synthesize countermodels (which is a standard feature for labelled deduction systems [START_REF] Gabbay | Labelled Deductive Systems[END_REF]) or to be extended to the first-order case, which is partly done in [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF] but we know that completeness is theoretically impossible. Besides, a sound labelled sequent calculus for the first-order extension of SLp˚, ´q is presented in [START_REF] Hóu | Automated theorem proving for assertions in separation logic with all connectives[END_REF] but completeness for the sublogic SLp˚, ´q is not established. The calculus in [START_REF] Hóu | Automated theorem proving for assertions in separation logic with all connectives[END_REF] has also labels, which differs from our puristic approach. A complete sequent-style calculus for the symbolic heap fragment has been designed quite early in [START_REF] Berdine | A decidable fragment of separation logic[END_REF] but does not deal with full SLp˚, ´q (in particular it is not closed under Boolean connectives and does not contain the separating implication). A complexity-wise optimal decision procedure for the symbolic heap fragment is designed in [CHO `11] based on a characterisation in terms of homomorphisms.

Frameworks for abstract separation logics. Bunched logics, such as the original bunched logic BI in [START_REF] O'hearn | The logic of bunched implications[END_REF], are known to be closely related to separation logics that can be viewed as concretisation of (Boolean) BI with models made of memory states, see e.g. [Pym02, Rey02, GM05, PSO18]. Actually, bunched logics come with different flavours, Boolean BI being considered as the genuine abstract version of SLp˚, ´q. Though Boolean BI has been shown undecidable in [START_REF] Larchey-Wendling | Nondeterministic phase semantics and the undecidability of Boolean BI[END_REF][START_REF] Brotherston | Undecidability of propositional separation logic and its neighbours[END_REF], a Hilbert-style axiomatisation can be found in [START_REF] Galmiche | Expressivity properties of boolean BI through relational models[END_REF]. Our proof system H C p˚, ´q inherits all the axiom schemas and inference rules for Boolean BI from [START_REF] Galmiche | Expressivity properties of boolean BI through relational models[END_REF], which is expected as SLp˚, ´q can be viewed as Boolean BI on concrete heaps but with the notable difference of having built-in atomic formulae x " y and x ãÑ y. Bunched logics, such as Boolean BI, can be defined in several ways, for instance assuming classical or intuitionistic connectives, and in [START_REF] Brotherston | Bunched logics displayed[END_REF], a unified proof theory based on display calculi [START_REF] Belnap | Display logic[END_REF] is designed for a variety of four bunched logics, including Boolean BI (see also the nested sequent calculus for Boolean BI in [START_REF] Park | A theorem prover for Boolean BI[END_REF]). In display calculi, structural connectives enrich the sequent-style structures, providing a family of structural connectives accompanying the standard comma from sequent-style calculi. The main results in [START_REF] Brotherston | Bunched logics displayed[END_REF] include cut-elimination, soundness and completeness. So, compared to our calculus H C p˚, ´q, the calculi in [START_REF] Brotherston | Bunched logics displayed[END_REF] are designed for logics with more abstract semantical structures and owns a proof-theoretical machinery that does not include labels but instead complex structured sequents.

The quest for designing frameworks dedicated to classes of abstract separation logics have been pursued in several directions. For instance, models for Boolean BI are typically relational commutative monoids but properties can be added leading to a separation theory. In [START_REF] Brotherston | Parametric completeness for separation theories[END_REF], a hybrid version of Boolean BI is introduced, called HyBBI, in which nominals (in the sense of hybrid modal logics, see e.g. [START_REF] Areces | Hybrid logics: characterization, interpolation and complexity[END_REF]) are added in order to be able to express rich standard properties in separation theory, such as cancellativity. Not only an Hilbert-style proof system is provided for HyBBI [START_REF] Brotherston | Parametric completeness for separation theories[END_REF] but also a parametric completeness result is shown. More precisely, any extension of the proof system for HyBBI with a set of specific axioms is actually complete with respect to the class of models that satisfy the axioms, which is analogous to Sahlqvist's Theorem for modal logics [START_REF] Sahlqvist | Completeness and correspondence in the first and second order semantics for modal logics[END_REF][START_REF] Blackburn | Modal Logic[END_REF]. This provides a very general means to axiomatise variants of Boolean BI but at the cost of having the extra machinery for nominals. Moreover, as HyBBI and its extensions are abstract separation logics with no atomic formulae of the form x " y or x ãÑ y, the tools developed in [START_REF] Brotherston | Parametric completeness for separation theories[END_REF] are of no help to design an Hilbert-style proof system for SLp˚, ´q (except that its part dealing with Boolean BI is precisely borrowed from [GLW06] too).

Besides, in [START_REF] Hóu | Modular labelled sequent calculi for abstract separation logics[END_REF] labelled sequent calculi are designed for several abstract separation logics by considering different sets of properties. The sequents contain labelled formulae (a formula prefixed by a label to be interpreted as an abstract heap) as well as relational atoms to express relationships between abstract heaps. Though the framework in [START_REF] Hóu | Modular labelled sequent calculi for abstract separation logics[END_REF] is modular and very general to handle abstract separation logics, it is not tailored to separation logics with concrete semantics, see [HCGT18, Section 7] for possible future directions. In contrast, as explained already, the paper [START_REF] Hóu | Automated theorem proving for assertions in separation logic with all connectives[END_REF] deals with first-order separation logic with concrete semantics and presents a sound labelled sequent calculus for it. Of course, the calculus cannot be complete but more importantly in the context of the current paper, completeness is not established for the quantifier-free fragment. In [START_REF] Hóu | Automated theorem proving for assertions in separation logic with all connectives[END_REF], the sequents contain labelled formulae and relational atoms, similarly to [START_REF] Hóu | Modular labelled sequent calculi for abstract separation logics[END_REF] (see also [START_REF] Hóu | Labelled sequent calculi and automated reasoning for assertions in separation logic[END_REF]). Hence, this does not meet our requirements to have a pure axiomatisation in which only logical formulae from quantifier-free separation logic are allowed.

Modularity of the approaches from [Bro12, BV14, HCGT18] is further developed in the recent work [START_REF] Docherty | Modular tableaux calculi for separation theories[END_REF][START_REF] Docherty | Bunched logics: a uniform approach[END_REF] by proposing a framework for labelled tableaux systems parametrised by the choice of separation theories (in the very sense of [START_REF] Brotherston | Parametric completeness for separation theories[END_REF]). It is remarkable that the developments in [START_REF] Docherty | Modular tableaux calculi for separation theories[END_REF][START_REF] Docherty | Bunched logics: a uniform approach[END_REF] are very general as it can handle separation theories that can be expressed in the rich class of so-called coherent first-order formulae, included in the first-order fragment Π 2 . The first-order axioms are directly translated into inference rules. The calculi use labelled formulae (every formula is decorated by a sign and by a label) as well as constraints enforcing properties between worlds/resources. Unlike [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF], the reasoning about labels is not outsourced but handled directly by the calculus. As several works mentioned above, the framework in [START_REF] Docherty | Modular tableaux calculi for separation theories[END_REF][START_REF] Docherty | Bunched logics: a uniform approach[END_REF] does not provide for free a proof system for SLp˚, ´q (which might have been a close cousin of the one in [START_REF] Galmiche | Tableaux and resource graphs for separation logic[END_REF]). More importantly, similarly to the works [GM10, BV14, HCGT18], the labelled tableaux systems handle syntactic objects referring to semantical concepts related to the abstract separation logics that go beyond the only presence of formulae. In a way, modularity of the approach prevents from having a puristic calculus for SLp˚, ´q, apart from the fact that SLp˚, ´q is not part of the logics handled in [START_REF] Docherty | Modular tableaux calculi for separation theories[END_REF].

