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1Université de Rouen, M2C, UMR 6143, CNRS, Morphodynamique Continentale et Côtière, 76821 Mont Saint Aignan, France. E-mail:
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S U M M A R Y
We present an inversion algorithm to reconstruct the spatial distribution of the electrical
conductivity from the analysis of magnetometric resistivity (MMR) data acquired at the
ground surface. We first review the theoretical background of MMR connecting the generation
of a magnetic field in response to the injection of a low-frequency current source and sink
in the ground given a known distribution of electrical conductivity in the subsurface of
the Earth. The forward modelling is based on sequentially solving the Poisson equation for
the electrical potential distribution and the magnetostatic (Biot and Savart) equation for the
magnetic field. Then, we introduce a Gauss–Newton inversion algorithm in which the logarithm
of the electrical conductivity field is parametrized by using the chaos polynomial expansion
in order to reduce the number of model parameters. To illustrate how the method works, the
algorithm is successfully applied on four synthetic models with 3-D heterogeneous distribution
of the electrical conductivity. Finally, we apply our algorithm to a field case study in which
seepage was known to be occurring along an embankment of a headrace channel to a power
station.

Key words: Hydrogeophysics; Electromagnetic theory; Magnetic anomalies: modelling and
interpretation; Inverse theory; Numerical modelling.

1 I N T RO D U C T I O N

The characterization of the shallow subsurface in terms of electrical
conductivity/resistivity distribution can be done with galvanometric
and induction-based methods (e.g. Binley & Kemna 2005; Fried-
man 2005; Samouëlian et al. 2005; Florsch et al. 2012). Electrical
conductivity can be used to characterize the texture of porous soils
and rocks (Waxman & Smits 1968; Vinegar & Waxman 1984).
Electrical resistivity tomography (ERT) is one of the most popular
methods in the field of hydrogeophysics. These investigations con-
cern for instance the detection of the presence and development of
sinkholes (e.g. Jardani et al. 2006; Ezersky et al. 2013; Redhaounia
et al. 2016), the delineation of a contaminated aquifer (e.g. Abbas
et al. 2018; Grünhut et al 2018; Liao et al. 2018) and the mapping
of sea intrusion in coastal areas (e.g. George et al. 2004; De Franco
et al. 2009; Kazakis et al. 2016).

Galvanometric ERT is easy to perform partly because the sensors
(stainless steel electrodes) are simple and cheap. In addition, both
field multichannel resistivity meter and data processing software
are available (Loke & Barker 1996; Günther 2007; Karaoulis et al.
2011). Resistivity can also be obtained using a less-known technique
called the magnetometric resistivity (MMR) method. Earlier works

(Jakosky 1933) have established the theoretical foundations of this
method, which is based on the injection/retrieval of a low-frequency
electrical current in the ground between a pair of electrodes A and
B and measuring the three components of the magnetic field Bx, By

and Bz by using a magnetometer. The measured magnetic field is the
result of three contributions (Nabighian 1984). The first is due to
the wires used for the current injections and connected to the power
generator generally at the ground surface. The second contribution
called the primary field is assigned to the injected current at the
ground surface, which depends only on the intensity of the injected
current and the distance separating the current electrodes A and
B and the observation stations located in between. The third con-
tribution is associated with the contrast (gradient) in the electrical
conductivity of the ground. In order to isolate this last contribution
associated with subsurface heterogeneities, the first two contribu-
tions need to be computed from the Biot and Savart equation and
removed from the total measured magnetic field distribution (Ed-
wards 1974; Edwards & Howell 1976). Then, the residual magnetic
field is used in an inverse algorithm to reconstruct the heterogeneity
of the electrical conductivity field. In that respect, Chen et al. (2002)
implemented a Gauss–Newton algorithm to image the 3-D electrical
conductivity of the subsurface. LaBrecque et al. (2003) developed
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a joint interpretation of the electrical (potential) and magnetic resis-
tivity data. Kulessa et al. (2002) used magnetometric resistivity to
locate the plume of a solute in a saturated sand during a sandbox ex-
periment. Finally, Jessop et al. (2018) presented a new approach to
interpret MMR data, which relies on the reconstruction of the elec-
trical current density crossing the conductive media between two
current electrodes A and B instead of the electrical conductivity
distribution itself. This approach has been used to detect the con-
ductive anomalies associated with groundwater pathways in mine
rock dumps.

In this paper, we propose a new inverse formulation to handle
the MMR data in order to determine the 3-D electrical conduc-
tivity contribution. The approach relies on a Gauss–Newton algo-
rithm in which the electrical conductivity is parametrized with the
chaos polynomial expansion technique. In the past few decades, the
polynomial expansion methods were found to be an attractive and
promising tool to approximate the forward solution of stochastic
problems in engineering (Ghanem 1998; Ghanem et al. 2000; Le
Maı̂tre et al. 2001, 2002; Xiu et al. 2001; Debusschere et al. 2003;
Reagan et al. 2004) and were extended to solve the inverse prob-
lems (Marzouk et al. 2007; Abbasi & Gholami 2017). This type of
parametrization permits to significantly reduce the number of model
parameters required to estimate and enables solution convergence
in less time. Some similar ideas have been discussed in the litera-
ture in which the projection on the basis of interpolated functions is
adopted to interpolate meshing nodes, such as linear interpolations
and B-splines (de Boor 1978; Fomel 2000). Applications of these
approaches have been performed in the field of seismicity (Farra
& Madariaga 1988; Pereyra 1996; Zhang & Wang 2010). These
methods based on representing the interpolated function by piece-
wise polynomials can be considered as local approaches. In this
study, we attempt to work with a distinct global representation of
the model parameter representation, rarely applied in geophysical
studies to predict physical properties with less computation demand
in the inverse process (Abbasi & Gholami 2017). The approach is
validated with synthetic cases and is applied to a real case study.

