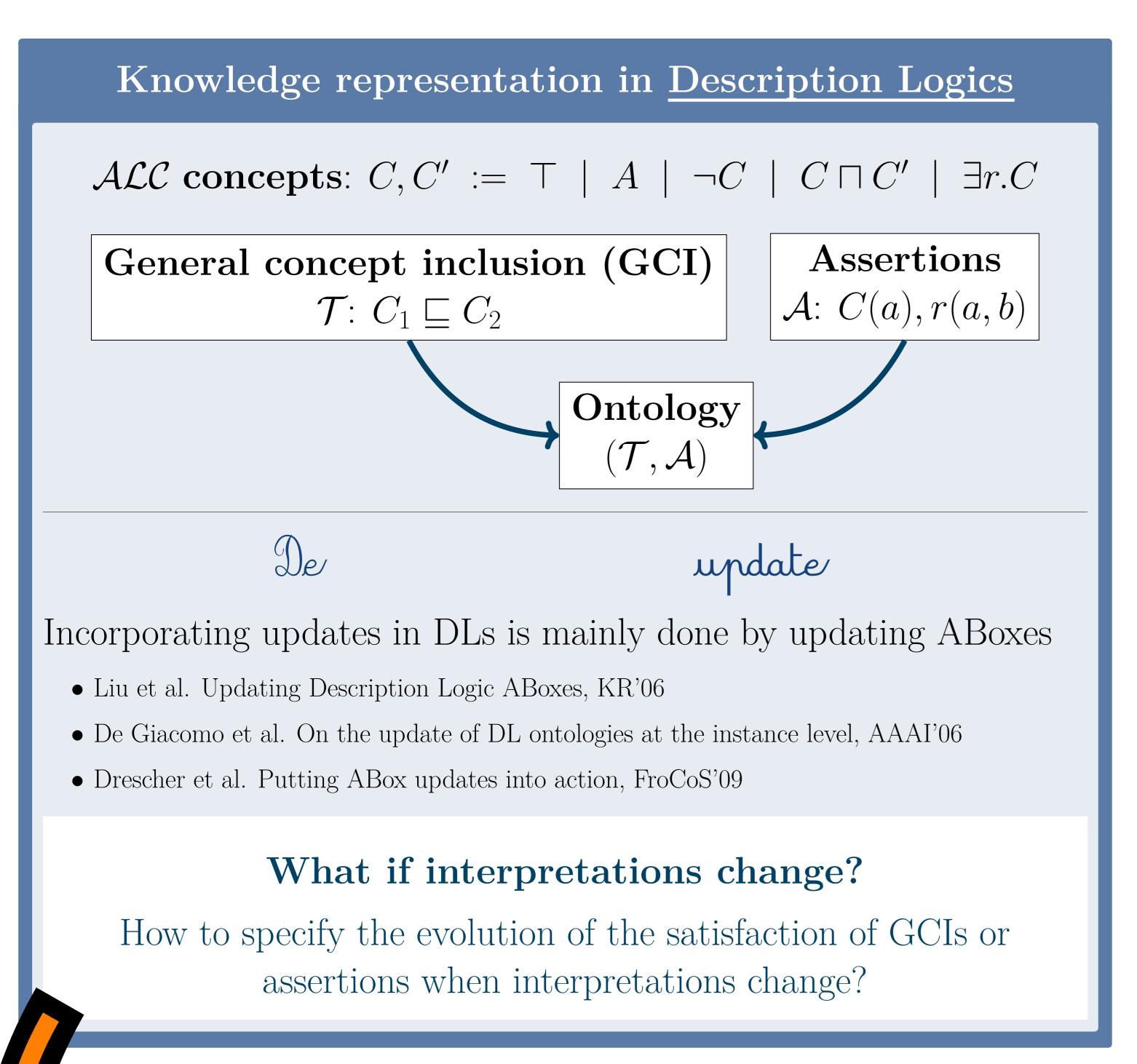
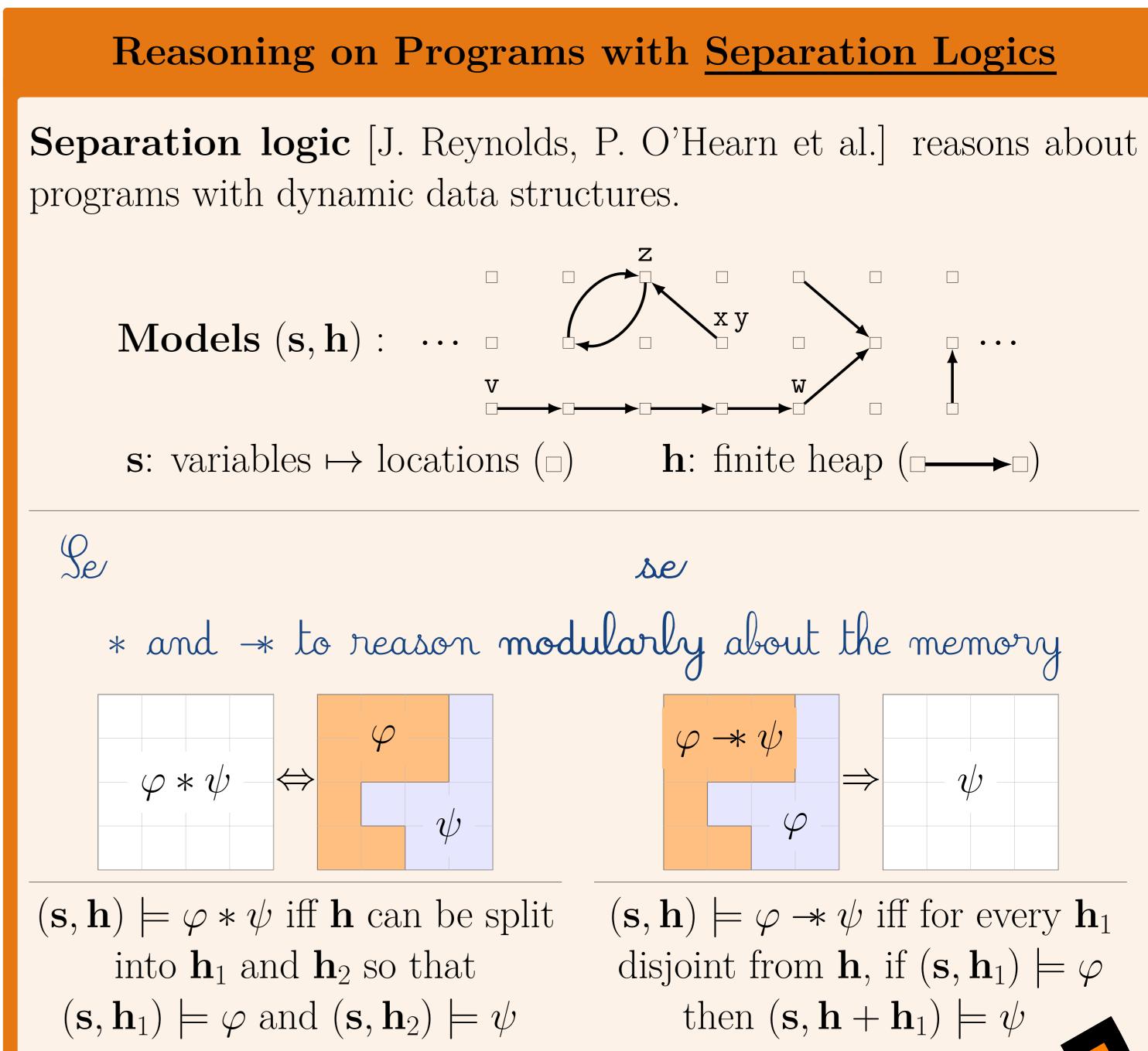
A Framework for Reasoning about Dynamic Axioms in Description Logics (IJCAI'20 paper #3662)