Axiomatising knowledge logics with reduction axioms. In order to conclude this section, let us recall that the derivations in H C p˚, ´q are able to simulate the bottom-up elimination of separating connectives, leading to Boolean combinations of core formulae for which the system H C p˚, ´q is also complete. As the core formulae are (simple) formulae in SLp˚, ´q, the axiomatisation provided by H C p˚, ´q uses only SLp˚, ´q formulae and is complete for the full logic SLp˚, ´q (and not only for Boolean combinations of core formulae). Note that as a by-product of our completeness proof for SLp˚, ´q, we get expressive completeness of SLp˚, ´q with respect to Boolean combinations of core formulae, with a proof different from the developments in [Loz04a, [START_REF] Brochenin | Reasoning about sequences of memory states[END_REF][START_REF] Echenim | The Bernays-Schönfinkel-Ramsey class of separation logic on arbitrary domains[END_REF].

This general principle described above is familiar for axiomatising dynamic epistemic logics in which dynamic connectives might be eliminated with the help of so-called reduction axioms, see e.g. standard examples in [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF][START_REF] Van Benthem | Logical Dynamics of Information and Interaction[END_REF][START_REF] Wang | On axiomatizations of public announcement logic[END_REF][START_REF] Fervari | Introspection as an action in relational models[END_REF]. In a nutshell, every formula containing a dynamic operator is provably reduced to a formula without such an operator. Completeness is then established thanks to the completeness of the underlying 'basic' language, A similar approach for the linear µ-calculus is recently presented in [START_REF] Doumane | Constructive completeness for the linear-time µ-calculus[END_REF] for which a form of constructive completeness is advocated, see also [START_REF] Lück | Axiomatizations of team logics[END_REF]. Hilbert-style axiomatisations following similar high-level principles for the modal separation logics MSL(˚,♦) and MSL(˚,x‰y) introduced in [DF19], have been designed in [START_REF] Demri | Axiomatising logics with separating conjunction and modalities[END_REF].

Conclusion

We presented a method to axiomatise internally quantifier-free separation logic SLp˚, ´q based on the axiomatisation of Boolean combinations of core formulae (and even more precisely, based on the restricted fragment of core types). We designed the first proof system for SLp˚, ´q that is completely internal and highlights the essential ingredients of the heaplet semantics. The fact that the calculus is internal simply means that the axioms and inference rules involve schemas instantiated by formulae in SLp˚, ´q (no use of nominals, labels or other syntactic objects that are not SLp˚, ´q formulae). Obviously, the Hilbert-style proof system presented in the paper is of theoretical interest, at least to grasp what are the essential features of SLp˚, ´q. Still, it remains to be seen whether applications are possible for designing decision procedures, for instance to feed provers with appropriate axiom instances to accelerate the proof search. Furthermore, we have not investigated whether the proof system H C p˚, ´q (see Figure 1) can be simplified without loosing completeness. This might be rewarding for using the calculus for other logics or for other applications. Most probably the most obvious part to study in that respect would be H C p˚q.

To provide further evidence that our method is robust, it is desirable to apply it to axiomatise other separation logics, for instance by adding the list segment predicate ls [START_REF] Berdine | A decidable fragment of separation logic[END_REF] (or more generally user-defined inductive predicates) or by adding first-order quantification.

A key step in our approach is first to show that the logic admits a characterisation in terms of core formulae and such formulae need to be designed adequately. Of course, it is required that the set of valid formulae is recursively enumerable, which discards any attempt with SLp˚, ´, lsq or with the first-order version of SLp˚, ´q [START_REF] Demri | The effects of adding reachability predicates in propositional separation logic[END_REF][START_REF] Brochenin | On the almighty wand[END_REF]. The second part of the paper [START_REF] Demri | Internal calculi for separation logics[END_REF] introduces an extension of SLp˚, lsq and presents an axiomatisation with our method. More separation logics could be axiomatised that way, other good candidates are the version of separation logic with one individual variable studied in [START_REF] Demri | Separation logic with one quantified variable[END_REF] as well as the quantifier-free separation logic with general universes from [START_REF] Echenim | The Bernays-Schönfinkel-Ramsey class of separation logic on arbitrary domains[END_REF].

As in the rest of the paper, in the derivations below we use the following precedence between the various connectives of SLp˚, ´q: t u ą t^, _, ˚u ą tñ, ´, fu ą tôu. Proof of (I 5.2.5 ). Proof of (I 5.2.6 ). induction step: β ě 2: First of all, we notice that the following formula is valid:

psize " 1 ^UpXqq ˚psize " β´1 ^UpXqq ñ size " β ^UpXq.

(:) Indeed, let ps, hq be a memory state satisfying the antecedent of the implication above. So, there are disjoint heaps h 1 and h 2 such that h " h 1 `h2 , cardpdomph 1 qq " 1, cardpdomph 2 qq " β ´1, and for every x P X, spxq R domph 1 q and spxq R domph 2 q. By h " h 1 `h2 , cardpdomphqq " cardpdomph 1 qq `cardpdomph 2 qq " β, and for every x P X, spxq R domphq. Thus, ps, hq |ù size " β ^UpXq.

As (:) can be seen as a formula in SLp˚, allocq, by Theorem 5.6 it is derivable in H C p˚q and thus in H C p˚, ´q. Now, let us derive psize " β ^UpXqq f J. Let us consider as induction hypothesis the derivability of psize " β´1 ^UpXqq f J. Therefore, 1 size " β´1 ^UpXq f J Induction Hypothesis 2 psize " 1 ^UpXqq ˚psize " β´1 ^UpXqq ñ size " β ^UpXq (:), see above 3 size " 1 ^UpXq f J (A 21 )

4 J ñ psize " β´1 ^UpXq f Jq PC, 1 5 psize " 1 ^UpXq f Jq ñ `size " 1 ^UpXq f psize " β´1 ^UpXq f Jq ˘(I 6.3.5 ), 4 6 `size " 1 ^UpXq f psize " β´1 ^UpXq f Jq ˘ñ `psize " 1 ^UpXqq ˚psize " β´1 ^UpXqq f J ˘(I 6.3.6 ) 7 `psize " 1 ^UpXqq ˚psize " β´1 ^UpXqq f J ˘ñ psize " β ^UpXq f Jq (I 6.3.4 ), 2 8 psize " 1 ^UpXq f Jq ñ psize " β ^UpXq f Jq ñ-Tr, 5, 6, 7 9 size " β ^UpXq f J Modus Ponens, 3, 8 
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  ::" x " y | x ãÑ y | emp ϕ ::" π | ϕ | ϕ ^ϕ | ϕ ˚ϕ | ϕ ´ϕ.

  ps, hq |ù x " y def ô spxq " spyq, ps, hq |ù emp def ô domphq " H, ps, hq |ù xãÑy def ô spxq P domphq and hpspxqq " spyq, ps, hq |ù ϕ 1 ˚ϕ2

J

  xq´K ps, hq |ù allocpxq iff spxq P domphq if β " 0 emp if β " 1 emp ˚size ě β´1 otherwise ps, hq |ù size ě β iff cardpdomphqq ě β
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 1 Figure 1: The proof system H C p˚, ´q.

