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Reasoning with a Bounded Number of Resources in ATL +

The resource-bounded alternating-time temporal logic RB±ATL combines strategic reasoning with reasoning about resources. Its model-checking problem is known to be 2EXPTIMEcomplete (the same as its proper extension RB±ATL * ). Several fragments have been identified to lower the complexity.

In this work, we consider the variant RB±ATL + which permits Boolean combinations of path formulae starting with single temporal operators, but restricted to a single resource, providing an interesting trade-off between temporal expressivity and resource analysis. We show that the model-checking problem for RB±ATL + restricted to a single agent and a single resource is ∆ p 2 -complete, hence the same as for CTL + . In this case reasoning about resources comes at no extra computational cost. Furthermore, we show that, with an arbitrary number of agents and a fixed number of resources, the problem can be solved in EXPTIME using a Turing reduction to the parity game problem for alternating vector addition systems with states.

Introduction

Reasoning about resources with ATL-like logics. Reasoning about multi-agent systems (MAS) in which autonomous agents can interact and perform actions to reach (joint or individual) goals have benefited from the model-checking approach with the development of ATL-like logics (see, e.g., [START_REF] Alur | Alternating-time temporal logic[END_REF][START_REF] Alur | MOCHA user manual[END_REF]). The need for managing resources in MAS has been identified quite early and many logical formalisms based on ATL ("Alternating-time temporal logic") were introduced to endow actions with consumption or production of resources [START_REF] Bulling | On the (Un-)Decidability of Model-Checking Resource-Bounded Agents[END_REF][START_REF] Della Monica | On a logic for coalitional games with priced-resource agents[END_REF][START_REF] Bulling | How to be both rich and happy: Combining quantitative and qualitative strategic reasoning about multi-player games (extended abstract)[END_REF][START_REF] Alechina | Decidable model-checking for a resource logic with production of resources[END_REF][START_REF] Alechina | On the boundary of (un)decidability: Decidable model-checking for a fragment of resource agent logic[END_REF]. Unsurprisingly, dealing with resources can lead to high complexity, even undecidable model-checking problems, which is best illustrated in [START_REF] Bulling | On the (Un-)Decidability of Model-Checking Resource-Bounded Agents[END_REF][START_REF] Bulling | How to be both rich and happy: Combining quantitative and qualitative strategic reasoning about multi-player games (extended abstract)[END_REF][START_REF] Alechina | On the boundary of (un)decidability: Decidable model-checking for a fragment of resource agent logic[END_REF]. Still decidable resource logics have been identified, for instance by allowing only resource consumption [START_REF] Alechina | A logic for coalitions with bounded resources[END_REF]. The challenge for years has been to design resource logics, general enough to allow consumption and production of resources, while having a decidable model-checking, possibly low complexity, to allow the implementation in model-checking tools. A remarkable breakthrough occurred with the design of the logic RB±ATL, with production and consumption of resources, whose model-checking problem was shown decidable in [START_REF] Alechina | Decidable model-checking for a resource logic with production of resources[END_REF]. Later on, fragments of RB±ATL have been designed with relatively low complexity: with a single agent and a single resource the PTIME upper bound was shown in [START_REF] Belardinelli | Resource-bounded ATL: the quest for tractable fragments[END_REF] (see also [START_REF] Alechina | Symbolic model checking for one-resource RB+-ATL[END_REF][START_REF] Alechina | Modelchecking for resource-bounded ATL with production and consumption of resources[END_REF]). When RB±ATL + comes into play. The model-checking problem for RB±ATL is shown 2EXPTIME-complete in [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF] by using subroutines to solve decision problems for alternating vector addition systems with states (AVASS), see, e.g., [START_REF] Courtois | Alternating vector addition systems with states[END_REF][START_REF] Jurdziński | Fixed-dimensional energy games are in pseudo-polynomial time[END_REF][START_REF] Abdulla | Solving Parity Games on Integer Vectors[END_REF]. The 2EXPTIMEcompleteness is also pushed further for RB±ATL * , the extension of RB±ATL in which path formulae are arbitrary LTL formulae, in the same way the temporal logic CTL * extends CTL (see, e.g. [START_REF] Demri | Temporal Logics in Computer Science[END_REF]Chapter 7]). Consequently, every logic between RB±ATL and RB±ATL * admits a 2EXPTIME-complete model-checking problem and this also applies to RB±ATL + , the extension of RB±ATL in which path formulae are arbitrary Boolean combinations of LTL formulae of temporal depth one, in the same way the temporal logic CTL + extends CTL (see, e.g., [START_REF] Emerson | Decision procedures and expressiveness in the temporal logic of branching time[END_REF]). Though the model-checking problem for CTL (resp. CTL + , CTL * ) is known to be PTIME-complete (resp. ∆ p 2 -complete, PSPACE-complete) and the one for ATL (resp. ATL + , ATL * ) PTIME-complete [START_REF] Alur | Alternating-time temporal logic[END_REF] (resp. PSPACE-complete [START_REF] Bulling | Verifying agents with memory is harder than it seemed[END_REF][START_REF] Goranko | Game-theoretic semantics for ATL + with applications to model checking[END_REF], 2EX-PTIME-complete [START_REF] Alur | Alternating-time temporal logic[END_REF]), there is no difference in complexity for RB±ATL, RB±ATL + and RB±ATL * , as far as worst-case complexity of the whole logics is concerned. Our motivations. To identify fragments of RB±ATL * of tractable complexity, with the intention to implement model-checking algorithms in existing tools [START_REF] Lomuscio | MCMAS: A model checker for the verification of multi-agent systems[END_REF], it may happen that RB±ATL, RB±ATL + and RB±ATL * have distinct complexity when their fragments are considered, typically by restricting the number of resources or the number of agents. It is commonly accepted that the design of fragments is essential to find a good compromise between the expressive power of the logical language and the computational complexity of the reasoning tasks. That is why the quest for subproblems of RB±ATL * obtained by limiting the temporal expressivity, or the number of resources is important for practical use. In this paper, we study the complexity of the model-checking problem for RB±ATL + (strict syntactic fragment of RB±ATL * ) restricted to a bounded number of resources, with a special attention to the case with a single resource. It is also worth noting that as the path formulae in CTL + (and therefore in ATL + and in RB±ATL + ) are Boolean combinations of LTL formulae of temporal depth one, this provides a generic and natural way to design linear-time constraints. Surprisingly, this specific viewpoint considering fragments of RB±ATL + will happen to be fruitful, not only for the identification of interesting fragments of lower complexity, but also in terms of proof techniques to solve the model-checking problem. Our contribution. First, we introduce the logic RB±ATL + , similarly to the way ATL + (resp. CTL + ) extends ATL (resp. CTL), and we show interesting features in terms of expressivity. We prove that the model-checking problem for RB±ATL + restricted to a single agent and to a single resource is ∆ p 2 -complete (Theorem 2). The lower bound is inherited from CTL + [START_REF] Laroussinie | Model checking CTL + and FCTL is hard[END_REF], whereas the upper bound ∆ p 2 combines ingredients for model-checking CTL + with procedures in PTIME for decision problems for vector addition systems with states (VASS) [START_REF] Karp | Parallel program schemata[END_REF] restricted to one counter, newly introduced in this paper. This analysis substantially generalises [START_REF] Belardinelli | Resource-bounded ATL: the quest for tractable fragments[END_REF]Section 3]. In particular, we introduce the new generalised control state reachability problem for VASS and we show that it is in PTIME, when restricted to VASS with one counter (Theorem 1). The same problem with an unrestricted number of counters can be shown to be EXPSPACEcomplete, but its PTIME subproblem with one counter is instrumental to get the ∆ p 2 -completeness result. Since model checking CTL + is also ∆ p 2 -complete, the enhanced expressivity provided by reasoning about resource comes at no extra computation cost.

