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Bertrand Mercier. One dimensional study of the depressurization process and solution of the Riemann Problem. 2020. hal-03005797 §1 Equation of state. In what follows the subscript ݂ (resp. )ݒ stands for liquid (resp. steam) We want to define an equation of state for an equilibrium diphasic mixture (steam + liquid). Such a mixture is at the saturation temperature ܶ. Let ݕ denote the liquid mass fraction. We know that the saturation pressure  and the Gibbs potential ݃ depend on ܶ only, not on ,ݕ provided that 0 < ݕ < 1. We have the following result Faccanoni et al [6] or Corot [2 ,p.158] :

Result : Let ߬ and ߝ be given : 1. Assume there exists ൫߬ * , ߬ ௩ * , ߝ * , ߝ ௩ * , ݕ * ൯ with 0 < ݕ * < 1 and solving the following system

Then the equilibrium state is a diphasic mixture and the associated entropy is ݏ = ݕ

1 One dimensional study of the depressurization process.

Bertrand Mercier Nov 13, 2020 Introduction In pressurized water reactors, depressurization occurs when there is a breach on the primary circuit, this is also called flash evaporation although it takes some time, as we shall see. We shall study this phenomenon numerically. Then we shall need an equation of state for equilibrium two-phase mixtures ( §1). We shall use 1D Lagrangian hydrodynamics and compare the Wilkins scheme [START_REF] Wilkins | Finite difference scheme for calculating problems in two space dimensions and time[END_REF] with the acoustic solver scheme [START_REF] Corot | A new nodal solver for the two dimensional Lagrangian hydrodynamics[END_REF] ( §2 and §3). We have used non conservative schemes, but we prove in §4 that, for this isentropic process, it gives almost the same results as the conservative version of the acoustic solver scheme. We then consider the steam explosion in §5, for which we just need a simple stiffened gas equation of state, and that we solve with the conservative version of the acoustic solver scheme. In §6, we come back to the study of the depressurization process for a pressurized but sub-saturated liquid for which we need to combine both equations of state. In §7 we find the exact solution of the Riemann problem in the two-phase case (with tabulated equation of state) and finally, in §8 we give the Lagrangian solution with the acoustic solver of the Riemann Problem considered in §7.

߬ ሺܶሻ = ሺ1 -ߠሻ߬ ሺܶ ାଵ ሻ + ߠ߬ ሺܶ ሻ

Method A : to compute , ܶ and ,ݏ when ߬ and ߝ are given :

Let ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ఌ ሺܶሻ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ ൗ
To compute ܶ we just have to solve the equation ݕ ఛ ሺܶሻ = ݕ ఌ ሺܶሻ. This is a non linear equation with one unknown ܶ which can be easily solved by

• finding ݅ such that ݕ ఛ ሺܶ ሻ > ݕ ఌ ሺܶ ሻ and ݕ ఛ ሺܶ ାଵ ሻ < ݕ ఌ ሺܶ ାଵ ሻ ܶ ≤ ߠ ≤ ܶ ାଵ • solving a second degree equation to find ߠ such that ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ and then .

(Indeed, we have to solve ൫߬ -߬ ௩ ሺߠሻ൯ ቀߝ ሺߠሻ -ߝ ௩ ሺߠሻቁ = ൫ߝ -ߝ ௩ ሺߠሻ൯ ቀ߬ ሺߠሻ -߬ ௩ ሺߠሻቁ

where the functions ߬ ሺߠሻ, ߬ ௩ ሺߠሻ, ߝ ሺߠሻ and ߝ ௩ ሺߠሻ are all linear in ߠ ) • Let ݕ * denote the common value of ݕ ఛ ሺܶሻ and ݕ ఌ ሺܶሻ we let ݏ = ݕ * ݏ ሺܶ ሻ + ሺ1 -ݕ * ሻ ݏ ௩ ሺ ܶሻ∎ Method B : to compute , ܶ and ߝ, when ߬ and ݏ are given : In the same way, we solve

ݕ ఛ ሺܶሻ = ݕ ௦ ሺܶሻ = ݕ * ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ௦ ሺܶሻ = ൫ݏ -ݏ ௩ ሺܶሻ൯ ቀݏ ሺܶሻ -ݏ ௩ ሺܶሻቁ ൗ
The details are left to the reader. ∎ Method C : to compute ߝ, when ߬ and  are given : This is still easier :  being given, first we evaluate ܶ and then compute ݕ * = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ

So that ߝ = ݕ * ߝ ሺܶሻ + ሺ1 -ݕ * ሻ ߝ ௩ ሺ ܶሻ. ∎

Test of our equation of state.