Figure 4 :

 4 Figure 4: Proof system H C for Boolean combinations of core formulae.
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 7 pϕ ˚ψq ô pψ ˚ϕq (A 8 ) pϕ ˚ψq ˚χ ô ϕ ˚pψ ˚χq (I 9 ) pϕ _ ψq ˚χ ñ pϕ ˚χq _ pψ ˚χq (I 10 ) pK ˚ϕq ô K (A 11 ) ϕ ô ϕ ˚emp (I 12 ) allocpxq ˚J ñ allocpxq (A 13 ) pallocpxq ˚allocpxqq ô K ˚-Intro: ϕ ñ χ ϕ ˚ψ ñ χ ˚ψ (A 14 ) e ˚J ñ e đre P t emp, x " y, x ‰ y, x ãÑ yus (A 15 ) allocpxq ˚ allocpxq ñ allocpxq (A 16 ) pallocpxq ^ x ãÑ yq ˚J ñ x ãÑ y (A 17 ) allocpxq ñ pallocpxq ^size " 1q ˚J

Figure 5 :

 5 Figure 5: Additional axioms and rule for H C p˚q.

  x ‰ yq ^ppallocpzq ^size " 1q ˚ allocpuqq. 6 Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ allocpuq ^u ‰ z PC 7 γ ñ allocpuq ^u ‰ z ^ppallocpzq ^size " 1q ˚ allocpuqq PC 8 allocpuq ^ppallocpzq ^size " 1q ˚ allocpuqq ñ ppallocpzq ^size " 1 ^allocpuqq ˚ allocpuqq (I 5.2.5 ) 9 u ‰ z ^ppallocpzq ^size " 1 ^allocpuqq ˚ allocpuqq ñ ppallocpzq ^size " 1 ^allocpuq ^u ‰ zq ˚ allocpuqq (I 5.2.1 ) allocpzq ^allocpuq ^u ‰ z ñ size ě 2 (A 20 ) size " 1 ñ size ě 2 PC allocpzq ^size " 1 ^allocpuq ^u ‰ z ñK ñ-Tr, PC, 10, 11 γ ñ pallocpzq ^size " 1 ^allocpuq ^u ‰ zq ˚ allocpuq PC, 7, 8, 9 pallocpzq ^size " 1 ^allocpuq ^u ‰ zq ˚ allocpuq ñ K ˚ allocpuq ˚-Intro, 12 K ˚ allocpuq ñK (I 10 ), 14 γ ñK PC, 13, 15

  ľ

1

  ϕ ñ allocpxq PC 2 ψ ñ allocpxq PC 3 ϕ ˚ψ ñ allocpxq ˚allocpxq ˚-Ilr, 1, 2 4 allocpxq ˚allocpxq ñK (A 13 ) 5 Kñ x ‰ x PC 6 ϕ ˚ψ ñ x ‰ x ñ-Tr, 4, 5 case: L " allocpxq: Follows from (I 12 ) and ˚-Intro. case: L " allocpxq: Follows from (A 15 ) and ˚-Intro. case: L " x ãÑ y: Let x ãÑ y be a literal occurring in x˚ypϕ, ψq. So, allocpxq ^ x ãÑ y occurs in ϕ or ψ, say in ϕ (the other case is equivalent, due to (A 7)). 1 ϕ ñ allocpxq ^ x ãÑ y PC 2 ψ ñ J PC 3 ϕ ˚ψ ñ pallocpxq ^ x ãÑ yq ˚J ˚-Ilr, 1, 2 4 pallocpxq ^ x ãÑ yq ˚J ñ x ãÑ y (A 16 ) 5 ϕ ˚ψ ñ x ãÑ y ñ-Tr, 3, 4
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  Alloc ñ Allocpϕq ˚Allocpψq Previously derived Garb ñ Garbpϕq ˚Garbpψq Previously derived Alloc ˚Garb ñ pAllocpϕq ˚Allocpψqq ˚pGarbpϕq ˚Garbpψqq ˚-Ilr, 1, 2 4 pAllocpϕq ˚Allocpψqq ˚pGarbpϕq ˚Garbpψqq ñ pAllocpϕq ˚Garbpϕqq ˚pAllocpψq ˚Garbpψqq (A 7 ), (A 8 ) Alloc ˚Garb ñ pAllocpϕq ˚Garbpϕqq ˚pAllocpψq ˚Garbpψqq ñ-Tr, 3, 4
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 217 Figure 7: Additional axioms and rules for handling the separating implication.
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 8 Figure 8: The formula xsepypϕ, ψq.

Figure 9 :

 9 Figure 9: The formula xsepypϕ 1 , ψq.

  pϕ ^allocpxqq ˚ψ ñ pϕ ^allocpxqq ˚pψ ^ allocpxqq PC, 8 10 ϕ ^allocpxq ñ ϕ PC 11 pϕ ^allocpxqq ˚pψ ^ allocpxqq ñ ϕ ˚pψ ^ allocpxqq ˚-Intro, 10 12 pϕ ^allocpxqq ˚ψ ñ ϕ ˚pψ ^ allocpxqq ñ-Tr, 9, 11 Proof of (I 5.2.4 ). ϕ ñ pϕ ^allocpxqq _ pϕ ^ allocpxqq PC ϕ ˚ψ ñ `pϕ ^allocpxqq _ pϕ ^ allocpxqq ˘˚ψ ˚-Intro, 1 `pϕ ^allocpxqq _ pϕ ^ allocpxqq ˘˚ψ ñ ppϕ ^allocpxqq ˚ψq _ ppϕ ^ allocpxqq ˚ψq (I 9 ) ϕ ^allocpxq ñ allocpxq PC ψ ñ J PC pϕ ^allocpxqq ˚ψ ñ pallocpxq ˚Jq ˚-Ilr, 4, 5 allocpxq ˚J ñ allocpxq (I 12 ) ϕ ˚ψ ñ allocpxq _ ppϕ ^ allocpxqq ˚ψq PC, 2, 3, 6, 7 allocpxq ^pϕ ˚ϕq ñ pϕ ^ allocpxqq ˚ψ PC, 8

ϕ

  ñ pϕ ^allocpxqq _ pϕ ^ allocpxqq PC ϕ ˚p allocpxq ^ψq ñ ppϕ^allocpxqq ˚pψ^ allocpxqqq _ ppϕ^ allocpxqq ˚pψ^ allocpxqqq ˚-Intro, 1, (I 9 ) χ ^ allocpxq ñ allocpxq pχ P tϕ, ψuq, PC pϕ ^ allocpxqq ˚pψ ^ allocpxqq ñ allocpxq ˚ allocpxq PC, ˚-Ilr, 3 allocpxq ˚ allocpxq ñ allocpxq (A 15 ) ϕ ˚p allocpxq ^ψq ñ ppϕ ^allocpxqq ˚pψ ^ allocpxqqq _ allocpxq PC, 2, 4, 5 allocpxq ^pϕ ˚p allocpxq ^ψqq ñ pϕ ^allocpxqq ˚pψ ^ allocpxqq PC, 6

ϕ

  ^allocpxq ñ pϕ ^allocpxq ^x ãÑ yq _ pϕ ^allocpxq ^ x ãÑ yq PC pϕ ^allocpxqq ˚ψ ñ `pϕ ^allocpxq ^x ãÑ yq _ pϕ ^allocpxq ^ x ãÑ yq ˘˚ψ ˚-Intro, 1 pϕ ^allocpxqq ˚ψ ñ ppϕ ^allocpxq ^x ãÑ yq ˚ψq _ ppϕ ^allocpxq ^ x ãÑ yq ˚ψq (I 9 ), ñ-Tr, 2 ϕ ^allocpxq ^ x ãÑ y ñ allocpxq ^ x ãÑ y PC

  As h 1 Ď h, we obtain spxq P domphq and hpspxqq ‰ spyq which by definition implies ps, hq |ù x ãÑ y.Validity of the axiom (A 17 ). Suppose ps, hq |ù allocpxq. Let h 1

			Ilr, 1, 2
	4	size ě 1 ˚ size ě 2 ñ size ě 2	(A 19 )
	5 emp ˚pallocpxq ^size " 1q ñ size ě 2	ñ-Tr, 3, 4
	6 emp ñ `allocpxq ^size " 1 ´ size ě 2 ˘˚-Adj, 5
		Figure 2: A proof of emp ñ `pallocpxq ^size " 1q ´ size ě 2	˘.
	h 1 pspxqq ‰ spyq. def
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  ConjpCorepX, αqq ˇˇfor all ψ P CorepX, αq, tψ | ψu Ď Lt ϕ, and pψ ^ ψq Ď Lt ϕ ( Note that if ϕ P CoreTypespX, αq, then ϕ is a conjunction such that for every ψ P CorepX, αq, there is exactly one literal in ϕ built upon ψ.