Bartosz Bednarczyk¹ Stéphane Demri² Alessio Mansutti²

¹Computational Logic Group, TU Dresden & Institute of Computer Science, University of Wrocław ²LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay





Our Framework: Description Logics enriched with Dynamic Axioms

We enrich the class I of interpretations with a **composition operator**

 $\oplus: \mathbb{I} \times \mathbb{I} \to \mathbb{I}$ that is *partial*, associative and commutative. In the paper, \oplus performs disjoint (de)composition of roles.

Our framework instantiates the bunched logic introduced in [P. O'Hearn, D. Pym. The logic of bunched implications, BSL'99].

Reasoning about update ontologie with connective se

Dynamic Axioms (DA): $\mathbb{U}, \mathbb{V} := \underbrace{\top \mid C(\mathtt{a}) \mid r(\mathtt{a},\mathtt{b}) \mid C \sqsubseteq D}_{\text{standard assertions and GCIs}} \mid \mathbb{U} * \mathbb{V} \mid \mathbb{U} * \mathbb{V} \mid \underline{\neg \mathbb{U} \mid \mathbb{U} \sqcap \mathbb{V}}_{\text{Boolean operations on dynamic axioms}}$

- $\mathcal{I} \models \mathbb{U}_1 * \mathbb{U}_2$ iff there are $\mathcal{I}_1, \mathcal{I}_2$ such that $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$, $\mathcal{I}_1 \models \mathbb{U}_1$ and $\mathcal{I}_2 \models \mathbb{U}_2$
- $\mathcal{I} \models \mathbb{U}_1 \circledast \mathbb{U}_2$ iff there is \mathcal{J} such that $\mathcal{I} \oplus \mathcal{J}$ is defined, $\mathcal{J} \models \mathbb{U}_1$ and $\mathcal{I} \oplus \mathcal{J} \models \mathbb{U}_2$ (\circledast is a kind of dual of \twoheadrightarrow)

Enriching ontologie dynamic axioms

Ontologies $(\mathcal{T}, \mathcal{A}, \mathcal{D})$ have now a third component, a finite set of DAs.

 \triangle Ontologies with *positive* (i.e. negation-free) DAs for \mathcal{EL} can be inconsistent, e.g. $r(a,b) \sqcap (r(a,b) \multimap \top)$.

The Consistency Problem with Dynamic Axioms: Main Results

Logic \ Dynamic axioms	Positive DAs	DAs
\mathcal{EL} $\left(C := \top \mid A \mid C \sqcap C \mid \exists r.C \right)$	PTIME (new proof system)	Undecidable (reduction from \mathcal{ALC} + role inclusions $r_1 \circ \cdots \circ r_n \sqsubseteq s$)
\mathcal{ALC}	ExpTime-complete (translation into \mathcal{ALCOb})	