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rfervari@conicet.gov.ar

Abstract
We introduce a modal separation logic MSL whose models are memory states from separa-

tion logic and the logical connectives include modal operators as well as separating conjunction
and implication from separation logic. With such a combination of operators, some fragments
of MSL can be seen as genuine modal logics whereas some others capture standard separa-
tion logics, leading to an original language to speak about memory states. We analyse the
decidability status and the computational complexity of several fragments of MSL, obtaining
surprising results by design of proof methods that take into account the modal and separation
features of MSL. For example, the satisfiability problem for the fragment of MSL with 3, the
difference modality 〈6=〉 and separating conjunction ∗ is shown Tower-complete whereas the
restriction either to 3 and ∗ or to 〈6=〉 and ∗, is only NP-complete. We establish that the full
logic MSL admits an undecidable satisfiability problem. Furthermore, we investigate variants
of MSL with alternative semantics and we build bridges with interval temporal logics and
with logics equipped with sabotage operators.

Keywords: separation logics, relation-changing logics, satisfiability, model-checking, complex-
ity, expressive power.

1 Introduction

Combining modalities and separating connectives. Separation logic is known as an asser-
tion language to perform verification, by extending Hoare-Floyd logic (see e.g. [46, 1]) in order to
verify programs with mutable data structures [48, 58, 61, 59]. Local reasoning is a key feature of
separation logic and the separating conjunction ∗ allows us to state properties in disjoint parts of
the memory. Moreover, the separating implication −∗ asserts that whenever a fresh heap satisfies
a property, its composition with the current heap satisfies another property. Hence, the separat-
ing connectives ∗ and −∗ allow us to evaluate formulae in alternative models, which is a feature
shared with many modal logics such as sabotage logics [67, 50], logics of public announcements
(see e.g., [51]), interval temporal logics [47], relation-changing logics [5, 2, 3], ambient logics or
graph logics (see e.g. [18, 11, 27]), propositional team logics [43], second-order modal logics [37]
or logics with reactive Kripke semantics [40].

Many other examples of such logics can be found in the literature (see also [27]) but the
modalities involved in such logics can be of a different nature. For instance, combinations of
epistemic logics and abstract separation logics (such as variants of BI) can be found in [22, 24,
41, 23] and, combinations of temporal logics and propositional separation logics are introduced
in [14].

Sometimes, the concept of separation is understood differently and performed at a different
level, for instance a simple separation logic is introduced in [45] in which separation is performed
on valuations (or equivalently on sets of propositional variables) instead of being performed on
heaps. Other examples can be found in [30, 13]. A slightly different approach involving descrip-
tion logics [6] was investigated in [42, 20]. An interesting attempt to get a logic (namely CT2)
that captures both a very expressive description logic and a separation logic (the symbolic heap
fragment) can be found in [20].
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Our motivations. Most existing logics combining (epistemic, temporal, etc.) modalities and
separating connectives are multi-dimensional logics and the modal dimension is often orthogonal
with the separation dimension (see e.g. [14, 22, 41, 23]), which allows us to get proof methods
combining adequately the modal part and the separation part. Our intention in this work is to
introduce a modal separation logic whose models are Kripke-style structures that can be also
viewed as memory states from separation logic, without being multi-dimensional. As a gain, it is
possible to study the computational effects of the interaction between modalities and separating
connectives but within a uniform framework and to push further the expressive power of the
underlying modal logics as well as the expressive power of the underlying separation logics. Adding
modalities to separation logics happens to be an original means to work on fragments of first-order
separation logics. So, the logic MSL introduced herein can be understood as a hybrid separation
logic, by analogy to hybrid versions of modal logics [9]. Note that a hybrid extension of Boolean
BI is defined in [17], in which nominals are interpreted by heaps whereas herein, the nominals are
interpreted by locations.

We investigate the effects of adding new modalities or new separating connectives on the
decidability status or on the computational complexity of the logic, following a standard approach
to find a reasonable compromise between expressivity and computational properties. Unlike [42,
20], we use simple modal operators (no reflexive transitive closure or converse modality) but we
shall include in the logical language standard separating connectives. However, we will be able
to express some interesting properties such as ls(x, z) ∗ ls(y, z) ∗ > in a very simple way, unlike
e.g. [42, Section 3] in which a very expressive description logic is needed. Finally, this work should
not be understood as a means to propose alternative assertion languages to separation logics
but rather as an investigation to better understand the interplay between modal operators and
separating connectives in a modal framework. So far, we have little practical motivations, but
our investigation is a first step towards understading new tractable fragments of separation logic,
which perhaps can serve at a later stage for program verification.

Our contributions. We introduce the logic MSL whose models are Kripke-style structures with
domain the set of natural numbers N (understood as the set of locations) and the accessibility re-
lation is finite and weakly functional (understood as some heap h : N→fin N). In MSL, the modal
connectives are 3 and the difference modality 〈6=〉 [28] whereas the separating connectives are the
separating conjunction ∗ and separating implication −∗ (also known as the magic wand operator).
These connectives allow us to update dynamically the model under evaluation. Therefore, in MSL,
3 provides a means to move within the model following the accessibility relation, 〈6=〉 adds the
possibility to jump to (almost) any location of the model, and the connectives ∗ and −∗, remove or
add edges in the model respectively. The closest logic to MSL is probably the modal logic of heaps
MLH [31] since they share the same class of frames. However, there are differences, notably MSL
has propositional variables (unlike MLH whose atomic formulae are truth constants) and MSL
does not contain the converse modality 3−1 and the reflexive transitive closure modality 〈?〉 [44]
(unlike MLH that has been actually designed to be easily translated into first-order separation
logic restricted to two individual variables). Moreover, MSL shares with some logics from [49, 16]
the feature of having propositional variables whose interpretation is unrestricted but in such logics,
the propositional variables are interpreted as sets of memory states whereas in MSL, the variables
are interpreted as sets of locations, as usual for modal logics (see also [31, Section 2.4]).

• MSL restricted to 3 and ∗, written MSL(∗,3), can be viewed as the minimal modal sepa-
ration logic as it witnesses a simple interaction between 3 and, on the other side ∗ and emp

(formula stating that the heap domain is empty). By showing a small model property, we es-
tablish that the satisfiability problem for MSL(∗,3) is NP-complete (see Theorem 19). The
same result is shown for MSL(∗, 〈6=〉) by adapting arguments for the logic of elsewhere [63, 29]
(see Theorem 25). To obtain the NP upper bound, we need to show that underlying model-
checking problems are in P, which requires a refined analysis as the model checking problem
for propositional separation logic (even restricted to ∗) is already PSpace-complete [19].

• As far as decidability is concerned, we show that the satisfiability problem for MSL(∗,3, 〈6=〉)
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is decidable by translation into the weak monadic second-order theory of one unary function
shown decidable in [60] (see Theorem 4). This extends the decidability proof of 1SL(∗)
from [15] as, now, propositional variables need to be taken into account. In the weak second-
order theory, monadic predicates are interpreted as finite sets; so we need to show that the
propositional variables in MSL(∗,3, 〈6=〉) can hold true only in a finite amount of locations
without altering the satisfiability status.

More surprisingly, even though both MSL(∗,3) and MSL(∗, 〈6=〉) are NP-complete, we estab-
lish that the satisfiability problem for MSL(∗,3, 〈6=〉) is Tower-complete. Tower-hardness
is obtained by reduction from the nonemptiness problem for star-free expressions [54, 64, 62]
(see Theorem 34). To do so, we show an essential property: the formula ∃ x, y ls(x, y) from
(first-order) separation logic (see e.g. [8, 21]) can be expressed in MSL(∗,3, 〈6=〉), which
allows us to encode finite words. The notion of Tower-completeness is borrowed from [62].

• Using the fact that ls(x, y) can be expressed in MSL(∗,3, 〈6=〉) (a direct consequence of
the fact that ∃ x, y ls(x, y) can be expressed as the inequality modality is known to encode
nominals), we also establish that MSL (i.e. MSL(∗,3, 〈6=〉) augmented with the magic wand
−∗) admits an undecidable satisfiability problem by using the recent result from [35] about
the undecidability of propositional separation logic (with ∗ and −∗) augmented with the list
segment predicate ls, which itself is based on [15, 32].

• Along the paper, we also investigate variants of MSL (or some of its fragments) by slightly
modifying the semantics or by adding other modal connectives. For instance, we provide
a translation from formulae of global sabotage logic [4] into MSL(∗,3) formulae. As a
consequence, the satisfiability problem for the global sabotage logic over MSL models is
NP-complete, whereas the satisfiability problem for MSLg(∗,3) (i.e. MSL(∗,3) interpreted
over arbitrary Kripke style models) is undecidable.

In Figure 1, we present a map illustrating the complexity and the decidability status of modal
separation logics we study herein and other logics involved in the article (formal definitions can
be found in the subsequent sections).

MSL, undecidable

MSL(∗,3, 〈6=〉), Tower-c.

MSL(∗,3, 〈6=〉,3−1), in Tower

MSL(∗,3,3−1), ?

MSL(∗,3), NP-c.
MSL(∗, 〈6=〉), NP-c.

SL(∗,−∗), PSpace-c.

SL(∗,−∗, ls), undecidable

MSL(3, 〈gsb〉), NP-c.

Figure 1: A complexity map for modal separation logics.

The work presented in this article is an extension of [33]. Herein, we introduce all the contri-
butions in detail, we provide examples and we complete the proofs for all the results.
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2 Preliminaries

In this section, we introduce the modal separation logic MSL, as well as several fragments that we
briefly compare with propositional separation logic. In that way, we also take the opportunity to
discuss a bit the expressivity of the language for MSL.

2.1 Modal separation logic MSL

Let PROP = {p1, q1, p2, q2, . . .} be a countably infinite set of propositional variables. Formulae
for the logic MSL are defined by the grammar below:

φ ::= p | emp | ¬φ | φ ∨ φ | 3φ | 〈6=〉φ | φ ∗ φ | φ−∗φ,

where p ∈ PROP. An MSL model is a tuple M = 〈N,R,V〉 such that R ⊆ N × N is finite and
weakly functional, and V : PROP→ P(N). This means that for all l, l′, l′′, we have lRl′ and lRl′′

imply l′ = l′′ (this is also known as being deterministic). In the sequel, by ‘functional’, we mean
‘weakly functional’. Since separation logics are interpreted on structures representing heaps, our
formulas are interpreted on models where the accessibility relation is finite and functional.

The models M1 = 〈N,R1,V〉 and M2 = 〈N,R2,V〉 are disjoint if R1∩R2 = ∅; when this holds,
M1 ]M2 denotes the model corresponding to the disjoint union of M1 and M2, and M1 ⊆ M2

means that M1 and M2 have the same valuation and R1 ⊆ R2. We say {R1,R2} is a partition of
R, if R1 ∩R2 = ∅ and R = R1 ∪R2. Sometimes, we will write R(l) for the set {l′ | (l, l′) ∈ R}.
Given M = 〈N,R,V〉 and l ∈ N, the satisfaction relation |= is defined below:

M, l |= p
def⇔ l ∈ V(p)

M, l |= emp
def⇔ R = ∅

M, l |= ¬φ def⇔ M, l 6|= φ

M, l |= φ1 ∨ φ2
def⇔ M, l |= φ1 or M, l |= φ2

M, l |= 3φ
def⇔ M, l′ |= φ, for some l′ ∈ N such that (l, l′) ∈ R

M, l |= 〈6=〉φ def⇔ M, l′ |= φ, for some l′ ∈ N such that l′ 6= l

M, l |= φ1 ∗ φ2
def⇔ 〈N,R1,V〉, l |= φ1 and 〈N,R2,V〉, l |= φ2,

for some partition {R1,R2} of R

M, l |= φ1−∗φ2
def⇔ for all M′=〈N,R′,V〉 such that R∪R′ is finite and

functional, and R ∩R′ = ∅,
we have M′, l |= φ1 implies 〈N,R ∪R′,V〉, l |= φ2.

The semantics for the modal operators and the separating connectives is the standard one, see
e.g. [10, 61]. A similar composition operator has been introduced in graph logics [27]. Other
standard connectives or formulae are used:

• [6=]φ
def
= ¬〈6=〉¬φ and 2φ

def
= ¬3¬φ; 〈U〉φ def

= φ ∨ 〈6=〉φ and [U]φ
def
= ¬〈U〉¬φ,

• 〈 ! 〉φ def
= 〈U〉(φ ∧ [ 6=]¬φ) (unicity of the satisfaction of φ),

• the atomic formula size = 1 is a shortcut for ¬emp ∧ ¬(¬emp ∗ ¬emp). In fact, this formula

can be generalised: size ≥ 0
def
= >, and for n > 0, size ≥ n def

=

n times︷ ︸︸ ︷
¬emp ∗ · · · ∗ ¬emp. Therefore,

size = n is a shortcut for size ≥ n ∧ ¬size ≥ n+ 1.

The satisfiability problem for the logic MSL, takes as input a formula φ in MSL and asks whether
there exist an MSL model M and a location l such that M, l |= φ.

Not only our study includes MSL but above all, we also deal with fragments. For instance, the
fragment with Boolean connectives and 3 is the basic modal logic ML. Otherwise, as a conven-
tion, we always consider the Boolean part and the emptiness constant emp, and we put between
parentheses the rest of (separating or modal) connectives we are considering. The main logics we
consider are MSL(∗,3), MSL(∗, 〈6=〉) and MSL(∗,3, 〈6=〉).

4



Besides, the closest logic with MSL is most probably the modal logic of heaps MLH defined
in [31] but MLH has no propositional variables and contains also 3−1 (associated to the converse
relation for 3, see also Section 3.2) and the reflexive transitive closure modality 〈?〉. Whereas
MLH restricted to the separating connective ∗ (written MLH(∗)) has a decidable satisfiability
problem [31], the decidability status of MLH is open. The choice of the modal operators for
MLH has been guided in [31] by the ability to translate MLH into the first-order separation logic
restricted to two individual variables, while showing that the restriction to ∗ (and therefore without
the magic wand operator −∗) is Tower-hard. Herein, we consider a subset of modal operators
but with the presence of propositional variables, leading to Tower-hardness of MSL(∗,3, 〈6=〉).
Of course, it is always possible to add more modal operators to MSL(∗,3, 〈6=〉) or to MSL, but
the computational properties of such extensions will certainly not improve.

2.2 Nominals, program variables and separation logic in a nutshell

In all the fragments of MSL containing the inequality modality [28], it is known that nominals from
hybrid logics [9] can be used since stating that p holds true in a unique location can be expressed
by 〈 ! 〉p. For example, the formula φ1 = 〈 ! 〉p∧〈 ! 〉q∧〈U〉(p∧3q) states that p and q are nominals
and there is an edge between the unique location where p holds true and the unique location where
q holds true (possibly the same location). So, as soon as the inequality modality 〈6=〉 is present,
we can freely use nominals. Syntactically, nominals are taken from the set PVAR = {x, y, . . .},
that is actually also used as the set of program variables in separation logic (see below). Indeed,
nominals and program variables are both interpreted by locations, as noticed in [42]. So, herein,
checking the satisfiability status of a formula φ containing x1, . . . , xn actually amounts to checking
the satisfiability status of (

∧
1≤i≤n〈 ! 〉xi)∧ φ. Similarly, the formula φ2 = 〈 ! 〉p∧ 〈 ! 〉q ∧ 〈U〉(p∧ q)

states that p and q are nominals and hold true exactly on the same location.
In order to provide some more examples about the expressive power of MSL, φ3 = [U]2 ⊥ is

logically equivalent to emp, and ¬emp ∧ ¬(¬emp ∗ ¬emp) states that the accessibility relation has
a unique edge (also written size = 1). Notice that even though emp can be taken as a shortcut
for φ3, it is not expressible in any of the fragments MSL(∗,3) and MSL(∗, 〈6=〉), since it uses
modalities from both logics. Therefore, we need to include it as primitive in the language.

A formula φ is said to be global iff its satisfaction does not depend on the location and we
simply write M |= φ (instead of M, l |= φ). The above-mentioned formulae φ1, φ2, φ3 and size = 1
are global as well as any formula built from them using Boolean and separating connectives.

Below, we show why these formulae are important to compare MSL with separation logics.
Indeed, MSL behaves as a standard modal logic since the satisfaction relation has three arguments
(a model, a location and a formula) but it can be also presented as a separation logic so that the
satisfaction relation takes only two arguments, a model and a global formula.

Let us briefly explain why separation logic can be viewed as a fragment of MSL. A memory
state is a pair (s, h) such that

• s : PVAR→ N (the store) and,

• h : N→fin N is a partial function with finite domain (the heap).

Models of the separation logic SL(∗,−∗) (with one record field) are memory states. When the
respective domains of the heaps h1 and h2 are disjoint, we write h1 ] h2 to denote the heap
corresponding to the disjoint union of h1 and h2. Formulae of SL(∗,−∗) are built from the grammar

φ ::= x = y | x ↪→ y | emp | ¬φ | φ ∧ φ | φ ∗ φ | φ−∗φ,

where x, y ∈ PVAR. The satisfaction relation |= is defined as follows:
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(s, h) |= x = y
def⇔ s(x) = s(y)

(s, h) |= emp
def⇔ dom(h) = ∅

(s, h) |= x ↪→ y
def⇔ s(x) ∈ dom(h) and h(s(x)) = s(y)

(s, h) |= φ1 ∗ φ2
def⇔ there are h1 and h2 such that h1 ] h2 = h,

(s, h1) |= φ1 and (s, h2) |= φ2

(s, h) |= φ1−∗φ2
def⇔ for all h1, if (dom(h1) ∩ dom(h) = ∅ and

(s, h1) |= φ1), then (s, h ] h1) |= φ2.

Any memory state (s, h) can be viewed as the MSL model M = 〈N,R,V〉 such that R =
{(l, h(l)) | l ∈ dom(h)} and the restriction of V to PVAR is defined as V(x) = {s(x)}. Actually,
any formula φ of SL(∗,−∗) is satisfiable iff t(φ) is satisfiable in MSL where t is homomorphic for
Boolean and separating connectives and,

t(x = y)
def
= 〈U〉(x ∧ y) t(emp)

def
= emp t(x ↪→ y)

def
= 〈U〉(x ∧3y).

It is worth noting that each formula t(φ) is a global formula of MSL where x and y are
program variables but in general can be enforced to behave as nominals in MSL. So, SL(∗,−∗)
can be understood as a syntactic fragment of MSL. For instance, the satisfiability problem for
SL(∗,−∗) is known to be PSpace-complete [19].

2.3 Alternative semantics

A general model M = 〈W,R,V〉 is such that W is an arbitrary countable set, R ⊆ W ×W and
V : PROP → P(W). This corresponds to standard (countable) Kripke structures with no frame
condition. A finite and functional model M = 〈W,R,V〉 is such that W is a finite set, R ⊆W×W
is functional and V is a valuation. Without loss of generality, we assume W ⊆ N. Each syntactic
fragment L of MSL gives rise to the logic Lf (resp. Lg) where the models for Lf are finite and
functional models (resp. are general models). When L includes −∗, the definition of |= for Lg is
therefore updated as follows:

M, l |= φ1−∗φ2
def⇔ for all general models M′ = 〈W,R′,V〉 such that R ∩R′ = ∅

M′, l |= φ1 implies 〈W,R ∪R′,V〉, l |= φ2.