Furthermore, we show that the model-checking problem for RB±ATL + restricted to r resources (for a fixed r) can be solved in EXPTIME (Theorem 3) by reduction to the parity game problem for AVASS [START_REF] Th | Perfect half space games[END_REF]. Remarkly, the number of locations in the target AVASS is exponential in the input size, which makes a substantial difference with what is done in [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF] for RB±ATL * . Hence, the model-checking problem for RB±ATL + restricted to one resource is PSPACE-hard (inherited from ATL + [START_REF] Bulling | Verifying agents with memory is harder than it seemed[END_REF][START_REF] Goranko | Game-theoretic semantics for ATL + with applications to model checking[END_REF]) and in EXPTIME. Apart from the new complexity results that improve our understanding of fragments of RB±ATL * , we present reductions to the parity game problem to AVASS that can be of interest for its own sake.

Preliminaries

Our presentation follows closely [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF][START_REF] Belardinelli | Resource-bounded ATL: the quest for tractable fragments[END_REF]. In the rest of the paper, N (resp. Z) is the set of natural numbers (resp. integers) and for

m, m ∈ Z, [m, m ] is the set {j ∈ Z | m ≤ j ≤ m }.
For a finite or infinite sequence u ∈ X * ∪ X ω of elements in some set X, we write ui or u[i] for the (i + 1)-th element of u, i.e., u = u0u1 . . .. For i ≥ 0, u ≤i = u0u1 . . . ui is the prefix of u of length i + 1, while u ≥i = uiui+1 . . . is a suffix of u. The length of a finite or infinite sequence u ∈ X ω ∪ X * is denoted as |u|, where |u| = ω for u ∈ X ω .

RB±ATL + : strategic reasoning and resources

Syntax. In the rest of the paper we assume a countably infinite set AP of atomic propositions. Given a finite non-empty set Ag of agents and a number r ≥ 1 of resources (often called "resource types" in the literature), we write RB±ATL + (Ag, r) to denote the resource-bounded logic with agents from Ag and r resources.

Definition 1 (RB±ATL + formulae) State formulae φ and path formulae Ψ are built according to the following BNF, where p ∈ AP, A ⊆ Ag, and b ∈ (N ∪ {ω}) r :

φ ::= p | ¬φ | φ ∧ φ | A b Ψ Ψ ::= ¬Ψ | Ψ ∧ Ψ | X φ | φ U φ
The formulae in RB±ATL + (Ag, r) are all and only the state formulae. RB±ATL(Ag, r) is the fragment of RB±ATL + (Ag, r) in which path formulae have no outermost Boolean connective but with a new clause G φ. We write RB±ATL + (r) to denote the set of formulae in RB±ATL + (Ag, r), for some non-empty set Ag of agents.

As will become clear, RB±ATL + extends ATL + from [START_REF] Alur | Alternating-time temporal logic[END_REF] by indexing the strategic operator A with tuples b, whose intuitive meaning is that coalition A can achieve their goal with an initial budget b. The value ω accounts for an infinite supply of the resource. The linear-time operators X and U have their standard readings; while ∨, ⇒, and the temporal operator always G are introduced as usual. For instance, A (8,ω) 

((p1 U q1) ⇒ G r1 ∧ (p2 U q2) ⇒ G r2
) is an RB±ATL + (Ag, 2) formula but not an RB±ATL(Ag, 2) formula. Semantics. We interpret the formulae by using resource-bounded concurrent game structures [START_REF] Alechina | Resourcebounded alternating-time temporal logic[END_REF][START_REF] Alechina | On the complexity of resource-bounded logics[END_REF], endowed a weight function that assigns an integer to every action (herein understood as a gain).

Definition 2 (RB-CGS) A resource-bounded concurrent game structure is a tuple M = Ag, r, S, Act, act, wf, δ, L such that • Ag is the finite, non-empty set of agents (by default Ag = [1, k] for some k ≥ 1); r ≥ 1 is the number of resources; • S is a finite, non-empty set of states;

• Act is a finite, non-empty set of actions;

• act : S × Ag → ℘(Act) \ {∅} is the protocol function;

• wf : S × Ag × Act → Z r is the (partial) weight function; that is, wf (s, a, a) is defined only when a ∈ act(s, a); • δ : S × (Ag → Act) → S is the (partial) transition function such that δ is defined for state s and joint action f : Ag → Act only if for every agent a ∈ Ag, f (a) ∈ act(s, a); • L : AP → ℘(S) is the labelling function.

Intuitively, a resource-bounded CGS describes the interactions of a group Ag of agents, who perform the actions in Act according to the protocol function act. The execution of a joint action generates a transition in the system, as specified by the transition function δ. Moreover, on each transition the values of the r resources are updated according to the weight of the joint action. It is worth noting that in Definition 2 we do not assume the existence of an idle action (with zero weight). It is introduced in [START_REF] Alechina | Decidable model-checking for a resource logic with production of resources[END_REF][START_REF] Alechina | Modelchecking for resource-bounded ATL with production and consumption of resources[END_REF] and it is often advantageous in terms of computational complexity (see e.g. [START_REF] Alechina | The virtues of idleness: A decidable fragment of resource agent logic[END_REF][START_REF] Alechina | On the complexity of resource-bounded logics[END_REF]). In this paper, we do not rely on the action idle to establish our complexity results, but of course, nothing prevents us from having such a distinguished action in our instances of the model-checking problem.

An RB-CGS M is finite whenever L is restricted to a finite subset of AP. The size |M | of a finite RB-CGS M is the size of its encoding when integers are encoded in binary and maps and sets are encoded in extension using a reasonably succinct encoding.