We let ߝ = ݂ሺ߬, ݏሻ : a well-known result in thermodynamics (see e.g. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF]) is that we should have

డ డఛ = - (1) 
To check that this is the case, we have selected ݏ = 4.4957 and 5.81494≤ ߬ ≤ 10.46689.

We compute the derivative of ߝ w.r.t ߬ both by forward and backward difference. The results given in Fig. 1 show a rather good agreement that make us confident with the validity of our equation of state.

Fig.1 pressure p vs -߲ߝ ߲߬ ⁄

Sound speed

When we select ߬, ݏ as the primitive thermodynamic variables, we have

(2) ܿ = ߬ ඥ-߲ ߲߬ ⁄ provided we use international units for each variable. When we select ߬, ߝ as the primitive thermodynamic variables, we shall see in §2 that

(3) ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ also in international units.
In the following test we replace partial derivatives by finite differences, and we get the results given in Fig 2 .   We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it is of the order of 1800 m/s. This result is well known. 

߬ ሺ݃݇/ܮሻ

 ሺܽܲܯሻ §2 The Wilkins scheme In Lagrangian coordinates, in 1D, the gas dynamics system can be written ( see e.g. B. Després [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] formula (2.21) page 20) :

(4) డఛ డ௧ -ܵ డ௨ డ = 0 (5) డ௨ డ௧ + ܵ డ డ = 0 (6) డா డ௧ + ܵ డ డ ሺݑሻ = 0
Where ߬ = 1 ߩ ⁄ and ݉ denotes the mass variable such that = ߩ. ܵ ݔ݀ , ߩ = ߩሺݔሻ is the volumic mass, ܵ denotes the tube section, and ݔ is the space variable. Moreover ܧ = ߝ + ݑ ଶ 2 ⁄ Is the total energy per unit mass. In §2 and §3 we shall assume that the flow is isentropic, so we don't need the energy equation ( 6) which, for smooth solutions, is equivalent to

(7) డ௦ డ௧ = 0 Proof When the solution is differentiable (6) implies డఌ డ௧ + ݑ డ௨ డ௧ + ܵ  డ௨ డ + ܵ ݑ డ డ = 0
so that, using (5), we get 1. With (6b) we see that our system of equations is an hyperbolic system : with  = ሺ߬, ߝሻ we have

డ డ௧ ቆ ߬ ݑ ߝ ቇ + ൭ 0 -ܵ 0 ܵ ߲ ߲߬ ⁄ 0 ܵ ߲ ߲ߝ ⁄ 0 ܵ  0 ൱ డ డ ቆ ߬ ݑ ߝ ቇ = 0
Provided that . ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ > 0 we can define ߙ = ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ , and see that this matrix has 3 real eigenvalues ±ܵߙ and 0. In the ሼ݉, ݐሽ the equation of characteristics is ݀݉ = ±ܵߙ .ݐ݀ Since ݀݉ = ߩܵ ,ݔ݀ we see that

ߩ ݔ݀ = ±ߙ ݐ݀ or ݔ݀ = ±ܿ ݐ݀ with ܿ = ߙ ߬ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ Which
proves that ܿ is the sound speed. Note that ߙ is the impedance. 2. We could have selected ܵ = 1 as Despres does in [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF]. However if we do that we get ݀݉ = ߩ ݔ݀ which is non homogeneous in terms of units. ∎

The Wilkins scheme [5]:

We introduce a « mesh » for variable : … ݉ ିଶ < ݉ ିଵ < ݉ < ݉ ାଵ < ݉ ାଶ …. Similarly we discretize time with a timestep ,ݐ∆ so we shall compute the approximate solution at the following discrete times :

0 < ݐ∆ < ݐ∆2 … < ݐ∆݊ < ሺ݊ + 1ሻ∆ݐ < ⋯
Our target is to simulate the depressurization process of a saturated liquid, which is represented by a rarefaction wave and is then isentropic. In the Wilkins scheme, pressures and volumic masses are cell centered, so we denote  ାଵ/ଶ and ߬ ାଵ/ଶ their values at time ݐ∆݊ on cell ሺ݉ , ݉ ାଵ ሻ However, velocities are defined on a staggered grid : ݑ ାଵ/ଶ denotes the velocity at node ݉ and time ሺ݊ + 1/2ሻ∆.ݐ The discrete analogs of ( 4) and ( 5) are :

(7)

ఛ శభ/మ ିఛ శభ/మ షభ ∆௧ -ܵ ௨ శభ షభ/మ ି௨ షభ/మ శభ ି = 0 (8) 
௨ శభ/మ ି௨ షభ/మ ∆௧ + ܵ శభ/మ ି షభ/మ శభ/మ ି షభ/మ = 0
For practical purpose, it is useful to come back to the physical space : the mesh in the physical space is updated as follows :

(9) 

௫ శభ ି௫ ∆௧ = ݑ ାଵ/ଶ

Boundary conditions

We shall assume that the depressurization process begins at time t=0, with a breach on the left side of the tube ሺݔ = 0 ݐܽ ݐ = 0ሻ. The pressure  * is given on the left boundary ݔ = ݔ .