	Lemma 4.1 (Refutational completeness). Let ϕ P CoreTypespX, αq, where α ě cardpXq. The
	formula ϕ is valid if and only if $ H C ϕ.
	Proof. We show that ϕ is unsatisfiable if and only if $ H C ϕ. The "only if" part follows
	from the soundness of H C , so we prove the "if" part. Let ϕ P CoreTypespX, αq be such that
	& H C ϕ ñ K, and let us prove that ϕ is satisfiable. By the axioms (A C 1 ) and (A C

ϕ P

  In this way, the provability of (I 5.3.1 ) follows directly by induction hypothesis together with (A 7) and ˚-Intro. We have

Tr, 2, 3, 4 induction step: cardpXq ě 2: Let z P X. By induction hypothesis, $ H C p˚q Ź uPXztzu pallocpuq ^ŹvPXztu,zu u ‰ vq ñ p˚u PXztzu pallocpuq ^size " 1qq ˚J. We write χ for the premise Ź uPXztzu pallocpuq ^ŹvPXztu,zu u ‰ vq above. Below, we aim for a proof of $ H C p˚q Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ pallocpzq ^size " 1q ˚χ. 1 Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ pallocpzq ^size " 1q ˚J (A 17 ) and PC 2 J ñ χ _ χ PC 3 pallocpzq ^size " 1q ˚J ñ pallocpzq ^size " 1q ˚pχ _ χq ˚-Intro, (A 7 ), 2 4 pallocpzq ^size " 1q ˚pχ _ χq ñ ppallocpzq ^size " 1q ˚χq _ ppallocpzq ^size " 1q ˚ χq (A 7 ) and (I 9 ) Ź xPX pallocpxq ^ŹyPXztxu x ‰ yq ñ ppallocpzq ^size " 1q ˚χq _ ppallocpzq ^size " 1q ˚ χq ñ-Tr 1, 3, 4

  Lt tϕ | ψu ˇˇ"P t", ‰u ( ^ľ tallocpxq Ď Lt tϕ | ψuu ^ľ t allocpxq Ď Lt tϕ ; ψuu ^ľ x ãÑ y ˇˇallocpxq ^ x ãÑ y Ď Lt tϕ | ψu Lt tϕ | ψuu ^ľ " size ě β 1 `β2 . ´1 ˇˇˇ size ě β 1 Ď Lt ϕ size ě β 2 Ď Lt ψ Lemma 5.4. Let X Ď fin VAR and α ě cardpXq. If ϕ and ψ are two satisfiable core types in CoreTypespX, αq, then $ H C p˚q ϕ ˚ψ ô x˚ypϕ, ψq.

x " y Ď ( ^ľ x ‰ x ˇˇallocpxq Ď Lt tϕ ; ψu ( ^ľ " size ě β 1 `β2 ˇˇˇs ize ě β 1 Ď Lt ϕ size ě β 2 Ď Lt ψ * ^ľ tx ãÑ y Ď * Figure 6: The formula x˚ypϕ, ψq.

The equivalence ϕ ˚ψ ô x˚ypϕ, ψq is reminiscent to the one in [EIP19, Lemma 3] that is proved semantically. In a way, because H C p˚q will reveal to be complete, the restriction of [EIP19, Lemma 3] to SLp˚, allocq can be replayed completely syntactically within H C p˚q.

Structure of the proof of Lemma 5.4. Before presenting the technical developments, let us explain the structure of the whole proof of Lemma 5.4, which might help to follow the different steps. In order to show that $ H C p˚q ϕ ˚ψ ô x˚ypϕ, ψq, we start showing that $ H C p˚q ϕ ˚ψ ñ x˚ypϕ, ψq. This can be done rather mechanically since for every literal L of x˚ypϕ, ψq, one can construct a derivation for $ H C p˚q ϕ ˚ψ ñ L. The main difficulty in the proof rests on showing that $ H C p˚q x˚ypϕ, ψq ñ ϕ ˚ψ.

  Tr, 3, 4 (ð): Let us show that $ H C p˚q x˚ypϕ, ψq ñ ϕ ˚ψ. If x˚ypϕ, ψq is unsatisfiable, then by completeness of H C (Theorem 4.3), $ H C x˚ypϕ, ψq ñK, and thus $ H C x˚ypϕ, ψq ñ ϕ ˚ψ.Since H C p˚q includes H C , we conclude that $ H C p˚q x˚ypϕ, ψq ñ ϕ ˚ψ. Otherwise, below, we assume x˚ypϕ, ψq to be satisfiable. In particular, this implies that no literals of the form x ‰ x or size ě 0 appear in x˚ypϕ, ψq. Moreover, by definition of x˚ypϕ, ψq, this implies that ϕ, ψ and x˚ypϕ, ψq agree on the satisfaction of the core formulae x " y, i.e. ϕ, ψ and x˚ypϕ, ψq contain exactly the same (in)equalities. Since ϕ is satisfiable, these equalities define an equivalence relation. Let x 1 , . . . x n be a maximal enumeration of representatives of the equivalence classes (one per equivalence class) such that allocpx i q occurs in x˚ypϕ, ψq. As it is maximal, for every allocpxq Ď Lt x˚ypϕ, ψq there is i P r1, ns such that x i is syntactically equal to x. Consequently, from the definition of x˚ypϕ, ψq, if allocpxq occurs in ϕ or in ψ, then there is some x i such that x " x i occurs in ϕ (and therefore also in ψ and in x˚ypϕ, ψq). Let us define the formula Alloc below:

  After deriving $ H C p˚q x˚ypϕ, ψq ñ Alloc ˚J and $ H C p˚q Alloc ñ size " n, the proof is divided in three steps: (1) we isolate the allocated cells and the garbage, (2) we distribute the alloc and size literals according to the goal ϕ ˚ψ and (3) we add the missing literals. If there is β P N such that size ě β Ď Lt x˚ypϕ, ψq, then size ě max size pϕq `1 Ď Lt ϕ, size ě max size pψq `1 Ď Lt ψ. C. If there is β P N such that size ě β Ď Lt x˚ypϕ, ψq, then size ě max size px˚ypϕ, ψqq `1 Ď Lt x˚ypϕ, ψq. Proof of (A). By definition of max size p.q, we know that size ě max size pϕq Ď Lt ϕ and size ě max size pψq Ď Lt ψ. By definition of x˚ypϕ, ψq, size ě max size pϕq `max size pψq Ď Lt x˚ypϕ, ψq. Ad absurdum, suppose that max size pϕq `max size pψq ‰ max size px˚ypϕ, ψqq and thus, by definition of max size p.q, there is β ą max size pϕq `max size pψq such that size ě β Ď Lt x˚ypϕ, ψq. By definition of x˚ypϕ, ψq, we conclude that there are β 1 and β 2 such that β 1 `β2 " β, size ě β 1 Ď Lt ϕ and size ě β 2 Ď Lt ψ. As β 1 `β2 ą max size pϕq `max size pψq, either β 1 ą max size pϕq or β 2 ą max size pψq. Let us assume β 1 ą max size pϕq (the other case is analogous). We have size ě β 1 Ď Lt ϕ. However, this is contradictory, since by definition of max size p.q for all β 1 ą max size pϕq, size ě β 1 Ď Lt ϕ. Thus, max size pϕq `max size pψq " max size px˚ypϕ, ψqq.

1 χ ^size " 1 ñ size ě 1 PC, def. of size " 1 2 χ ^size " 1 ñ size ě 2 PC, def. of size " 1 3 Alloc ñ ˚iPr1,ns size ě 1 multiple applications of ˚-Intro, 1, (A 7 ) and ñ-Tr 4 Alloc ñ size ě n 3, def. of size ě n 5 Alloc ñ ˚iPr1,ns size ě 2 multiple applications of ˚-Intro, 2, (A 7 ) and ñ-Tr 6 ˚iPr1,ns size ě 2 ñ size ě n `1 n applications of (A 19 ) and ˚-Intro 7 Alloc ñ size ě n `1 ñ-Tr, 5, 6 8 Alloc ñ size " n PC, 4, 7, def. of size " n Step 1, isolating allocated cells and garbage. Since x˚ypϕ, ψq is a conjunction of literals built from core formulae, we can rely on max size px˚ypϕ, ψqq, i.e. the maximum β among the formulae size ě β appearing positively in x˚ypϕ, ψq. First, we show some important properties of x˚ypϕ, ψq, related to max size px˚ypϕ, ψqq. A. max size px˚ypϕ, ψqq " max size pϕq `max size pψq, B. Proof of (B). Let β P N such that size ě β Ď Lt x˚ypϕ, ψq. By definition of x˚ypϕ, ψq, this implies that there are β 1 , β 2 P r0, αs such that β " β 1 `β2 .