Given a coalition A ⊆ Ag and a state s ∈ S, a joint action available to A in s is a map f : A → Act such that for every agent a ∈ A, f (a) ∈ act(s, a). The set of all such joint actions is denoted by DA(s). We write f g if Dom(f ) ⊆ Dom(g), and for every agent a ∈ Dom(f ), g(a) = f (a). Given a joint action f ∈ DA(s), we write out(s, f ) to denote the set of immediate outcomes: out(s, f ) def = {δ(s, g) | for some g ∈ DAg(s), f g}. Given a joint action f ∈ DA(s) and s ∈ S, the weight of a transition from s by f (w.r.t. coalition A) is defined as wfA(s, f ) def = a∈A wf (s, a, f (a)). A computation λ is a finite or infinite sequence s0

f 0 -→ s1 f 1
-→ s2 . . . such that for all 0 ≤ i < |λ| -1 we have si+1 = δ(si, fi). To provide a formal semantics to RB±ATL + based on RB-CGS, we need a notion of resource-bounded strategy for the interpretation of the strategic operator A b . Definition 3 (Strategy) A (memoryful) strategy FA for coalition A is a map from the set of finite computations to the set of joint actions of A such that FA(s0

f 0 -→ s1 . . . sn-1 f n-1 ---→ sn) ∈ DA(sn). A computation λ = s0 f 0 -→ s1 f 1 -→ s2 . . . respects strategy FA iff for all i < |λ|, si+1 ∈ out(si, FA(s0 f 0 -→ s1 . . . sn-1 f i-1 --→ si)).
A computation λ that respects FA is maximal if it cannot be extended further while respecting FA. Herein, maximal computations starting in state s and respecting FA are infinite, and we denote the set of all such maximal computations by Comp(s, FA).

Given a bound b ∈ (N ∪ {ω}) r and a computation λ = s0

f 0 -→ s1 f 1 -→ s2 .
. . in Comp(s, FA), let the resource availability vi at step i < |λ| be defined as: v0 = b and for all i ≥ 0, vi+1 = wfA(si, fi) + vi (assuming n + ω = ω for every n ∈ Z). Then, λ is b-consistent iff for all i < |λ|, vi ∈ (N ∪ {ω}) r . Since the resource availability depends only on the agents in A, this is called the proponent restriction condition (see, e.g., [START_REF] Alechina | On the boundary of (un)decidability: Decidable model-checking for a fragment of resource agent logic[END_REF][START_REF] Alechina | On the complexity of resource-bounded logics[END_REF]). A b-strategy FA with respect to s is a strategy such that all the maximal computations in Comp(s, FA) are b-consistent. We define the satisfaction relation |= for a state s ∈ S, an infinite computation λ, p ∈ AP, a state formula φ, and a path formula Ψ as follows (clauses for Boolean connectives are standard and thus omitted):

(M, s) |= p iff s ∈ L(p) (M, s) |= A b Ψ iff for some b-strategy FA w.r.t. s, for all λ ∈ Comp(s, FA), (M, λ) |= Ψ (M, λ) |= X φ iff (M, λ ≥1 ) |= φ (M, λ) |= φ U φ
iff for some i ≥ 0, (M, λ ≥i ) |= φ , and for all 0 ≤ j < i, (M, λ ≥j ) |= φ

In the sequel, we consider the following decision problem.

Definition 4 (Model Checking) Let k, r ≥ 1, φ be a formula in RB±ATL + ([1, k],
r), M be a finite RB-CGS for Ag = [1, k] and r resources, and let s be a state in M . The model checking problem amounts to decide whether (M, s) |= φ.

In the sequel, given a logic L, we write MC(L) to denote the corresponding model-checking problem. Below, we summarize known complexity results for subproblems of MC(RB±ATL + ) obtained by bounding the number of agents or resources and we identify the contributions made in this paper.

r\|Ag| ∞ ≥ 2 1 ∞ 2EXPTIME-c. [2, Th. 2 and 3] EXPSPACE-c. [2, Th. 4] ≥ 4 in EXPTIME [this paper] EXPTIME-h. [2, Th. 2 and 3] PSPACE-c [2, Cor. 2] [15] 3 in EXPTIME [this paper] 2 PSPACE-h. [15] 1 in EXPTIME [this paper] in ∆ p 2 [this paper] PSPACE-h. (from ATL + [15]) ∆ p 2 -h. (from CTL + [28])
Remark 1 When Ag = {1}, the only strategy modalities are Ag b and ∅ b . Whereas ∅ b behaves as universal path quantifier A in CTL + (and the weights in the RB-CGS are ignored because of the proponent restriction condition), the modality Ag b amounts to quantify existentially on a path satisfying a temporal goal (but this time, the weights are taken into account). Hence, RB±ATL + ({1}, r) can be thought of as a resource-bounded version of CTL + with r resources. Finally, to stick to the definition of the original version of RB±ATL from [START_REF] Alechina | Decidable model-checking for a resource logic with production of resources[END_REF] and to provide more flexibility to the specification language, we have kept the bound ω but the way to handle it consists in reducing the dimension (eliminate the components where it appears as it does not bring any quantitative constraint), which can be easily performed.

Example 1 We illustrate the formal machinery introduced so far with a toy example. We consider a scenario in which two drones, d1 and d2, have to deliver two parcels to addresses (X1, Y1) and (X2, Y2) on a [-M, M ] 2 grid for some M > 0. We assume that they both start from location (0, 0). At any time, each drone can choose between two modes: either it moves in one of the four directions (N, S, E, W) or it recharges its battery through a solar panel (charge), but it cannot do both actions at the same time. Moving around consumes one energy unit at every time step; whereas the drone can recharge one unit at a time. Each drone can carry one parcel at a time, and they can only pick them up from location (0, 0).

This scenario can be modelled as a resource-bounded CGS M = {d1, d2}, 1, [-M, M ] 2 , {N, S, E, W, charge}, act, wf, δ, L where in every state s, for i ∈ {1, 2} and Di ∈ {N, S, E, W}:

• act(s, di) = {N, S, E, W, charge}; • wf (s, di, Di) = -1 and wf (s, di, charge) = +1; • δ(((x1, y1), (x2, y2)), (D1, D2)) = ((x 1 , y 1 ), (x 2 , y 2 ))
, where (x i , y i ) is obtained from (xi, yi) by decrementing/incrementing either xi or yi depending on Di (notice that on the frontier, movement in some directions has no effect), and δ(s, (charge, charge)) = s. • AP = {charge1, charge2, del1, del2} and L(deli) = {(Xi, Yi)}, while a state is labelled with chargei if drone di has charged as previous action (we can keep track of this information with an extra bit of memory in the system state).

Even in such a simple scenario we can express interesting strategic properties in RB±ATL + ({d1, d2}, 1). Consider a budget b = max{(|X1| + |Y1|), (|X2| + |Y2|)} that allows any drone d to deliver a single parcel to the farthest address. We can check that in location (0, 0) the following formulae are true:

1. With budget b, every drone di, for i ∈ {1, 2}, can deliver parcel 1 and can deliver parcel 2, without charging in the meantime:

{di} b (¬charge U del1) ∧ {di} b (¬charge U del2) (1) 
2. With budget 2b, neither drone can deliver both parcel 1 and 2, without charging in the meantime (recall that drones have to pick parcels in location (0, 0)):

¬ {di} 2b ((¬charge U del1) ∧ (¬charge U del2)) (2) 
(1) belongs to RB±ATL, but we make use of Boolean combinations of goals and the expressivity of RB±ATL + to formalize (2).