On the right side we assume that there is a wall so that we set ݑ ே ାଵ/ଶ = 0.

The numerical results obtained with the Wilkins scheme are given in §3. §3 The acoustic solver scheme. [START_REF] Corot | A new nodal solver for the two dimensional Lagrangian hydrodynamics[END_REF][START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] We have seen on Fig. 1 that, if we write  = ݂ሺ߬, ݏሻ, for fixed ,ݏ ݂ሺ߬, ݏሻ is a decreasing function of ߬, so that the sound speed ܿ = ߬ ඥ-߲݂ ߲߬ ⁄ exists. In this section, we shall assume the flow to be isentropic which means that ݏ is constant. Let ሺߩሻ = ݂ሺ߬, ݏሻ , with ߬ = 1 ߩ ⁄ , we have

݃ ᇱ ሺߩሻ = ߲݂ ߲߬ ݀߬ ݀ߩ = - 1 ߩ ଶ ߲݂ ߲߬ = -߬ ଶ ߲݂ ߲߬ = ܿ ଶ
So that ܿ = ඥ݃ ᇱ ሺߩሻ The acoustic solver uses the following remarks on the linearized problem. We consider a small perturbation ݑ ଵ , ߩ ଵ of a permanent flow ߩ , ݑ .

Let ߬ = 1 ߩ ⁄ ,  = ݃ሺߩ ሻ et ܿ = ඥ݃ ᇱ ሺߩ ሻ . We shall have ݃ሺߩ + ߩ ଵ ሻ ≅ ݃ሺߩ ሻ + ݃ ᇱ ሺߩ ሻߩ ଵ =  + ܿ ଶ ߩ ଵ Hence  ≅  + ܿ ଶ ߩ ଵ and  ଵ = ܿ ଶ ߩ ଵ .
In the same way, we have ݀߬ = -݀ߩ ߩ ଶ ⁄ so that

߬ ଵ = -ߩ ଵ ߩ ଶ ⁄ and  ଵ = -ܿ ଶ ߩ ଶ ߬ ଵ
Replacing ݑ by ݑ + ݑ ଵ , ߩ by ߩ + ߩ ଵ in (4) and [START_REF] Wilkins | Finite difference scheme for calculating problems in two space dimensions and time[END_REF] We get

డ డ௧ ሺ߬ + ߬ ଵ ሻ -ܵ డ డ ሺݑ + ݑ ଵ ሻ = 0 డ డ௧ ሺݑ + ݑ ଵ ሻ + ܵ డ డ ሺ +  ଵ ሻ = 0
and then

డ డ௧ ߬ ଵ -ܵ డ డ ݑ ଵ = 0 or డ డ௧  ଵ + ܿ ଶ ߩ ଶ ܵ డ డ ݑ ଵ = 0 డ డ௧ ݑ ଵ -ܿ ଶ ߩ ଶ ܵ డ డ ߬ ଵ = 0 or డ డ௧ ݑ ଵ + ܵ డ డ  ଵ =
0 which is nothing but the linear wave equation, which can be solved by the method of characteristics : we have 

డ డ௧ ሺ ଵ + ߩ ܿ ݑ ଵ ሻ + ߩ ܿ ܵ డ డ ሺ ଵ + ߩ ܿ ݑ ଵ ሻ = 0 డ డ௧ ሺ ଵ -ߩ ܿ ݑ ଵ ሻ -ߩ ܿ ܵ డ డ ሺ ଵ -ߩ ܿ ݑ ଵ ሻ = 0

Remark 2:

Assume that we have an interface in ݉ = 0 such that

ߩ ሺ݉ሻ = ൜ ߩ ݂݅ ݉ < 0 ߩ ோ ݂݅ ݉ > 0 ൠ We shall have  ሺ݉ሻ = ൜  ݂݅ ݉ < 0  ோ ݂݅ ݉ > 0 ൠ with  = ݃ ሺߩ ሻ et  ோ = ݃ ோ ሺߩ ோ ሻ
Since there is no shock, we must have continuity of the pressure, and the velocity, so that in particular