  Previously derived Alloc ˚ size ě β g ñ p size ě n `1q ˚ size ě β g ˚-Intro, 4 p size ě n `1q ˚ size ě β g ñ size ě max size px˚ypϕ, ψqq (A 19 ), def. of β g Alloc ˚J ñ pAlloc ˚size ě β g q _ size ě max size px˚ypϕ, ψqq PC, 2, 3, 5, 6 x˚ypϕ, ψq ñ size ě max size px˚ypϕ, ψqq PC, def. of max size p.q x˚ypϕ, ψq ñ Alloc ˚J Previously derived x˚ypϕ, ψq ñ pAlloc ˚size ě β g q _ size ě max size px˚ypϕ, ψqq ñ-Tr, 7, 9 x˚ypϕ, ψq ñ Alloc ˚size ě β g PC, 8, 10 If for every β, size ě β Ď Lt x˚ypϕ, ψq, then by definition of Garb we conclude that $ H C p˚q x˚ypϕ, ψq ñ Alloc ˚Garb.

Alloc ñ size ě n `1 Otherwise, suppose that there is β such that size ě β Ď Lt x˚ypϕ, ψq. So, Garb is defined as size ě β g ^ psize ě β g `1q. Directly from (C), we know that size ě max size px˚ypϕ, ψqq `1 Ď Lt x˚ypϕ, ψq. By propositional reasoning, $ H C p˚q x˚ypϕ, ψq ñ size ě max size px˚ypϕ, ψqq `1.

Then, x˚ypϕ, ψq ñ Alloc ˚Garb is derived as follows:

size ě β g ñ psize ě β g ^size ě β g `1q _ size " β g PC,

def. of size " β g Alloc ˚size ě β g ñ Alloc˚`psize ě β g ^size ě β g `1q _ size " β g ˘˚-Intro, (A 7 ), 1 Alloc˚`psize ě β g ^size ě β g `1q _ size " β g ñ `Alloc ˚psize ě β g ^size ě β g `1q ˘_`A lloc ˚size " β g ˘(I 9 ), (A 7 ) size ě β g ^size ě β g `1 ñ size ě β g `1 PC Alloc ñ size ě n Previously derived Alloc ˚psize ě β g ^size ě β g `1q ñ size ě n ˚size ě β g `1 ˚-Ilr, 4, 5 size ě n ˚size ě β g `1 ñ size ě max size px˚ypϕ, ψqq `1 (A 8 ), def. of size ě β Alloc ˚size ě β g ñ size ě max size px˚ypϕ, ψqq `1 _ `Alloc ˚size " β g ˘PC, 2, 3, 6, 7 x˚ypϕ, ψq ñ Alloc ˚size ě β g Previously derived x˚ypϕ, ψq ñ size ě max size px˚ypϕ, ψqq `1_ `Alloc ˚size " β g ˘ñ-Tr, 8, 9 x˚ypϕ, ψq ñ size ě max size px˚ypϕ, ψqq `1 PC, see above x˚ypϕ, ψq ñ `Alloc ˚size " β g loooomoooon Garb ˘PC, 10, 11

  Allocpϕq ˚Garbpϕq ñ Ź tallocpx i q Ď Lt ϕ | i P r1, nsu ñ-Tr, 1, 3 5 Allocpϕq ñ size " n ϕ See above 6 size " n ϕ ñ size ě n ϕ PC, def. of size " n ϕ 7 Allocpϕq ñ size ě n ϕ 8 Garbpϕq ñ size ě max size pϕq ´nϕ PC, def. of Garbpϕq 9 Allocpϕq˚Garbpϕq ñ size ě n ϕ ˚size ě max size pϕq´n ϕ ˚-Ilr, 7, 8 10 size ě n ϕ ˚size ě max size pϕq ´nϕ ñ size ě max size pϕq (A 8 ), (A 7 ), def. of size ě β 11 Allocpϕq ˚Garbpϕq ñ size ě max size pϕq ñ-Tr, 9, 10 12 Allocpϕq ˚Garbpϕq ñ ϕ p1q PC, 4, 11, def. of ϕ p1q

nsu Previously derived 2 Garbpϕq ñ J PC 3 Allocpϕq ˚Garbpϕq ñ Allocpϕq ˚J ˚-Intro, (A 7 ), 2 4 case: max size pϕq ‰ α: In this case, max size pϕq ă α and so we have: ' ϕ p1q " size " max size pϕq ^Źtallocpx i q Ď Lt ϕ | i P r1, nsu, ' Garbpϕq " size " max size pϕq ´nϕ , We can rely on the previous case of the proof in order to show that $ H C p˚q Allocpϕq ˚Garbpϕq ñ size ě max size pϕq ^ľtallocpx i q Ď Lt ϕ | i P r1, nsu. By propositional reasoning, we can derive $ H C p˚q Allocpϕq ˚Garbpϕq ñ ϕ p1q as soon as we show that $ H C p˚q Allocpϕq ˚Garbpϕq ñ size ě max size pϕq `1, as we do now: 1 Allocpϕq ñ size " n ϕ Already discussed above 2 size " n ϕ ñ size ě n ϕ `1 PC, def. of size " n ϕ 3 Allocpϕq ñ size ě n ϕ `1 PC, ñ-Tr, 1, 2 4 Garbpϕq ñ size ě max size pϕq ´nϕ `1 PC, def. of size " β 5 Allocpϕq ˚Garbpϕq ñ size ě n ϕ `1 ˚ size ě max size pϕq ´nϕ `1 ˚-Ilr, 3, 4 6 size ě n ϕ `1 ˚ size ě max size pϕq ´nϕ `1 ñ size ě max size pϕq `1 (A 19 ) 7 Allocpϕq ˚Garbpϕq ñ size ě max size pϕq `1 ñ-Tr, 5, 6

  ' First, assume allocpxq Ď Lt ψ. By definition of x˚ypϕ, ψq, allocpxq Ď Lt x˚ypϕ, ψq. Lt ψ. By assumption, allocpxq Ď Lt ψ piq . Similar to the case L " allocpxq. Since ϕ is a satisfiable core type, we have allocpxq Ď Lt ϕ (see axiom (A C 3 )). By assumption, allocpxq Ď Lt ϕ piq . By definition of x˚ypϕ, ψq, we have x ãÑ y Ď Lt x˚ypϕ, ψq. PC, 1, 2x ãÑ y ^pϕ piq ˚ψpiq q ñ pϕ piq ^ x ãÑ yq ˚ψpiq (I 5.2.7 )' Otherwise, we have allocpxq Ď Lt ϕ. By assumption, allocpxq Ď Lt ϕ piq , and thus By definition of max size p.q, β ď max size pϕq. By definition of ϕ p1q , size ě max size pϕq Ď Lt ϕ p1q . From ϕ p1q Ď Lt ϕ piq , we get size ě max size pϕq Ď Lt ϕ piq .1 ϕ piq ñ size ě max size pϕq PC, see above 2 size ě max size pϕq ñ size ě β repeated (I C 5 ), PC, as β ď max size pϕq 3 ϕ piq ñ ϕ piq ^size ě β