Note that the formula (>−∗¬((¬emp)−∗ ⊥)) is valid for MSL but not for MSLf .
The model-checking problem for MSLf takes as input a formula in MSLf built over some

finite set of propositional variables {p1, . . . , pn} ⊆ PROP, a finite and functional model M =
〈W,R,V〉 such that V is restricted to {p1, . . . , pn} and l ∈ W, and we check whether M, l |= φ.
This is a standard way to define the model-checking problem. As MSL can be viewed as a
fragment of second-order logic in which second-order quantifications are performed with predicates
of arity at most two (the second-order feature is needed to internalise the semantics of separating
connectives), the model-checking problem for MSLf is in PSpace. More surprisingly, we show
that the restriction to either MSLf (∗, 〈6=〉) or MSLf (∗,3) is in P (the model-checking problem for
the pure modal logic MSLf (3, 〈6=〉) is clearly in P too), whereas the restriction to MSLf (∗,3, 〈6=〉)
is already untractable.

Lemma 1. The model-checking problem for MSLf (∗,3, 〈6=〉) is PSpace-hard.

We show below that the model-checking problem for MSLf (∗,3, 〈6=〉) is PSpace-hard by
reduction from QBF. QBF formulae are built from propositional formulae with the addition of
propositional quantifications of the form ∀ p and ∃ p.

Proof. Let Q1 p1 · · · Qn pn φ be a QBF formula with {Q1, . . . ,Qn} ⊆ {∃,∀} and φ is a propo-
sitional formula built over the atomic propositions in {p1, . . . , pn}. The formula is said to be in
prenex normal form and every QBF formula can be reduced in logarithmic space to an equivalent
formula in such a form. Given a propositional valuation v : PROP→ {⊥,>}, we have v |= ∃ p φ
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iff there is b ∈ {⊥,>} such that v[p 7→ b] |= φ. Similarly, v |= ∀ p φ iff for all b ∈ {⊥,>}, we have
v[p 7→ b] |= φ. Satisfiability problem for QBF formulae is known to be PSpace-complete [65].

In the reduction of ϕ = Q1 p1 · · · Qn pn φ, we introduce a finite and functional model Mn =
〈W,R,V〉 with W = [0, 2n] such that Q1 p1 · · · Qn pn φ is satisfiable iff Mn, 0 |= t(ϕ), where
t(·) is recursively defined below. The truth of the propositional variable pi in QBF subformulae is
encoded by the satisfaction of the formula 〈6=〉(pi ∧ p> ∧3>) from MSLf (∗,3, 〈6=〉).

First, let us complete the definition of Mn over the propositional variables {p>, p1, . . . , pn}.

V(pi)
def
= {i, n+ i}, for all i = 1, . . . , n

V(p>)
def
= [1, n]

R
def
= {(i, 0) | i ∈ [1, 2n]}.

0 Mn

p1

p>
p1

. . .
pn

p>
pn

Let us define the map t as follows (homomorphic for Boolean connectives):

t(pi)
def
= 〈6=〉(pi ∧ p> ∧3>)

t(∃ pi ψ)
def
= (size = 1 ∧ 〈6=〉(pi ∧3>)) ∗ t(ψ)

t(∀ pi ψ)
def
= ¬((size = 1 ∧ 〈6=〉(pi ∧3>)) ∗ ¬t(ψ)).

For every j ∈ [1, n+ 1], we write φj to denote the formula Qj pj · · · Qn pn φ. By definition, we
have φ1 = Q1 p1 · · · Qn pn φ and by convention φn+1 = φ. Note that the atomic propositions in
φj that are not in the scope of a propositional quantification belongs to the (possibly empty) set
{pi : i ∈ [1, j − 1]}.

Given M ⊆ Mn and a propositional valuation v, we write M ≈j v to denote the conjunction
of the following properties.

1. For all i ∈ [1, j − 1], exactly one location in {i, n+ i} has an outgoing edge and it points to
0.

2. For all i ∈ [j, n], all the locations in {i, n+ i} have an outgoing edge and they point to 0.

3. For all i ∈ [1, j − 1], i has an outgoing edge (and it is pointing to 0) iff v(pi) = > (iff n + i
has no outgoing edges).

By induction on j, we will show that for all j ∈ [1, n+ 1], if M ≈j v, then M, 0 |= t(φj) iff v |= φj .

Base case: j = n+ 1. Suppose M ≈n+1 v. The proof is by structural induction and the cases
for the Boolean connectives in the induction step are by an easy verification. For i ∈ [1, n],
i.e. i < n + 1, we have M, 0 |= t(pi), iff (by definition of t) M, 0 |= 〈6=〉(pi ∧ p> ∧ 3>), iff
by |=, there is k ∈ [1, 2n] such that M, k |= pi ∧ p> ∧3>. By construction of Mn and (1.)
in the definition of M ≈n+1 v, this is equivalent to M, i |= pi ∧ p> ∧ 3>. By (3.) in the
definition of M ≈n+1 v, v(pi) = >, which is equivalent to v |= pi

Induction step: 1 ≤ j < n+ 1. The induction hypothesis is the following: for all j′ ∈ [j+1, n+
1], if M′ ≈j′ v′, then M′, 0 |= t(φj′) iff v′ |= φj′ .

Suppose that M ≈j v, and first suppose that M, 0 |= t(∃ pj φj+1). By definition of t, we
have M, 0 |= (size = 1 ∧ 〈6=〉(pj ∧3>)) ∗ t(φj+1). This means that there exists a partition
of M into M′,M′′ (i.e. M = M′ ]M′′) such that M′, 0 |= size = 1 ∧ 〈6=〉(pi ∧ 3>) and
M′′, 0 |= t(φj+1). Let R′ the accessibility relation associated to M′, then card(R′) = 1, and
there exists l 6= 0 such that M′, l |= pj and (l, 0) ∈ R′. Since M′ is a submodel of Mn, either
l = j or l = n+ j. If l = j, then we have M′′ ≈j+1 v[pj 7→⊥], otherwise M′′ ≈j+1 v[pj 7→ >].
Consequently, by (IH), either v[pj 7→⊥] |= φj+1 or v[pj 7→ >] |= φj+1, which is equivalent
to v |= ∃ pj φj+1. The proof for the other direction is similar. Moreover, the proof for
t(∀ pj φj+1) is a direct consequence of the fact that ∀ pj φj+1 is logically equivalent to
¬∃ pj ¬φj+1 and t faithfully reflects this duality.

So, as Mn ≈1 v for any v, we have v |= ϕ iff Mn, 0 |= t(φ1). As ϕ is a closed formula and
φ1 = ϕ, ϕ is satisfiable iff Mn, 0 |= t(ϕ).
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MSL can be seen as a logic with the ability to add or remove edges from the accessibility
relation, closely related to relation-changing modal logics [3], that are logics with operators to
add, remove and swap around edges of the accessibility relation of the model. Below, we dis-
cuss the connections between MSL and the global sabotage logic MSLg(3, 〈gsb〉). Formulae of
MSLg(3, 〈gsb〉) extends those of ML by adding the operator 〈gsb〉 interpreted over general models
M = 〈W,R,V〉 as:

M, l |= 〈gsb〉φ def⇔ for some (l′, l′′) ∈ R, M−l′,l′′ , l |= φ,

where M−l′,l′′ = 〈W,R \ {(l′, l′′)},V〉. MSLg(3, 〈gsb〉) can be encoded into MSLg(∗,3) by a
translation map t from MSLg(3, 〈gsb〉)-formulas to MSLg(∗,3)-formulas, that is homomorphic
for Boolean connectives and for 3 and,

t(〈gsb〉φ)
def
= (size = 1) ∗ t(φ).

We have φ is satisfiable iff t(φ) is satisfiable for MSLg(∗,3). Similarly, the logic MSL(3, 〈gsb〉) is
the variant of MSLg(3, 〈gsb〉) with MSL models.

3 Decision problems in Tower

Below, we establish that the satisfiability problem for MSL(∗,3, 〈6=〉) is in Tower [62], the class
of problems of time complexity bounded by a tower of exponentials, whose height is an elementary
function of the input. Tower-hardness shall be established in Section 5.

3.1 Internalising the semantics

We will design a reduction to the satisfiability problem for MSLf (∗,3, 〈6=〉) and then we will
show that the satisfiability problem for MSLf (∗,3, 〈6=〉) is in Tower by translation into the
weak MSO theory of one unary function. Notice that the difference between MSL(∗,3, 〈6=〉)
and MSLf (∗,3, 〈6=〉) is that models in MSL(∗,3, 〈6=〉) have finite relations over an infinite set of
locations, while the set of locations in MSLf (∗,3, 〈6=〉) models is finite. This proof is analogous
to the decidability proof for the separation logic 1SL(∗) in [15] but our main technical task is to
solve the satisfiability problem for MSL(∗,3, 〈6=〉) by using only propositional variables that hold
true on a finite amount of locations. First, we show a preliminary result: locations satisfying the
same propositional variables and with no successor satisfy the same formulae.

Lemma 2. Let p1, . . . , pn be propositional variables, M = 〈N,R,V〉 be a model and l 6= l′ be
locations such that R(l) = R(l′) = ∅ and, l and l′ agree on p1, . . . , pn. For all φ in MSL(∗,3, 〈6=〉)
built over p1, . . . , pn, we have M, l |= φ iff M, l′ |= φ.

Proof. The proof is by structural induction on φ. When φ is a propositional variable in p1, . . . , pn,
the property trivially holds as by assumption l and l′ agree on p1, . . . , pn. Similarly, when φ = emp,
the property holds obviously. Let us treat the different cases in the induction step (we omit the
obvious cases for the Boolean connectives).

φ = φ1 ∗ φ2. Suppose that M, l |= φ. By definition of |=, there are models M1 and M2 such that
M = M1 ]M2, M1, l |= φ1 and M2, l |= φ2. By the induction hypothesis, M1, l

′ |= φ1 and
M2, l

′ |= φ2. Consequently, M, l′ |= φ.

φ = 3φ′. By R(l) = R(l′) = ∅, M, l 6|= φ and M, l′ 6|= φ.

φ = 〈6=〉φ′. Suppose that M, l |= φ. So, there is l′′ 6= l such that M, l′′ |= φ′. If l′′ 6= l′, then
M, l′ |= φ. Otherwise, if l′′ = l′, then by the induction hypothesis, M, l |= φ′ and therefore
M, l′ |= φ.
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Let φ in MSL(∗,3, 〈6=〉) be built over p1, . . . , pn. Let us define T (φ) as the formula below:

T (φ)
def
= φ ∧

∨
X⊆{p1,...,pn}

〈U〉(2 ⊥ ∧
∧
p∈X

p ∧
∧
p 6∈X

¬p ∧ 〈6=〉(2 ⊥ ∧
∧
p∈X

p ∧
∧
p 6∈X

¬p)).

When 〈6=〉 is not present in φ, the second conjunct can be removed (see Lemma 12, where we
take T (φ) = φ). Such a conjunct states that there are two distinct locations with no successor
that agree on propositional variables from X and it is needed since 〈 ! 〉p ∧ [U]p is satisfiable for
MSLf (∗, 〈6=〉) but not for the logic MSL(∗, 〈6=〉).

Lemma 3. Every formula φ is satisfiable in MSL(∗,3, 〈6=〉) iff the formula T (φ) is satisfiable in
MSLf (∗,3, 〈6=〉).

Proof. First, suppose M, l |= φ with M = 〈N,R,V〉. Let us build a finite and functional model
M′ = 〈W′,R′,V′〉 such that W′ ⊆ N (to be defined below), R′ = R and V′ is the restriction of V
to W′.

• W′0 = {l′, l′′ | (l′, l′′) ∈ R} ⊆W′.

• For every X ⊆ {p1, . . . , pn}, pick two locations lX1 and lX2 to be in N \W′0 (or less than two,
if there is only one, or none but optimise the number up to two) such that for all i ∈ [1, n],
we have lX1 ∈ V(pi) iff pi ∈ X iff lX2 ∈ V(pi). Furthermore, note that each location lXj has
no edge from it in R.

The set W′ is defined as the union of W′0 ∪ {l} and the set of locations lX1 and lX2 for all X.
By structural induction, one can show that for all l′ ∈ W′, we have M′, l′ |= φ iff M, l′ |= φ.
Consequently, M′, l |= φ.

Here is the proof by induction. Actually, we show that given any finite N ⊃ W′′ ⊇ W′, we
have M′′ = 〈W′′,R′,V′′〉, l′ |= φ iff M, l′ |= φ where V′′ is the restriction of V to W′′. This slight
generalisation is considered in order to handle the separating conjunction ∗. The base cases are
by an easy verification as well as the cases in the induction step for the Boolean connectives.

• Suppose that M, l′ |= 3ψ. So, there is l′′ ∈ R(l′) such that M, l′′ |= ψ. So, l′′ ∈ W′0 ⊆
W′ ⊆ W′′ and by the induction hypothesis M′′, l′′ |= ψ. As R′ = R, we conclude that
M′′, l′ |= 3ψ.

Conversely, suppose that M′′, l′ |= 3ψ. So, there is l′′ ∈ R′(l′) such that M′′, l′′ |= ψ. By
the induction hypothesis M, l′′ |= ψ. As R′ = R, we conclude that M, l′ |= 3ψ.

• Suppose that M, l′ |= ψ1∗ψ2. There exists a partition {R1,R2} of R such that 〈N,R1,V〉, l′ |=
ψ1 and 〈N,R2,V〉, l′ |= ψ2. By the induction hypothesis, we have 〈W′′,R1,V

′′〉, l′ |= ψ1 and
〈W′′,R2,V

′′〉, l′ |= ψ2 and therefore M′′, l′ |= ψ1 ∗ ψ2. Here, it is essential to use the gener-
alisation as W′′ is most probably bigger than the set of locations that would be extracted
from 〈N,R1,V〉 or from 〈N,R2,V〉.
Conversely, suppose that M′′, l′ |= ψ1 ∗ ψ2. There exists a partition {R1,R2} of R = R′

such that 〈W′′,R1,V
′′〉, l′ |= ψ1 and 〈W′′,R2,V

′′〉, l′ |= ψ2. By the induction hypothesis, we
have that 〈N,R1,V〉, l′ |= ψ1 and 〈N,R2,V〉, l′ |= ψ2, whence M, l′ |= ψ1 ∗ ψ2.

• Suppose that M, l′ |= 〈6=〉ψ. So, there is l′′ 6= l′ such that M, l′′ |= ψ. If either l′′ ∈ W′0
or l′′ = l or l′′ is equal to some lXi , then l′′ ∈ W′ and by the induction hypothesis, we have
M′′, l′′ |= ψ, and therefore M′′, l′ |= 〈6=〉ψ. Otherwise, necessarily, there is some lXi such that
l′′ and lXi agree on p1, . . . , pn, l′′ and lXi are distinct, and R(l′′) = R(lXi ) = ∅. By Lemma 2,
we get that M, lXi |= ψ and therefore we can conclude that M′′, l′′ |= ψ as in the first case.

Conversely, M′′, l′ |= 〈6=〉ψ. So, there is l′′ 6= l′ such that M′′, l′′ |= ψ. By the induction
hypothesis, we get M, l′′ |= ψ and therefore M, l′ |= 〈6=〉ψ.
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Moreover, as N is infinite, there is a set X ⊆ {p1, . . . , pn} such that two distinct locations lX1
and lX2 can be found in M. So, obviously we have

M′, l |=
∨

X⊆{p1,...,pn}

〈U〉(2 ⊥ ∧
∧
p∈X

p ∧
∧
p 6∈X

¬p ∧ 〈6=〉(2 ⊥ ∧
∧
p∈X

p ∧
∧
p 6∈X

¬p)).

Now, suppose that M, l |= T (φ) for some finite and functional model M = 〈W,R,V〉 with
W ⊂ N. Let us build the model M′ = 〈N,R,V′〉 such that V is the restriction of V′ to W. We
know that there are l1 6= l2 and X ⊆ {p1, . . . , pn} such that M, l1 |= 2 ⊥ ∧

∧
p∈X p∧

∧
p 6∈X ¬p and

M, l2 |= 2 ⊥ ∧
∧
p∈X p ∧

∧
p 6∈X ¬p. For all l′ ∈ N \W and i ∈ [1, n], we set l′ ∈ V(pi) iff pi ∈ X.

By structural induction, one can show that for all l′ ∈W, we have M′, l′ |= φ iff M, l′ |= φ.
Here is the proof by induction. Again, the base cases are by an easy verification as well as the

cases in the induction step for the Boolean connectives.

• Suppose that M, l′ |= 3ψ. So, there is l′′ ∈ R(l′) such that M, l′′ |= ψ. By the induction
hypothesis M′, l′′ |= ψ and we conclude that M′, l′ |= 3ψ.

Conversely, suppose that M′, l′ |= 3ψ. So, there is l′′ ∈ R′(l′) such that M′, l′′ |= ψ. By the
induction hypothesis M, l′′ |= ψ as l′′ ∈W. We conclude that M, l′ |= 3ψ.

• Suppose that M, l′ |= ψ1∗ψ2. There exists a partition {R1,R2} of R such that 〈W,R1,V〉, l′ |=
ψ1 and 〈W,R2,V〉, l′ |= ψ2. By the induction hypothesis, we have 〈N,R1,V

′〉, l′ |= ψ1 and
〈N,R2,V

′〉, l′ |= ψ2 and therefore M′, l′ |= ψ1 ∗ ψ2 (here no need for generalised induction
hypothesis as the properties for lX1 and lX2 are preserved in 〈W,R1,V〉 and 〈W,R2,V〉).
Conversely, suppose that M′, l′ |= ψ1 ∗ ψ2. There exists a partition {R1,R2} of R such
that 〈N,R1,V

′〉, l′ |= ψ1 and 〈N,R2,V
′〉, l′ |= ψ2. By the induction hypothesis, we have

〈W,R1,V〉, l′ |= ψ1 and 〈W,R2,V〉, l′ |= ψ2, whence M, l′ |= ψ1 ∗ ψ2.

• Suppose that M, l′ |= 〈6=〉ψ. So, there is l′′ 6= l′ such that M, l′′ |= ψ. By the induction
hypothesis, we have M′, l′′ |= ψ and therefore M′, l′ |= 〈6=〉ψ.

Conversely, suppose that M′, l′ |= 〈6=〉ψ. So, there is l′′ 6= l′ such that M′, l′′ |= ψ. If l′′ ∈W,
then by the induction hypothesis, we get M, l′′ |= ψ and therefore M, l′ |= 〈6=〉ψ. Otherwise
as l′′ ∈ N \W, by construction of M′, there some i ∈ {1, 2} such that li and l′′ agree on
p1, . . . , pn, R(l′′) = R(li) = ∅ and, li 6∈ {l′, l′′}. By Lemma 2, M′, li |= ψ. As li ∈W, by the
induction hypothesis M, li |= ψ. Consequently, M, l′ |= 〈6=〉ψ.

The complexity class Tower has been introduced in [62] and sits between the class of elemen-
tary problems and the class of primitive recursive problems. Examples of standard problems that
are Tower-complete can be found in [62]. It is worth noting that to prove Theorem 4 below, we
follow an approach known as the reduction method [39] that is based on the seminal result by
Rabin [60].

Theorem 4. The satisfiability problem for MSL(∗,3, 〈6=〉) is in Tower.

Proof. By Lemma 3, there is a reduction from the satisfiability problem for MSL(∗,3, 〈6=〉) into
the satisfiability problem for MSLf (∗,3, 〈6=〉) that works in exponential time. Now, we show
that there is a logspace reduction from the satisfiability problem for MSLf (∗,3, 〈6=〉) into the
satisfiability problem for the weak monadic second-order theory of one unary function whose
structures are triple 〈D, f,=〉 where D is a countable domain, f is a unary function, and = is
equality (‘weakness’ refers to the fact that the monadic predicates are interpreted by finite sets).
This theory is decidable, see e.g. [12, Corollary 7.2.11] and it can be shown in Tower as it can
be reduced to the satisfiability to the monadic second-order theory of the infinite binary tree.