݃ ሺߩ ሻ = ݃ ோ ሺߩ ோ ሻ However, it is possible that ܿ ≠ ܿ ோ and ߙ = ߩ ܿ ≠ ߙ ோ = ߩ ோ ܿ ோ Now, let ܪ ோ , ܬ ோ (resp. ܪ , ܬ
) denote the Riemann invariants on the right side ݉ > 0 (resp. on the left side ݉ < 0 ) we have

 ଵ ሺ݉, ݐሻ + ߙ ݑ ଵ ሺ݉, ݐሻ = ܬ ሺ݉ -ߙ ݐሻ  ଵ ሺ݉, ݐሻ -ߙ ݑ ଵ ሺ݉, ݐሻ = ܪ ሺ݉ + ߙ ݐሻ So that  ଵ ሺ݉, ݐሻ = ܬ ሺ݉ -ߙ ݐሻ + ܪ ሺ݉ + ߙ ݐሻ ݑ ଵ ሺ݉, ݐሻ = ሺܬ ሺ݉ -ߙ ݐሻ -ܪ ሺ݉ + ߙ ݐሻሻ/ߙ Similarly, on the leftside ݉ < 0 we find  ோ ଵ ሺ݉, ݐሻ + ߙ ோ ݑ ோ ଵ ሺ݉, ݐሻ = ܬ ோ ሺ݉ -ߙ ோ ݐሻ  ோ ଵ ሺ݉, ݐሻ -ߙ ோ ݑ ோ ଵ ሺ݉, ݐሻ = ܪ ோ ሺ݉ + ߙ ோ ݐሻ  ோ ଵ ሺ݉, ݐሻ = ܬ ோ ሺ݉ -ߙ ோ ݐሻ + ܪ ோ ሺ݉ + ߙ ோ ݐሻ ݑ ோ ଵ ሺ݉, ݐሻ = ሺܬ ோ ሺ݉ -ߙ ோ ݐሻ -ܪ ோ ሺ݉ + ߙ ோ ݐሻሻ/ߙ ோ
To match both sides we apply velocity and pressure continuity in

݉ = 0) ܬ ሺ-ߙ ݐሻ + ܪ ሺߙ ݐሻ = ܬ ோ ሺ-ߙ ோ ݐሻ + ܪ ோ ሺߙ ோ ݐሻ ൫ܬ ሺ-ߙ ݐሻ -ܪ ሺߙ ݐሻ൯ ߙ ⁄ = ሺܬ ோ ሺ-ߙ ோ ݐሻ -ܪ ோ ሺߙ ோ ݐሻሻ ߙ ோ ⁄
Which gives a relation between incident and reflected waves at the interface. Note that in the particular case ߙ = ߙ ோ we have ܬ ோ = ܬ and ܪ ோ = ܪ .∎

Definition of the « acoustic » scheme :

Its purpose is to solve the system (4) (5) namely

డఛ డ௧ -ܵ డ௨ డ = 0 డ௨ డ௧ + ܵ డ డ = 0
with a finite difference method. Like for the Wilkins scheme, we introduce a mesh for ݉ and a time discretization with a time step .ݐ∆ Integrating (4) and ( 5) pour ݉ ≤ ݉ ≤ ݉ ାଵ and for ݐ∆݊ ≤ ݐ ≤ ሺ݊ + 1ሻ∆ݐ we get (12)

ఛ శభ/మ శభ ିఛ శభ/మ ∆௧ -ܵ ௨ శభ శభ/మ ି௨ శభ/మ శభ ି = 0 (13) 
௨ శభ/మ శభ ି௨ శభ/మ ∆௧ + ܵ శభ శభ/మ ି శభ/మ శభ ି = 0
where ߬ ାଵ/ଶ denotes the (assumed to be constant) value of ߬ at time ݐ∆݊ on the cell ݉ ≤ ݉ ≤ ݉ ାଵ and the same for ݑ ାଵ/ଶ . There is no staggered grid here.

However, we have to evaluate some values ݑ

ାଵ/ଶ or  ାଵ/ଶ at the interface between two cells.

We shall use Riemann invariants.

We have seen that  -ݑߙ propagates from right to left and that  + ݑߙ propagates from left to right. To simplify notations we let

ݑ ோ = ݑ ାଵ/ଶ , ݑ = ݑ ିଵ/ଶ and ݑ * = ݑ ାଵ/ଶ  ோ =  ାଵ/ଶ ,  =  ିଵ/ଶ and  * =  ାଵ/ଶ
We shall ask that

 * + ߙ ݑ * =  + ߙ ݑ  * -ߙ ோ ݑ * =  ோ -ߙ ோ ݑ ோ By linear combination we get that (14) ሺߙ ோ + ߙ ሻ * = ߙ ோ  + ߙ  ோ + ߙ ோ ߙ ሺݑ -ݑ ோ ሻ (15) ሺߙ ோ + ߙ ሻݑ * = ሺ - ோ ሻ + ߙ ݑ + ߙ ோ ݑ ோ
In annex 2, the stability of this scheme is studied in the linear case it shows that we must have CFL ≤ 1 where CFL is the Courant-Friedrichs-Lewy number.