	ψ piq ñ ψ piq ^allocpxq x˚ypϕ, ψq ñ ϕ piq ˚ψpiq ϕ piq ˚ψpiq ñ pψ piq ^allocpxqq ˚ϕpiq pψ piq ^allocpxqq ˚ϕpiq ñ ψ piq ˚pϕ piq ^ allocpxqq ψ piq ˚pϕ piq ^ allocpxqq ñ pϕ piq ^ allocpxqq ˚ψpiq x˚ypϕ, ψq ñ pϕ piq ^ allocpxqq ˚ψpiq ϕ piq ñ allocpxq allocpxq ñ x ãÑ y 7 x˚ypϕ, ψq ñ pϕ piq ^ x ãÑ yq ˚ψpiq 4 x˚ypϕ, ψq ñ ϕ piq ˚ψpiq 5 ϕ piq ˚ψpiq ñ pϕ piq ^size ě βq ˚ψpiq ϕ ˚ψpiq 6 x˚ypϕ, ψq ñ pϕ piq ^size ě βq ˚ψpiq	PC, 1, 2 Hypothesis ˚-Intro, 3 ñ-Tr, 4, 5	PC, see above Hypothesis (A 7 ), ˚-Intro, 1 (I 5.2.3 ) (A 7 ) ñ-Tr, 2, 3, 4, 5 PC, see above (A C 3 ), PC ˚-Intro, 4 ñ-Tr, 5, 6

1 x˚ypϕ, ψq ñ ϕ piq ˚ψpiq Hypothesis 2 x˚ypϕ, ψq ñ allocpxq PC, def. of x˚ypϕ, ψq, see above 3 x˚ypϕ, ψq ñ allocpxq ^pϕ piq ˚ψpiq q PC, 1, 2 4 allocpxq ^pϕ piq ˚ψpiq q ñ pϕ piq ^ allocpxqq ˚ψpiq (I 5.2.4 ) 5 x˚ypϕ, ψq ñ pϕ piq ^ allocpxqq ˚ψpiq ñ-Tr, 3, 4 ' Otherwise, allocpxq Ď case: L " x ãÑ y: ϕ piq ñ ϕ piq ^allocpxq PC, see above x˚ypϕ, ψq ñ ϕ piq ˚ψpiq Hypothesis x˚ypϕ, ψq ñ x ãÑ y PC, see above ϕ piq ˚ψpiq ñ pϕ piq ^allocpxqq ˚ψpiq ˚-Intro, 1 x˚ypϕ, ψq ñ x ãÑ y ^ppϕ piq ^allocpxqq ˚ψpiq q PC, 3, 4 x ãÑ y ^ppϕ piq ^allocpxqq ˚ψpiq q ñ pϕ piq ^x ãÑ yq ˚ψpiq (I 5.2.6 ) x˚ypϕ, ψq ñ pϕ piq ^x ãÑ yq ˚ψpiq ˚-Intro, 5, 6 Without loss of generality, thanks to the previous cases dealing with allocpxq literals, below we assume that for every allocpxq Ď Lt ϕ and every allocpyq Ď Lt ψ, we have allocpxq Ď Lt ϕ piq and allocpyq Ď Lt ψ piq . case: L " x ãÑ y: We distinguish two main subcases ' First, suppose allocpxq Ď Lt ϕ. In this case, by definition of x˚ypϕ, ψq, we have x ãÑ y Ď Lt x˚ypϕ, ψq. Therefore, x˚ypϕ, ψq ñ x ãÑ y PC, see above x˚ypϕ, ψq ñ ϕ piq ˚ψpiq Hypothesis x˚ypϕ, ψq ñ x ãÑ y ^pϕ piq ˚ψpiq q piq ñ x ãÑ y ñ-Tr, 1, 2 ϕ piq ñ ϕ piq ^ x ãÑ y PC, 3 x˚ypϕ, ψq ñ ϕ piq ˚ψpiq Hypothesis 6 ϕ piq ˚ψpiq ñ pϕ piq ^ x ãÑ yq case: L " size ě β: case: L " size ě β: In this case, max size pϕq ă α. Since ϕ is a satisfiable core type, we have β ą max size pϕq. Moreover, by definition of ϕ p1q , size ě max size pϕq `1 Ď Lt ϕ p1q . From ϕ p1q Ď Lt ϕ piq , we have size ě max size pϕq `1 Ď Lt ϕ piq . 1 ϕ piq ñ size ě max size pϕq`1 PC, see above 2 size ě max size pϕq`1 ñ size ě β repeated (I C 5 ), PC, as β ą max size pϕq by PC, the contrapositive of (I C 5 ) is derivable 3 ϕ piq ñ ϕ piq ^ size ě β PC, 1, 2 4 x˚ypϕ, ψq ñ ϕ piq ˚ψpiq Hypothesis 5 ϕ piq ˚ψpiq ñ pϕ piq ^ size ě βq ˚ψpiq ˚-Intro, 3 6 x˚ypϕ, ψq ñ pϕ piq ^ size ě βq ˚ψpiq ñ-Tr, 4, 5 Corollary 5.5 (Star elimination). Let X Ď fin VAR and α ě cardpXq. Let ϕ and ψ in CoreTypespX, αq. There is χ in ConjpCorepX, 2αqq such that $ H C p˚q ϕ ˚ψ ô χ. Proof. If both ϕ and ψ are satisfiable, the results holds directly by Lemma 5.4, as x˚ypϕ, ψq is in ConjpCorepX, α `αqq. Otherwise, let us treat the case where one of the two formulas is unsatisfiable. For instance, assume that ϕ is unsatisfiable. Then $ H C ϕ ñ K by completeness of H C (Lemma 4.1) and, H C p˚q includes H C , $ H C p˚q ϕ ñ K. By the rule ˚-Intro and by the axiom (I 10 ), we get $ H C p˚q ϕ ˚ψ ñ K. Thus χ can take the value px " xq. The case where ψ is not satisfiable is analogous, thanks to (A 7).

  So, ps, hq |ù allocpxq. case: L " x ãÑ y: If allocpxq Ď Lt ϕ, then x ãÑ y Ď Lt xsepypϕ, ψq holds by definition of xsepypϕ, ψq. So, h 1 pspxqq " spyq and, from h 1 Ďh we conclude that ps, hq |ù x ãÑ y. Otherwise, let us assume that allocpxq Ď Lt ϕ. Ad absurdum, suppose x ãÑ y Ď Lt ϕ. Then, by definition of xsepypϕ, ψq, we derive x ‰ x Ď Lt xsepypϕ, ψq. However, this contradicts the satisfiability of xsepypϕ, ψq. Therefore, x ãÑ y Ď Lt ϕ. Since ϕ is a core type, this implies x ãÑ y Ď Lt ϕ, and therefore h 2 pspxqq " spyq. From h 2 Ďh we conclude that ps, hq |ù x ãÑ y. case: L " x ãÑ y: By definition of xsepypx, yq, we have x ãÑ y Ď Lt xsepypx, yq, which implies that if spxq P domph 1 q then h 1 pspxqq ‰ spyq. Ad absurdum, suppose x ãÑ y Ď Lt ϕ. In particular, since ϕ is in CoreTypespX, αq, this implies that max size pϕq ă α and size ě max size pϕq ^ size ě max size pϕq `1 Ď Lt ϕ. We have cardpdomph 2 qq " max size pϕq. If max size pϕq ě β 2 , then from h 2 Ďh we conclude that ps, hq |ù size ě β 2 . Otherwise, let us assume β 2 ą max size pϕq. By definition of xsepypϕ, ψq, we conclude that size ě β 2 `1 . ´pmax size pϕq `1q Ď Lt xsepypϕ, ψq. Together with β 2 ą max size pϕq, this implies cardpdomph 1 qq ě β 2 ´max size pϕq. With cardpdomph 2 qq " max size pϕq and h " h 1 `h2 , this implies ps, hq |ù size ě β 2 . case: L " size ě β 2 : Ad absurdum, suppose that size ě α Ď Lt ϕ. Then, by definition of xsepypϕ, ψq we have size ě β 2 . ´α Ď Lt xsepypϕ, ψq. However, since β 2 P r0, αs, this means that size ě 0 Ď Lt xsepypϕ, ψq, which contradicts the satisfiability of xsepypϕ, ψq. Therefore, size ě α Ď Lt ϕ. As ϕ is in CoreTypespX, αq, we derive max size pϕq ă α and size ě max size pϕq ^ size ě max size pϕq `1 Ď Lt ϕ. We conclude that cardpdomph 2 qq ď max size pϕq. From size ě max size pϕq Ď Lt ϕ and by definition of xsepypϕ, ψq, we conclude that size ě β 2 . ´max size pϕq Ď Lt xsepypϕ, ψq. If β 2 ď max size pϕq, then size ě 0 Ď Lt xsepypϕ, ψq, which contradicts the satisfiability of xsepypϕ, ψq. Therefore, β 2 ą max size pϕq. So, cardpdomph 1 qq ă β 2 ḿax size pϕq. Together with cardpdomph 2 qq ď max size pϕq and h " h 1 `h, we conclude that cardpdomphqq ă β 2 , and thus ps, hq |ù size ě β 2 .