2 T H E O R E T I C A L B A C KG RO U N D

2.1 MMR

MMR is an active geophysical method in which a magnetic field
is measured in response to the injection of a low-frequency current
between two electrodes A and B set up at the ground surface. This
magnetic field is associated with the electric current originating
from the connecting wires (connected to the current generator at the
ground surface), the injection current on a conductive homogeneous
subsurface and the relative contrasts in the distribution (gradients)
of the electrical conductivity field. The numerical simulation of
this phenomenon involves the Maxwell system of equations in their
quasi-static approximation (Chen et al. 2002; Chen & Oldenburg
2006):

∇ × E = 0, (1)

∇ · B = 0, (2)

∇ × B = μJ c, (3)

where E is the electric field (in V m−1), B = μH denotes the
magnetic flux density (in T), H is the magnetic field (in A m−1), μ

is the magnetic permeability of free space (4π × 10−7 T m A−1)
and Jc denotes the conduction current density (in A m−2).

For a low-frequency electrical field, eq. (1) implies that the elec-
trical field can be derived from a scalar potential ϕ (in V) by

E = − ∇ϕ. (4)

Induction is therefore neglected. The total current in the medium
can be decomposed into two components: a primary current flow
related to the source current density Js (in Am−1) and a volume
current flow due to the electrical field in the medium:

J c = σ E + J s = −σ∇ϕ + J s, (5)

where σ denotes the electric conductivity (in S m−1).
The conservation law for the charge is given by

∇ · J c = 0, (6)

∇ · (σ∇ϕ) = ∇ · J s . (7)

Using eq. (5) with eq. (7) yields the well-known equation where
the source of current density Js can be obtained by solving

∇ · J s = I
(
δ
(
r − r+

A

) − δ
(
r − r+

B

))
, (8)

where r denotes the position vector, r+
A and r+

B represent the po-
sitions of the current source and sink respectively for the current
electrodes A and B, I (in A) denotes the current and δ is the Dirac
distribution.

Eqs (7) and (8) can be reformulated as

∇ · (σ∇ϕ) = I
(
δ
(
r − r+

A

) − δ
(
r − r+

B

))
. (9)

This partial differential equation can be solved numerically with
an appropriate boundary condition to obtain the potential distribu-
tion ϕ. Once the electrical potential field is solved, the magnetic
field can be determined by solving

∇ × B = μ J c = μ (−σ∇ϕ + J s) . (10)

We solve below such a forward problem using a partial differen-
tial equation solver, namely COMSOL, based on the finite-element
method. The work is done in 3-D for the case studies discussed
hereafter.

2.2 Parametrization: polynomial expansion

The inverse problem in MMR is often challenging since the problem
is nonlinear between the magnetic field and the electrical conductiv-
ity field. It is also ill-conditioned and underdetermined (Chen et al.
2002). Particularly, when the inverse problem is formulated in the
large-scale scheme with a large number of model parameters to es-
timate, it requires imposing a suitable regularization constraint for
targeting a plausible and realistic solution (Kitanidis 1998). In this
approach, we aim to develop an overdetermined formulation using
a polynomial expansion that will significantly reduce the number
of model parameters. The most important advantage of the polyno-
mial expansion approach is that the transformation can provide an
estimation of the field within a desired precision without using a
huge number of terms (Marzouk et al. 2007).

The logarithm of electrical conductivity field can be parametrized
with the polynomial expansion (Wiener 1938; Xiu & Karniadakis
2002):

s =
∞∑

i, j,k=0

ai jk�i (x) � j (y) �k (z) , (11)
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where s = −log10σ , aijk are the coefficients and � i(x) is the orthog-
onal polynomial of degree i corresponding to axis x, and similarly
for � j(y) and �k(z). We use the logarithm of the conductivity field
as a target field to maintain the positiveness of the conductivity dur-
ing the inverse process and to avoid penalizing small conductivity
values. As shown in eq. (11), the expansion is composed from the
sum of an infinite series. However, in practice, the expansion must
be truncated into a finite number of terms, hereafter denoted as p,

s =
p∑

i, j,k=0

ai jk�i (x) � j (y) �k (z) . (12)

The high-order parts of polynomial expansion may increase quickly
for large values of x, y and z. As a result, � may excess to an extreme
value that leads to truncation in the computation, especially in our
case where the expansion is for a logarithmic-defined quantity (the
electrical conductivity distribution). For this reason, the variables
x, y and z should be normalized to length scales or/and multiplied
with weight functions:

s =
p∑

i, j,k=0

ai jk�̄i (x̄) �̄ j (ȳ) �̄k (z̄) , (13)

where x̄ = x/Lx , �̄i (x̄) = �i (x̄)w(x̄), with w being the weight
function and Lx is the length scale in the x direction; similar denoting
for the y and z directions. Hereafter, instead of solving inversion
problem to obtain the logarithm of the electrical conductivity, we
will develop an inversion approach to determine the value of the
polynomial coefficient aijk.