Boundary conditions

In our depressurization problem we know that pressure  * on the left side is given. We then ask  * -ߙ ோ ݑ * =  ோ -ߙ ோ ݑ ோ So this gives a way to evaluate ݑ * . On the right side we have seen that there is a wall so that we can fix ݑ * = 0, and determine  * through  * + ߙ ݑ * =  + ߙ ݑ Note that we have determined ݑ ାଵ/ଶ and  ାଵ/ଶ inside and at the boundaries, we can make a forward step in time both for ߬ and ݑ by using ( 12) and ( 13).

Finally we use the EOS to determine  ାଵ/ଶ ାଵ in all cells.

Results

On Fig 3 we show the result of our depressurization process at time t=10ms both by the Wilkins scheme and by the acoustic solver scheme. The initial pressure is p=8.1 MPa. The external pressure is p=0.15 MPa. Note that these data match more with a RBMK reactor than a PWR. But we are also interested in RBMK.

At time t=0 the fluid is purely liquid at saturation temperature T = 569 K. The initial length of the tube is 1.4 m and we chose a mesh of 140 cells so that ݔ∆ = 1 ܿ݉.

We can see that in 10 ms, only half of the tube has been depressurized. We also see that there is a significant expansion of the Lagrangian mesh on the left side where depressurization occurs. Note that the time step was 0.1 ms so that we had a CFL = 0.4

Fig 3 . Wilkins scheme vs Acoustic solver scheme for the depressurization process §4 Conservative scheme

We shall know explain how to define a conservative scheme based on the acoustic scheme.

To be able to handle shocks we need to apply conservation of energy (see (6)) For its discretization, we proceed as follows :

(16)

ா శభ/మ శభ ିா శభ/మ ∆௧ + ܵ ሺ௨ሻ శభ శభ/మ ିሺ௨ሻ శభ/మ శభ ି = 0
To get ሺݑሻ ାଵ/ଶ and ሺݑሻ ାଵ ାଵ/ଶ we use ( 14) and ( 15). Then we get ܧ ାଵ/ଶ ାଵ .

We evaluate the internal energy by using :

ߝ ାଵ/ଶ ାଵ = ܧ ାଵ/ଶ ାଵ -൫ݑ ାଵ/ଶ ାଵ ൯ ଶ 2 ⁄
Finally, from ߬ ାଵ/ଶ ାଵ and ߝ ାଵ/ଶ ାଵ we can evaluate the new pressure  ାଵ/ଶ ାଵ by using the equation of state as explained in §1.

Results for the depressurization problem

On Fig 4 we show the results obtained with the conservative scheme compared with the Wilkins scheme.

We observe that the results are very similar, which is good. Some post processing calculations show that the entropy is almost constant. For example if we look at cell nb 12 initially the entropy s=3.216 kJ/kg/° and after 10ms s = 3.22267 kJ/kg/° (note that the entropy increase is due to the numerical dissipation). What we call a "steam" explosion is actually the propagation of a shock generated by a large energy deposition somewhere in the fluid. The energy is supposed to come from an increase of fission energy in the fuel. The shock is stronger when the fluid is purely liquid and this is what we shall consider.

From general results in thermodynamics the fluid will remain liquid behind the shock so that we shall not use the diphasic equation of state that we have described in §1.

Rather, we shall use a stiffened gas equation of state. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] (17

)  = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬
For the liquid water, we select (see Corot [START_REF] Corot | Numerical simulation of shock waves in a bi-fluid flow: application to steam explosion[END_REF] table 6.1) :

ߛ = 2.35,  ஶ = 1. 9ܧ ܲܽ, ݍ = 3ܧ7611- ݃݇/ܬ
From what we saw in §2, we have

ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄
From (17) we get

߲ ߲ߝ ⁄ = ሺߛ -1ሻ/߬ ߲ ߲߬ ⁄ = -ሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ܿ ଶ = ߬ ଶ ሺ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ ሻ = ߬ ଶ ሺ-ߛሺߛ -1ሻ  ஶ ߬ ⁄ + ߛሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ሻ = ߛ߬ሺ-ߛ ஶ +  ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ሻ = ߛሺ +  ஶ ሻ߬
With the above values and p=8 MPa and ߩ = 705kg/m 3 , we find ܿ = 1833 ݏ/݉ Our purpose is to estimate the shock wave velocity caused by the energy deposition and to estimate its duration.