Let us define the translation T (φ) of the formula φ from MSLf (∗,3, 〈6=〉) built over the propo-
sitional variables p1, . . . , pn (internalisation of the semantics):

∃ Pdom,P, P1, . . . , Pn ∃ x
∧
i Pi ⊆ Pdom ∧ (P ⊆ Pdom)∧

(∀ z P(z)⇒ ∃ z′ (z′ = f(z)) ∧Pdom(z′)) ∧Pdom(x) ∧ t(x, φ,P),

where the map t is recursively defined as follows.
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• t(x, pi,P)
def
= Pi(x),

• t(x, emp,P)
def
= ∀ y ¬P(y),

• t is homomorphic for Boolean connectives,

• t(x,3ψ,P)
def
= P(x) ∧ ∃ y (y = f(x)) ∧ t(y, ψ,P),

• t(x, 〈6=〉ψ,P)
def
= ∃ y (y 6= x) ∧Pdom(y) ∧ t(y, ψ,P),

• t(x, φ1 ∗ φ2,P)
def
= ∃ Q,Q′ (P = Q ]Q′) ∧ t(x, φ1,Q) ∧ t(x, φ2,Q

′) where P = Q ]Q′ is an
abbreviation for

∀ z (P(z)⇔ (Q(z) ∨Q′(z))) ∧ ¬(Q(z) ∧Q′(z)).

‘P ⊆ Q’ is also an abbreviation for ‘∀ x P (x)⇒ Q(x)’.
So, the map t combines the standard translation from modal logic to first-order logic (see

e.g. [38, 56, 66, 55]) and the translation from separation logic into second-order logic (see e.g. [15]).
One can show that φ is satisfiable in MSLf (∗,3, 〈6=〉) iff T (φ) is satisfiable in the weak monadic
second-order theory of one unary function; the proof is rather standard as the translation simply
internalises the semantics for MSLf (∗,3, 〈6=〉). For instance, the prefix ∃ Pdom,P ∃ P1, . . . , Pn
with quantifications over monadic predicates, specifies what is the domain (thanks to Pdom) and
what is the functional accessibility relation thanks to P.

Let us be a bit more precise. First, suppose that T (φ) is satisfiable. So there is a model
M = 〈D, f,=〉 (D is a countable set and f is a map D → D) such that M |= T (φ) (|= is overloaded
here and denotes also the satisfaction relation for closed formulae from the weak monadic second-
order theory, weakness meaning that the monadic predicates are interpreted by finite subsets of
D). So, there is a valuation ρ (providing an interpretation for Pdom, P, P1, . . . , Pn and x) such
that

M |=ρ

∧
i Pi ⊆ Pdom ∧ (P ⊆ Pdom)
∧(∀ z P(z)⇒ ∃ z′ (z′ = f(z)) ∧Pdom(z′)) ∧Pdom(x) ∧ t(x, φ,P).

Let us build a finite and functional model M′ = 〈W,R,V〉 as follows:

• W
def
= ρ(Pdom) (W is finite as the monadic predicates are interpreted weakly),

• R
def
= {(l, f(l)) | l ∈ ρ(P)}. Functionality of R is immediate since f is a map, and finiteness

of R is again due to the weak interpretation of the monadic predicate P. Moreover, we have
R ⊆W×W as a consequence of M |=ρ P ⊆ Pdom∧(∀ z P(z)⇒ ∃ z′ (z′ = f(z))∧Pdom(z′)).

• For all i ∈ [1, n] and l ∈W, we have l ∈ V(pi)
def⇔ l ∈ ρ(Pi).

By structural induction, one can show that for all l ∈ W, for all subformulae ψ of φ, we have
M |=ρ[y7→l] t(y, ψ,P) iff M′, l |= ψ. This is the place where one checks that the translation t simply

internalises the semantics of MSLf (∗,3, 〈6=〉) and the proof is very similar to the one for the
standard translation from modal logic to first-order logic. Details are omitted here. Consequently,
M′, ρ(x) |= φ and therefore φ is MSLf (∗,3, 〈6=〉) satisfiable.

Conversely, suppose that φ is MSLf (∗,3, 〈6=〉) satisfiable. So, there is a model M = 〈W,R,V〉
and l ∈W such that M, l |= φ. As above, let us build a model M′ = 〈D, f,=〉 for the weak monadic
second-order theory and a valuation ρ as follows:

• D def
= W,

• For all l′ ∈W such that R(l′) = {l′′}, f(l′) def
= l′′. If R(l′) = ∅, then by default f(l′)

def
= l. So, f

is clearly a map D → D.

• For all i ∈ [1, n] and l ∈ D, l ∈ ρ(Pi)
def⇔ l ∈ V(pi).

• ρ(x)
def
= l; ρ(P)

def
= {l′ | R(l′) 6= ∅}; ρ(Pdom)

def
= W.

11



It is quite easy to show that

M′ |=ρ

∧
i Pi ⊆ Pdom ∧ (P ⊆ Pdom)
∧(∀ z P(z)⇒ ∃ z′ (z′ = f(z)) ∧Pdom(z′)) ∧Pdom(x).

Again, by structural induction, one can show that for all l′ ∈ D, for all subformulae ψ of φ, we
have M′ |=ρ[y7→l′] t(y, ψ,P) iff M, l′ |= ψ. As a consequence, M′ |= T (φ) and therefore T (φ) is
satisfiable.

Another consequence of the previous translation and from Lemma 1 is the following:

Corollary 5. The model checking problem for MSLf (∗,3, 〈6=〉) is PSpace-complete.

3.2 Adding the converse modality

In this section, we consider the standard converse modality 3−1 (not originally in MSL), when it
interacts with separating connectives. More precisely,

M, l |= 3−1φ
def⇔ M, l′ |= φ, for some l′ ∈ N such that (l′, l) ∈ R.

Although replacing 3 by 3−1 does not sound as leading to a major variant, we will show that
3−1 already brings new difficulties.

Theorem 6. The satisfiability problem for MSL(∗,3−1) is PSpace-hard as well as the model-
checking problem for MSLf (∗,3−1).

Proof. For the PSpace-hardness of the model-checking for MSLf (∗,3−1), the proof is similar to
the proof of Lemma 1, which is itself reminiscent to the PSpace-hardness proof for the model-
checking problem for relation-changing modal logics (see e.g [3]) or to the PSpace-hardness of the
satisfiability problem for quantifier-free separation logic restricted to the separating conjunction ∗,
see e.g. [19]. Let ϕ = Q1 p1 · · · Qn pn φ be a QBF formula in prenex normal form. We consider
the finite and functional model Mn = 〈W,R,V〉 from the proof of Lemma 1 and we will be able
to establish that ϕ is satisfiable iff Mn, 0 |= t(ϕ) where t(·) is recursively defined below. This time,
the truth of the propositional variable pi in QBF subformulae is encoded by the satisfaction of
the formula 3−1(pi ∧ p>). Let us define the map t as follows when t is homomorphic for Boolean
connectives:

t(pi)
def
= 3−1(pi ∧ p>)

t(∃ pi ψ)
def
= (size = 1 ∧3−1pi) ∗ t(ψ)

t(∀ pi ψ)
def
= ¬((size = 1 ∧3−1pi) ∗ ¬t(ψ)).

As in the proof of Lemma 1, for every j ∈ [1, n + 1], we write φj to denote Qj pj · · · Qn pn φ.
Given a model M ⊆ Mn and a propositional valuation v, we write M ≈j v as in the proof of
Lemma 1. Again, by induction on j, one can show that for all j ∈ [1, n + 1], if M ≈j v, then
M, 0 |= t(φj) iff v |= φj , which allows to conclude that ϕ is satisfiable iff Mn, 0 |= t(ϕ).

Now, let us show that the satisfiability problem for MSL(∗,3−1) is PSpace-hard. Let ϕ =
Q1 p1 · · · Qn pn φ be a QBF formula in prenex normal form. Again, we consider the finite and
functional model Mn = 〈W,R,V〉 from the proof of Lemma 1. First, we define a formula Valn
such that for all MSL models M = 〈N,R′,V′〉 and l ∈ N, we have M, l |= Valn iff there is X ⊆ N
with card(X) = 2n + 1 and l ∈ X such that 〈X,R′, l〉 and 〈W,R, 0〉 are isomorphic structures.
The formula Valn is defined below:

Valn
def
= ∗

1≤i≤n
((3−1(pi ∧ p>) ∧ size = 1) ∗ (3−1(pi ∧ ¬p>) ∧ size = 1).

It is easy to show that ϕ is QBF satisfiable if and only if Valn∧t(ϕ) is MSL(∗,3−1) satisfiable.
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Note that MSL(∗,3−1) contains MSL(3−1) that can be viewed as a slight variant of the
modal logic K on finite trees, known to admit a PSpace-complete satisfiability problem. So,
PSpace-hardness for MSL(∗,3−1) is quite expected but our proof is rather simple.

By using the proof technique from the proof of Theorem 4, we can establish the result below
where 3−1 is part of the modal operators.

Theorem 7. The satisfiability problem for MSL(∗,3, 〈6=〉,3−1) is in Tower.

Proof. Let us extend the definition of the map t from the proof of Theorem 4 with t(x,3−1ψ,P)
def
=

∃ y (P(y)∧x = f(y))∧t(y, ψ,P). One can prove that t is a logspace reduction from the satisfiability
problem for MSLf (∗,3,3−1, 〈6=〉) into the satisfiability problem for the weak monadic second-
order theory of one unary function. The proof of Lemma 3 can be adapted when 3−1 is added,
which leads to the Tower upper bound.

By using the result mentioned above plus Theorem 6 we get:

Corollary 8. The model checking problem for MSLf (∗,3, 〈6=〉,3−1) is PSpace-complete.

As a conclusion, today, there is a huge gap for MSL(∗,3−1) between the PSpace-hardness for
the satisfiability problem and the Tower upper bound. An attempt to translate MSL(∗,3−1)
into a limited fragment a quantified CTL thanks to the relationships between separation and
second-order quantification, happens to be not so promising in view of [7].

4 NP-complete fragments of MSL

In this section, we show that the satisfiability problems for MSL(∗,3) and for MSL(∗, 〈6=〉) are
NP-complete. In order to establish the NP upper bound, we reduce the problems to their variants
with finite and functional models, we show a linear-size model property and finally, we prove that
the model-checking problems are in P, dealing in each case with particular technical difficulties.

In order to illustrate the specificity of the expressive power of the modal separation logic
MSL(∗,3), let us consider the formula below such that when interpreted on a location l, states
that the model contains exactly a loop of length 2 visiting l:

size = 2 ∧333> ∧ ¬(¬emp ∗333>) ∧ ¬3(¬emp ∗333>)

Obviously, such a property cannot be expressed in the modal logic Alt1 or in the quantifier-
free separation logic SL(∗,−∗). A more thorough analysis on the expressivity capabilities of the
fragments MSL(∗,3) and MSL(∗, 〈6=〉) has been perfomed in [34] and this complements nicely
what is presented below.

4.1 The minimal modal separation logic MSL(∗,3): linear-size model
property

To show that MSL(∗,3) has a linear-size model property (i.e., the cardinal of the relation can

be linearly bounded), we introduce an equivalence relation
s,n∼ (s ≥ 0 is a parameter about the

number of edges and n ≥ 1 is a parameter about the propositional variables) such that
s,n∼ -

equivalent models satisfy the same formulae with less than s syntactic resources (to be defined)
and built over {p1, . . . , pn}.

First, we need to explain how to decompose models with respect to the parameters s and n.

Then, the relation
s,n∼ is defined by using such a decomposition. As R is functional, what matters

is the structure of R reduced to at most the s first steps from a given location as well as the total
number of edges, counting up to s. Below, we show that this abstraction is correct with respect
to the expressive power of MSL(∗,3), see e.g. Lemma 11.

Let M = 〈N,R,V〉 be a model, l ∈ N and s ≥ 0, we define Wl,s and Rl,s as follows.

13



• Wl,s
def
= {(i, li) | i ∈ [0, s], ∃ l0, . . . , li, l = l0Rl1 · · · Rli−1Rli}. We also write tl = max{i |

(i, li) ∈Wl,s} (so tl ≤ s).

• Rl,s
def
= {(li, li+1) | i ∈ [0, tl−1] and (i, li), (i+1, li+1) ∈Wl,s}. We also write s?l

def
= card(Rl,s)

and rem?
l = min(s− card(Rl,s), card(R \Rl,s)). So, s?l ≤ tl ≤ s and s?l + rem?

l ≤ s.

Let M, M′ be models, l, l′ ∈ N and s ≥ 0, n ≥ 1 such that Wl,s and Rl,s are defined as above

and W′l′,s and R′l′,s are related to M′, l′ and s. Let us define the relation
s,n∼ between pointed

models: M, l
s,n∼ M′, l′

def⇔ the conditions below are satisfied:

• We have tl = tl′(
def
= t). Say, Wl,s = {(0, l0), . . . , (t, lt)} and W′l′,s = {(0, l′0), . . . , (t, l′t)}.

• For all i ∈ [0, t], li in M and l′i in M′ agree on {p1, . . . , pn} ⊂ PROP.

• For all i, j ∈ [0, t− 1], we have li = lj iff l′i = l′j . Hence, s?l = s?l′ (
def
= s?).

• We have rem?
l = rem?

l′ (
def
= rem?).

l0

l1

l2

l3

l4

l5

l′0

l′1

l′2

l′3

l′4

l′5

M M′

with s = 5

s?l0 = 4

tl0 = 5

rem?
l0

= 1

with s = 5

s?l0 = tl0 = 4

rem?
l0

= 1

Figure 2: Decomposition.

The binary relation
s,n∼ can be easily shown to be an equivalence relation. So, Rl,s and R′l′,s′ can

be understood as isomorphic structures when M, l
s,n∼ M′, l′. In Figure 2, M, l0

4,n∼ M′, l′0 (assuming
that li and l′i agree on {p1, . . . , pn} for every i ∈ [0, 3], and, l2/l′2 and l′4 agree too). By contrast,

M, l0
5,n∼ M′, l′0 does not hold. Lemma 9 below is essential to justify that the indistinguishability

relation
s,n∼ behaves properly with disjoint unions of models. Its proof is tedious as numerous cases

are needed.

Lemma 9. Let s, s1, s2 ≥ 1 with s = s1 + s2, M, l
s,n∼ M′, l′ and M1,M2 be models such that

M = M1 ]M2. There are models M′1 and M′2 such that M′ = M′1 ]M′2, M1, l
s1,n∼ M′1, l

′ and

M2, l
s2,n∼ M′2, l

′.

Proof. Let M = 〈N,R,V〉, M1 = 〈N,R1,V〉, M2 = 〈N,R2,V〉 with Wl,s = {(0, l0), . . . , (t, lt)}
and W′l′,s = {(0, l′0), . . . , (t, l′t)} (l0 = l and l′0 = l′). Moreover, we use the values rem?

1,l, rem
?
2,l

based on the decomposition for M1 and M2 with s1 and s2, respectively. When R(l) = R′(l′) = ∅,
the proof is by an easy verification. Below, we assume that R(l) 6= ∅.

Let α ∈ [1, s] be such that R2(l0) = ∅, l0R1l1 · · · lα−1R1lα and for no α′ ∈ [α + 1, s], we
have l0R1l1 · · · lα′−1R1lα′ (so α is optimal in some sense). Note that necessarily α ≤ t. We also
define α∗ = card({(lj , lj+1) | j ∈ [0, α − 1]}), and therefore α∗ ≤ α. The symmetrical case
with R1(l0) = ∅ and l0R2l1 · · · lα−1R2lα, admits a similar treatment and it is omitted below. We
perform a case analysis depending whether Rl,s contains s elements.
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Case card(Rl,s) = s. So, α∗ = α. By definition, this means that s? = s. As M, l
s,n∼ M′, l′, we

have card(R′l′,s) = s and rem?
l = rem?

l′ = 0.

Subcase α ≥ s1. Hence, rem?
1,l = 0. The relation R′2 is defined as

{(l′j , l′j+1) | j ∈ [s− rem?
2,l, s− 1]}

and R′1 = R′ \ R′2. As rem?
2,l′ = rem?

2,l ≤ s2, R′2(l) = R2(l) = ∅ and card(R1,l,s1) =

card(R′1,l′,s1) = s1 (s1 + rem?
2,l′ ≤ s), we have M1, l

s1,n∼ M′1, l
′ and M2, l

s2,n∼ M′2, l
′.

Subcase α < s1. In the case rem?
2,l < s2, we have α + rem?

1,l = s1 as R has at least
s = s1 + s2 edges. As {(l′α, l′α+1), . . . , (l′s−1, l

′
s)} ⊆ R′ and (lα, lα+1) ∈ R2 (because

α < s1 and s1 < s), R′2 is defined as

{(l′j , l′j+1) | j ∈ [α, α+ rem?
2,l − 1]}

and R′1 = R′ \ R′2. We have rem?
2,l′ = rem?

2,l, R′2(l) = R2(l) = ∅, card(R1,l,s1) =
card(R′1,l′,s1) = α and rem?

1,l = rem?
1,l′ . As rem?

2,l < s2 and α + rem?
1,l = s1, we get

card(R′ \ (R′2 ∪ {(l′j , l′j+1) | j ∈ [1, α − 1]})) ≥ rem1,l. So, we have M1, l
s1,n∼ M′1, l

′

and M2, l
s2,n∼ M′2, l

′.

In the case rem?
2,l = s2, R′1 is defined as the set below:

{(l′0, l′1), . . . , (l′α−1, l
′
α)} ∪ {(l′α+1, l

′
α+2), . . . , (l′α+β , l

′
α+β+1)}

with β = rem?
1,l and R′2 = R′ \R′1.

As α + β ≤ s1 and s1 + s2 = s, card({(l′0, l′1), . . . , (l′s−1, l
′
s)} \ R′1) ≥ s2 and therefore

rem?
2,l′ = s2. So we have M1, l

s1,n∼ M′1, l
′ and M2, l

s2,n∼ M′2, l
′.

Case card(Rl,s) = s? < s. Let S = card(Rl,s)+rem?
l (also equal to card(R′l′,s)+rem?

l′ and S ≤ s)
and T = rem?

l . In order to represent the T edges in R \Rl,s (resp. in R′ \R′l′,s), we pick
the edges (n1,m1), · · · , (nT ,mT ) ∈ R\Rl,s and the edges (n′1,m

′
1), · · · , (n′T ,m′T ) ∈ R′ \R′l′,s.

Again, we proceed by considering several cases.

Subcase α∗ ≥ s1. So rem?
1,l = 0. First observe that s1 + rem?

2,l ≤ s? + rem?
l = S. Indeed,

if S = s, then as rem?
2,l ≤ s2 and s = s1 + s2, we get s1 + rem?

2,l ≤ s1 + s2 = s = S.
Otherwise, S < s and therefore card(R) = card(R′) = S. So rem?

2,l ≤ S − α∗ and as
s1 ≤ α∗, we get s1 +rem?

2,l ≤ S. Consequently, rem?
2,l ≤ (s?−s1)+rem?

l . The relation
R′2 is defined as a set with rem?

2,l edges among

{(l′s1 , l
′
s1+1), . . . , (l′s?−1, l

′
s?)} ∪ {(n′1,m′1), . . . , (n′T ,m

′
T )}.