The Hermite polynomial is commonly used to construct an or-
thogonal basis to expand random variables or solve stochastic par-
tial differential equations (Abbasi & Gholami 2017). In this study,
we apply the Hermite polynomial expansion to approximate the
conductivity field. The higher order of polynomial expansion may
improve the precision of solutions, but it also leads to a potential
risk of high oscillations and an expensive computation cost in terms
of time and memory. For this reason, we limit the expansion at the
order of three, which corresponds to solve 64 variables aijk.

2.3 Inversion problem

The inversion process involves minimizing the objective function
defined as following:

L = (B − Bobs)
T R−1 (B − Bobs) + (a − aprior)

T �−1(a − aprior),

(14)

where B (n × 1) is the norm of predicted magnetic field and Bobs

(n × 1) denotes the norm of magnetic observation data with n is the
number of measurements. R (n × n) = ξ 2 I is the covariance ma-
trix of the measurement errors, I is an identical matrix and the scalar
ξ is set equal to 0.05 as the standard deviation of the measurement.
a(l × 1) is the vector of coefficient in the polynomial expansion of
the electrical conductivity in the logarithmic scale with l is the num-
ber of variables. The quantity aprior denotes the prior information
on the estimated values. This information could be independently
derived from other geophysical and geological surveys (Linde et al.
2006). The quantity � (l × l) is the regularization matrix defined
here as an identical matrix and the inversion process is initiated
with the first guess of a. Note that the first component a0 is equal to
the electrical conductivity of the background area and other com-
ponents equal zero to get a solution characterized by a small norm.
Theoretically, problems with a few numbers of parameters usually

do not require regularization. However, as the sensitivity matrix J
has a multidimensional null space in our cases, the solution thus
must be regularized to stabilize the inverse problem as shown in
eq. (16) (Tikhonov & Arsenin 1977).

We recall that the MMR method only provides an idea on the
contrast of the spatial distribution of electrical conductivity of the
investigated zone. Thus, the initialization of the inverse process with
a different value to the electrical conductivity of the background
does not impact the reconstruction of the geometry of the anomaly
or the gradient of the distribution.

Solving the inverted problem relies on an iterative process to
estimate the recent step ak+1:

ak+1 = ak + α 
a (15)

where


a = [
J T R−1 J + I

]−1
J T (Bobs − B) (16)

with α is a scalar estimated from minimizing the function L as-
sociated with a line search scheme and J (m × n) is the Jacobian
matrix

Ji j = ∂ Bi

∂a j
(17)

with Bi is the measurement i in B and aj is component j in a. The
computation of J adopts a numerical difference scheme that requires
to run the forward model with a perturbation of each component aj

in a. The perturbation is set to 0.001 in the simulation.

2.4 Applications

This section is dedicated to validating the method through five case
studies, starting with a simple case and moving on to more and
more complex cases. The tests are designed to simulate and to
cover various geophysical studies. The first application aims to de-
tect a single underground anomaly from the magnetic measurement
acquired on the ground surface. This targeted anomaly is defined
as a sphere buried in a homogeneous background that constructs a
discontinuous conductivity field. In the second study, we deal with a
continuous and heterogeneous electric conductivity field generated
with a geostatistical code, which is commonly encountered in geo-
science applications. In the third example, we disturb an electrical
conductivity field with an injection of salt under the measurement
stations. Here the electrical conductivity is an evolving field and
varies in both time and space, and this application case aims to
study the effectiveness of MMR to follow the movement of a con-
ductive body that can be a contaminant or saltwater intrusion. The
fourth synthetic test is designed to validate the algorithm in the
field conditions before applying in a real case study. We employ the
same arrangement with the real measurements that mimics the field
topography, electrical setting and magnetic stations. We finally ap-
ply the inverse scheme for a real investigation to detect preferential
paths of seepage occurring in an earthen embankment of a headrace
channel leading to a power station. To highlight the advantages and
limits of the approach, we perform on the second application a com-
parison of the inversion with chaos polynomial expansion and the
classical method of grid discretization, and a case study on the im-
pact of choice of the truncation order of the polynomial expansion
on the inversion results.

To evaluate the difference between the estimation and observed
data, we define the coefficient of determination as following:

R2 = 1 − SSR

SST
, (18)
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Figure 1. Geometry of the spherical anomaly with a conductivity of σ s = 0.1 S m−1 and background with a weak conductivity (σ = 0.001 S m−1) for case
study 1. The brown dots denote the injection (+Ii) and retrieval (-Ii) electrodes of the electrical current, where the subscript i indicates the measurement number.
The blue crosses denote the position of the measurement stations where the three components of the magnetic fields are measured.

Figure 2. Comparison of the magnetic fields. (a) Comparison between the magnetic field components at the position of the measurement stations for the
homogeneous ground (initial guess) and the magnetic field components with the presence of the conductivity anomaly in the ground. (b) Comparison between
the true and inverted magnetic field data components.

where SSR =
n∑
1

(Best − Bobs)2 and SST =
n∑
1

(Bobs − B̄obs)2 with

Best and Bobs denote the estimation and observed magnetic compo-
nents, respectively, B̄obs is the mean of Bobs and n denotes the number
of observation data.