We shall assume that our tube is 6m long and that the energy deposition takes place in the interval 5.1m ≤ ݔ ≤ 6m. The energy deposition is such that the pressure which was equal to 8 MPa instantaneously increases to 200 MPa without modification of the volumic mass which is ߩ = 705kg/m 3 . As for boundary conditions we choose a wall both at x=0 and x=6m. This is a Riemann problem, the exact solution of which can be computed : there is a shock wave propagating to the left and a rarefaction wave propagating to the right. We find that the intermediate constant state corresponds to a 102 MPa pressure and a 71 m/s velocity. After 0.6 ms, the rarefaction wave reflects on the wall located at ݔ = 6 ݉ and the reflected wave propagates to the left.

We choose a mesh of 600 cells, with ݔ∆ = 1 ܿ݉ initially. On Fig. 5 we show the solution at time t= 1 ms and at a later time 2 ms, that is after the reflection of the rarefaction wave on the wall. We can see that the shock speed is 1890 m/s and its width 1.8 m. It propagates to the left. The reflected rarefaction wave propagates at the same speed. Our sub-saturated fluid will be initially at specific volume ߬ ଵ = 1.30098 .݃݇/ܮ Since this is close to ߬ the corresponding pressure  ଵ will be close to  so that, with a good approximation since both are ≪  ஶ , we can linearize (18) so that (19)

 =  -ߛ ఛିఛ బ ఛ బ ሺ +  ஶ ሻ
In a diagram , ߬ our isentrope is then a straight line. We complement our isentrope in the two-phase mixture domain by using the second method described in §1. We get the result shown on Obviously the isentrope is continuous but there is a strong slope discontinuity between both parts. This corresponds to a strong discontinuity of the sound speed ܿ (see Fig 7). Note that (18) and ( 2) give that for the SG part : We can see that a rarefaction wave rapidly propagates in the purely liquid phase. It is followed by a constant state at  =  ଵ and ߬ = ߬ ଵ . We conjecture that after this transient phase everything happens as if we started from a saturated liquid at  =  and ߬ = ߬ .

(19) ܿ = ߬ ටߛ బ ା ಮ ఛ బ ≅ 830 ݉ ݏ ⁄
To prove this conjecture numerically we show the pressure profiles at t=2ms, i-e after the transient phase. We get almost exactly the same results (see Fig. 8).

However, a careful examination of the results shows that the constant state  ଵ , ߬ ଵ is not at u=0 m/s but at u=5 m/s. Then at a later time t=8ms we see a slight discrepancy on the pressure profiles with a weak rarefaction wave starting from the right wall. We shall first consider the case where we have the same diphasic fluid with two different states separated by a diaphragm which is to be removed at time t=0.

We then have ݑ ோ = ݑ = 0 and we shall assume that  ோ >  .

We anticipate that we shall have a 1-shock (propagating to the left) and a 3-rarefaction wave propagating to the right. For t > 0 we shall have an intermediate constant state ݑ * ,  * , itself subdivided in 2 parts separated by a contact discontinuity. On the left (resp. on the right) of the contact discontinuity, we shall have ߬ = ߬ ଵ (resp. ߬ = ߬ ଶ ).

We have 4 unknowns ݑ * ,  * , ߬ ଶ , ߬ ଵ , and we need 4 scalar equations. First we shall use the fact that the following Riemann invariant is constant along a 3-rarefaction wave. We remind the reader that in Eulerian coordinates

߲ ݐ߲ ቆ ߬ ݑ ߝ ቇ + ൭ ݑ -߬ 0 ߬  ఛ ݑ ߬  ఌ 0 ߬ ݑ ൱ ߲ ݔ߲ ቆ ߬ ݑ ߝ ቇ = 0
Let us call λ ଵ , λ ଶ and λ ଷ the 3 eigenvalues of the matrix of this hyperbolic sytem they satisfy

ሺݑ -λሻ ଷ + ߬ ଶ .  ఛ . ሺݑ -λሻ -߬ ଶ . .  ఌ . ሺݑ -λሻ = 0 So that 0 1 2 3 4 5 6 -4 -3 -2 -1 0 1 2
Pressure profiles at t=8ms p8ms p8msvar uL, pL, τL uR, pR, τR ሺݑ -λሻሾሺݑ -λሻ ଶ -߬ ଶ ሺ.  ఌ - ఛ ሻሿ = ሺݑ -λሻሾሺݑ -λሻ ଶ -ܿ ଶ ሿ And we get the well-known result that λ ଵ = ݑ -ܿ, λ ଶ = ,ݑ λ ଷ = ݑ + ܿ.