Correspondence between RB-CGS and AVASS

In this section, we recall the notion of alternating vector addition systems with states (AVASS), as well as relevant related decision problems. Indeed, AVASS are closely related to the model-checking problem for RB±ATL-like logics, as explained below (see also [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF]). First, we need to introduce some preliminaries.

A binary tree T , which may contain nodes with a single child, is a non-empty subset of {1, 2} * such that, for all n ∈ {1, 2} * and i

∈ {1, 2}, n • i ∈ T implies n ∈ T and, n • 2 ∈ T implies n • 1 ∈ T . Definition 5 (AVASS [18]) An alternating VASS is a tuple A = (Q, r, R1, R2) such that Q is a finite set of locations, r ≥ 0 is the number of resources, R1 is a finite subset of Q × Z r × Q (unary rules) and R2 is a subset of Q 3 (fork rules).
Standard VASS [START_REF] Karp | Parallel program schemata[END_REF] (known to be equivalent to Petri nets) are AVASS with no fork rules (i.e., R2 = ∅). A derivation skeleton in A is a labelling D : T → (R1 ∪ R2 ∪ {⊥}) such that T is a binary tree, and if n has one child (resp. has two children, is a leaf) in T , then

D(n) ∈ R1 (resp. D(n) ∈ R2, D(n) =⊥). A derivation in A based on D is a labelling D : T → Q × Z r such that: • if n has one child n in T , D(n) = (q, u, q ) and D(n) = (q, v), then D(n ) = (q , v + u); • if n has two children n and n in T , D(n) = (q, q1, q2) and D(n) = (q, v), then D(n ) = (q1, v) and D(n ) = (q2, v).
So, the fork rules do not update the value of resources. Hence, there is an asymmetry between unary and fork rules. Unlike branching VASS (see, e.g., [START_REF] Verma | Karp-Miller Trees for a Branching Extension of VASS[END_REF][START_REF] Demri | The covering and boundedness problems for branching vector addition systems[END_REF][START_REF] Göller | A polynomial-time algorithm for reachability in branching VASS in dimension one[END_REF]), fork rules have no effect on the counter values. A derivation D is admissible (or a proof ) whenever only natural numbers occur in it. . . . . (q 3 , (9, 9)) (q 2 , (5, 5)) . . . . (q 1 , (3, 8)) . . . . (q 2 , (3, 8)) (q 0 , (3, 8)) (q 1 , (5, 5)) (q 0 , (5, 5)) (q 1 , (7, 2)) By way of example, a proof can be found left (with the root at the bottom).

R 1 = {q 1 (-2,3) ---→ q 0 , q 2 (4,4) --→ q 3 } R 2 = {q 0 -→ q 1 , q 2 }.
Hereafter, we consider the following decision problem pertaining to AVASS. Given an AVASS A = (Q, r, R1, R2), a colouring col is defined as a map Q → [0, p -1] for some number p ≥ 1 of colours. The parity game problem is defined as follows:

Parity game problem for AVASS: given A, q0, b ∈ N r and col, is there a proof with root labelled by (q0, b), all the maximal branches are infinite, and the maximal colour occurring infinitely often is even?

By [START_REF] Th | Perfect half space games[END_REF]Corollary 5.7] on the parity energy game problem with initial credit, and by [1, Lemma 4] relating the parity game problem for single-sided VASS -a.k.a. AVASS -and the parity energy game problem, the former can be solved in time

(|Q| × ||R1||) 2 O(r×log(r+p)) + O(r × log|| b||),
where

|| b|| def = max{| b[i] | : i ∈ [1, r]} and ||R1|| def = max{|| u|| : q u -→ q ∈ R1}.
When r and p are bounded, the problem is therefore in EXPTIME. Indeed, the expression 2 O(r×log(r+p)) and r are bounded whereas ||R1|| is at most exponential in the size of the input (the integers are encoded in binary).

We now briefly recall the correspondence established in [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF] between strategies in RB±ATL-like logics and proofs in AVASS. As we use it in the paper, we explain it in detail for the reader's benefit. Below, we consider AVASS with fork rules in β≥2 Q β (arbitrary arity), and where the proofs are trees with nodes labelled by elements in Q × N r . Let M be a finite RB-CGS, A ⊆ Ag be a coalition, and s be one of its states. We construct the AVASS AM,A,s such that the set of computations in M starting in s and respecting strategy FA corresponds to the derivation skeleton whose root is labelled by a unary rule with first state s . Hence, we leverage on the fact that a b-strategy generates a set of maximal computations that can be arranged as a finitely-branching tree with only infinite branches, and such infinite trees can be viewed precisely as infinite proofs on AM,A,s . Given M = (Ag, r, S, Act, act, wf, δ, L) and s ∈ S, the AVASS AM,A,s def = (Q, r, R1, R2) is built as follows:

Q def = {s } ∪ {(s, f ) | s ∈ S, f ∈ DA(s)} ∪ {(g, s ) | s , s ∈ S, g ∈ DAg(s ), δ(s , g) = s }.
Every location in Q is attached to a state in S and contains a finite piece of information: in (s, f ), f is a joint action available to A implementing its strategy whereas in (g, s ), we remember the global joint action to reach s .

• The set R1 of unary rules contains the following elements:

-(s , wfA(s , f ), (s , f )), for all f ∈ DA(s ). Indeed, the locations in Q attached to s have a special treatment. -((g, s), wfA(s, f ), (s, f )), for all (g, s) ∈ Q and f ∈ DA(s).

• The set R2 of fork rules contains the following elements.

-For (s, f ) ∈ Q, let {(g1, s1), . . . , (gα, sα)} = {(g, s ) ∈ S | s = δ(s, g), g ∈ DAg(s), f g}. This set is non-empty because the protocol function always returns a non-empty set of actions. We add the α-ary fork rule ((s , f ), (g1, s1), . . . , (gα, sα)). The joint actions available for the opponent coalition (Ag \ A) determine which locations (g1, s1), . . . , (gα, sα) can be reached. It is the proponent restriction condition that guarantees that using fork rules in this place (i.e. without updating the counter values) is correct.

Given an infinite computation λ = s0 Further, transitions in M can be viewed as triples (s , g, s ) such that δ(s , g) = s , also written as s g -→ s . The finite set of such transitions is denoted by ΣM . An infinite computation λ = s0

g 1 -→ s1 g 2
-→ s2 . . . can be represented by the ω-word (s0

g 1 -→ s1) • (s1 g 2 -→ s2) • (s2 g 3 -→ s3) • • • in Σ ω M .
Given an infinite branch of the proof in AM,A,s corresponding to the extended computation

s0 u 0 -→ (s0, f0) -→ (g1, s1) u 1 -→ (s1, f1) -→ • • • , its ΣM -projection is defined as the sequence (s0 g 1 -→ s1) • (s1 g 2 -→ s2) • (s2 g 3 -→ s3) • • • Formal correspondences between M and AM,A,s are below. Proposition 1 ([2, Lemma 4]) Let L ⊆ Σ ω M and b ∈ N r .
There is a b-strategy FA w.r.t. s in M such that the set of computations Comp(s , FA) is included in L iff there is a proof in AM,A,s with root labelled by (s , b), every maximal branch is infinite and its ΣMprojection is in L.