2.5 Case study 1

In the first case, we test the efficiency of the approach in uncovering
of a single conductive anomaly buried in a homogeneous back-
ground. A spherical anomaly of radius 3 m is located within the
medium at the depth of 4 m from the ground surface. The electrical
conductivity of the sphere is 0.1 S m−1, which is more conductive
than the surrounding environment characterized by a conductivity
of 0.001 S m−1.

A primary electrical current is generated by the injection of
50 mA on two pairs of electrodes (A and B) installed at the depth
1 m from the ground surface; and 25 measurement stations are
placed at the surface of domain to record the horizontal magnetic
components (vertical component is neglected; see Fig. 1). The in-
vestigation has been conducted with two injections in which the
electrodes of each pair are located at the two opposite corners and

outside of the observation field. The analysis of the magnetic re-
sponses represents a margin difference between a model with the
abnormal and homogeneous background (see Fig. 2a). This mi-
nor secondary anomaly is a challenge in the inversion process
and its contamination by the noise may affect the quality of the
prediction.

As mentioned above, the conductivity field is represented using
the Hermite polynomial expansion of order three that corresponds
to estimate 64 parameters in the inverse problem for 100 measure-
ments of magnetic field. This makes the problem overdetermined.
To initiate the inversion scheme, we use the value of the background
electrical conductivity, starting therefore with a uniform model. The
computation converges after four iterations and the predicted MMR
in comparison with the true data is plotted in Fig. 2(b) where the
estimation reproduces well the true magnetic field with a determina-
tion coefficient R2 = 1.00. The inverted conductivity field associated
with the true sphere is illustrated in Fig. 3. The heterogeneity in the
medium is constructed in a spherical shape with some minor irreg-
ularity at the poles and along the equatorial region. However, the
inverted conductivity field does not perfectly reproduce the true val-
ues of the conductivity anomaly. The issue may be due to the effect
of the interpolation used in the parametrization when the polyno-
mial series employed poorly describe the sharp change between the
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Figure 3. Comparison between the inverted conductivity field in logarithmic
scale (−log10σ ) with the true spherical anomaly (black mesh, true model).

Figure 4. The true random conductivity field in logarithmic scale (−log10σ )
for case study 2.

abnormal and its background. Nevertheless, the inverted solution
can still provide useful information concerning the conductivity
distribution of the subsurface. This point will be developed further
in Sections 2.5 and 2.6.

2.6 Case study 2

We test now our algorithm for a more complex case in which a
heterogeneous conductivity field is used to model the subsurface. A
cube of 10 × 10 × 10 m locates right below the ground surface. The
heterogeneity of this conductivity field is a four-order variation with
a logarithmic range from −4.5 to −0.5 (see Fig. 4). The generation
of the conductivity field follows a Gaussian distribution of which
the sill and range are equal to 0.5 and 10 m, respectively, employ-
ing the geostatistical approach in the SGMS software (Deutsch &
Journel 1997). This 3-D cube is buried in a uniform half-space of
conductivity 0.005 S m−1 (equal to the mean of the random conduc-
tivity field) that is also used to reduce the impact of the boundary
conditions.

We use the same observation array as in the previous case study
(Fig. 5). The inverted process solves 64 coefficients of the polyno-
mial expansion from calibrating 100 magnetic data observed on the

surface. The algorithm converges after 22 iterations and the pre-
dicted conductivity field in logarithmic scale is plotted in Fig. 6(a).
The comparison between the true input and the inversion conductiv-
ity in logarithmic scale is illustrated in Fig. 6(b) with an R2 equal to
0.89. The noise effect of the data measured is not considered in this
study, however, such contamination may influence to the inverted
solution quality.

The predicted field reproduces well the main aspect of the true
heterogeneous conductivity in both terms of shape and values ex-
cept some smoothness. The prediction seems to approach better
the distribution of the recovered field in comparison to case study
1 when the Hermite polynomial expansion can interpret closely a
continuous distribution. This improvement may contribute to the
compatibility between the nature of the targeted conductivity field
and the expansion series adopted. In this case, we apply the Hermit
series to compose continuous polynomial functions, which properly
approach better for a smooth distribution.

In the previous solution, we adopt the third order in the poly-
nomial expansion. To further discuss the influence of choice of
the truncation order on the inversion results, we solve the same
problem using only two-order polynomials. This parametrization
only makes 27 coefficients to estimate with respect to 100 mea-
surements. The inverted conductivity field distribution is shown
in Fig. 7(a). A comparison with the true conductivity field is
plotted in Fig. 7(b). The prediction adequately follows the het-
erogeneities in the target medium, with lower precision com-
pared to the inversion of the three-order polynomials as shown in
Fig. 6.

Two-order polynomials provide a very smooth distribution of the
electrical conductivity field. In the next test, we adopt four-order
polynomials to reconstruct the conductivity field. The parametriza-
tion involves a total of 125 coefficients to be determined versus a
total of 100 measurements or observations. Therefore, we work here
with a slightly underdetermined problem instead of an overdeter-
mined problem as done in the previous tests. That said, we can still
apply the same solving scheme with an identical matrix in the regu-
larization term. The inverted conductivity field is shown in Fig. 7(c)
with a comparison to the true field in Fig. 7(d). Overall, the MMR
prediction properly reproduces the subsurface conductivity. The al-
gorithm can hence be adopted for both over- and underdeterministic
problems.