Then, by definition of xsepypϕ, ψq, we derive x ‰ x Ď Lt xsepypϕ, ψq. However, this contradicts the satisfiability of xsepypϕ, ψq. Therefore x ãÑ y Ď Lt ϕ and, since ϕ is a core type, x ãÑ y Ď Lt ϕ. So, if spxq P domph 2 q then h 2 pspxqq ‰ spyq. By h " h 1 `h2 and the fact that h 1 pspxqq ‰ spyq, we conclude that ps, hq |ù x ãÑ y. case: L " size ě β 2 : If size ě α Ď Lt ϕ, then cardpdomphqq ě cardpdomph 2 qq ě α, by h 2 Ďh. As β 2 P r0, αs, this implies ps, hq |ù size ě β 2 . Otherwise, assume size ě α Ď Lt ϕ.

  Let us now show that $ H C p˚,´q xsepypϕ, ψq ñ ϕ f ψ. First, let us note that, since xsepypϕ, ψq ˚ϕ ñ ψ is valid (Lemma 6.4), it is derivable in H C p˚q (Theorem 5.6), and therefore, by the rule ˚-Adj, $ H C p˚,´q xsepypϕ, ψq ñ ϕ ´ψ. From that, it follows that it is enough to show that xsepypϕ, ψq ñ ϕ f J is derivable in H C p˚, ´q. Indeed, from xsepypϕ, ψq ñ ϕfJ and xsepypϕ, ψq ñ ϕ´ψ, we get, by (I 6.3.9 ), that xsepypϕ, ψq ñ ϕfψ is derivable too.Thus, let us prove that xsepypϕ, ψq ñ ϕ f J is derivable. If xsepypϕ, ψq is unsatisfiable, then from the completeness of H C with respect to Boolean combinations of core formulae (Theorem 4.3), we conclude that $ H C xsepypϕ, ψq ñK. Since H C p˚, ´q extends H C , we have $ H C p˚,´q xsepypϕ, ψq ñK. By propositional reasoning, $ H C p˚,´q xsepypϕ, ψq ñ ϕ f J. Otherwise, let us assume that xsepypϕ, ψq is satisfiable.

	1	xsepypϕ, ψq ˚ϕ ñ ψ	Lemma 6.4, Theorem 5.6
	2	xsepypϕ, ψq ñ pϕ ´ ψq	˚-Adj, 1
	3	pϕ ´ ψq ñ xsepypϕ, ψq	PC, 2
	4 pϕ f ψq ñ xsepypϕ, ψq	Def. of f, 3
	(ð):		

  recalls the definition of xsepypϕ 1 , ψq. First of all, notice that it cannot be that there is x P X such that x ‰ x Ď Lt xsepypϕ 1 , ψq. Indeed, ad absurdum, suppose the opposite. By definition of xsepypϕ 1 , ψq, this implies that (1) allocpxq ^ x ãÑ y Ď Lt ϕ 1 and x ãÑ y Ď Lt ψ, (2) x ãÑ y Ď Lt ϕ 1 and x ãÑ y Ď Lt ψ, or (3) allocpxq Ď Lt ϕ 1 and allocpxq Ď Lt ψ. By definition of ϕ 1 , this implies that (1) allocpxq ^ x ãÑ y Ď Lt ϕ, (2) x ãÑ y Ď Lt ϕ or (3) allocpxq Ď Lt ϕ. However, by definition of xsepypϕ, ψq, this implies that x ‰ x Ď Lt xsepypϕ, ψq, in contradiction with the satisfiability of xsepypϕ, ψq. Therefore, below we assume that for all x P X, x ‰ x Ď Lt xsepypϕ 1 , ψq. Let ps, hq |ù xsepypϕ, ψq ˚Atompx i q. There are h 1 and h 2 such that h " h 1 `h2 , ps, h 1 q |ù xsepypϕ, ψq and ps, h 2 q |ù Atompx i q. By definition of Atompx i q, domph 2 q " tspx i qu. To prove (C), we show that ps, hq |ù L, for every literal L P Ltpxsepypϕ 1 , ψqq. case: L " x " y, where "P t", ‰u: By definition of xsepypϕ 1 , ψq, L Ď Lt tϕ 1 | ψu and so, by definition of ϕ 1 , L Ď Lt tϕ | ψu. By definition of xsepypϕ, ψq, L Ď Lt xsepypϕ, ψq. From ps, h 1 q |ù xsepypϕ, ψq we derive spxq " spyq. So, ps, hq |ù L. case: L " allocpxq: By definition of xsepypϕ 1 , ψq, either allocpxq Ď Lt ψ or allocpxq Ď Lt ϕ 1 . In the first case, by definition of xsepypϕ, ψq, allocpxq Ď Lt xsepypϕ, ψq, and therefore spxq R domph 1 q. Moreover, since xsepypϕ, ψq is satisfiable, allocpxq Ď Lt ϕ (otherwise we would have x ‰ x Ď Lt xsepypϕ, ψq).

  Otherwise ( allocpxq Ď Lt ϕ), by definition of xsepypϕ, ψq, x ãÑ y Ď Lt xsepypϕ, ψq. So, h 1 pspxqq " spyq, and by h 1 Ďh, we derive ps, hq |ù x ãÑ y. case: L " size ě β 2 `1 . ´β1 , where size ě β 1 Ď Lt ϕ 1 and size ě β 2 Ď Lt ψ: By definition of ϕ 1 , size ě β 1 Ď Lt ϕ, and so β 1 ą max size pϕq, since ϕ is satisfiable. By definition of xsepypϕ, ψq and as size ě max size pϕq `1 Ď Lt ϕ, we have size ě β 2 `1 . ´pmax size pϕq `1q Ď Lt xsepypϕ, ψq, which in turn implies cardpdomph 1 qq ě β 2 . ´max size pϕq. By definition of Atompx i q, cardpdomph 2 qq ě 1. By h " h 1 `h2 , cardpdomphqq ě pβ 2 . ´max size pϕqq `1 ě pβ 2 `1q . ´max size pϕq. As β 1 ą max size pϕq, ps, hq |ù size ě β 2 `1 . ´β1 . case: L " size ě β 2 . ´β1 , where size ě β 1 Ď Lt ϕ 1 and size ě β 2 Ď Lt ψ: By definition of ϕ 1 , β 1 ă max size pϕq. By definition of xsepypϕ, ψq, we have size ě β 2 . ´max size pϕq Ď Lt xsepypϕ, ψq. Notice that, since xsepypϕ, ψq is satisfiable, β 2 ą max size pϕq. Thus, cardpdomph 1 qq ă β 2 ´max size pϕq. By definition of Atompx i q, cardpdomph 2 qq ď 1. From h " h 1 `h2 , we conclude that cardpdomphqq ă pβ 2 ´max size pϕqq `1. As β 1 ă max size pϕq, we have β 2 ´max size pϕq `1 ď β 2 . ´β1 . Therefore, ps, hq |ù size ě β 2 . ´β1 . Continuing with the proof of Lemma 6.2, we prove $ H C p˚,´q xsepypϕ, ψq ñ pϕ f Jq.