As rem?
2,l ≤ (s? − s1) + rem?

l = (s? − s1) + T , R′2 can be properly populated and
R′1 = R′\R′2. It remains to check that the decomposition meets the required properties.
But we have rem?

2,l = rem?
2,l′ , s

?
1,l′ = s1 and rem?

1,l′ = 0.

Subcase α∗ < s1. Again, we distinguish several cases.

Subcase S < s. So, card(R) = card(R′) = S. If rem?
1,l + α∗ < s1, then R′1 is equal

to {(l′0, l′1), . . . , (l′α−1, l
′
α)} plus rem?

1,l disjoint edges from R′ (that exist as α∗ +
rem?

1,l+rem
?
2,l ≤ S and α∗ = card({(l′0, l′1), . . . , (l′α−1, l

′
α)})). We have R′2 = R′\R′1.

Otherwise (i.e. rem?
1,l + α∗ = s1), if rem?

2,l < s2, then R′2 is defined as a set with
rem?

2,l edges among

{(l′α, l′α+1), . . . , (l′s?−1, l
′
s?)} ∪ {(n′1,m′1), . . . , (n′T ,m

′
T )}

and R′1 = R′ \R′2. The case rem?
1,l +α∗ = s1 and rem?

2,l = s2 does not happen as
S < s and s = s1 + s2.
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Subcase S = s. If rem?
1,l+α

∗ < s1, then R′1 is equal to the set {(l′0, l′1), . . . , (l′α−1, l
′
α)}

plus rem?
1,l disjoint edges from R′ excluding (l′α, l

′
α+1) if it exists (that exist as

α∗ + rem?
1,l + rem?

2,l ≤ s1 + s2 = s = S). We have R′2 = R′ \R′1. Otherwise (i.e.
rem?

1,l + α∗ = s1), if rem?
2,l < s2, then R′2 is defined as a set with rem?

2,l edges
among

{(l′α, l′α+1), . . . , (l′s?−1, l
′
s?)} ∪ {(n′1,m′1), . . . , (n′T ,m

′
T )}

and R′1 = R′ \R′2. It remains to deal with the case rem?
1,l +α∗ = s1 and rem?

2,l =
s2. So, rem?

1,l + rem?
2,l = s − α∗ and (s? − α∗) + T = s − α∗ and therefore

rem?
1,l + rem?

2,l = (s? − α∗) + T (as s = s? + T ). It is therefore possible to define
a partition {R′r1 ,R′2} of the set below

{(l′α, l′α+1), . . . , (l′s?−1, l
′
s?)} ∪ {(n′1,m′1), . . . , (n′T ,m

′
T )}

so that card(R′r1 ) = rem?
1,l, card(R′2) = rem?

2,l and (l′α, l
′
α+1) ∈ R′2 if s? > α?. We

pose R′1 = R′ \R′2. It is easy to check that

R′r1 ∪ {(l′0, l′1), . . . , (l′α−1, l
′
α)} ⊆ R′1.

So, M1, l
s1,n∼ M′1, l

′ and M2, l
s2,n∼ M′2, l

′.

Given a formula φ in MSL(∗,3), let us define its memory size (written msize(φ)):

• msize(p)
def
= msize(emp)

def
= 1,

• msize(¬φ)
def
= msize(φ); msize(φ ∧ ψ)

def
= max(msize(φ),msize(ψ)),

• msize(3φ)
def
= 1 + msize(φ),

• msize(φ ∗ ψ)
def
= msize(φ) + msize(ψ).

Note that msize(φ) is greater than the modal degree of φ, and approximatively, msize(φ)
provides an upper bound on the number of edges that need to be considered in a model for φ (so
it will play a role similar to the one for the value s). For technical reasons, we have required that
msize(p) = 1, so that msize(φ) ≥ 1 for any φ.

Let us first present a property of
s,n∼ that is used in the proof of forthcoming Lemma 11.

Lemma 10. Let M,M′ be models, l, l′ ∈ N and s, n ≥ 1 such that M, l
s,n∼ M′, l′. If there are l†

and l′† such that (l, l†) ∈ R and (l′, l′†) ∈ R′, then M, l†
s−1,n∼ M′, l′†.

Proof. Suppose M, l
s,n∼ M′, l′ and there are locations l† and l′† such that (l, l†) ∈ R and (l′, l′†) ∈ R′.

In order to show M, l†
s−1,n∼ M′, l′†, we need to verify four conditions. First, we need to check that

tl† = tl′† . By hypothesis, we have Wl,s = {(0, l0), . . . , (t, lt)} and W′l′,s = {(0, l′0), . . . , (t, l′t)}. Then

l† = l1 and l′† = l′1 (by functionality of R and R′), so Wl†,s−1 = {(0, l1), . . . , (t − 1, lt)} and
W′l′†,s−1 = {(0, l′1), . . . , (t − 1, l′t)}). Then tl† = tl′† . The second and third conditions also hold

since Wl†,s−1 and W′l′†,s−1 are restrictions of Wl,s and Wl,s, respectively. It only remains to check

rem?
l†

= rem?
l′†

. We have:

rem?
l†

= min(s− 1− card(Rl†,s−1), card(R \Rl†,s−1)) (Def. of rem?
l†

)

= min(s− 1− card(Rl,s) + 1, card(R \Rl,s) + 1) (Def. of Rl†,s−1)
= min(s− 1− card(Rl,s), card(R \Rl,s)) + 1 (Distributivity)

Following the same reasoning we can also conclude

rem?
l′†

= min(s− 1− card(R′l′,s), card(R′ \R′l′,s)) + 1,
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and since card(Rl,s) = card(R′l′,s) we get

rem?
l′†

= min(s− 1− card(Rl,s), card(R′ \R′l′,s)) + 1.

Remember also that rem?
l = rem?

l′ = min(s− card(Rl,s), card(R \Rl,s)). Then we have two cases
to consider:

Case rem?
l = rem?

l′ = s− card(Rl,s) ≤ card(R \Rl,s). Then we have rem?
l′ = s − card(R′l′,s) ≤

card(R′ \R′l′,s). This implies that rem?
l†

= s− 1− card(Rl,s) + 1 = rem?
l′†

.

Case rem?
l = rem?

l′ = card(R \Rl,s) < s− card(Rl,s). It can be noticed that rem?
l′ = card(R′ \

R′l′,s) = card(R \Rl,s). Since card(R \Rl,s) < s− card(Rl,s), then card(R \Rl,s) ≤ s− 1−
card(Rl,s), hence rem?

l†
= card(R\Rl,s)+1. Also we have card(R′\R′l′,s) ≤ s−1−card(Rl,s),

so rem?
l′†

= card(R \Rl,s) + 1 = rem?
l†

.

So, M, l†
s−1,n∼ M′, l′†.

This leads us to the following result.

Lemma 11. Let s, n ≥ 1. For all formulae φ in MSL(∗,3) with msize(φ) ≤ s and built over

p1, . . . , pn, we have M, l
s,n∼ M′, l′ implies M, l |= φ iff M′, l′ |= φ.

Proof. The proof is by double induction, on s and then on the structure of φ. Let us start by the

base case s = 1. So φ is a Boolean formula built over emp, p1, . . . , pn. Suppose M, l
s,n∼ M′, l′.

• Suppose that M, l |= pi. As M, l
s,n∼ M′, l′, we get (0, l) ∈ Wl,s, (0, l′) ∈ W′l′,s and, l and l′

agree on the propositional variables p1, . . . , pn. Consequently, M′, l′ |= pi.

• Suppose that M, l |= emp. So Rl,s = ∅ and card(R \ Rl,s) = 0 (i.e., s?l = tl = rem?
l = 0).

Hence, R′l′,s = ∅ and card(R′ \R′l′,s) = 0 too as M, l
s,n∼ M′, l′, which implies that M′, l′ |=

emp.

• The cases with the Boolean connectives are by an easy verification.

In the induction step, we distinguish different cases depending on the outermost connectives.
The induction hypothesis can be stated as follows: for all s ∈ [1, k], for all formulae φ in MSL(∗,3)

with msize(φ) ≤ s and built over p1, . . . , pn, we have M, l
s,n∼ M′, l′ implies, M, l |= φ iff M′, l′ |= φ.

Let s = k + 1 and let us perform an induction on the structure of φ. We omit the base cases
(similar to what is done above) as well as the easy cases with Boolean connectives.

• Suppose that M, l |= 3ψ. So, there is l† such that (l, l†) ∈ R and M, l† |= ψ. So tl ≥ 1, tl′ ≥ 1

and there is l′† such that (l′, l′†) ∈ R′. Moreover, by Lemma 10, we have M, l†
s−1,n∼ M′, l′† (by

contrast, M, l†
s,n∼ M′, l′† does not necessarily hold). As msize(3ψ) ≥ 2, we have s − 1 ≥ 1.

By the induction hypothesis, we get M′, l′† |= ψ (as msize(ψ) = msize(3ψ)− 1 ≤ s− 1) and
therefore M′, l′ |= 3ψ.

• Suppose that M, l |= ψ1 ∗ ψ2. There are M1 and M2 such that M = M1 ]M2, M1, l |= ψ1

and M2, l |= ψ2. By definition of msize(·), there are s1, s2 ≥ 1 such that s = s1 + s2,
msize(ψ1) ≤ s1 and msize(ψ2) ≤ s2. By Lemma 9, there are models M′1 and M′2 such that

M′ = M′1 ]M′2, M1, l
s1,n∼ M′1, l

′ and M2, l
s2,n∼ M′2, l

′. By the induction hypothesis, we get
M′1, l

′ |= ψ1 and M′2, l
′ |= ψ2, whence M′, l′ |= ψ1 ∗ ψ2.

In Figure 3, we present two models M1 and M2, such that M1, 0
3,1∼ M2, 0 and therefore

these two pointed models agree on all formulae of msize less or equal to three by Lemma 11 (we
have omitted the presentation of N \ {0, 1, 2} whose elements do not participate to any edge).

However, one can check that not M1, 0
4,1∼ M2, 0 and the distinction can be made with the formula

ψ = 3(¬emp ∗333p1) and msize(ψ) = 6.
The following quantitative result is crucial to get the NP upper bound.
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Figure 3: Two MSL(∗,3) models.

Lemma 12. Let φ be a formula in MSL(∗,3). φ is satisfiable iff φ is satisfiable in a finite and
functional model with card(R) ≤ msize(φ).

Proof. The proof is divided in two parts.

1. First, we show that φ is satisfiable iff φ is MSLf (∗,3)-satisfiable, in a way similar to the
proof of Lemma 3.

So, suppose M, l |= φ with M = 〈N,R,V〉. Let us build a finite and functional model

M′ = 〈W′,R′,V′〉 such that W′ ⊆ N (to be defined below), R′
def
= R and V′ is the restriction

of V to W′. The set W′ is defined as {n, n′ | (n, n′) ∈ R} ∪ {l}.
Here is the proof by induction. Actually, we show that given any finite N ⊃ W′′ ⊇ W′,
we have M′′ = 〈W′′,R′,V′′〉, l′ |= φ iff M, l′ |= φ where V′′ is the restriction of V to
W′′ and l′ ∈W′′. This slight generalisation is considered in order to handle the separating
conjunction ∗. The base cases are by an easy verification as well as the cases in the induction
step for the Boolean connectives.

• Suppose that M, l′ |= 3ψ. So, there is l′′ ∈ R(l′) such that M, l′′ |= ψ. So, l′′ ∈
W′ ⊆W′′ and by the induction hypothesis M′′, l′′ |= ψ. As R′ = R, we conclude that
M′′, l′ |= 3ψ.

Conversely, suppose that M′′, l′ |= 3ψ. So, there is l′′ ∈ R′(l′) such that M′′, l′′ |= ψ.
By the induction hypothesis, M, l′′ |= ψ. As R′ = R, we conclude that M, l′ |= 3ψ.

• Suppose that M, l′ |= ψ1 ∗ ψ2. There exists a partition {R1,R2} of R such that
〈N,R1,V〉, l′ |= ψ1 and 〈N,R2,V〉, l′ |= ψ2. By the induction hypothesis, we have
〈W′′,R1,V

′′〉, l′ |= ψ1 and 〈W′′,R2,V
′′〉, l′ |= ψ2 and therefore M′′, l′ |= ψ1 ∗ ψ2 (here

it is essential to use the generalisation as {n, n′ | (n, n′) ∈ R1} ∪ {l′} ⊆ W′′ and
{n, n′ | (n, n′) ∈ R2} ∪ {l′} ⊆W′′).

Conversely, suppose that M′′, l′ |= ψ1 ∗ ψ2. There exists a partition {R1,R2} of R =
R′ such that 〈W′′,R1,V

′′〉, l′ |= ψ1 and 〈W′′,R2,V
′′〉, l′ |= ψ2. By the induction

hypothesis, 〈N,R1,V〉, l′ |= ψ1 and 〈N,R2,V〉, l′ |= ψ2, whence M, l′ |= ψ1 ∗ ψ2.

Now, suppose that M, l |= φ for some finite and functional model M = 〈W,R,V〉 with
W ⊂ N. Let us build the model M′ = 〈N,R,V′〉 such that V is the restriction of V′ to W.
For all l′ ∈ N \W and i ∈ [1, n], we set l′ ∈ V(pi) (arbitrary value). By structural induction,
one can show that for all l′ ∈W, we have M′, l′ |= φ iff M, l′ |= φ (similar to the second part
of the proof of Lemma 3).

2. Now, let us conclude that φ is satisfiable iff φ is satisfiable in a finite and functional
model with card(R) ≤ msize(φ). Here, we use Lemma 11 in a simple way. Suppose that
φ is satisfiable, i.e. there is a model M = 〈N,R,V〉 and l such that M, l |= φ. Let
s = msize(φ). Let us consider Wl,s, Rl,s, rem

?
l = T , etc. as defined earlier. So, there

are edges (n1,m1), · · · , (nT ,mT ) ∈ R \ Rl,s. Let R′ = Rl,s ] {(n1,m1), · · · , (nT ,mT )}. We

have M, l
s,n∼ M′, l with M′ = 〈N,R′,V〉 and card(R′) ≤ msize(φ). By Lemma 11, we have

M′, l |= φ. By the first part of the proof, we also get M′′, l |= φ with M′′ = 〈W′′,R′,V′〉
where V′′ is the restriction of V to W′′ and W′′ = {l} ∪ {l1, . . . , ls? , n1,m1, . . . , nT ,mT }.
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4.2 Model-checking for MSL(∗,3) in P

It remains to show that the model-checking problem for MSLf (∗,3) is in P. The main difficulty
to obtain a polynomial-time algorithm rests on the fact that evaluating an ∗-formula may require
to consider an exponential number of pairs of disjoint submodels. Fortunately, only a polynomial
amount of disjoint unions are shown relevant. At the beginning of this section, we defined a
decomposition of any MSL model based on the parameter s ≥ 0. Such a decomposition was useful
to show Lemma 12. A similar decomposition can be done with finite and functional models. More
precisely, let M = 〈W,R,V〉 be a finite and functional model and l ∈W. One can easily define the
set Wl,s, the relation Rl,s and the values tl, s

?
l and rem?

l . Consequently, an equivalence relation
s,n∼ can be also defined on finite and functional pointed models leading to a natural variant of
Lemma 11 involving finite and functional models instead of MSL models.

In order to check whether M, l |= φ holds, we start by building a submodel M′ = 〈W,R′,V〉 ⊆
M with card(R′) ≤ msize(φ) and check whether M′, l |= φ holds. The submodel M′ can be built in
polynomial time in the size of M and in msize(φ). In forthcoming Algorithm 1, instead of working
with finite and functional models, we shall operate with slightly more abstract structures.

An abstract frame up to s is a pair F = ((l0, . . . , lt), r) where r ≥ 0 (standing for the number of
remaining edges up to s), (l0, . . . , lt) ∈ N+ (standing for a sequence of locations linked by edges)
and the conditions below hold:

(truncation) t∗ + r ≤ s and t ≤ s with t∗ = card({(li, li+1) | i ∈ [0, t− 1]}).

(maximality) t < s implies there is no i < t such that li = lt.

(functionality) for all i < j < t, we have li = lj implies t = s and li+1 = lj+1.

Given a finite and functional model M = 〈W,R,V〉, l ∈W, and s ≥ 0, we write abst(M, l, s)
to denote the abstraction ((l0, . . . , lt), r) with

• {(0, l0), . . . , (t, lt)} = Wl,s and,

• r = rem?
l .

An abstract frame is not explicitly equipped with a propositional valuation but in forthcoming
Algorithm 1, we manipulate such structures as the associated propositional valuation will be
systematically the one induced by the valuation of the input model. Let shrink(M, l, s) be the

finite and functional model M′ = 〈W,R′,V〉 such that R′
def
= {(li, li+1) | i ∈ [0, t − 1]} ∪

{(n1, n
′
1), . . . , (nr, n

′
r)}, where {(n1, n

′
1), . . . , (nr, n

′
r)} is a set of r edges in R\Rl,s and the locations

n1, . . . , nr have minimal values (minimality is used here to have a deterministic way to shrink).
Lemma 13 below justifies the correctness of the abstraction.

Lemma 13. Let s ≥ 0, M = 〈W,R,V〉 be finite and functional and l ∈ W with M′ =

shrink(M, l, s). Then M, l
s,n∼ M′, l and abst(M, l, s) = abst(M′, l, s).

The proof is by an easy verification. Let us define a notion of disjoint union between abstract
frames to mimic the disjoint union of models. Let s = s1 + s2, s, s1, s2 ≥ 1, F = ((l0, . . . , lt), r)
be an abstract frame up to s, Fi = ((li0, . . . , l

i
ti), r

i) be an abstract frame up to si, with i ∈ {1, 2}.
We write F = F1 ] F2

def⇔ (i)–(v) below hold (i ∈ {1, 2}):

(i) max(t1, t2) ≤ t, t1 × t2 = 0 and, if t > 0 then t1 + t2 > 0.

(ii) (li0, . . . , l
i
ti) = (l0, . . . , lti).

(iii) 0 < ti < min(si, t) implies r3−i > 0.

(iv) 0 < ti implies r1 + r2 ≤ r + t∗ − t∗i .

(v) 0 < ti and r1 + r2 < r + t∗ − t∗i imply ri = si − t∗i or r3−i = s3−i.
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Though (i)–(v) sound reasonable conditions at first glance, the best way to understand what
is really needed, is by proving forthcoming Lemma 14 and Lemma 15. Note also that in (v),
r3−i = s3−i is equivalent to r3−i = s3−i − t∗3−i with t∗3−i = 0 (see (i)).

Let F1 = ((l10, . . . , l
1
t1), r1) and F2 = ((l20, . . . , l

2
t2), r2) be two abstract frames up to s1 and s2

respectively, with s1 ≤ s2, we write F1 ⊆ F2 whenever (l10, . . . , l
1
t1) is a factor of (l20, . . . , l

2
t2) and,

r1 + t∗1 ≤ r2 + t∗2 (a factor is a contiguous sequence of locations).
Forthcoming Algorithm 1 shall operate with abstract frames and its correctness is partly based

on forthcoming Lemma 14 and Lemma 15. For instance, Lemma 14 can be understood as a
correctness result: disjoint unions of models lead to the satisfaction of the conditions (i)-(v) at the
level of abstract frames.

Lemma 14. Let s = s1 +s2 with s, s1, s2 ≥ 1. Let M, M1 and M2 be finite and functional models
such that M = M1 ]M2. For all l ∈W, we have abst(M, l, s) = abst(M1, l, s1) ] abst(M2, l, s2).