By way of example, let S φ be the set of states in S satisfying the (state) formula φ (S is from some RB-CGS M ) and L φ be the restriction of Σ ω M to ω-words involving only states from S φ . By Proposition 1, (M, s ) |= A b G φ iff there is a proof in AM,A,s restricted to locations involving only states in S φ whose root is labelled by (s , b) and every maximal branch is infinite.

Model-checking Problem for RB±ATL + ({1}, 1)

To show that MC(RB±ATL + ({1}, 1)) is PTIME-complete, we introduce a new decision problem for vector addition systems with states (VASS), and we show that when restricted to a single counter, it can be solved in PTIME, generalising Theorems 3.3 and 3.5 from [START_REF] Belardinelli | Resource-bounded ATL: the quest for tractable fragments[END_REF]. We recall that a VASS is an AVASS with an empty set R2 of fork rules: it is a structure V = (Q, r, R), where R is a finite subset of Q × Z r × Q. A configuration of a VASS V is defined as a pair (q, x) ∈ Q × N r . Given (q, x), (q , x ) and a transition t = q u -→ q , we write (q, x) t -→ (q , x ) whenever x = u + x. A run is defined as a sequence (q0, x0)

t 1 -→ (q1, x1) t 2 -→ (q2, x2) • • • A simple
run ρ is a finite run such that no control state appears twice. A simple path is a sequence of contiguous transitions t1 . . . t k such that no control state occurs more than once. A simple loop is a sequence of contiguous transitions t1 . . . t k such that the first control state of t1 is equal to the second control state of t k (and it occurs nowhere else) and no other control state occurs more than once. An r-VASS is a VASS with r ≥ 1 counters. By convention, a 0-VASS is a finite digraph.

Generalised control state reachability problem

We now present a new decision problem on VASS that plays a crucial role in solving MC(RB±ATL + ({1}, 1)).

Generalised control state reachability problem GREACH(VASS):

Input: a VASS V , (q0, x0), a sequence (X1, h1), . . . , (Xα, hα) for some α ≥ 0 s.t.

Xα ⊆ • • • ⊆ X1 ⊆ Q and {h1, . . . , hα} ⊆ Q. Question: is there an infinite run (q0, x0) -→ (q1, x1) -→ (q2, x2) • • • such that there are 0 < i1 < i2 < • • • < iα with for all j ∈ [1, α], qi j = hj and {q k | k < ij} ⊆ Xj?
Here is an illustration of the witness run when α = 2.

{q 0 ,...,q i 1 -1 }⊆X 1

(q0, x0) • • • (qi 1 -1, xi 1 -1) - → (qi 1 , xi 1 ) • • • (qi 2 -1, xi 2 -1) {q 0 ,...,q i 2 -1 }⊆X 2 - → (qi 2 , xi 2 ) - → • • •
When α = 0, the question is about the existence of an infinite run from (q0, x0), which is in PTIME when r = 1 (see, e.g., [START_REF] Belardinelli | Resource-bounded ATL: the quest for tractable fragments[END_REF]).

Similarly, GREACH(VASS) restricted to 0-VASS (say GREACH(0-VASS)) is NLOGSPACE-complete as the Graph Accessibility Problem (GAP) can be reduced to it and the NLOGSPACE upper bound can be established by showing that a positive instance requires the existence of a path of length at most |Q| × (α + 1) whose constraints can be checked on-the-fly in NLOGSPACE. Unlike for 0-VASS, the addition of counters forbids a similar reduction of an instance of GREACH(VASS) to reachability questions on finite graphs. We introduce a few more notions. Given an RB-CGS M = ({1}, S, Act, 1, act, wf, δ, L) with a single agent and a single resource, let us define the 1-VASS VM = (S, 1, RV ) such that q u -→ q ∈ RV iff there is some action a ∈ act(q, 1) such that δ(q, a) = q and wf (q, 1, a) = u. Similarly, we write KM = (S, R, LK ) to denote the Kripke-style structure such that q R q iff there is some action a ∈ act(q, 1) such that δ(q, a) = q and LK = L. We introduce Kripke-style structures as the modality {1} ω amounts to forgetting about weights in M , and therefore M can be understood as the Kripke-style structure KM , and model checking reduces to CTL + model checking. Similarly, the strategy modality ∅ b behaves as the universal path quantifier A in weight-free transition systems, and therefore model-checking reduces again to CTL + model-checking. Given S1 ⊆ S, we write V S 1 M (resp. K S 1 M ) to denote the restriction of VM (resp. KM ) to the locations/states in S1 only.

Let V , (q0, x0) and (X1, h1), . . . , (Xα, hα) be an instance of GREACH(1-VASS). W.l.o.g., we assume that q0 = h1. If α = 0, then it is a positive instance of GREACH(1-VASS) iff V , (q0, x0) is a positive instance of the non-termination problem for 1-VASS, known to be in PTIME (see, e.g., [START_REF] Belardinelli | Resource-bounded ATL: the quest for tractable fragments[END_REF]Theorem 3.5]). When α > 0, one can show that the instance is positive iff either (A) or (B) holds.

(A) The following conditions hold: (a) For N ≥ 0, there is a run (q0, z0) • • • (qn, zn) with (q0, z0) = (q0, x0), qn = h1, zn ≥ N , and {q0, . . . , qn-1} ⊆ X1. (b) V , h1 and (X2, h2), . . . , (Xα, hα) is a positive instance of GREACH(0-VASS) where V is the directed graph underlying V (integers on transitions are simply removed). (c) There a simple path from hα to some location q and there is a simple loop from q with positive overall effect.

(B) (a) above cannot be satisfied and there is a simple run (q0, x0), . . . , (q k , x k ) in V X 1 ∪{h 1 } with q k = h1 and V , (h1, xmax) and (X2, h2), . . . , (Xα, hα) is a positive instance of GREACH(1-VASS) with xmax the maximal counter value for reaching h1 among all the simple runs from (q0, x0).

The condition "(A) or (B)" can be rewritten as "((a) and Φ) or (not (a) and Φ )", which implies "Φ or Φ " but is not logically equivalent to it. Moreover, Φ makes sense only when (a) does not hold, whence the current form of (A) and (B).

Lemma 1 Let V , (q0, x0) and (X1, h1), . . . , (Xα, hα) be an instance of GREACH(1-VASS) with α > 0. It is a positive instance iff either (A) or (B) holds.