x˚ypϕ, ψq ñ ϕ piq ˚ψpiq Hypothesis

x˚ypϕ, ψq ñ x " y PC, def. of x˚ypϕ, ψq, see above

x˚ypϕ, ψq ñ x " y ^pϕ piq ˚ψpiq q PC, 1, 2

x " y ^pϕ piq ˚ψpiq q ñ pϕ piq ^x " yq ˚ψpiq (I

5.2.1 ) 5 x˚ypϕ, ψq ñ pϕ piq ^x " yq ˚ψpiq ñ-Tr, 3, 4
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2 ) ϕ ^x " y ñ ϕryÐxs 3 Atompx i q ˚pϕ 1 α _ ϕ 1 α´1 q ñ ϕ (E), Theorem 5.6 4 xsepypϕ, ψq ˚Atompx i q ñ xsepypϕ 1 α , ψq _ xsepypϕ 1 α´1 , ψq (F), Theorem 5.6 5 xsepypϕ 1 α , ψq _ xsepypϕ 1 α´1 , ψq ñ pϕ 1 α f Jq _ pϕ 1 α´1 f Jq PC, 1, 2 6 pϕ 1 α f Jq _ pϕ 1 α´1 f Jq ñ pϕ 1 α _ ϕ 1 α´1 f Jq (I 6.3.7 ) 7 xsepypϕ, ψq ˚Atompx i q ñ pϕ 1 α _ ϕ 1 α´1 f Jq ñ-Tr, 4, 5, 6 8 xsepypϕ, ψq ñ pAtompx i q f xsepypϕ, ψq ˚Atompx i qq (;) 9 pAtompx i q f xsepypϕ, ψq ˚Atompx i qq ñ pAtompx i q f pϕ 1 α _ ϕ 1 α´1 f Jqq (I 6.3.5 ), 7 10 `Atompx i q f pϕ 1 α _ ϕ 1 α´1 f Jq ˘ñ pAtompx i q ˚pϕ 1 α _ ϕ 1 α´1 q f Jq (I 6.3.6 )

12 xsepypϕ, ψq ñ pϕ f Jq ñ-Tr, 8, 9, 10, 11

Figure 10: Proof of Lemma 6.2: the final derivation. Lemma 6.2 in which ϕ and ψ are core types can be extended to arbitrary Boolean combinations of core formulae, as we show that the distributivity of f over disjunctions is provable in H C p˚, ´q. As a consequence of this development, we achieve the main result of the paper. Theorem 6.5. H C p˚, ´q is sound and complete for SLp˚, ´q.

Proof. Soundness of the proof system H C p˚, ´q has been already established earlier, see Lemma 3.1. As far as the completeness proof is concerned, its structure is very similar to the proof of Theorem 5.6 except that we have to be able to handle the separating implication. In order to be self-contained, we reproduce some of its arguments albeit adapted to H C p˚, ´q.

We need to show that for every formula ϕ in SLp˚, ´q, there is a Boolean combination of core formulae ψ such that $ H C p˚,´q ϕ ô ψ. In order to conclude the proof, when ϕ is valid for SLp˚, ´q, by soundness of H C p˚, ´q, we obtain that ψ is valid too and therefore $ H C p˚,´q ψ as H C is a subsystem of H C p˚, ´q and H C is complete by Theorem 4.3. By propositional reasoning, we get that $ H C p˚,´q ϕ.

In order to show that every formula ϕ has a provably equivalent Boolean combination of core formulae, we heavily rely on Corollary 5.5 and on Lemma 6.2. The proof is by simple induction on the number of occurrences of ˚or ´in ϕ that are not involved in the definition of some core formula of the form size ě β or allocpxq. For the base case, when ϕ has no occurrence of the separating connectives, x " y and x ãÑ y are already core formulae, whereas emp is logically equivalent to size ě 1.

Before performing the induction step, let us observe that in H C p˚, ´q, the replacement of provably equivalent formulae holds true, which is stated as follows:

Proof of (I 5.2.1 ). Proof of (I 5.2.7 ). Similar to the proof of (I 5.2.4 ), by replacing allocpxq with x ãÑ y. In this appendix, we show the derivations in H C p˚q of size ě β 1 `β2 ñ size " β 1 ˚size ě β 2 and size " β 1 `β2 ñ size " β 1 ˚size " β 2 , which are required for the proof of Lemma 5.4. The derivation of size ě β 1 `β2 ñ size " β 1 ˚size ě β 2 is proven by induction on β 1 . The derivation for the base case β 1 " 0 is:

For the induction step, let us suppose the formula to be derivable for a certain β 1 , and let us prove that it is also derivable for β 1 `1.

The derivation of the formula size " β 1 `β2 ñ size " β 1 ˚size " β 2 is provided below.

size " β 1 `β2 ñ size ě β 1 `β2 PC, def. of size " β size ě β 1 `β2 ñ size " β 1 ˚size ě β 2 Previously derived

size " β 1 ˚ppsize ě β 2 ^size ě β 2 `1q _ size " β 2 q ñ size ě β 1 `β2 `1_psize " β 1 ˚size " β 2 q PC, 5, 9

size " β 1 `β2 ñ size ě β 1 `β2 `1_psize " β 1 ˚size " β 2 q ñ-Tr, 1, 2, 4, 10

Appendix C. Proof of Lemma 6.1

Proof of (I 9). Proof of (I 10 ). The axiom (I 10 ) is provable by ˚-Adj. Indeed, proving pK ˚ϕq ñK reduces to proving Kñ pϕ´Kq. The latter is a tautology by propositional reasoning.

Proof of (I 12 ). Appendix D. Proof of Lemma 6.3

Proof of (I 6.3.1 ).

Proof of (I 6.3.2 ).

1 J ˚ϕ ñ J PC 2 J ñ pϕ ´Jq ˚-Adj

Note that implicitly, we have assumed that we can replace J by K in the scope of f or ´, which is possible as the replacement of equivalents holds in the calculus H C p˚, ´q (see e.g. the proof of Theorem 6.5).

Proof of (I 6.3.3 ). Proof of (I 6.3.4 ). Proof of (I 6.3.5 ). Proof of (I 6.3.7 ). We derive each implication separately. The derivation of the other implication can be found below.

Proof of (I 6.3.8 ). We handle each implication separately, and we follow a pattern similar to the one used in the proof of (I 6.3.7 ). The derivation of the other implication can be found below.

Proof of (I 6.3.9 ). Proof of (I 6.3.10 ) and (I 6.3.11 ). Below, we provide the derivation for the admissible axiom schema (I 6.3.10 ) (the derivation for (I 6.3.11 ) is very similar and is thus omitted). Proof of (I 6.3.12 ). Notice that, since ϕ size is satisfiable, for every β 1 , β 2 P N such that size ě β 1 ^ size ě β 2 Ď Lt ϕ size , we must have β 1 ă β 2 . Moreover, thanks to (I C 5 ) and (I 6.3.4 ), without loss of generality, we can restrict ourselves to ϕ size of the form: (1) ϕ size " size ě β for some β ě 0, (2) ϕ size " psize ě βq for some β ą 0, (3) ϕ size " size ě β 1 ^ psize ě β 2 q for some β 2 ą β 1 . Indeed, given an arbitrary ϕ size , every positive literal size ě β such that β ă max size pϕ size q can be derived starting from size ě max size pϕ size q, by repeated applications of (I C 5 ). Similarly, let β be the smallest natural number such that size ě β Ď Lt ϕ size , if any. Every literal size ě β 1 Ď Lt ϕ size with β 1 ě β can be derived from size ě β, by repeated applications of the axiom (I C 5 ) (taken in contrapositive form i.e. size ě β ñ size ě β`1, which is derivable in H C by propositional reasoning).

We write UpXq to denote the conjunction Ź xPX allocpxq ('U' stands for 'unallocated'). Below, given β P N, we aim at deriving the formula psize " β ^UpXqq f J since this implies that (I 6.3.12 ) is derivable in its instances (1)-(3), as shown below. case (1): Let ϕ size " size ě β. To conclude the proof, let us show that psize " β ^UpXqq f J is derivable in H C p˚, ´q.

The proof is by induction on β, with two base cases, for β " 0 and β " 1. base case: β " 0: In this case, size " 0 is equal to size ě 0 ^ size ě 1. We have,