Proof. Let s = s1 + s2 with s, s1, s2 ≥ 1. Let M = 〈W,R,V〉, M1 = 〈W,R1,V〉 and M2 =
〈W,R2,V〉 be finite and functional models such that M = M1 ]M2, and let l ∈ W. Let F =
((l0, . . . , lt), r) be equal to abst(M, l, s), and Fi = ((li0, . . . , l

i
ti), r

i) be equal to abst(Mi, l, si) (i =
1, 2). In order to show that abst(M, l, s) = abst(M1, l, s1) ] abst(M2, l, s2), we need to prove that
the conditions (i)–(v) hold. When t = 0, t1 = t2 = 0 and therefore the conditions (i)-(v) trivially
hold. In the sequel, we assume that t > 0. Moreover, for checking the satisfaction of the conditions
(ii)-(v), we develop the case i = 1 only (as the case i = 2 can be deduced very easily).

(i) Since s1, s2 ≤ s, we have t1, t2 ≤ t. Therefore max(t1, t2) ≤ t. For the second property, since
M = M1 ]M2, then for all (n, n′) ∈ R, we have (n, n′) ∈ R1 if and only if (n, n′) /∈ R2. In
particular, (l0, l1) ∈ R1 if and only if (l0, l1) /∈ R2. So, either t1 = 0 or t2 = 0, then t1×t2 = 0.
Finally, suppose t > 0, then (l0, l1) ∈ R. Again, either (l0, l1) ∈ R1 or (l0, l1) ∈ R2 (but
not both). So, since s1, s2 ≥ 1, then (l0, l1) belongs to abst(M1, l, s1) or (l0, l1) belongs to
abst(M2, l, s2). Then we have t1 > 0 or t2 > 0, which implies t1 + t2 > 0 as wanted.

(ii) Direct, by definition of abst(M, l, s) and R = R1 ]R2.

(iii) Suppose that 0 < t1 < min(s1, t). As R = R1 ] R2, and l0 6= lt1 , (since t1 < t and t1 is
maximal), we can conclude that (lt1 , lt1+1) ∈ R2. Hence, R2(l0) = ∅ and R2 6= ∅, which
entails r2 > 0.

(iv) Suppose that 0 < t1. Let us establish that r1 + r2 ≤ r + t∗ − t∗1. Obviously, card(R) =
card(R1) + card(R2). If r + t∗ < s, then card(R) = r + t∗. As r1 ≤ card(R1) − t∗1 and
r2 ≤ card(R2), we get r1 + r2 ≤ card(R1) + card(R2) − t∗1 = (r + t∗) − t∗1. Otherwise
(r + t∗ = s), by definition of abstract frames, we have t∗1 + r1 ≤ s1 and t∗2 + r2 ≤ s2 with
t∗2 = 0. So, r1 + r2 + t∗1 ≤ s1 + s2 = s = r + t∗. Consequently, r1 + r2 ≤ (r + t∗)− t∗1.

(v) Suppose that 0 < t1 and r1 + r2 < r + t∗ − t∗1. Let us show that either r1 = s1 − t∗1 or
r2 = s2. Let R′ ⊆ R be the relation defined below:

R′ = ({(l0, l1), . . . , (lt−1, lt)} \ {(l0, l1), . . . , (lt1−1, lt1)}) ∪ {(n1, n
′
1), . . . , (nr, n

′
r)},

where the set {(n1, n
′
1), . . . , (nr, n

′
r)} witnesses the value r in the abstract frame F . We also

have card(R′) = r+ t∗ − t∗1. Every memory cell in R′ may contribute to the garbage part of
either M1 or M2. As r1 + r2 < r + t∗ − t∗1, at least one memory cell in R′ does not need to
be counted in r1 or in r2. Equivalently, for some i ∈ {1, 2}, ri = si − t∗i , i.e. the number of
memory cells in the garbage part of Mi is maximal with respect to the bound si − t∗i . As
t∗2 = 0, we have r1 = s1 − t∗1 or r2 = s2.

By contrast, Lemma 15 below can be understood as a completeness result: the satisfaction of
the conditions (i)-(v) can always be mimicked at the level of models.

Lemma 15. Let s = s1+s2 with s, s1, s2 ≥ 1. Let M be finite and functional, Fi = ((li0, . . . , l
i
ti), r

i)
be an abstract frame up to si (i ∈ {1, 2}) such that abst(M, l, s) = F1 ] F2. There are submodels
M1 and M2 such that M = M1 ]M2 and Fi = abst(Mi, l, si) (i ∈ {1, 2}).
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Proof. Let M = 〈W,R,V〉 be a finite and functional model, Fi = ((li0, . . . , l
i
ti), r

i) be an abstract
frame up to si (i ∈ {1, 2}) such that abst(M, l, s) = F1 ] F2 = ((l0, . . . , lt), r). We will construct
M1 = 〈W,R1,V〉 and M2 = 〈W,R2,V〉 such that M = M1 ]M2, F1 = abst(M1, l, s1) and
F2 = abst(M2, l, s2).

When t = 0, we distinguish several cases. If r < s, then r1 + r2 = r. M1 is made of r1 edges
from M and M2 is made of the other r2 edges from M. If r = s and r1 = s1, then M2 is made of
r2 edges from M and M1 is defined with the remaining edges from M. If If r = s and r1 < s1,
then M1 is made of r1 edges from M and M2 is defined with the remaining edges from M.

Below, let us assume that t > 0 and t1 > 0. Let R′ ⊆ R be the relation defined below:

R′ = ({(lt1 , lt1+1), . . . , (lt−1, lt)} \ {(l0, l1), . . . , (lt1−1, lt1)}) ∪ {(n1, n
′
1), . . . , (nr, n

′
r)},

where the set {(n1, n
′
1), . . . , (nr, n

′
r)} witnesses the value r in the abstract frame abst(M, l, s). We

also have card(R′) = r + t∗ − t∗1 (similarly to the proof of Lemma 14).

Case 1: t∗1 = s1. So r1 = 0 as t∗1 + r1 ≤ s1. By satisfaction of (iv), r1 + r2 ≤ r + t∗ − t∗1 and
therefore r2 ≤ r + t∗ − t∗1. Let R2 be defined as a subset of r2 elements of R′ such that
if 0 < t1 < min(s1, t), then we require that (lt1 , lt1+1) belongs to R2 (as r2 ≥ 1 by (iii)).

We set R1
def
= R \ R2. It is easy to check that M = M1 ]M2, F1 = abst(M1, l, s1) and

F2 = abst(M2, l, s2). Note that we need to use the satisfaction of (ii), as in the rest of the
proof.

Case 2: t∗1 < s1. By (iv), we have r1 + r2 ≤ r + t∗ − t∗1, which means that in the construction
below, we will always have enough pairs to pick from the relation R′ ⊆ R. Again, let us
distinguish several cases.

Case 2.1: r1 = s1 − t∗1. Let R2 be defined as a subset of r2 elements of R′ such that if
0 < t1 < min(s1, t), then we require that (lt1 , lt1+1) belongs to R2 (as r2 ≥ 1 by (iii)).

We set R1
def
= R \R2. It is easy to check that M = M1 ]M2, F1 = abst(M1, l, s1) and

F2 = abst(M2, l, s2).

Case 2.2: r2 = s2 and r1 < s1 − t∗1. Let R1 be defined as the set {(l0, l1), . . . , (lt1−1, lt1)}
augmented with a subset of r1 elements from R′. We set R2

def
= R \R1. It is easy to

check that M = M1 ]M2, F1 = abst(M1, l, s1) and F2 = abst(M2, l, s2).

Case 2.3: r2 < s2 and r1 < s1 − t∗1. By satisfaction of (v), r1 + r2 = r + t∗ − t∗1. So,
let {X1, X2} be a partition of R′ such that card(X1) = r1, card(X2) = r2 and if
0 < t1 < min(s1, t), then we require that (lt1 , lt1+1) ∈ X2 (again, this is fine by
satisfaction of (iii)). Note also that r2 < s2 and r1 < s1− t∗1 imply r1 +r2 < s2 +s1− t∗1
and therefore r + t∗ < s1 + s2 = s. Hence card(R) = r + t∗. Let R2

def
= X2 and

R1
def
= X1 ∪ {(l0, l1), . . . , (lt1−1, lt1)}. It is easy to check that M = M1 ]M2, F1 =

abst(M1, l, s1) and F2 = abst(M2, l, s2).

The fact that the number of non-equivalent decompositions is polynomial and not exponential
in the size of F is essential to obtain a model-checking algorithm running in polynomial time.

Lemma 16. Let s = s1 + s2 with s, s1, s2 ≥ 1, F = ((l0, . . . , lt), r) be an abstract frame up to s.
We have card({(F1,F2) | F = F1 ] F2, Fi up to si}) ≤ 2(s+ 1)(s1 + 1)(s2 + 1).

Proof. Let F = ((l0, . . . , lt), r) be an abstract frame up to s, F1=((l10, . . . , l
1
t1), r1) be an abstract

frame up to s1 and F2 = ((l20, . . . , l
2
t2), r2) be an abstract frame up to s2 with F = F1 ] F2. It is

obvious that (r1, r2) ∈ [0, s1]× [0, s2] and ((l10, . . . , l
1
t1), (l20, . . . , l

2
t2)) belongs to the set

X = {((l0, . . . , lt′), (l0)) | t′ ≤ t ≤ s} ∪ {((l0), (l0, . . . , lt′)) | t′ ≤ t ≤ s},

where card(X) ≤ 2(s + 1). So, clearly the set of pairs of abstract frames in the statement has
cardinal bounded by 2(s+ 1)(s1 + 1)(s2 + 1).
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Algorithm 1 below uses principles of dynamic programming as well as the map shrink(F , s) de-

fined as follows (abstract version of the shrink construction on models): shrink(((l0, . . . , lt), r), s)
def
=

((l0, . . . , lt′), r
′) with

• t′ = min(s, t),

• t′∗ = card({l1, . . . , lt′}) and,

• r′ = min(s− t′∗, r + (card({l1, . . . , lt})− t′∗)).

Note that the value (card({l1, . . . , lt}) − t′∗) corresponds to the number of edges removed from
the first part of F . It is easy to show that shrink(((l0, . . . , lt), r), s) ⊆ ((l0, . . . , lt), r), and
shrink(((l0, . . . , lt), r), s) is an abstract frame up to s (based on the fact that ((l0, . . . , lt), r) is
already an abstract frame).

Algorithm 1 only computes values for T (shrink(F ,msize(ψk)), k) as it would be time-consuming
(and useless) to compute all the values T (F , k) (see how ψk is a subformula of the input formula).
This is enforced by the values in the for loops and by line 2. The map shrink(·, ·) is also further
needed for conjunctions as the measure msize(·) involves a maximum for conjunctions.

Algorithm 1 Model Checking MSLf (∗,3)

In: A finite and functional model M = 〈W,R,V〉, a location l ∈W, an MSL(∗,3) formula φ
Out: Return 1 iff M, l |= φ.
1: function MC(M, l, φ)
2: ((l0, . . . , lL), R) := abst(M, l,msize(φ)) . card({l1, . . . , lL}) +R ≤ msize(φ)
3: ψ1, . . . , ψM subformulae of φ in increasing size . ψM = φ
4: for k ← 1 to M do
5: for j ← L downto 0 do
6: for len← 0 to max{len′ ∈ [0, L− j] | card({lj , . . . , lj+len′}) ≤ msize(ψk)} do
7: for r ← 0 to max{r′ ∈ [0, R] | card({lj , . . . , lj+len}) + r′ ≤ msize(ψk)} do
8: F := ((lj , . . . , lj+len), r) . F = shrink(F ,msize(ψk))
9: case ψk of

10: emp: T (F , k) := 1 if (len = 0 and r = 0), otherwise 0.
11: p: T (F , k) := 1 if lj ∈ V(p), otherwise 0.
12: ¬ψk′ : T (F , k) := 1− T (F , k′) . k′ < k
13: ψk1

∧ ψk2
: . k1, k2 < k

14: T (F , k) := min(T (shrink(F ,msize(ψk1
)), k1), T (shrink(F ,msize(ψk2

)), k2))
15: 3ψk′ : if (len > 0), F ′ := shrink(((lj+1, . . . , lj+len), r),msize(ψk′ )) . k′ < k
16: T (F , k) := 1 if (len > 0) and T (F ′, k′) = 1, otherwise 0.
17: ψk1

∗ ψk2
: . k1, k2 < k

18: s1 := msize(ψk1
); s2 := msize(ψk2

) . msize(ψk) = s1 + s2
19: T (F , k) := max{min(T (F1, k1), T (F2, k2)) | F = F1 ] F2, Fi up to si}
20: end case
21: return T (((l0, . . . , lL), R),M)

Due to the organisation of the for loops, each time the algorithm computes T (F , k), it re-
quires values of the form T (F ′, k′), always with F ′ ⊆ F and k′ < k, so the algorithm is
properly defined. Moreover, whenever a value T (F , k) is computed, the algorithm enforces that
F = shrink(F ,msize(ψk)). The algorithm runs in polynomial time thanks to Lemma 16. The fol-
lowing lemma establishes that the algorithm is correct and explains what is the rationale behind
computing the values T (F , k).

Lemma 17. For all k ∈ [1,M ], for all abstract frames F = ((l, . . .), R′) up to msize(ψk) with
F ⊆ ((l0, . . . , lL), R), when the model-checking algorithm ends, T (F , k) = 1 iff for all finite and
functional submodels M′ ⊆M such that abst(M′, l,msize(ψk)) = F , we have M′, l |= ψk.

Proof. The proof is by structural induction on the formula ψk. The base cases for emp and for
the propositional variables are by an easy verification. Below, we present the different cases in
the induction step. Before doing so, note the equivalence between the statements below (ψk′ is a
strict subformula of ψk).
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– T (F , k′) = 0 (i.e. T (F , k′) 6= 1).

– There is M′′ such that M′′ ⊆ M, abst(M′′, l,msize(ψk′)) = F , and M′′, l 6|= ψk′ (by the
induction hypothesis).

– For all M′ ⊆M such that abst(M′, l,msize(ψk′)) = F , we have M′, l 6|= ψk′ (by the variant
of Lemma 11 on finite models, as abst(M′, l,msize(ψk′)) = abst(M′′, l,msize(ψk′)) implies

M′′, l
msize(ψk′ ),n∼ M′, l).

Consequently, as the induction hypothesis with ψk′ strict subformula of ψk, one can use also the
following equivalence (]) T (F , k′) = 0 iff for all finite and functional submodels M′ ⊆M such that
abst(M′, l,msize(ψk′)) = F , we have M′, l 6|= ψk′ .

Case ψk = ¬ψk′ . Suppose that T (F , k) = 1 with F = ((lj , . . . , lj+len), r). By line 12, T (F , k′) =
0. As msize(ψk) = msize(ψk′), we have F = shrink(F ,msize(ψk′)). Let M′ ⊆ M and
l ∈ W be such that abst(M′, l,msize(ψk)) = F . By the induction hypothesis with (]),
we get M′, l 6|= ψk′ and therefore M′, l |= ψk. Conversely, suppose that for all finite and
functional submodels M′ ⊆ M and l ∈ W such that abst(M′, l,msize(ψk)) = F , we have
M′, l |= ψk. Necessarily, l = lj and by definition of |=, we have M′, l 6|= ψk′ . Notice that
abst(M′, l,msize(ψk′)) = F , so by the induction hypothesis with (]), T (F , k′) = 0. Therefore
T (F , k) = 1 by line 12.

Case ψk = ψk1 ∧ ψk2 . We recall that msize(ψk) = max(msize(ψk1),msize(ψk2)). Without loss of
generality, we assume that msize(ψk) = msize(ψk1). First suppose that T (F , k) = 1 with
F = ((lj , . . . , lj+len), r). So, by line 13, T (F , k1) = 1 and T (shrink(F ,msize(ψk2)), k2) = 1.
Let M′ ⊆M and l ∈W be such that abst(M′, l,msize(ψk)) = F (necessarily l = lj). By the
induction hypothesis, we get M′, l |= ψk1 .

In order to show that M′, l |= ψk2 , first we need to state a technical property.

(†) Let M? = 〈W,R,V〉 be a model, l ∈ W, n ≥ 1 and 1 ≤ s′ ≤ s. There is a submodel
M′ ⊆M? such that

• shrink(abst(M?, l, s), s′) = abst(M′, l, s′).

• M?, l
s′,n∼ M′, l.

Roughly speaking, shrinking an abstract frame obtained from a model M? can be equally
performed by abstracting a submodel of M?. So, by (†), there is M′′ ⊆ M′ such that

shrink(abst(M′, l,msize(ψk)),msize(ψk2)) = abst(M′′, l,msize(ψk2)) and M′, l
msize(ψk2

),n
∼

M′′, l (all the propositional variables in φ are among p1, . . . , pn). By the induction hy-
pothesis, M′′, l |= ψk2 . By the variant of Lemma 11 on finite models, we get M′, l |= ψk2 .

For the other direction, suppose that for all M′ ⊆ M such that F = ((lj , . . . , lj+len), r) =
abst(M′, lj ,msize(ψk)), we have M′, lj |= ψk. So obviously, M′, lj |= ψk1 and M′, lj |= ψk2 .
By the induction hypothesis, we have

T (F , k1) = T (shrink(F ,msize(ψk1)), k1) = 1.

It remains to show that T (shrink(F ,msize(ψk2)), k2) = 1 with msize(ψk2) ≤ msize(ψk1) =
msize(ψk). By assumption, we have that for all M′ ⊆M such that F=abst(M′, lj ,msize(ψk)),
we have shrink(F ,msize(ψk2)) = abst(M′, lj ,msize(ψk2)).

This implies that for all M′ ⊆M such that shrink(F ,msize(ψk2)) = abst(M′, lj ,msize(ψk2)),
we have M′, l |= ψk2 . By the induction hypothesis, we get T (shrink(F ,msize(ψk2)), k2) = 1.
By line 14, we get T (F , k) = 1.

Case ψk = 3ψk′ . First suppose that T (F , k) = 1 with F = ((lj , . . . , lj+len), r). We recall that
msize(3ψk′) = 1 + msize(ψk′). So we have len > 0 and T (((lj+1, . . . , lj+len), r), k′) = 1.
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Note that shrink(((lj+1, . . . , lj+len), r),msize(ψk′)) = ((lj+1, . . . , lj+len), r), since we have
shrink(((lj , . . . , lj+len), r),msize(ψk′) + 1) = ((lj , . . . , lj+len), r) by hypothesis. Let M′ ⊆M
and l ∈ W be such that abst(M′, l,msize(ψk)) = F . Observe that necessarily l = lj ,
and as a consequence, abst(M′, lj+1,msize(ψk′)) = ((lj+1, . . . , lj+len), r). By the induc-
tion hypothesis, M′, lj+1 |= ψk′ . Then, since (lj , lj+1) ∈ R′, we get M′, lj |= ψk. Con-
versely, suppose that for all finite and functional submodels M′ ⊆ M and l ∈ W such that
abst(M′, l,msize(ψk)) = F , we have M′, l |= ψk. Necessarily, l = lj and by definition of
|=, we have M′, lj+1 |= ψk′ . So, for all finite and functional submodels M′′ ⊆ M such that
abst(M′′, lj+1,msize(ψk′)) = ((lj+1, . . . , lj+len), r), we have M′′, lj+1 |= ψk′ . Here, we use

the fact that two
msize(ψk′ ),n∼ -equivalent submodels with the same frame abstraction satisfy

the same formulae ψ with msize(ψ) ≤ msize(ψk′) by the variant of Lemma 11 on finite
models. Consequently, T (((lj+1, . . . , lj+len), r), k′) = 1 and therefore T (F , k) = 1.