We briefly explain why the characterisation is correct and leads to PTIME. When (a) holds, one can reach the control state h1 with a counter value as large as we want. The constraints from the subsequence (X2, h2), . . . , (Xα, hα) induce only reachability questions in the underlying directed graph V . Otherwise, when (a) cannot be satisfied, the instance is positive only if there is a run ρ = (q0, x0), . . . , (q k , x k ) in V X 1 ∪{h 1 } with q k = h1 and V , (h1, x k ) and (X2, h2), . . . , (Xα, hα) is a positive instance of GREACH(1-VASS). However, not (a), we can assume that ρ is a simple run and the best we can do is to pick x k equal to the maximal counter value for reaching h1 among all the simple runs from (q0, x0) visiting only states in X1. Checking (a), (b) or (c) can be done in PTIME (see the proof of [START_REF] Belardinelli | Resource-bounded ATL: the quest for tractable fragments[END_REF]Theorem 3.3]) using dynamic programming. Similarly, computing xmax in (B) can be done in PTIME too.

Theorem 1 The problem GREACH(1-VASS) is in PTIME.

The bound PTIME in Theorem 1 is a drastic drop compared to the complexity for GREACH(VASS). Indeed, GREACH(VASS) is EX-PSPACE-hard as the control-state reachability problem for VASS can be reduced to it (and then we use [START_REF] Lipton | The reachability problem requires exponential space[END_REF]). GREACH(VASS) is definitely in EXPSPACE by [START_REF] Habermehl | On the complexity of the linear-time mu-calculus for Petri nets[END_REF]Theorem 5.4] dealing with the lineartime µ-calculus on VASS. Besides, for all r ≥ 1, model-checking r-VASS with linear-time µ-calculus has been shown in PSPACE [START_REF] Habermehl | On the complexity of the linear-time mu-calculus for Petri nets[END_REF]Theorem 4.1] (PSPACE-hardness still holds with a unique counter, inherited from LTL model-checking [START_REF] Sistla | The complexity of propositional linear temporal logic[END_REF]). Herein, we establish that GREACH(1-VASS) behaves even better as it can be solved in polynomial time only.

The model-checking algorithm

To solve MC(RB±ATL + ({1}, 1)), there is an essential case to consider, namely how to verify whether (M, s) |= {1} b Ψ (this is the key case that needs to be solved in a satisfactory way, complexitywise). With a single agent in M , this amounts to checking the existence of a computation λ starting from s, with initial budget b ∈ N, satisfying Ψ. This is the place where GREACH(1-VASS) helps.

Lemma 2 Let Ψ be a Boolean formula built over path formulae of the form X p or p U q, where p, q are propositional variables. Let M be an RB-CGS, s be one of its states and b ∈ N. The problem of checking (M, s)

|= {1} b Ψ (in RB±ATL + ({1}, 1)) is in NP.
Hence, the whole model-checking algorithm for RB±ATL + ({1}, 1) can be shown in ∆ p 2 as it uses a polynomial amount of instances of the problem in Lemma 2. Each instance can be solved in NP since GREACH(1-VASS) is in PTIME.

Theorem 2 MC(RB±ATL

+ ({1}, 1)) is ∆ p 2 -complete.
Proof: (sketch.) As regards the lower bound, it follows from the ∆ p 2 -hardness of MC(CTL + ) [START_REF] Laroussinie | Model checking CTL + and FCTL is hard[END_REF]. As for the upper bound, let M = ({1}, 1, S, Act, act, wf, δ, L) be an RB-CGS, and φ be a formula in RB±ATL + ({1}, 1). Let us present Algorithm 1 that computes the finite set {s ∈ S | (M, s) |= φ}, where we assume that b ∈ N and Ψ is a Boolean formula in NNF built over atomic path formulae of the form X φ or φ U φ , for state formulae φ, φ . Moreover, let us assume that the maximal state formulae occurring in Ψ are φ1, . . . , φN and the model-checking algorithm has already determined that they hold true exactly on the states in S 1 , . . . , S N , respectively. Let Ψ be the formula obtained from Ψ by replacing each φi by a fresh propositional variable pi, and M be the RB-CGS obtained from M by modifying the labelling function as follows: L (pi) ¬ψ: return S\ MC(M, ψ)

5: φ1 ∧ φ2: return MC(M, φ1)∩ MC(M, φ2) 6: ∅ b Ψ/ ∅ ω Ψ: return {s | (KM , s) |= AΨ in CTL + } 7: {1} ω Ψ: return {s | (KM , s) |= EΨ in CTL + } 8: {1} b Ψ: return {s | (M , s) |= {1} b Ψ with the algorithm in the proof of Lemma 2 } 9:
end case 10: end procedure that (M, s) |= φ iff s ∈ MC(M, φ). As far as complexity is concerned, MC(M, φ) is computed with a recursion depth linear in the size of φ and a polynomial number of NP requests. More precisely, for each occurrence of a subformula ψ of φ, MC(M, ψ) can be computed only once, which guarantees the overall number of calls of the form MC(M, ψ): it is sufficient to take advantage of dynamic programming and to work with a table to remember the values MC(M, ψ) already computed (omitted in the present algorithm). We recall that ∆ p 2 , a.k.a. PTIME NP , is precisely the class of problems that can be solved in polynomial time with an oracle in NP. We also take advantage of the fact that the model-checking problem for CTL + is in ∆ p 2 (see, e.g., [START_REF] Demri | Temporal Logics in Computer Science[END_REF]). It is natural to wonder whether the model-checking problem for the Parity-Energy ATL, also called pe-ATL in [START_REF] Monica | Parity-energy ATL for qualitative and quantitative reasoning in MAS[END_REF], when the energy bound is bounded below and unbounded above can be used to analyse the complexity of MC(RB±ATL + (1)). MC(pe-ATL) is in ∆ p 2 [START_REF] Monica | Parity-energy ATL for qualitative and quantitative reasoning in MAS[END_REF] and it seems hopeless to take advantage of this bound 3 to solve efficiently MC(RB±ATL + (1)) since MC(ATL + ) is already PSPACEhard [START_REF] Bulling | Verifying agents with memory is harder than it seemed[END_REF]. A notable difference between RB±ATL + (1) and pe-ATL, is that the parity condition in pe-ATL is actually a global fairness condition for all the computations of the CGS.

Besides, we observe that the decision procedure we propose for solving the model-checking problem for RB±ATL + ({1}, 1) invokes the subroutine for the model-checking problem for CTL + with one counter, which we can solve optimally thanks to Lemma 2. The existence of a polynomial-time reduction between MC(RB±ATL + ({1}, 1)) and the model-checking problem for CTL + is guaranteed, as both problems are ∆ p 2 -complete. How- 3 We thank Dario Della Monica for checking that the NP upper bound stated in [START_REF] Monica | Parity-energy ATL for qualitative and quantitative reasoning in MAS[END_REF]Theorem 5.1] is actually an ∆ p 2 upper bound in view of the algorithm developped in [START_REF] Monica | Parity-energy ATL for qualitative and quantitative reasoning in MAS[END_REF]Section 4] ever, in Algorithm 1, we rather use a Turing reduction using as subroutines MC(CTL + ) on finite transition systems and modelchecking for CTL + on 1-VASS. The question about the encoding of MC(RB±ATL + ({1}, 1)) into plain CTL + is certainly interesting and solving Condition (A) and (B) used in Lemma 1, actually amounts to detect graph-theoretical properties on the 1-VASS, so a direct encoding is plausible.