To further validate our analysis, we perform an inversion using
the classical grid-based representation of the unknown parameters
for the same problem. The subsurface medium is discretized by
grid of 10 × 10 × 10 which results to 1000 variables to predict with
100 measurements as previous tests. Since the problem is strongly
underdetermined, it requires the use of a constraint in regularization
term. In this case, we opt for a geostatistical constraint by using the
covariance applied in the generation of the true field. The inverted
conductivity medium is illustrated in Fig. 8(a). The prediction rea-
sonably follows variations of the conductivity field in the subsurface.
However, the MMR grid-based solution also exhibits a significant
loss of resolution with depth, which is detailed in Fig. 8(b). The
inverted solution reproduces properly the upper half of the medium
while the lower half is poorly reconstructed. Such inaccuracy in this
case seems to be higher than our recent algorithm solution. This
difference may reflect that the polynomial approach globally works
when it approximates the whole medium with the same discrete
function, which differs from a grid-based approach. The accuracy
of upper part may then contribute to constrain the reconstruction of
lower part. In the next case studies, we discuss further the resolution
of MMR with depth.
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1474 Vu et al.

Figure 5. Position of the domain (grey area) for case study 2 where the heterogeneous electrical conductivity distribution shown in Fig. 4 is assigned. This
domain is buried in a background conductivity with a conductivity of σ = 0.001 S m−1. The brown dots denote the injection (+Ii) and retrieval (-Ii) electrodes
of the electrical current, where the subscript i indicates the measurement number. The blue crosses denote the position of the measurement stations where the
three components of the magnetic fields are measured.

Figure 6. The inverted conductivity in logarithmic scale (−log10σ ). (a) Inverted field. (b) Comparison between the true and inverted conductivity fields.

2.7 Case study 3: monitoring a salt plume migration

In this study, we attempt to track the evolution of a conductivity
field due to an injection of the saline solute through a well installed
underground (see Fig. 9). The perturbation in the electrical con-
ductivity associated with the migration of the salt tracer will be
monitored adopting the inversion process.

The initial electrical conductivity of a saturated soil is given by
(e.g. Waxman and Smits 1968)

σ = σ f

F
+ σs, (19)

where F = φ−m (-) is the electrical formation factor, which de-
pends on the porosity of the medium (φ, unitless), σ f denotes
the pore water electrical conductivity (in S m−1) and the power-
law (cementation or porosity) exponent m (unitless) ranges from
1.3 to 2.5 (Revil et al. 1998). In this test, we suppose φ = 0.3,
k = 1.5 to yield F = 6.086. The surface conductivity σ s (in S
m−1) corresponds to the conductivity of grains, which is sup-
posed to be constant in the whole aquifer and has the value of
0.005 S m−1.

The pore water conductivity is also dependent on the solute con-
centration (Jardani et al. 2013):

σ f = ac
(
β+ + β−)

e, (20)

where c is saline concentration of the pore water (in mol m−3), β+

(25 ◦ C) = 5 × 10−8 m2 s−1 V−1 and β− (25 ◦ C) = 7 × 10−8

m2 s−1 V−1 are the mobility of the cations and anions in the pore
water, respectively. e is the elementary charge of the electron
(e = 1.6 × 10−19 C) and a denotes a coefficient to convert the
unit of concentration from kg m−3 to mol m−3.

We simulate an injection of saline water into a homogeneous
ground from a well. The injection rate is constant of 1 m3 d−1

m−1. It locates at the depth from −2 to −5 m. We employ saline
as the contaminated source with a constant concentration of 1 mol
m−3. The test occurs continuously in 20 d and the magnetic field
is observed instantaneously at 5, 10 and 20 d from the beginning
of saline injection. The inversion process is designed to track the
evolution of the conductivity field.

We actually focus on the change in the electrical conductivity,
and we consider the transport properties of the tracer to be known
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Figure 7. Inversion results for various polynomial expansion orders. By row, from top to bottom for two-order (a and b) and four-order (c and d) polynomials.
By column, from left to right: inverted field and comparison to the true conductivity field.

Figure 8. The inverted conductivity in logarithm scale (−log10 σ ) using a grid discretization-based solution. (a) Inverted prediction. (b) Comparison to the
true conductivity. Inverted result shows the evolution of the resolution of MMR with depth. We clearly see that the prediction accuracy of the upper haft (black
crosses) is better comparing to one of the lower haft (red points).
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1476 Vu et al.

Figure 9. Configuration of the saline injection including the position of the injection electrodes and measurements for case study 3. The brown dots denote
the injection (+Ii) and retrieval (-Ii) electrodes of the electrical current, where the subscript i indicates the measurement number. The blue crosses denote the
position of the measurement stations where the three components of the magnetic fields are measured.

and controlled by the advection phenomena. The other processes,
such as reaction, adsorption or absorption, are excluded from the
transport equation. The flow obeys the Darcy equation with a ho-
mogeneous hydraulic conductivity of 10−4 m s−1 and porosity of
0.30. The longitudinal dispersity is αL = 10 m and the transverse
dispersity is αT = 3 m. We solve the system to obtain the concen-
tration field in space and in time. The corresponding conductivity
field is converted using eq. (13), which is the target anomaly in the
inversion process.