Riemann invariants :

We check that

ݎ ଷ = ൭ -߬ ܿ  ߬ ൱ is the eigenvector associated to λ ଷ indeed ൭ -ܿ -߬ 0 ߬  ఛ -ܿ ߬  ఌ 0 ߬ -ܿ ൱ ൭ -߬ ܿ  ߬ ൱ = ൭ 0 -߬ ଶ  ఛ -ܿ ଶ +   ఌ ߬ ଶ 0 ൱ = ൭ 0 0 0 ൱ A function ܴ = ܴሺ߬, ,ݑ ߝሻ is a 3-Riemann invariant iff ∇ܴ. ݎ ଷ = 0 i-e -ܴ߬ ఛ + ܿ ܴ ௨ + ߬ ܴ ఌ = 0 Then ܴ = ݑ -݃ሺ߬ሻ is a 3-Riemann invariant iff ܿ = ߬ ݃ ᇱ ሺ߬ሻ or ݃ ᇱ ሺ߬ሻ = ܿ ߬ ⁄
As a second Riemann invariant we can choose the entropy ݏ which is constant in a rarefaction wave. Let ݏ ோ denote the entropy of the right state, we let

ܿ ோ ሺ߬ሻ = ܿሺ߬, ݏ ோ ሻ We can choose ݃ሺ߬ሻ =  ܿ ோ ሺߪሻ ߪ ⁄ ݀ߪ ఛ ఛ బ

Remark :

By using Method B introduced in §1, we can tabulate the isentrope associated to ݏ ோ . More precisely, we compute a 5-column table such that we find ߬, , ,ݕ ܿ and ݃ in the 5 columns. So that we have tabulated values for ݃ሺ߬ሻ, but also for  = ݂ሺ߬ሻ By assuming linear interpolation, we can also evaluate ݃ ᇱ ሺ߬ሻ and ݂ ᇱ ሺ߬ሻ ∎

We now get our first two equations : 22) and ( 23) we get : 22) and (24) we get :

ߩ ଵ ݑ ଵ -ߩ ݑ = ߪሺߩ ଵ -ߩ ሻ (23) ሺߩ ଵ ݑ ଵ ଶ +  * ሻ -ሺߩ ݑ ଶ +  ሻ = ߪሺߩ ଵ ݑ ଵ -ߩ ݑ ሻ (24) ሺߩ ଵ ܧ ଵ +  * ሻݑ * -ሺߩ ܧ +  ሻݑ = ߪሺߩ ଵ ܧ ଵ -ߩ ܧ ሻ where (noting ݑ ଵ = ݑ * ሻ ܧ ଵ = ߝ ଵ + ଵ ଶ ݑ ଵ ଶ ܧ = ߝ + ଵ ଶ ݑ ଶ First from (
ሺߩ ଵ -ߩ ሻ ቀሺߩ ଵ ݑ ଵ ଶ +  * ሻ -ሺߩ ݑ ଶ +  ሻቁ = ሺߩ ଵ ݑ ଵ -ߩ ݑ ሻ ଶ ߩ ଵ ଶ ݑ ଵ ଶ + ߩ ଶ ݑ ଶ -ߩ ଵ ߩ ሺݑ ଵ ଶ + ݑ ଶ ሻ + ሺߩ ଵ -ߩ ሻሺ * - ሻ = ߩ ଵ ଶ ݑ ଵ ଶ + ߩ ଶ ݑ ଶ -2ߩ ଵ ݑ ଵ ߩ ݑ ሺߩ ଵ -ߩ ሻሺ * - ሻ = ߩ ଵ ߩ ሺݑ ଵ ଶ -ݑ2 ଵ ݑ + ݑ ଶ ሻ = ߩ ଵ ߩ ሺݑ ଵ -ݑ ሻ ଶ (25) ሺݑ * -ݑ ሻ ଶ = ሺ߬ -߬ ଵ ሻሺ * - ሻ Second from (
ሺߩ ଵ -ߩ ሻ൫ሺߩ ଵ ܧ ଵ +  * ሻݑ ଵ -ሺߩ ܧ +  ሻݑ ൯ = ሺߩ ଵ ݑ ଵ -ߩ ݑ ሻሺߩ ଵ ܧ ଵ -ߩ ܧ ሻ ߩ ଵ ଶ ܧ ଵ ݑ ଵ -ߩ ଵ ߩ ሺܧ ݑ + ܧ ଵ ݑ ଵ ሻ + ߩ ଶ ܧ ݑ + ሺߩ ଵ -ߩ ሻሺ * ݑ ଵ - ݑ ሻ = = ߩ ଵ ଶ ܧ ଵ ݑ ଵ -ߩ ଵ ߩ ሺݑ ଵ ܧ + ݑ ܧ ଵ ሻ + ߩ ଶ ܧ ݑ ሺߩ ଵ -ߩ ሻሺ * ݑ ଵ - ݑ ሻ = ߩ ଵ ߩ ሺܧ ݑ + ܧ ଵ ݑ ଵ -ݑ ଵ ܧ -ݑ ܧ ଵ ሻ = ߩ ଵ ߩ ሺݑ ଵ -ݑ ሻሺܧ ଵ -ܧ ሻ ሺݑ ଵ -ݑ ሻሺܧ ଵ -ܧ ሻ = ሺ߬ -߬ ଵ ሻሺ * ݑ ଵ - ݑ ሻ Finally, we get (remind that ݑ ଵ = ݑ * ) (26) ሺݑ * -ݑ ሻ ቀߝ ଵ + ଵ ଶ ݑ * ଶ -ߝ - ଵ ଶ ݑ ଶ ቁ = ሺ߬ -߬ ଵ ሻሺ * ݑ * - ݑ ሻ
Then (20)(21)(25)(26) are 4 scalar equations for our 4 unknowns ݑ * ,  * , ߬ ଶ , ߬ ଵ . We remind that there exists a function ߱ = ߱ሺ, ߬ሻ (see §1, method C) such that ߝ ଵ = ߱ሺ * , ߬ ଵ ሻ.