Case ψk = ψk1 ∗ ψk2 . Suppose that T (F , k) = 1 with F = ((lj , . . . , lj+len), r). By line 19, there
exist F1 and F2 abstract frames up to s1 and s2 respectively, such that F = F1 ] F2

and T (F1, k1) = T (F2, k2) = 1. It is easy to check that F1 ⊆ ((l0, . . . , lL), R) and F2 ⊆
((l0, . . . , lL), R), which allows us to apply below the induction hypothesis. Let M′ ⊆ M be
such that abst(M′, l,msize(ψk)) = F . By Lemma 15, there are submodels M′1 and M′2 such
that M′ = M′1 ]M′2, F1 = abst(M′1, l, s1) and F2 = abst(M′2, l, s2). As M′1 and M′2 are also
submodels of M and each si = msize(ψki), by the induction hypothesis we get M′1, l |= ψk1
and M′2, l |= ψk2 . Consequently, M′, l |= ψk.

Now suppose that for all finite and functional submodels M′ ⊆ M and l ∈ W such that
abst(M′, l,msize(ψk)) = F , we have M′, l |= ψk. As F ⊆ ((l0, . . . , lL), R), there is at least
one model M′ satisfying the condition. By definition of |=, there are M′1 and M′2 such that
M′ = M′1 ]M′2, M′1, l |= ψk1 and M′2, l |= ψk2 . As msize(ψk) = msize(ψk1) + msize(ψk2), by
Lemma 14, we have

abst(M′, l,msize(ψk)) = abst(M′1, l,msize(ψk1)) ] abst(M′2, l,msize(ψk2)).

For all finite and functional submodels M′ ⊆M such that

abst(M′, l,msize(ψki)) = Fi,

we have M′, l |= ψki . Here, we use the fact that two
msize(ψki

),n
∼ -equivalent submodels with

the same frame abstraction satisfy the same formulae ψ with msize(ψ) ≤ msize(ψki) by the
variant of Lemma 11 on finite models. By the induction hypothesis, we get T (F1, k1) = 1
and T (F2, k2) = 1, which entails that T (F , k) = 1.

So, by taking k = M and F = ((l0, . . . , lL), R), we get that T (F , k) = 1 iff M, l |= φ. Again,

here we use the fact that two
msize(φ),n∼ -equivalent submodels with the same frame abstraction

satisfy the same formulae ψ with msize(ψ) ≤ msize(φ) by the variant Lemma 11 on finite models.
So, we can characterise the complexity of the model-checking problem for MSLf (∗,3) by taking

advantage of Lemma 16 (especially to handle the lines 17-19 efficiently).

Lemma 18. The model checking problem for MSLf (∗,3) is in P.

Then we can conclude.

Theorem 19. The satisfiability problem for MSL(∗,3) is NP-complete.

Proof. NP-hardness follows from the NP-completeness of the satisfiability problem for proposi-
tional calculus. By Lemma 12, in order to get the NP upper bound, guess a finite and functional
model M with card(W) ≤ 1 + 2 × msize(φ) (polynomial value in the size of φ) and l ∈ W, and
then check whether M, l |= φ, which can be done in polynomial-time by Lemma 18.
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From Section 2, we recall that MSL(3, 〈gsb〉) is defined as a fragment of MSL(∗,3) with the

translation t(〈gsb〉φ)
def
= (size = 1) ∗ t(φ) (global sabotage modal operator). As a corollary of

Theorem 19, we obtain the result below.

Corollary 20. The satisfiability problem of MSL(3, 〈gsb〉) is NP-complete.

4.3 The fragment MSL(∗, 〈6=〉)
In this section, we establish that the satisfiability problem for MSL(∗, 〈6=〉) is NP-complete and
its model-checking problem is in P. In order to do so, we reduce the problems from MSL(∗, 〈6=〉)
to MSLf (∗, 〈6=〉) and we show a small model property. Given φ in MSL(∗, 〈6=〉), let us define its
∗-weight , written w∗(φ), as follows:

• w∗(p)
def
= 0, w∗(emp)

def
= 1,

• w∗(¬φ)
def
= w∗(〈6=〉φ)

def
= w∗(φ); w∗(φ ∧ ψ)

def
= max(w∗(φ), w∗(ψ)),

• w∗(φ ∗ ψ)
def
= w∗(φ) + w∗(ψ).

Lemma 21. Let α ≥ 0 and M = 〈N,R,V〉 and M′ = 〈N,R′,V〉 be MSL models such that
min(card(R), α) = min(card(R′), α). Then, for all locations l and formulae φ in MSL(∗, 〈6=〉) such
that w∗(φ) ≤ α, we have M, l |= φ iff M′, l |= φ.

As a corollary, if card(R) = card(R′) in the statement of Lemma 21, then M, l and M′, l satisfy
exactly the same formulae in MSL(∗, 〈6=〉).

Proof. The proof is by structural induction. The base cases are by an easy verification (M and
M′ are built from the same valuation V) as well as the cases in the induction step for the Boolean
connectives.

• Suppose that M, l |= 〈6=〉ψ. There is l′ 6= l such that M, l′ |= ψ. As w∗(〈6=〉ψ) = w∗(ψ) and
w∗(ψ) ≤ α, by the induction hypothesis, we have M′, l′ |= ψ. Hence, M′, l |= 〈6=〉ψ.

• Suppose that M, l |= ψ1∗ψ2. There exists a partition {R1,R2} of R such that 〈N,R1,V〉, l |=
ψ1 and 〈N,R2,V〉, l |= ψ2. Let us make a case analysis.

Case card(R) ≤ α. So, card(R′) = card(R), w∗(ψ1) ≤ α and w∗(ψ2) ≤ α. There exists a
partition {R′1,R′2} of R′ such that card(R′1) = card(R1) and card(R′2) = card(R2). So,
for all j ∈ {1, 2}, min(card(Rj), α) = min(card(R′j), α). By the induction hypothesis,
〈N,R′1,V〉, l |= ψ1 and 〈N,R′2,V〉, l |= ψ2. Hence, M′, l |= ψ1 ∗ ψ2.

Case card(R) > α, card(R1) ≤ w∗(ψ1) and card(R2) > w∗(ψ2). Then we have there exists
a partition {R′1,R′2} of R′ such that card(R′1) = card(R1) and min(card(R′2), w∗(ψ2)) =
min(card(R2), w∗(ψ2)). Then we have min(card(R1), w∗(ψ1)) = min(card(R′1), w∗(ψ1))
and also min(card(R2), w∗(ψ2)) = min(card(R′2), w∗(ψ2)). By the induction hypothesis,
〈N,R′1,V〉, l |= ψ1 and 〈N,R′2,V〉, l |= ψ2. Hence, M′, l |= ψ1 ∗ ψ2.

Case card(R) > α, card(R1) > w∗(ψ1) and card(R2) ≤ w∗(ψ2). The proof is similar to the
previous case.

Case card(R) > α, card(R1) > w∗(ψ1) and card(R2) > w∗(ψ2). Then we have there exists
a partition {R′1,R′2} of R′ such that card(R′1) = w∗(ψ1) and min(card(R′2), w∗(ψ2)) =
min(card(R2), w∗(ψ2)). Then min(card(R1), w∗(ψ1)) = min(card(R′1), w∗(ψ1)) and also
min(card(R2), w∗(ψ2)) = min(card(R′2), w∗(ψ2)). By the induction hypothesis, we ob-
tain 〈N,R′1,V〉, l |= ψ1 and 〈N,R′2,V〉, l |= ψ2. Hence, M′, l |= ψ1 ∗ ψ2.

As a corollary, if φ in MSL(∗, 〈6=〉) is satisfiable, then it has a model with at most w∗(φ) edges.
Let us refine this in order to deal with submodels in full generality. Let M = 〈N,R,V〉 be an MSL
model with card(R) = β, l ∈ N and φ be in MSL(∗, 〈6=〉) such that M, l |= φ. Let ψ1, . . . , ψN be
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the subformulae of φ such that 〈6=〉ψ1, . . . , 〈6=〉ψN are the only subformulae of φ whose outermost

connective is 〈6=〉. For all i ∈ [1, N ] and all β′ ∈ [0, β], we define at most two locations li,β
′

1 and

li,β
′

2 as follows.

• Given R′ ⊆ R with card(R′) = β′, we have 〈N,R′,V〉, li,β
′

1 |= ψi and 〈N,R′,V〉, li,β
′

2 |= ψi.
By Lemma 21, this definition makes sense as two models with the same valuation and with
the same cardinal of the accessibility relation satisfy the same formulae.

• If possible we require that li,β
′

1 and li,β
′

2 are distinct, otherwise if there is only one location

satisfying ψi in 〈N,R′,V〉, we require li,β
′

1 = li,β
′

2 .

• If no location satisfies ψi in 〈N,R′,V〉, then by default li,β
′

1 = li,β
′

2 = l.

Let W
def
= {l} ∪ {li,β

′

j | j ∈ {1, 2}, i ∈ [1, N ], β′ ∈ [0, β]} ∪ {l, l′ | (l, l′) ∈ R}.

Lemma 22. We have 〈W,R,V〉, l |= φ.

Proof. By induction, we show that for all l′ ∈ W, for all R′ ⊆ R, for all subformulae ψ of φ, we
have 〈N,R′,V〉, l′ |= ψ iff 〈W,R′,V〉, l′ |= ψ. Again, the base cases are by an easy verification as
well as the cases in the induction step for the Boolean connectives.

• Suppose that 〈N,R′,V〉, l′ |= 〈6=〉ψj for some j ∈ [1, N ]. Let card(R′) = β′. There is neces-

sarily lj,β
′

k 6= l′ for some k ∈ {1, 2} such that 〈N,R′,V〉, lj,β
′

k |= ψj . Indeed, by Lemma 21, two
models with the same valuation and with the same cardinal of the relation satisfy the same

formulae. By the induction hypothesis, 〈W,R′,V〉, lj,β
′

k |= ψj (as lj,β
′

k ∈ W) and therefore
〈W,R′,V〉, l′ |= 〈6=〉ψj .
Conversely, suppose that 〈W,R′,V〉, l′ |= 〈6=〉ψj . There is some l′′ ∈ W \ {l′} such that
〈W,R′,V〉, l′′ |= ψj . By the induction hypothesis, we have 〈N,R′,V〉, l′′ |= ψj and therefore
〈N,R′,V〉, l′ |= 〈6=〉ψj .

• Suppose that 〈N,R′,V〉, l′ |= ψ1 ∗ ψ2. So, there is a partition {R′1,R′2} of R′ such that
〈N,R′1,V〉, l′ |= ψ1 and 〈N,R′2,V〉, l′ |= ψ2. By the induction hypothesis, 〈W,R′1,V〉, l′ |= ψ1

and 〈W,R′2,V〉, l′ |= ψ2. Consequently, 〈W,R′,V〉, l′ |= ψ1 ∗ ψ2.

Conversely, suppose that 〈W,R′,V〉, l′ |= ψ1 ∗ ψ2. So, there is a partition {R′1,R′2} of R′

such that 〈W,R′1,V〉, l′ |= ψ1 and 〈W,R′2,V〉, l′ |= ψ2. By the induction hypothesis, we have
〈N,R′1,V〉, l′ |= ψ1 and 〈N,R′2,V〉, l′ |= ψ2. Consequently, 〈N,R′,V〉, l′ |= ψ1 ∗ ψ2.

So, MSL(∗, 〈6=〉) satisfies a small model property.

Corollary 23. Let φ be a formula in MSL(∗, 〈6=〉). φ is satisfiable iff φ is MSLf (∗, 〈6=〉) satisfiable
in a model with card(W) ≤ 1 + 2|φ| × w∗(φ).

In the expression card(W) ≤ 1 + 2|φ| × w∗(φ), the value |φ| can be replaced by the number of
distinct subformulae of φ of the form 〈6=〉ψ.

It remains to characterise the complexity of the model-checking problem for MSLf (∗, 〈6=〉).

Lemma 24. The model-checking problem for MSLf (∗, 〈6=〉) is in P.

Proof. Let M = 〈W,R,V〉 be a finite and functional model, l ∈ W, and φ be a formula in
MSL(∗, 〈6=〉). Let ψ1, . . . , ψM be the subformulae of φ ordered in increasing size. We assume
W = [0,K] for some K ≥ 0, l = 0 and card(R) = β. To determine whether M, l |= φ, we
use a labelling algorithm (see Algorithm 2) and we complete a table T (i, j, k) with i ∈ [0,K],
j ∈ [0, β] and k ∈ [1,M ] that takes the value 1 iff 〈W,R′,V〉, i |= ψk with card(R′) = j (dynamic
programming is used here as usual). The polynomial-time upper bound is mainly due to the fact
(see Lemma 22) that what matters in a partition {R′1,R′2} of R′ ⊆ R is the respective cardinalities
of R′1 and R′2.
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Algorithm 2 Model Checking MSLf (∗, 〈6=〉)
In: A finite and functional model M = 〈[0,K],R,V〉, K ≥ 0, an MSL(∗, 〈6=〉) formula φ
Out: Return 1 iff M, 0 |= φ.
1: function MC(M, l, φ)
2: ψ1, . . . , ψM subformulae of φ in increasing size . ψM = φ
3: β := card(R)
4: for j ← 0 to β do
5: for k ← 1 to M do
6: for i← 0 to K do
7: case ψk of
8: emp: T (i, j, k) := 1 if (j = 0), otherwise 0
9: p: T (i, j, k) := 1 if i ∈ V(p), otherwise 0

10: ¬ψk′ : T (i, j, k) := 1− T (i, j, k′) . k′ < k
11: ψk1

∧ ψk2
: T (i, j, k) := min(T (i, j, k1), T (i, j, k2)) . k1, k2 < k

12: 〈6=〉ψk′ : . k′ < k
13: T (i, j, k) := max(T (1, j, k′), . . . , T (i− 1, j, k′), T (i+ 1, j, k′), . . . , T (K, j, k′))
14: ψk1

∗ ψk2
: . k1, k2 < k

15: T (i, j, k) := max{min(T (i, I, k1), T (i, J, k2)) | I + J = j and I, J ≥ 0}
16: end case
17: return T (0, β,M)

It is worth noting that computing T (i, j, k) always requires values T (i′, j′, k′) that have already
got a value and the whole procedure requires polynomial-time in β + M + K. The correctness
of T (i, j, k) = 1 iff 〈W,R′,V〉, i |= ψk with card(R′) = j is shown below, which entails that the
satisfaction of M, l |= φ is equivalent to T (0, β,M) = 1.

So, by structural induction, let us show that T (i, j, k) = 1 iff 〈W,R′,V〉, i |= ψk with card(R′) =
j. The model M′ = 〈W,R′,V〉 is a submodel of M with card(R′) = j.

Base case: ψk = p. T (i, j, k) = 1 iff i ∈ V(p) (see Line 9), iff (by definition of |=) M′, i |= p.

Base case: ψk = emp. T (i, j, k) = 1, iff j = 0 (see Line 8), that by assumption on R′, means
R′ = ∅, iff (by definition of |=), M′, i |= emp.

Case: ψk = ψk1 ∧ ψk2 . T (i, j, k) = 1 iff T (i, j, k1) = T (i, j, k2) = 1 (see Line 11). This is the case
iff (by IH) M′, i |= ψk1 and M′, i |= ψk2 , which is equivalent to M′, i |= ψk1 ∧ ψk2 .

The case ψk = ¬ψk′ in the induction step is shown similarly.

Case: ψk = 〈6=〉ψk′ . T (i, j, k) = 1, there is i′ 6= i in [0,K] such that T (i′, j, k′) = 1 (see Line 13).
This is the case iff (by IH) there is i′ 6= i in [0,K] such that M′, i′ |= ψk′ , which is equivalent
to M′, i |= 〈6=〉ψk′ (by definition of |=).

Case: ψk = ψk1 ∗ ψk2 . T (i, j, k) = 1, iff there are I and J such that j = I + J and T (i, I, k1) =
T (i, J, k2) = 1 (see Line 15), iff (by IH) there are I and J such that j = I + J and for all
submodels M′1 = 〈W,R′1,V〉 and M′2 = 〈W,R′2,V〉 with card(R′1) = I and card(R′2) = J ,
we have M′1, i |= ψk1 and M′2, i |= ψk2 . Equivalently, by Lemma 21 there are I, J and
submodels M′1 = 〈W,R′1,V〉 and M′2 = 〈W,R′2,V〉 with card(R′1) = I, card(R′2) = J and
M′ = M′1 ]M′2, such that M′1, i |= ψk1 and M′2, i |= ψk2 , iff M′, i |= ψk1 ∗ ψk2 .

Again, we are able to establish an NP upper bound.

Theorem 25. The satisfiability problem for MSL(∗, 〈6=〉) is NP-complete.

Proof. As MSL(∗, 〈6=〉) contains the propositional calculus, NP-hardness is immediate. In order to
get the NP upper bound, guess a finite and functional model M with card(W) ≤ 1 + 2|φ| ×w∗(φ)
(polynomial value in the size of φ) and l ∈ W, and then check whether M, l |= φ, which can be
done in polynomial-time by Lemma 24.
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5 MSL(∗,3, 〈6=〉): a Tower-complete fragment of MSL

In this section, we show that the satisfiability problem for MSL(∗,3, 〈6=〉) is Tower-complete
though both MSL(∗,3) and MSL(∗, 〈6=〉) admit NP-complete such problems (see Theorem 19
and Theorem 25). The upper bound is from Section 3 whereas the proof for Tower-hardness
consists of two parts. First, we show that there is a (global) formula in MSL(∗,3, 〈6=〉) that
characterises the linear structures. This is of interest for its own sake. Then, we reduce the
nonemptiness problem for star-free expressions (precisely interpreted by finite words, i.e. linear
structures) into the satisfiability problem.

5.1 Encoding linear structures

The goal of this section is to design a global formula in MSL(∗,3, 〈6=〉), namely φ∃ls, such that
for all models M, we have M |= φ∃ls iff either R is empty or R = {(l0, l1), . . . , (ln−1, ln)} for some
n ≥ 1 such that for all i 6= j ∈ [0, n], we have li 6= lj . In that case, we say that M is linear .

Given a finite set X ⊆ PROP, the relation {(l0, l1), . . . , (ln−1, ln)} roughly encodes the finite
word b1 · · · bn where each letter bj is equal to {p ∈ X | lj ∈ V(p)} (the labelling of the location
l0 is irrelevant for the encoding). When R is empty, the pair M, l encodes the empty string.

Note that φ∃ls shall be free of propositional variables, which is not so surprising as it expresses
a property about the structure of the model. This corresponds to the natural counterpart of the
list segment predicate ls(x, y) in separation logic, defined as follows ((s, h) is a memory state with
a store s and a heap h, see Section 2.2):

(s, h) |= ls(x, y)
def⇔ either (dom(h) = ∅ and s(x) = s(y)) or

h = {l0 7→ l1, l1 7→ l2, . . . , ln−1 7→ ln} with n ≥ 1,
l0 = s(x), ln = s(y) and for all i 6= j ∈ [0, n], li 6= lj .

The notation {l0 7→ l1, l1 7→ l2, . . . , ln−1 7→ ln} refers to a heap h with dom(h) = {l0, . . . , ln−1} and
h(li) = li+1 for all i ∈ [0, n − 1]. So, the formula φ∃ls expresses a property that corresponds to
∃ x, y ls(x, y) from (first-order) separation logic.