The inversion scheme applies the same observation arrangement
as in the previous cases, which consists of an array of 25 stations
and two pairs of current electrodes. The measurement stations are
located on the surface around the injection well. We assume that the
magnetic components are observed instantaneously at the time stage
desired, which include 100 data for each set of data. In other words,
the time required to get the data during a survey is much shorter
than the time required to change the conductivity distribution in the
subsurface by advection of the salty water. At each corresponding
stage, we employ a three-order expansion of the conductivity field
in three orthogonal directions. There are 64 coefficients to deter-
mine. Since the number of observations is larger than the num-
ber of model parameters, we are dealing with an overdetermined
problem.

The injection of saline into the ground leads to an accumulation of
salty water in the vicinity of the well. This accumulation gradually
expands around due to the transport of the solute by advection and
dispersion in the hydraulic conductivity field. We focus on the region
of 5 m around the well covering the area with string changes in the
electrical conductivity field. The result at 5 d after the injection is
illustrated in Figs 10(a)–(c). This figure shows the true perturbation
of the conductivity field, the inverted solution, and the comparison
between them.

At the beginning of the injection, the perturbation almost locates
in the close vicinity of the well with a resistivity of around 25 � m.
This value represents a sharp reduction from an initial (background)
value of 200 � m. The inverted estimation reproduces well the
tendency of the field variation, the inverted result shows a minor
smoothness at the injected well where the change is sharpest. Since
the perturbation strongly localizes in a narrow area, such small
anomaly will raise a difficulty in accessing by our expansion series
which favour a smooth target field therefore without discontinuities.

The result at the 10 d injection is shown in Figs 10(d)–(f) where
the contaminated area expanses associating with more perturbation
in the conductivity field. The inverted field reconstructs well both
shape and values of the electrical conductivity in the targeted area.
Due to the transport of salt, the conductivity gradually decreases far
away, while the accumulation of solute in the centre area shows only
a slight increment in the conductivity field. Once the disturbance
is less-localized around the well, the inverted estimation seems to
improve in providing a higher correlation coefficient to the true mea-
surement with R2 = 0.97 comparing to R2 = 0.58 of the previous
stage at 5 d after the injection. A similar aspect can be observed in
the data at 20 d of injection (Fig. 10). In the vicinity of the source, the
highest conductivity reaches 0.08 S m−1 when the contaminated so-
lute attains the source concentration. The inverted prediction shows
a good agreement with the true observations (R2 = 0.95). Overall,
the inversion results reconstruct well the evolution in the subsurface
except some loss of resolution at the bottom of the medium. This
example proves that the recent approach can be adopted to track
the evolution of a conductive tracer within a medium in space over
time.

2.8 Case study 4: accounting for the effect of topography

To imitate the behaviour of the process in a real condition, we
reproduce the field condition on a synthetic case by using: real
topography field, spatial positions of the measurements, shape of
electrical wire route and the location of injection electrodes. The
example serves as a validation aiming to test the effectiveness of
the algorithm before adopting it in the real observations.

The MMR data on the ground surface are collected in situ cov-
ering an area of about 200 m × 50 m as shown in Fig. 11 and the
outline of the site is illustrated in Fig. 12. The equipment is arranged
over an area of around 800 m × 800 m to investigate a field of about
200 m × 50 m. A DC current (I0 = 1.5 A) flows between bipoles A
and B to generate the magnetic response. The current electrodes are
set down to a depth of −1.5 m in the subsurface. The presence of
electric current in the wire lying along the ground surface generates
also a magnetic field. To consider and simulate this spurious effect,
the whole current wires is taken into account in the modelling of
the magnetic field.
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Figure 10. Conductivity evolves in time and space due to the saline injection. By column, from left to right: (a,d,g) true conductivity, (b,e,h) inverted estimation
and (c,f,i) comparison between them. By row, from top to bottom for data at time: (a–c) t = 5 d, (d–f) 10 d and (g–i) 20 d.

The resulting magnetic flux density is observed by a set of stations
located at the ground surface. The system consists of 361 measure-
ments arranged along a regular grid of 3.5 m in the x-direction
and 2.5 m in the y-direction. Theoretically, the three components
of the magnetic flux density are recorded; however, since the verti-
cal component is negligible comparing to the horizontal ones, our
data only focus on the values of the norm of the two horizontal
components.

In this test, we target a synthetic conductivity of which the log-
arithm random field is generated from Gaussian distribution func-
tions γ x,y = 1.5 exp(−r2/1502) for the x- and y-directions (horizon-
tal) and γ z = 1.5 exp(−r2/502) for the z-direction (vertical) with r
is the distance. The conductivity field exhibits a conductive channel
appearing in the shallow middle part of the investigated subsurface
(see Fig. 13). This superficial anomaly is tagged as anomaly A1
below. It extends in an area of around 50 m long to a depth of 20 m
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Figure 11. Topography of the field and the position of observation stations
(black dots) for case study 4.

with an average conductivity of 0.05 S m−1. Two other anomalies
characterized by less conductive areas locate at the depth of 30 m
as marked in Fig. 13. One locates right below the anomaly A1 with
an average conductivity of 10−4 S m−1, denoted as the anomaly A2.
Another smaller anomaly is located at the limit of the measurement
field (anomaly A3, see Fig. 13).