4 Model-checking RB±ATL + (r)

In [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF], the 2EXPTIME upper bound for MC(RB±ATL) is obtained with a decision procedure calling subroutines to solve the nontermination and the control state reachability problems for AVASS on instances of the form AM,A,s , as described in Section 2.2. On the other hand, to obtain the 2EXPTIME upper bound for MC(RB±ATL * ) also in [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF], the decision procedure calls a subroutine for solving the parity game problem for AVASS (see Section 2.2) but, in the worst-case, on systems with a doubly-exponential number of locations in the size of the input formula. Indeed, synchronised products are considered between deterministic parity automata (on ω-words) and systems of the form AM,A,s . This is due to the fact that given an LTL formula, an equivalent deterministic parity automaton might have a doubly-exponential number of states in the size of the input LTL formula (see e.g. [START_REF] Vardi | Reasoning about infinite computations[END_REF][START_REF] Schewe | Tighter bounds for the determinisation of Büchi automata[END_REF]). Hence, even when the number of resources r is fixed (which is an assumption made in this section), solving MC(RB±ATL + (r)) by using the method in [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF], would lead to an 2EXPTIME upper bound.

In this section, we explain how to reduce one exponential by providing a decision procedure that solves MC(RB±ATL + (r)) in exponential time, when r is fixed (this is optimal as soon as r ≥ 4). Such an improvement can be explained by the fact that reasoning about LTL formulae of temporal depth one is usually simpler than for arbitrary LTL formulae (see, e.g., [START_REF] Demri | The complexity of propositional linear temporal logics in simple cases[END_REF]Section 7.3]). Apart from our new EXPTIME bound, this section can be viewed as providing an alternative decision procedure for solving MC(RB±ATL + ) without going through the determinisation of Büchi automata, or as generalising the reduction used to decide RB±ATL [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF], but at the cost of building AVASS with an exponential number of locations (which is strictly more expensive than for RB±ATL, but strictly less than for RB±ATL * ). As CTL + is exponentially more succinct than CTL [START_REF] Th | CTL + is exponentially more succinct than CTL[END_REF], which entails that some ATL + (resp. RB±ATL + (Ag, r)) formulae can be exponentially more succinct than ATL (resp. RB±ATL(Ag, r)) formulae, this extra cost for MC(RB±ATL + (r)) is most likely the best we can hope for.

Carefully constructing AVASS

In this section, we assume that Ag = [1, k] for some k ≥ 1 and we explain how to handle the verification of the satisfaction of (M, s ) |= A b Ψ, for A ⊆ Ag and b ∈ N r . To fix notations, let M = Ag, r, S, Act, act, wf, δ, L . As in Section 3, without loss of generality, we assume that Ψ is a Boolean formula in NNF built over atomic formulae of the form X p or p U q where p, q are atoms. To determine the satisfaction of (M, s ) |= A b Ψ, we construct an AVASS A = (Q , r, R 1 , R 2 ), a colouring col : Q → [0, 1] (defining a co-Büchi condition), and q ∈ Q such that 1. (M, s ) |= A b Ψ iff there is a proof with root labelled by (q , b) such that all the maximal branches are infinite and the maximal colour that appears infinitely often is 0. In Section 2.2, we show how to define an AVASS AM,A,s = (Q, r, R1, R2) from M , A and s . The AVASS A is made of copies of AM,A,s so that the general behavior of AM,A,s is preserved, but we decorate the locations with a finite memory taking care of the satisfaction of the path formula Ψ or those generated from it.

Let us provide a few more definitions. W.l.o.g., we assume that Ψ is a positive Boolean combination of atomic path formulae of one of the following forms: G , U , U( 1 ∧ 2 ), X where the 's are literals. Notice that the transformation to obtain this shape can be performed in linear time.

Let s be in S and Φ be a Boolean combination of atomic path formulae of the above form. We write s(Φ) to denote the path formula obtained from Φ according to clauses (1)-( 4) below. Intuitively, when Φ is a path formula to be satisfied on the extension of a current finite computation and s is visited next, the path formula s(Φ) is obtained from Φ by replacing the atomic path formulae in Φ that are definitely true or false by or ⊥, respectively. The final value for s(Φ) is obtained by using simplification rules to eliminate or ⊥, if possible. Hence, s(Φ) may take the values ⊥ or (not strictly speaking path formulae, but we assume so below). We write S(Ψ) to denote the set of path formulae obtained from Ψ by successive applications of s(•) for some s ∈ S. Here are its main properties.

Lemma 3 Let Ψ be a path formula as above, M be an RB-CGS and λ be one of its computations.

(correctness) M, λ |= Ψ implies M, λ ≥1 |= s(Ψ) with λ[0] = s. (small size) Ψ ∈ S(Ψ) and |S(Ψ)| is in O(2 |Ψ| ).
(stabilisation) There is i ≥ 0 such that for all j ≥ i, we have λ

[j](• • • (λ[0](Ψ)) • • • ) = λ[i](• • • (λ[0](Ψ)) • • • ).
The proof is by an easy verification. Let us return to the construction of Q . By definition, Q is equal to S(Ψ)×Q so that each Φ ∈ S(Ψ) has its copy of AM,A,s . A location (Φ, q) is intended to follow the rules of AM,A,s to satisfy the path formula Φ. In order to update Φ, when the proof visits a next location q attached to the state s ∈ S, the next location in Q becomes (s (Φ), q ). The location q is defined as the pair (s (Ψ), s ), where s (Ψ) is built from the first three clauses only for defining s(•) (i.e., the atomic path formulae of the form X are exceptionnally ignored to start with). Let us explain now how to define the unary and fork rules when only locations in S(Ψ) × Q are involved (Φ ∈ S(Ψ)).

• If (s , u, (s , f )) ∈ R1, then ((Φ, s ), u, (Φ, (s , f ))) ∈ R 1 and if ((g, s), u, (s, f )) ∈ R1, then ((Φ, (g, s)), u, (Φ, (s, f ))) ∈ R 1 . The unary rules (related to the actions of the coalition A) do not update the first argument Φ as no next location is reached.

• If

((s, f ), (g1, s1), . . . , (gα, sα)) ∈ R2, then ((Φ, (s, f )), (s1(Φ), (g1, s1)), . . . , (sα(Φ), (gα, sα))) ∈ R 2 .