Given an MSL model M = 〈N,R,V〉, let us introduce a few notions that are helpful to build
the formula φ∃ls. As MSL(∗,3, 〈6=〉) does not include 3−1 and the reflexive and transitive closure
modality 〈?〉 (unlike MLH [31]), we need to characterise linear structures by combining intricate
properties. By way of example, stating that each location has at most one predecessor can be
easily expressed with [U](¬(3−1> ∗ 3−1>)), but, obviously, this formula does not belong to
MSL(∗,3, 〈6=〉).

A loop in M is a sequence of locations (l0, . . . , ln) for some n ≥ 1 such that l0 = ln and
for all i ∈ [0, n−1], (li, li+1) ∈ R. M has at most one maximally connected component (MCC)
whenever for all l, l′ such that R(l) and R(l′) are non-empty, there is l+ such that (l, l+) ∈ R+ and
(l′, l+) ∈ R+, where R+ is the transitive closure of R. A location l is a leaf in M if R(l) 6= ∅ and
R−1(l) = ∅, and l is a pre-root if R(l) = {l′} for some l′ and R(l′) = ∅. In Figure 4, we illustrate
these concepts. This terminology making reference to trees is best understood if we think the
definitions with respect to R−1.

l0M

l1

l2 l′0M′

l′1

l′2

l′3

l′4 l′′0

M′′

l′′1 . . . l′′n

Figure 4: M is a MCC and a loop, with no leaves and no pre-roots; M′ is a MCC with three leaves
(l′0, l′1 and l′3) and two pre-roots (l′2 and l′3); M′′ is linear.

Obviously, if M is linear, then it is loop-free, it has at most one MCC and has a unique leaf in
case M is non-empty. The result below states the converse, and below we explain how to express
all these properties.
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Lemma 26. Let M be an MSL model with a non-empty relation. M is linear iff M is loop-free
and has a unique leaf.

Proof. First, suppose that R = {(l0, l1), . . . , (ln−1, ln)} for some n ≥ 1 such that for all i 6= j ∈
[0, n], we have li 6= lj . As for all i 6= j, we have li 6= lj , we can conclude that M is loop-free.
Moreover, M has a unique leaf, namely l0.
Now suppose that M is loop-free and has a unique leaf. As M is loop-free, R−1 can be seen as
a finite collection of non-empty finite trees. If there are at least two finite trees, this contradicts
the uniqueness property on leaves. Similarly, if the unique tree is not a word (i.e. has a linear
structure), this also contradicts the uniqueness property. Consequently, R−1 represents a finite
word and therefore M is linear.

Let us introduce the global formula ∃Loop def
= > ∗ (([U]23>) ∧ ¬emp).

Lemma 27. Let M be an MSL model. M |= ∃Loop iff M has at least one loop.

Proof. First suppose that M contains the loop (l0, . . . , ln) for some n ≥ 1. Let {R1,R2} be a

partition of R such that R1
def
= {(l0, l1), . . . , (ln−1, ln)} and R2

def
= R \ R1. Given l ∈ N, we have

〈N,R2,V〉, l |= > (obviously), 〈N,R1,V〉, l |= ¬emp (n ≥ 1, so R1 is non-empty) and for all l′ ∈ N,
〈N,R1,V〉, l′ |= 23>. Indeed, either l′ 6∈ {l0, . . . , ln−1} and therefore trivially R1(l′) = ∅ and
〈N,R1,V〉, l′ |= 23> or l′ = li for some i ∈ [0, n − 1] and 〈N,R1,V〉, l′ |= 23> as there are
unique l† and l†† (possibly equal) such that R1(l′) = {l†} and R1(l†) = {l††}. Consequently,
〈N,R1,V〉, l |= [U]23> ∧ ¬emp. Hence, M |= ∃Loop.

Now, suppose that M |= ∃Loop, i.e. for all l ∈ N, we have M, l |= ∃Loop. Let {R1,R2}
be a partition of R such that 〈N,R1,V〉, l |= [U]23> ∧ ¬emp. So, R1 is non-empty and for all
l′ ∈ N, if R1(l′) = {l†} for some location l†, then R1(l†) is non-empty too. As R1 is finite (and
therefore cannot contain an infinite linear subrelation), R1 is a finite collection of lassos ending
by a non-empty loop and therefore contains at least one loop. As R1 ⊆ R, any loop in R1 is also
a loop in R and therefore, R contains at least one loop (but it may also contain other parts that
cannot be part of some loop).

Let us consider the formulae below (whose semantics is given in Lemma 28).

PRoot
def
= 32⊥

UniqTreePRoot
def
= ¬∃Loop ∧ ((¬(¬emp ∗ ¬emp)) ∨ 〈 ! 〉PRoot)

Leaf
def
= (3> ∧ size = 1)∨

(3> ∧ ¬PRoot ∧ ((size = 1 ∧3>) ∗ UniqTreePRoot)).

Lemma 28. Let M = 〈N,R,V〉 be a model and l ∈ N.

(I) M, l |= PRoot iff l is a pre-root.

(II) M, l |= UniqTreePRoot iff M is loop-free and either R is empty or (M has at most one MCC
and a unique pre-root).

(III) Assuming that M |= UniqTreePRoot, we have M, l |= Leaf iff l is a leaf.

?

Figure 5: A tree whose root has a unique child

In Lemma 28(II), R is a tree for which the root has a unique child (pre-root) as shown in
Figure 5. However, note that the structure is not necessarily linear. The proof of Lemma 28 is
rather tedious and is intrinsically related to the definition of the formulae.
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Proof. (I) Obvious.
(II) First, suppose that M, l |= UniqTreePRoot, i.e. for all locations l ∈ N, we have M, l |=
¬∃Loop ∧ ((¬(¬emp ∗ ¬emp)) ∨ 〈 ! 〉PRoot). Indeed, UniqTreePRoot is obviously a global formula.
Consequently, M |= ¬∃Loop and by Lemma 27, M is loop-free. Now suppose that R has at least
two edges (otherwise it is obvious that either R is empty or (M has at most one MCC and a
unique pre-root)). As a consequence, M |= 〈 ! 〉PRoot and by (I), M has a unique pre-root. Ad
absurdum, suppose that M has not at most one MCC. This means that there are l1 and l2 such
that R(l1) and R(l2) are non-empty and R+(l1) ∩R+(l2) = ∅, where R+ is the transitive closure
of R. As M is loop-free, there are distinct locations l+1 and l+2 such that l+1 ∈ R+(l1), R(l+1 ) = ∅,
l+2 ∈ R+(l2) and R(l+2 ) = ∅. As l+1 and l+2 are distinct and R is functional, we have that there
are distinct locations l′1 and l′2 such that (l′1, l

+
1 ), (l′2, l

+
2 ) ∈ R. So, l′1 and l′2 are distinct pre-roots,

which leads to a contradiction.
Now suppose that M is loop-free and either R is empty or (M has at most one MCC and a unique
pre-root). By Lemma 27, M |= ¬∃Loop. If R has at most one edge, then M |= ((¬(¬emp ∗
¬emp))∨ 〈 ! 〉PRoot) because the first disjunct holds. Now, suppose that R has at least two edges.
By assumption, M has a unique pre-root and therefore M |= 〈 ! 〉PRoot. Consequently, we conclude
that M |= UniqTreePRoot.
(III) Let us assume that M |= UniqTreePRoot. By (II), M is loop-free. First, we suppose that
M, l |= Leaf, i.e.

M, l |= (3> ∧ size = 1) ∨ (3> ∧ ¬PRoot ∧ ((size = 1 ∧3>) ∗ UniqTreePRoot)).

If M, l |= (3> ∧ size = 1), then R contains a unique edge and R(l) is non-empty, which entails
that l is a leaf (as M is loop-free). Otherwise, suppose that M, l |= (3> ∧ ¬PRoot ∧ ((size =
1 ∧3>) ∗ UniqTreePRoot)) and let R(l) = {l′} for some location l′ (different from l as M is loop-
free). By (I), l is not a pre-root, R contains at least two edges and {{(l, l′)},R \ {(l, l′)}} is the
unique partition of R such that 〈N, {(l, l′)},V〉, l |= (size = 1 ∧3>). Consequently,

M′ = 〈N,R \ {(l, l′)},V〉, l |= UniqTreePRoot.

By (II), M′ is loop-free (obviously since M were already loop-free by assumption) and either
R′ = R \ {(l, l′)} is empty or (M′ has at most one MCC and a unique pre-root). As R \ {(l, l′)} is
non-empty, we have that M′ has at most one MCC and a unique pre-root. Ad absurdum, suppose
that l is not a leaf in M. This implies that there is a location l† ∈ N such that (l†, l) ∈ R. Since
l is not a pre-root in M, there is also a location l†† such that (l′, l††) ∈ R. Moreover, since M is
loop-free, l 6∈ R∗(l′) and a fortiori, l 6∈ R′∗(l′). Similarly, since M is loop-free, all locations among
l†, l, l′ and l†† are distinct. So, R′(l†) = {l}, R′(l) is empty and R′∗(l′)∩{l†, l} = ∅, so M′ has not
at most one MCC, which leads to a contradiction.
Now suppose that l is leaf. Let R(l) = {l′} for some location l′. If R has a unique edge, then
M, l |= (3> ∧ size = 1) and therefore M, l |= Leaf. Otherwise, R has at least two edges and
remember that M |= UniqTreePRoot by assumption. Since M has at most one MCC and a unique
pre-root, l cannot be a pre-root (otherwise, the existence of at least two edges implies the existence
of another pre-root). So, M, l |= 3> ∧ ¬PRoot. Let {R1,R2} be the unique partition of R with
R1 = {(l, l′)}. Obviously, 〈N,R1,V〉, l |= (size = 1 ∧ 3>) and because l is a leaf of M, the
model 〈N,R2,V〉 is loop-free (inherited from M), has at most one MCC and has a unique pre-root
(actually the same pre-root of M). By (II), we get 〈N,R2,V〉, l |= UniqTreePRoot. So, M, l |=
(size = 1 ∧3>) ∗ UniqTreePRoot, which is all what we need to conclude that M, l |= Leaf.

Let φ∃ls be emp ∨ (UniqTreePRoot ∧ 〈 ! 〉Leaf). By combination of the previous lemmas and
using that if M is linear and non-empty, then M has at most one MCC and a unique pre-root, we
get the result below.

Theorem 29. Let M = 〈N,R,V〉 be a model. M |= φ∃ls iff M is linear.

Proof. First, suppose that M is a linear model. If M has an empty relation, M, l |= emp for all
locations l, and therefore M |= φ∃ls. Otherwise, by Lemma 26, M is loop-free and has a unique
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leaf. So, M has at most one MCC and a unique pre-root and therefore by Lemma 28(II), we
have M, l |= UniqTreePRoot for all locations l. By Lemma 28(III), for all locations l, we have
M, l |= 〈 ! 〉Leaf. Consequently, M |= φ∃ls.

Conversely, suppose that M |= φ∃ls. If M |= emp, then obviously, M is linear. Otherwise,
suppose that M |= UniqTreePRoot ∧ 〈 ! 〉Leaf. By Lemma 28(II), M has at most one MCC and a
unique pre-root. As M |= 〈 ! 〉Leaf, M has a unique leaf by Lemma 28(III), and therefore M is a
non-empty linear structure.

The formula ls(x, y) can be therefore encoded by the formula below:

φls(x,y)
def
= φ∃ls ∧ ((emp ∧ 〈U〉(x ∧ y)) ∨ (〈U〉(x ∧ Leaf) ∧ 〈U〉(PRoot ∧3y))).

5.2 The reduction

In this section, we show that the satisfiability problem for MSL(∗,3, 〈6=〉) is Tower-hard by
reduction from the nonemptiness problem for star-free expressions [54, 62]. The proof takes ad-
vantage of Theorem 29 to encode finite words and separating conjunction will be helpful to encode
concatenation, whereas complement and union operators in the star-free expressions are taken
care by negation and disjunction, respectively. Our proof is reminiscent to developments from [31,
Section 3] as it is essential to be able to encode finite words. Instead of reducing the satisfiability
problem for Propositional Interval Temporal Logic [57] as done in [31, Section 3], we define a
reduction from the nonemptiness problem for star-free expressions.

A star-free expression e over some finite alphabet Σ is defined by

e ::= a | ε | e ∪ e | ee | ∼ e,

where a ∈ Σ and ε denotes the empty string. Star-free expressions e are interpreted by languages
L(e) ⊆ Σ∗ as follows:

• L(a)
def
= {a} for all a ∈ Σ,

• L(ε)
def
= {ε},

• L(∼ e) def
= Σ∗ \ L(e),

• L(e ∪ e′) def
= L(e) ∪ L(e′),

• L(ee′)
def
= {ww′ ∈ Σ∗ | w ∈ L(e),w′ ∈ L(e′)}.

The nonemptiness problem consists in checking whether L(e) 6= ∅. The problem is shown decidable
with a non-elementary procedure in [54, 64] and refined to Tower-completeness in [62].

Given a finite alphabet Σ = {a1, . . . , aα}, we use the models encoding finite words thanks to
the formula φ∃ls and furthermore, we require that [U]

∨
i ai where

ai
def
= pi ∧

∧
j∈{1,...,α}\{i}

¬pj .

So, for every w ∈ Σ∗, there is a pair M, l encoding w. We define a relation � that establishes this

correspondence: w�M, l
def⇔ M is linear and

• If w = ε, then M has an empty accessibility relation and l is arbitrary.

• If w = ai1 · · · ain (n ≥ 1), then M has n edges and l is the unique leaf. With R =
{(l0, l1), . . . , (ln−1, ln)}, for all k ∈ [1, α], V(pk) = {lj | j ∈ [1, n], ij = k}.

By way of example,

a1 a2 a1 �
l0 l1

p1

l2

p2

l3

p1

, l0
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The correspondence between finite words in Σ∗ and pairs M, l satisfies a nice property as far
as splitting a word into two disjoint subwords is concerned.

Lemma 30. Let w � M, l with w = w1w2 ∈ Σ∗. There exist linear models M1 and M2 and l′

such that M = M1 ]M2, w1 �M1, l and w2 �M2, l
′.

Proof. Suppose that M = 〈N,R,V〉 with w�M, l. We perform a case analysis depending whether
wi = ε.

• If w = ε, then M1 = M, M2 = M and l′ = l.

• If w1 = ε and w2 6= ε, then M1 = M∅, M2 = M and l′ = l with M∅ = 〈N, ∅,V〉.
• If w2 = ε and w1 6= ε, then M1 = M, M2 = M∅ and l′ = l.

• Suppose that w1 6= ε and w2 6= ε. So, w = b1 · · · bn with n ≥ 2 and as M is lin-
ear, we have R = {(l0, l1), . . . , (ln−1, ln)} and for all i 6= j ∈ [0, n], we have li 6= lj .
Suppose that w1 = b1 · · · bn′ for some n′ < n. Let R1 = {(l0, l1), . . . , (ln′−1, ln′)} and
R2 = {(ln′ , ln′+1), . . . , (ln−1, ln)}. We set M1 = 〈N,R1,V〉, M2 = 〈N,R2,V〉 and l′ = ln′ .

For the four cases, it is easy to check that M = M1 ]M2, w1 �M1, l and w2 �M2, l
′.

Another technical lemma is needed for the proof of Lemma 32. It states that M = M1 ]M2

and those models are linear entail that there is necessarily a “clean cut”.

Lemma 31. Let w�M, l with M = M1]M2 and, M1 and M2 are linear. There are w1,w2 ∈ Σ∗

and l′ ∈ N such that w = w1w2, w1 �M1, l and w2 �M2, l
′.

Note that in w2 �M2, l
′, the location l′ is involved.

Proof. Suppose that w � M, l with M = M1 ]M2 and both M1 and M2 are linear. Let M =
〈N,R,V〉, M1 = 〈N,R1,V〉, M2 = 〈N,R2,V〉 and R = R1 ] R2. We perform a case analysis
depending whether Mi has an empty relation. When R1 = ∅ or R2 = ∅, the definition of w1 and
w2 is easy. Let us consider the case R1 6= ∅ and R2 6= ∅. Suppose that R = {(l0, l1), . . . , (ln−1, ln)}
for some n ≥ 2 and for all i 6= j ∈ [0, n], we have li 6= lj . Moreover, suppose that the word w
is equal to b1 · · · bn. Let {X1, X2} be a partition of [0, n − 1] such that both X1 and X2 are
non-empty and for all i ∈ {1, 2}, we have Ri = {(lj , lj+1) | j ∈ Xi}. The only case for which
M = M1]M2 and both M1 and M2 are linear is when there is n′ ∈ [0, n−2] such that X1 = [0, n′]
and X2 = [n′ + 1, n − 1]. Indeed, if Xi is made of at least two disjoint nonempty intervals, then
Mi cannot be linear. We set w1 = b1 · · · bn′+1, w2 = bn′+2 · · · bn and l′ = ln′+1. It is easy to check
that w = w1w2, w1 �M1, l and w2 �M2, l

′.

Each star-free expression e is translated as

T (e)
def
= ([U]

∨
i ai) ∧ φ∃ls ∧ (emp ∧ t(e)) ∨ (¬emp ∧ Leaf ∧ t(e)),

where t(·) is recursively defined (the evaluation is performed at leaf locations, if any). The four
disjuncts in t(e1e2) below correspond to cases depending on the emptiness of subwords.

t(ε)
def
= emp t(ai)

def
= (3ai) ∧ size = 1

t(∼ e) def
= ¬t(e) t(e1 ∪ e2)

def
= t(e1) ∨ t(e2)

t(e1e2)
def
= ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4

ψ1
def
= emp ∧ t(e1) ∧ t(e2) ψ2

def
= (t(e1) ∧ emp) ∗ t(e2) ψ3

def
= t(e1) ∗ (t(e2) ∧ emp)

ψ4
def
= (φ∃ls ∧ ¬emp ∧ t(e1)) ∗ (φ∃ls ∧ ¬emp ∧ 〈U〉(Leaf ∧ t(e2))).

In ψ4, to evaluate t(e2), we move to the unique leaf of the linear structure.

Lemma 32. Let w ∈ Σ∗, and M be a linear model such that w � M, l. For every star-free
expression e, we have w ∈ L(e) iff M, l |= t(e).
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Proof. The proof is by structural induction on e. Let us start by treating the base cases.

e = ε. Suppose that w ∈ L(e). Obviously, w = ε and M has an empty accessibility relation by
definition of �. So, M, l |= emp and therefore M, l |= t(e) by definition of t.

Now suppose that M, l |= t(e). As t(ε) = emp, this implies that M has an empty accessibility
relation and therefore w = ε and w ∈ L(e).

e = ai. Suppose that w ∈ L(e). Obviously, w = ai and by definition of �, M is of the form
〈N, {(l, l′)},V〉 such that l′ ∈ V(pi) and for all j 6= i ∈ [1, α], we have l′ 6∈ V(pj). So,
obviously, M, l |= (3ai) ∧ size = 1 with ai = (pi ∧

∧
j 6=i ¬pj). By definition of t, we get

M, l |= t(e).

Now suppose that M, l |= t(e). By definition of t, this means that M, l |= (3ai) ∧ size = 1.
So, M is of the form 〈N, {(l, l′)},V〉 such that l′ ∈ V(pi) and for all j 6= i ∈ [1, α], we have
l′ 6∈ V(pj). By definition of �, this means that w = ai and therefore w ∈ L(e).

In the induction step, let us treat the following cases.

e = e1 ∪ e2. Suppose that w ∈ L(e). So, there is i ∈ {1, 2} such that w ∈ L(ei). By the induction
hypothesis, we have M, l |= t(ei) and therefore M, l |= t(e1) ∨ t(e2). Hence, M, l |= t(e) by
definition of t.