The numerical model is computed on a region
1800 m × 1800 m × 100 m with the real topography; how-
ever, the investigated area is around 250 m × 100 m × 50 m with
a mean electrical conductivity of 10−3 S m−1. The targeted area
is emerged in a half-space of a uniform conductivity 10−3 S m−1

as a boundary condition in the simulation. The forward problem is
implemented in the COMSOL and the inversion process is solved
in MATLAB. We approach the logarithm of the conductivity field
by using the Hermite series with three-order polynomials. This
corresponds again to 64 model parameters.

The inversion process starts with a uniform conductivity equal
to the background value. High contrast in conductivity within the
targeted zone is reflected in a significant anomaly in the magnetic ob-
served on the ground surface in comparison to the relative response

Figure 12. 3-D design to detect the anomaly, including the source/sink electrodes A and B, the wire (blue line) and the observation station (black dots).

Figure 13. True conductivity field in logarithm, including three anomalies: more conductive anomaly (A1) and other two less conductive anomalies (A2 and
A3).
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Figure 14. Magnetic field (in nT). (a) Observation data of the medium containing the anomaly. (b) Magnetic field corresponding to the initial homogeneous
medium. (c) Comparison between them.

Figure 15. Magnetic field distribution (expressed in nT). (a) Inverted magnetic field distribution. (b) Comparison between the observations and the inverted
magnetic field.

Figure 16. Inverted logarithm of the conductivity field (−log10σ ). (a) Inverted conductivity field distribution. (b) Comparison between the recovered and the
true fields.

of the uniform model (see Fig. 14). Differences are shown in both
shape and magnitude. The stronger variation in the shape of mag-
netic contour maps is clearly observed around the shallow anomaly
A1. As demonstrated in previous studies, the deep anomalies often
exhibit a narrow influence on the induced magnetic observed on the
surface. The inversion process converges after 90 iterations and the
inverted magnetic field is plotted in Fig. 15. The estimation resulted

from the inversion reproduces well the observation magnetic field
with R2 = 1.00.

The inverted conductivity result is demonstrated in Fig. 16 with
the comparison to the true field (down to 30 m depth from the ground
surface). The estimation reproduces well the patterns in the medium
including three anomalies, even though we have precision loss at
the bottom boundary of around 40 m depth which corresponds to
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Figure 17. Observed magnetic field strength ||B|| (expressed in nT).

the anomalies A2 and A3. Because the width of the gauged area is
of only 50 m approximately, the bottom boundary is at the limit of
the investigable range. A similar problem can be observed at other
boundaries where some noises appear. Anomaly A3 also locates
near at the edge of the survey area, its predicted location is slightly
shallower than the true location.

Another point worth discussion is the degradation of resolution of
solution with depth which is a typical limitation of many geophysi-
cal method such as: the electrical resistivity method, self-potential,
gravimetry and magnetic methods. As shown in Fig. 16, the anomaly
A1 near the ground surface is well reproduced in both terms of
shape and value. However, the inverted tomography only constructs
the shape of deeper anomalies, while the value of conductivity is
poorly inverted; the error may excess orders of amplitude near the
boundary. There are probably two reasons that contribute to this
misinterpretation. First, it is usually more difficult to provide an ac-
curate reconstruction of the deep area which locates far away from
the monitoring stations installed on the ground surface because the
primary field is still mainly focused in the shallow zone, and the
deeper cells have a less impact on the inverse result. To tackle the
problem of resolution in depth, some attempts have introduced using
a depth-weighting function by giving increasing weight to voxels at
increasing depth (i.e. Li & Oldenburg 1996). However, this weight-
ing function is inapplicable in our case where the parametrization
is not defined by pixels or explicit location. Secondly, when the
conductivity field is approached using a polynomial expansion, this
approximation itself is a source of inaccuracy. Mathematically, this
latter error depends on the correspondence between complexity of
the targeted field and the expansion basis employed.

As discussed in Lu et al. (2015), a shortcoming of this projec-
tion approach is that the interpretation quality depends on adequacy
of the statistic of the field to the choice of the polynomial basis.
This limitation can be well-observed through comparing the result
quality of previous examples. In the first three cases where the dis-
tribution of conductivity in the subsurface is Gaussian and rather
simple, these fields fit to a polynomial projection, and consequently
are correctly inverted. But this may not be always the case. To mit-
igate this shortcoming, it is promising to consider a hybrid scheme
where this global smooth representation compromises with a local
interpretation to compensate the smoothness. The local approach
could be a gridded representation or B-splines. However, the solv-
ing system is more complicated in considering further assessment
for the coupling representation.

2.9 Field case study

Now, we apply the algorithm to investigate the subsurface beneath
a headrace canal containment embankment, with a specific purpose
to delineate paths of groundwater flow leading to a spring where
seepage is known to occur. The canal’s embankments were con-
structed from boulder clay and gravel materials, lain directly on
original ground surface after stripping away the organic matter in-
cluding roots. The canal embankments were unlined; but the canal
bed and sides (up to original ground level) were given 0.60 m of
puddle lining where the canal was on porous soils.