Consequently, a proof involving locations in S(Ψ) × Q leads to a proof in AM,A,s when the first component in (Φ, q) is removed. For all (Φ, q) in Q , we have col ((Φ, q)) def = 0 if {G 1, . . . , G n} |=PROP Φ, where G 1, . . . , G n are the Gformulae in Φ and |=PROP is the propositional entailment (which can be checked in LOGSPACE [START_REF] Lynch | Log Space recognition and translation of parenthesis languages[END_REF]). Otherwise, col ((Φ, q)) def = 1. In particular, by definition, col ((⊥, q)) = 1 and col (( , q)) = 0. The rationale for the definition of col is simply that an infinite branch of a derivation in A , at some point Φ stabilises and all the states in S attached to the locations on that branch satisfies all the G-formulae in Φ (otherwise some of them would be replaced by ⊥). The colour zero is attached only to locations in Q for which the satisfaction of all the G-formulae entails the satisfaction of the terminal path formula Φ. Correctness of the construction is stated below. 

The model-checking algorithm

We immediately state the main result of the section.

Theorem 3 For all r ≥ 1, MC(RB±ATL + (r)) is in EXPTIME.

The proof of Theorem 3 uses a labelling algorithm, very similarly to the one in the proof of Theorem 2. However, to decide whether (M, s ) |= A b Ψ, for b ∈ (N ∪ {ω}) r , we first perform a reduction of the dimension by identifying the component in b equal to ω. Then, we take advantage of Lemma 4 in order to check an instance of the corresponding parity game problem for AVASS, which can be done in exponential time. As the number of such requests is only polynomial in the size of the input formula, the whole algorithm runs in exponential time. Based on [START_REF] Courtois | Alternating vector addition systems with states[END_REF][START_REF] Alechina | On the complexity of resource-bounded logics[END_REF], we get the following corollary. The EXPTIME lower bound follows from [2, Corollary 1]. Specifically, in the proof of [2, Theorem 3] (by reduction from the control state reachability for AVASS [START_REF] Courtois | Alternating vector addition systems with states[END_REF]) RB-CGS can be restricted to two agents. The EXPTIME upper bound is from Theorem 3. In the case of a single resource, we obtain the following bounds. of MC(ATL + ) [START_REF] Bulling | Verifying agents with memory is harder than it seemed[END_REF]. Though establishing an EXPTIME upper bound for MC(RB±ATL + (1)) reveals a substantial improvement in complexity compared to the 2EXPTIME-completeness of MC(RB±ATL * ) [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF], the exact complexity remains open and seems quite challenging. It is still unclear to us whether the developments in [START_REF] Bulling | Verifying agents with memory is harder than it seemed[END_REF]Section 3.2] or in [START_REF] Goranko | Game-theoretic semantics for ATL + with applications to model checking[END_REF] about MC(ATL + ) could be adapted to obtain an optimal upper bound.

Conclusion

We proved that the model checking problem for RB±ATL + ({1}, 1) is in ∆ p 2 (Theorem 2) by essentially introducing the generalised reachability problem for 1-VASS, and showing it to be in PTIME (Theorem 1). Hence, MC(RB±ATL + ({1}, 1)) is no more complex than MC(CTL + ), despite the greater expressive power due to the presence of one resource. For r ≥ 1, MC(RB±ATL + (r)) is proved to be in EXPTIME, with an identical upper bound for its subproblem MC(RB±ATL(r)). To show this, we presented a reduction to the parity game problem for AVASS that is optimal complexity-wise, so that we avoid the doubly-exponential blow-up observed when defining the reduction from MC(RB±ATL * ) in [START_REF] Alechina | On the complexity of resource-bounded logics[END_REF]. When r ≥ 4, we obtain EXPTIME-completeness (Corollary 1).

Though we managed to lower the complexity of MC(RB±ATL + (Ag, 1)) by one exponential (EXPTIME for |Ag| ≥ 2), it is an open problem whether there is a procedure running in polynomial space (notice that MC(ATL + ) is known to be PSPACE-hard [START_REF] Bulling | Verifying agents with memory is harder than it seemed[END_REF]). To this end, refined analyses from [START_REF] Chatterjee | Energy parity games[END_REF][START_REF] Malvone | Concurrent multi-player parity games[END_REF][START_REF] Th | Perfect half space games[END_REF] might help. Besides, we know that CTL and CTL + are equally expressive [START_REF] Emerson | Decision procedures and expressiveness in the temporal logic of branching time[END_REF], and this result extends to ATL and ATL + [START_REF] Bulling | Verifying agents with memory is harder than it seemed[END_REF]. In both cases, the characterisation of the complexity for the respective model-checking problem differs. It is an open problem whether RB±ATL(Ag, r) and RB±ATL + (Ag, r), for |Ag| ≥ 2 and r ≥ 1, are equally expressive.
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 2 S i . We have the following equivalences: (M, s) |= ∅ b Ψ iff (KM , s) |= AΨ in CTL + , and (M, s) |= {1} ω Ψ iff (KM , s) |= EΨ in CTL + . Concerning the case (M, s) |= {1} b Ψ with b ∈ N, we have (M, s) |= {1} b Ψ iff (M , s) |= {1} b Ψ , which can be checked in NP by Lemma 2. By structural induction, one can show Algorithm 1 -RB±ATL + ({1}, 1) model checking -1: procedure MC(M, φ) case φ of 3: p: return {s ∈ S | s ∈ L(p)} 4:
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 2 |Q | is (only) exponential in |M | + |Ψ| and ||R 1 || ≤ k × max(||wf (s, a, a)|| : s ∈ S, a ∈ Ag, a ∈ Act).

1 .

 1 If G occurs in Φ and (M, s) |= , then replace every occurrence of G by ⊥. 2. If U occurs in Φ and (M, s) |= (resp. (M, s) |= ∨ ) , then replace every occurrence of U by (resp. by ⊥). 3. The clauses for handling U( 1 ∧ 2 ) are similar. 4. If X occurs in Φ and (M, s) |= (resp. (M, s) |= ), then replace every occurrence of X by (resp. by ⊥).

Lemma 4

 4 Let b ∈ N r . Then, (M, s ) |= A b Ψ iff there is a proof whose root is labelled by (q , b) and all the maximal branches are infinite and the maximal colour that appears infinitely often is 0.The tedious proof combines advantageously the properties of AM,A,s[START_REF] Alechina | On the complexity of resource-bounded logics[END_REF] and the ones for A related to the satisfaction of path formulae.As |Q| is in O(|M | 2 ), we have |Q | is in O(2 |Ψ| × |M | 2 ). The value ||R 1 || is bounded by k × max(||wf (s, a, a)|| : s ∈ S, a ∈ Ag, a ∈ Act),which is bounded by |M | 2 (direct consequence of the construction of AM,A,s ). By using the expression (|Q| × ||R1||) 2 O(r×log(r+p)) + O(r × log|| b||) for the parity game problem for AVASS (see Section 2.2), when r is fixed and p = 2, (M, s ) |= A b Ψ can be checked in exponential time in |M | + | A b Ψ|.

Corollary 1

 1 Let r ≥ 4 and |Ag| ≥ 2. Then, MC(RB±ATL + (Ag, r)) is EXPTIME-complete

Theorem 4

 4 MC(RB±ATL + (1)) is PSPACE-hard and in EXPTIME.
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