Now suppose that M, l |= t(e). By definition of t, there is i ∈ {1, 2} such that M, l |= t(ei).
By the induction hypothesis, we have w ∈ L(ei). By definition of L(e), we get w ∈ L(e).

e =∼ e′. w ∈ L(e), iff (by definition of L(e)), w 6∈ L(e′) iff (by the induction hypothesis) M, l 6|=
t(e′), iff (by definition of |=) M, l |= ¬t(e′), iff M, l |= t(e) (by definition of t).

e = e1e2. Suppose that w ∈ L(e). There are w1 ∈ L(e1) and w2 ∈ L(e2) such that w = w1w2. By
Lemma 30, there exist linear models M1 and M2 and l′ such that M = M1]M2, w1 �M1, l
and w2 �M2, l

′.

• If w = ε (and therefore M1 = M2 = M and w1 = w2 = ε), by the induction hypothesis,
M1, l |= t(e1) and M2, l |= t(e2). Consequently, M, l |= emp∧t(e1)∧t(e2) (corresponding
to the satisfaction of ψ1) and therefore M, l |= t(e).

• If w1 = ε and w2 6= ε (and therefore M2 = M and M1 = 〈N, ∅,V〉), by the induction
hypothesis M2, l |= t(e2) and M1, l |= t(e1) as w1�M1, l. So M, l |= (t(e1)∧emp)∗ t(e2)
(corresponding to the satisfaction of ψ2) and therefore M, l |= t(e).

• The case w1 6= ε and w2 = ε is dealt with similarly.

• Suppose that w1 6= ε and w2 6= ε. By the induction hypothesis, we have M1, l |= t(e1),
M1, l |= φ∃ls ∧ ¬emp as M1 is linear and non-empty. Similarly, M2, l

′ |= φ∃ls ∧ ¬emp.
As w2 � M2, l

′, by the induction hypothesis, we get M2, l
′ |= t(e2). Moreover, by

definition of �, l′ is the unique leaf of R2 and therefore M2, l
′ |= Leaf. Consequently,

M, l |= (φ∃ls ∧ ¬emp ∧ t(e1)) ∗ (φ∃ls ∧ ¬emp ∧ 〈U〉(Leaf ∧ t(e2))) (corresponding to the
satisfaction of ψ4) and therefore M, l |= t(e).

Now suppose that M, l |= t(e). Let us make a case analysis depending on which ψi holds
true.

M, l |= ψ1. By definition of t, we have M, l |= emp ∧ t(e1) ∧ t(e2) and therefore w = ε. So
M, l |= t(e1) and M, l |= t(e2). By the induction hypothesis, ε ∈ L(e1) and ε ∈ L(e2),
so w ∈ L(e).

M, l |= ψ2. By definition of t, we have M, l |= (t(e1) ∧ emp) ∗ t(e2). Let M2 = M and
M1 = 〈N, ∅,V〉. So, M = M1 ]M2, M2, l |= t(e2), w�M2, l, and M1, l |= t(e1) ∧ emp
and ε�M1, l. By the induction hypothesis, w ∈ L(e2) and ε ∈ L(e1). So, w ∈ L(e).

M, l |= ψ3. Similar to the previous case.
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M, l |= ψ4. By definition of t, we have M, l |= (φ∃ls∧¬emp∧t(e1))∗(φ∃ls∧¬emp∧〈U〉(Leaf∧
t(e2))). By definition of |=, there are linear non-empty models M1 and M2 such that
M = M1 ]M2, M1, l |= t(e1) and M2, l

′ |= Leaf ∧ t(e2) for some location l′. By
Lemma 31, there are w1,w2 ∈ Σ∗ such that w = w1w2, w1 � M1, l and w2 � M2, l

′.
By the induction hypothesis, w1 ∈ L(e1) and w2 ∈ L(e2). So, w ∈ L(e).

As a consequence,

Lemma 33. Given α ≥ 1, Σ = {a1, . . . , aα} and a star-free expression e built on Σ, L(e) 6= ∅ iff
the formula T (e) is MSL(∗,3, 〈6=〉) satisfiable.

Proof. (⇒) Suppose that w ∈ L(e). One can easily build a linear model M = 〈N,R,V〉 and
a location l such that w � M, l. It is also easy to enforce that M |= [U]

∨
i ai. So, M, l |=

([U]
∨
i ai) ∧ φ∃ls. If w = ε, then necessarily, R = ∅ and therefore M, l |= emp. By Lemma 32, we

also get that M, l |= t(e). This concludes that M, l |= T (e). If w 6= ε, then necessarily, R 6= ∅ and
therefore M, l |= ¬emp. Again, by Lemma 32, we also get that M, l |= t(e). This concludes that
M, l |= T (e).

(⇐) Suppose that M, l |= T (e) for some model M = 〈N,R,V〉 and l ∈ N. Note that by
definition of T (e), M is linear. If R = ∅, then ε � M, l and necessarily M, l |= emp ∧ t(e). By
Lemma 32, we get that ε ∈ L(e). If R = {(l0, l1), . . . , (ln−1, ln)} for some n ≥ 1 (l0 = l), then
w �M, l for some word w = b1 · · · bn. Necessarily M, l |= ¬emp ∧ Leaf ∧ t(e). By Lemma 32, we
get that b1 · · · bn ∈ L(e). Consequently, L(e) is non-empty.

Finally, we get the Tower-completeness.

Theorem 34. The satisfiability problem for MSL(∗,3, 〈6=〉) is Tower-complete.

6 When the magic wand strikes back

In this section, we show that the satisfiability problem for MSL is actually undecidable by taking
advantage of previous results. Moreover, we conclude the section by showing other undecidability
results, such as for MSLg(∗,3) by designing a reduction from the global sabotage modal logic.

All the previous complexity results, involving classes such as NP, PSpace and Tower, deal
with fragments of MSL that are −∗-free and MSL is precisely equal to MSL(∗,3, 〈6=〉) augmented
with the separating implication −∗. It is well-known that adding the separating connective −∗ can
dramatically augment the expressive power or the complexity, see e.g. [15]. Below, the expressive
strength of −∗ is again illustrated, via a reduction from propositional separation logic augmented
with the list segment predicate ls [35]. By contrast, it is known that the modal logic for heaps MLH
restricted to ∗ is decidable [31], but it is open whether the addition of −∗ leads to undecidability.

6.1 Undecidability of MSL

First, note that the interval temporal logic with the operators C, D and T over the class of finite
strict orders (equivalently, one may consider only the finite intervals of N) is shown to admit an
undecidable satisfiability problem in [47] and to be non recursively enumerable. By contrast, the
version of the logic in which the propositional valuation of an interval only depends on the first
value of the interval (the locality condition) is decidable as satisfiability can be reduced to the
satisfiability problem for first-order logic over 〈N,≤,+1〉. As we have seen in the paper, the formula
φ∃ls can enforce a linear structure but it is unclear how to reduce the undecidable version to MSL,
even though there is a clear correspondence between the chop operator C and ∗, and between the
operators D and T, and −∗. Instead, our undecidability proof for (full) MSL is by reducing the
satisfiability problem for SL(∗,−∗, ls), recently shown undecidable in [35] (based on [15]).

Notice that for the translation of the formulae from SL(∗,−∗, ls), the most complex part is the
encoding of the atomic formulae ls(x, y). However, all this work has already been done in Section 5
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when we encode linear structures with MSL(∗,3, 〈6=〉). Then, what gives us undecidability is
essentially the inclusion of the operator −∗.

Let us define the translation t(·) from SL(∗,−∗, ls) into MSL formulas, which is homomorphic
for Boolean and separating connectives, and

t(emp)
def
= emp t(x = y)

def
= 〈U〉(x ∧ y) t(x ↪→ y)

def
= 〈U〉(x ∧3y)

t(ls(x, y))
def
= φ∃ls ∧ ((emp ∧ 〈U〉(x ∧ y)) ∨ (〈U〉(x ∧ Leaf) ∧ 〈U〉(PRoot ∧3y))),

where x, y are nominals and φ∃ls defined as in Section 5.1. We get the result below.

Lemma 35. Let φ be an SL(∗,−∗, ls) formula. φ is satisfiable iff t(φ) is satisfiable in MSL.

Proof. Let N be a finite set of propositional variables playing the role of nominals (also understood
as program variables). Given a model M = 〈N,R,V〉 and a memory state (s, h), we write M ≈N

(s, h) iff the conditions below hold:

1. R
def
= {(l, h(l)) | l ∈ dom(h)},

2. for all x ∈ N, V(x) = {s(x)}.

Notice that every variable x ∈ PVAR is a nominal in MSL.
Below, we show that for all formulae φ in SL(∗,−∗, ls) built over program variables in N, and

M ≈N (s, h), we have (s, h) |= φ iff M |= t(φ). In that way, assuming that φ is satisfiable (say

(s, h) |= φ), the MSL model M = 〈N,R,V〉 and l ∈ N such that R
def
= {(l, h(l)) | l ∈ dom(h)} and

for all x ∈ PVAR, V(x)
def
= {s(x)}, verify that M, l |= t(φ). Conversely, assuming that M, l |= t(φ),

one can easily build (s, h) such that M ≈N (s, h) and (s, h) |= φ.
Below, we assume that M ≈N (s, h). By structural induction, we show that (s, h) |= φ iff

M |= t(φ) for all formulae φ in SL(∗,−∗, ls) built over program variables in N.

φ = emp. (s, h) |= emp iff (by |=) dom(h) = ∅. As M ≈N (s, h), R = ∅, then M |= t(emp).
Conversely, M, l |= t(emp) iff (by definition of t) M, l |= emp iff (by |=) R = ∅. As M ≈N (s, h),
dom(h) = ∅, and consequently (s, h) |= emp.

φ = (x = y). (s, h) |= (x = y) iff (by |=) s(x) = s(y). As M ≈N (s, h), there is some l ∈ N such
that V(x) = {l} = V(y). Then we have M, l |= (x∧y), and by |= we get M, l′ |= 〈U〉(x∧y) for
all l′ ∈ N, whence M |= t(x = y). Conversely, M, l |= 〈U〉(x ∧ y) iff there is l′ ∈ N such that
M, l′ |= x∧y, i.e., V(x) = {l′} = V(y) (it is a singleton since x, y ∈ PVAR, therefore they are
nominals). As M ≈N (s, h), this implies that s(x) = s(y) = l′, and therefore (s, h) |= (x = y).

φ = (x ↪→ y). (s, h) |= x ↪→ y iff (by |=) s(x) ∈ dom(h) and h(s(x)) = s(y). As M ≈N (s, h), there
exist l′, l′′ ∈ N such that V(x) = {l′}, V(y) = {l′′}, and (l′, l′′) ∈ R. By definition of |=, we
have M, l′ |= x∧3y, and by globality of 〈U〉 we get M, l |= 〈U〉(x∧3y) for all l ∈ N, whence
M |= t(x ↪→ y). Conversely, M, l |= 〈U〉(x∧3y) iff there exists l′ ∈ N such that V(x) = {l′},
and there exists l′′ ∈ N such that (l′, l′′) ∈ R, and V(y) = {l′′}. Then, as M ≈N (s, h), we
have s(x) = l′, s(y) = l′′ and h(s(x)) = s(y). Therefore, (s, h) |= x ↪→ y.

φ = ls(x, y). (s, h) |= ls(x, y) iff either

(i) dom(h) = ∅ and s(x) = s(y), or

(ii) h = {l0 7→ l1, l1 7→ l2, . . . , ln−1 7→ ln} with n ≥ 1 (h is made of n memory cells with the
obvious values), l0 = s(x), ln = s(y) and for all i 6= j ∈ [0, n], li 6= lj .

First suppose (i). Since dom(h) = ∅, R = ∅ by definition. On the other hand, as s(x) = s(y),
by M ≈N (s, h), there exists some l ∈ N such that M, l |= x ∧ y. Then, since M |= emp, we
have M |= φ∃ls ∧ emp ∧ 〈U〉(x ∧ y).

Now suppose (ii). First notice that M is linear by definition, so by Theorem 29 we have
M |= φ∃ls, and since R 6= ∅ by (ii), then M |= UniqTreePRoot ∧ 〈 ! 〉Leaf. Also by (ii) and
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definition of M, we know M, l0 |= x. But l0 is a leaf, then since M |= UniqTreePRoot we get
(by Lemma 28 (III)) M, l0 |= x ∧ Leaf.

On the other hand, since ln /∈ dom(h), ln−1 is a pre-root and by Lemma 28 (I), we get
M, ln−1 |= PRoot. Moreover, since s(y) = ln, by definition of R we have M, ln−1 |= 3y.
Hence M, ln−1 |= PRoot ∧3y.

Therefore we get M |= φ∃ls ∧ 〈U〉(x ∧ Leaf) ∧ 〈U〉(PRoot ∧3y).

From the two cases above we get M |= t(ls(x, y)).

Conversely, M, l |= t(ls(x, y)) implies either:

(i) M, l |= φ∃ls ∧ emp ∧ 〈U〉(x ∧ y), or

(ii) M, l |= φ∃ls ∧ 〈U〉(x ∧ Leaf) ∧ 〈U〉(PRoot ∧3y).

First, let us suppose (i). By |= we have R = ∅ and there exists l′ ∈ N such that V(x) =
{l′} = V(y). Then dom(h) = ∅, s(x) = s(y), as M ≈N (s, h). Hence, (s, h) |= ls(x, y).

Now suppose (ii). First, notice that M is linear (by Theorem 29), then there exist l0, l1, . . . , ln
such that l0Rl1R . . .Rln, which gives us h = {l0 7→ l1, l1 7→ l2, . . . , ln−1 7→ ln} with n ≥ 1.
Also, as M, l |= φ∃ls and R 6= ∅, M |= UniqTreePRoot ∧ 〈 ! 〉Leaf. Since l0 is the only leaf
of the model, and the fact that M, l |= 〈U〉(x ∧ Leaf), we obtain V(x) = {l0}. Then, as
M ≈N (s, h), we get s(x) = l0.

On the other hand, M, l |= 〈U〉(PRoot∧3y), then there exists (l′, l′′) ∈ R such that V(y) =
{l′′} and there is no l′′′ such that (l′′, l′′′) ∈ R. Then (as M ≈N (s, h)) s(y) = l′′, h(l′) = s(y)
and s(y) /∈ dom(h), so s(y) = ln.

Since M is linear, as M ≈N (s, h), this gives us that for all i 6= j ∈ [0, n], li 6= lj . Hence,
(s, h) |= ls(x, y).

For the Boolean cases, ∗ and −∗ we only need to apply the induction hypothesis and to use the
semantical correspondence M ≈N (s, h), as well as the fact that separation in M can be mimicked
in (s, h) (and reciprocally) as well as composition of M with another model can be also mimicked
from (s, h) (and reciprocally).

As the satisfiability problem for SL(∗,−∗, ls) is recently shown undecidable [35], we get the
following result.

Theorem 36. The satisfiability problem for MSL is undecidable.

Another consequence is the non-finite axiomatisability of MSL, which is a feature inherited
from SL(∗,−∗, ls) (itself inherited from [15]). A bounded number of propositional variables can
lead to undecidability too, thanks to [36, Corollary 3.16(IV)] and to [32]. As a corollary, the modal
logic for heaps MLH (including −∗) augmented with propositional variables is undecidable [31] as
MSL is one of its fragments. Moreover, a recent refinement of the main result from [35] allows to
conclude that MSL(∗,−∗,3) is undecidable too [52].

6.2 MSL over general models

We already showed that the global sabotage operation can be translated into MSL(∗,3) as

t(〈gsb〉φ)
def
= (size = 1) ∗ t(φ). This gives us a proof that MSLg(3, 〈gsb〉) is NP-complete over

the class of models with finite and functional models. On the other hand, it is known that the
satisfiability problem of MSLg(3, 〈gsb〉) (over arbitrary models) is undecidable [4]. Therefore, the
minimal modal separation logic over arbitrary models MSLg(∗,3) is also undecidable.

Corollary 37. The satisfiability problem of MSLg(∗,3) is undecidable.

On the other hand, it is shown in [2, Theorem 11] and [3, Theorem 2] that the model checking
problem for MSLg(3, 〈gsb〉) is PSpace-complete, which implies the same result for MSLg(∗,3).

Corollary 38. The model checking problem for MSLg(∗,3) is PSpace-complete.
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7 Conclusion

We have introduced the logic MSL whose models are Kripke-style structures and it can be viewed
either as a genuine modal logic or as a genuine separation logic, depending on the connectives
considered in the fragments. For the minimal modal separation logic MSL(∗,3), we proved that
the satisfiability problem is NP-complete by showing on the one hand the logic satisfies a small
model property, and on the other hand that the model-checking problem is in P. A similar com-
plexity characterisation is provided for MSL(∗, 〈6=〉), by using a similar approach. Surprisingly, we
have shown that the satisfiability problem for the logic MSL(∗,3, 〈6=〉), i.e., the combination of
the two logics we mentioned, is Tower-complete. Satisfiability for MSL(∗,3, 〈6=〉) can be checked
in Tower since it can be translated into weak monadic second order logic (by simply internalis-
ing the semantics of its operators), while Tower-hardness is established by reduction from the
nonemptiness problem for star-free expressions. A key element of our Tower-hardness proof is
the ability to express the property ∃ x, y ls(x, y) from separation logic within MSL(∗,3, 〈6=〉),
which is far from obvious. Hence, we are able to show that MSL admits an undecidable satisfia-
bility problem. Along the paper, we also investigated variants of MSL (or some of its fragments)
by slightly modifying the semantics or by adding other modal connectives. For instance, we have
proved that the satisfiability problem for MSL(3, 〈gsb〉) is (only) NP-complete, since it is a frag-
ment of MSL(∗,3). The same translation also gives us undecidability for MSLg(∗,3), i.e., for the
minimal separation logic over the class of general models.

Most of the results are summarised in the table below.

Model checking
Satisfiability

(with finite models)

MSL(∗,3), MSL(∗, 〈6=〉) P NP-complete
(Lemmas 18 and 24) (Th. 19 and 25)

MSL(∗,3, 〈6=〉) PSpace-complete Tower-complete
(Cor. 5) (Th. 34)

MSL
PSpace-complete Undecidable

(Th. 36)

MSL(∗,3−1)
PSpace-complete PSpace-hard, in Tower
(Th. 6 and Cor. 5) (Th. 6 and 7)

MSL(∗,3, 〈6=〉,3−1)
PSpace-complete Tower-complete

(Cor. 8) (Th. 34 and 7)

MSL(3, 〈gsb〉) P NP-complete
(Lemma 18) (Cor. 20)

MSLg(∗,3)
PSpace-complete Undecidable

(Cor. 38) (Cor. 37)

As a latest news, in [53], it is shown that the satisfiability problem for MSL(3, 〈U〉, ∗) with
unique atomic formula > (i.e. with no propositional variable) is already Tower-hard. In general,
understanding the effects of the interactions between modal operators and separating connectives
is still to be strengthened and many interesting problems are left open. For instance, it would be
worth investigating whether our results could be extended, adapted or related for combinations
of modal/temporal/epistemic logics with abstract separation logics, along the lines of the logics
investigated in [22, 25, 24, 23, 26]. Similarly, we have shown that the satisfiability problem for
MSL(∗,3−1) is PSpace-hard and in Tower but a complexity characterisation is not yet known.
The decidability status of MSLf and MLH [31] is also open. Furthermore, even though the
modalities we include in our language are not completely arbitrary but chosen in terms of their
expressivity, many other posibilities remain to be explored, e.g. 〈?〉 or 3−1. Finally, the design of
proof systems for modal separation logics remains a challenging question and preliminary recent
results can be found in [34].
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