The setting of the measurement field is the same as the previous
synthetic case, except the real observation data are implemented to
explore the real field. The current electrodes are arranged outside
and in the centre line of the survey zone at the depth −1.5 m. The
current source (A) is located in the headrace canal near the opposite
embankment, and the sink (B) is installed some 30 m down-gradient
of the embankment toe, close to the spring where seepage had
been monitored. The two electrodes connect through an electric
wire of about 2500 m length, arranged far away from the magnetic
measurement stations to limit the interference of the current flowing
in the power lines (Fig. 12). An AC electric current, at 380 Hz, is
generated at electrodes A and B with an amplitude of 1.5 A. Fig. 17
displays the norm of the recorded magnetic horizontal vectors at the
ground surface. The magnitude of the magnetic field ranges from
0.75 to 5.25 nT. Since the electrode B is close to the observation
area, it strongly influences the measurement in the down-gradient
area, shaping a radial distribution in the data amplitudes.

The inversion process starts from an initial guess as a homoge-
neous conductivity field of 10−3 S m−1 change the final results).
The magnetic field computed from this homogeneous model and its
comparison to the observation are both illustrated in Fig. 18. The
two magnetic fields are of the same form and magnitude order, such
similarity somewhat implies that the conductivity distribution is not
strongly heterogeneous in this area. The inversion converges after
63 iterations and the estimated magnetic contour map associated
with the optimal conductivity field is plotted in Fig. 19 together
with the observed data. The estimation reproduces well the form
and magnitude of the magnetic field measured with a coefficient of
R2 = 0.99. The 3-D conductivity field resulting from the inversion
is shown in Fig. 20. A strong correlation between the inverted and
observed data here, is better in comparison to one of sase study
4 with a similar condition, may contribute to the structure of the
investigated field. In this case, the seepage confined in the middle of
the subsurface as a single anomaly, which is easier than the previous
complex case with three anomalies of various ranges.

The variation of electrical conductivity in the ground that cor-
responds to the seepage zone is characterized by a conductivity
anomaly (σ = 0.01 S m−1) that differs from the background value
as shown in Fig. 20. Inverted results provide evidence of a potential
ground water leakage from the headrace where the seepage path
occurs and causes the spring downstream of the embankment. Fol-
lowing this 3-D prediction, we can localize the seepage path which
should be closed by an existing grouting operation.

3 C o n c l u s i o n

The MMR inversion technique developed in this paper can be used
to invert 3-D conductivity field in the subsurface of the Earth. The
targeted conductivity distribution is modelled by using a chaos poly-
nomial expansion based on Hermite series. An advantage of the
polynomial method is that the number of variables can be limited
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Figure 18. Magnetic field in a uniform half-space. (a) Magnetic field (in nT) associated with a uniform medium. (b) Comparison between the measured
magnetic field and the magnetic field determined from a uniform half-space.

Figure 19. Inverted magnetic field. (a) Magnetic field. (b) Comparison with the observation data.

Figure 20. Prediction of logarithm of the conductivity field (−log10σ ), and the conductive path is presented by the blue surface (corresponding to a threshold
of σ = 0.01 S m−1).
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by truncating the expansion of the variable. Such truncation reduces
the variables inverted that helps to economize the input data required
in the inverse process and create a chance to solve the problem in
overdetermined condition. This approach is used to decrease the
number of unknowns in the inverse problem and hence requires
less observed data comparing to the conventional inversion pro-
cess. The forward solving involves two steps. First, we determine
the electric current density and then the corresponding magnetic
field. Differential equations from these two steps are numerically
solved with the finite-difference method. The inversion process is
iteratively implemented, including a sensitivity matrix computation
and the variables are estimated from a Gauss–Newton scheme. The
proposed algorithm is tested with four synthetic cases. It is also
applied to a real case study. Both discontinuous and continuous dis-
tributions of the conductivity field are investigated. The model can
also consider the real setting of the field measurement including the
electrical wire, sources and gauges, and topography.

As tested in this study, the inverted process is designed to tackle
the heterogeneity in the targeted medium that aims to track both
shape and conductivity value of the anomaly. The inverted results
expose to well reproduce the heterogeneity, even though the quality
of the prediction seems to depend on the structure of the targeted
field. The polynomial expansion approaches better in a continuous
medium of which both the distribution and range of conductivity
value are properly predicted. For a discontinuous targeted field,
where the anomaly exhibits a shape difference to the background,
the recent polynomial approach can track the shape of the anomaly,
however the value of heterogeneity is of a reasonable precision only.
This limitation may relate to the nature of polynomial functions
adopted in this study since the Hermite series approach better to
smooth variations in the targeted field. The ill-posed nature of the
inverse problem makes the interpretation of the data complex, which
must be supplemented by prior information on the studied area. In
these case studies, the solutions are strongly influenced by the choice
of smoothness degrees that are controlled by the polynomial order
and the initial model.

Ongoing work will extend the polynomial chaos approach to
the more complex inverse problem. For instance, other polynomial
series could be used to replace the Hermite expansion as in the
recent work to better track the sharp change in the medium. To
study a highly heterogeneous medium, an advanced scheme using a
multiscale approach should be also considered in order to approach
better the complexity of the medium and its statistics. Furthermore,
by using the same expansion for conductivity field, the algorithm
developed in this study is not only applicable for MMR but it can
be also extended for inversion in ERT or for the joint inversion of
ERT/MMR data.
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