In the following we shall denote by ߱ and ߱ ఛ the partial derivatives of ߱, which we can evaluate by using finite differences.

To solve this non linear system we could use Newton's method, and solve ܪሺܼሻ = 0 where

ܪ = ۉ ۈ ۇ ݑ * -݃ሺ߬ ଶ ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯  * -݂ሺ߬ ଶ ሻ ሺݑ * -ݑ ሻ ଶ + ሺ߬ ଵ -߬ ሻሺ * - ሻ ሺݑ * -ݑ ሻ ቀߝ ଵ + ଵ ଶ ݑ * ଶ -ߝ - ଵ ଶ ݑ ଶ ቁ + ሺ߬ ଵ -߬ ሻሺ * ݑ * - ݑ ሻ ی ۋ ۊ ܼ = ቌ ݑ *  * ߬ ଶ ߬ ଵ ቍ
However, it is more intuitive to use the Hugoniot Curve We follow DESPRÉS B. Numerical Methods for Eulerian and Lagrangian Conservation Laws Springer International Publishing, 2017, p.155, to set up the Hugoniot relation :

(26b) ሺߝ ଵ -ߝ ሻ + ଵ ଶ ሺ ଵ +  ሻሺ߬ ଵ -߬ ሻ = 0
Since ߝ ଵ = ݂ሺ߬ ଵ ,  ଵ ሻ equation (26b) defines a (so called Hugoniot) curve in the plane (߬, ሻ. We denote by  ଵ =  ுை ሺ߬ ଵ ሻ the relation so obtained between  ଵ et ߬ ଵ . Fig. 10 Hugoniot curve and Isentrope starting from the same point. On Fig. 10 we compare the isentrope starting from ߬ = 313.7083 ݃݇/ܮ ; ܲ = 0.15 ܽܯ ; ݑ = 0 and the Hugoniot curve (ܲ ଵ in MPa and ߬ ଵ in L/kg). We notice that both curves are very close to eachother around the point ሼ߬ , ܲ ሽ, but this is a well known result To solve the Riemann problem defined by ߬ ோ = 1.3083 ݃݇/ܮ ; ܲ ோ = 5.664 ܽܲܯ ; ݑ ோ = 0 ߬ = 313.7083 ݃݇/ܮ ; ܲ = 0.15 ܽܲܯ ; ݑ = 0 we proceed as follows :

1. We build the isentrope starting from ߬ ோ ; ܲ ோ ; ݑ ோ 2. We build the Hugoniot curve starting from ߬ ; ܲ ; ݑ 3. We define a function ߬ ଶ → ݂ሺ߬ ଶ ሻ such that ݂ሺ߬ ଶ ሻ = ݑ ீ -ݑ where We note that the rarefaction wave propagates relatively slowly (50 m/s) to the right. We also note that the amplitude of the contact is small : this is due to the fact that the left state has been chosen on the same isentrope as the right state. 

Coarse mesh SA solution vs exact solution u ex 2.5 ms uj

The rarefaction wave is better reproduced with the fine mesh. The shock speed is also closer to the exact solution.

Here is a plot of the specific volume ߬ (unit = L/kg).

We note that on this specific case ߬ has a weak jump at the contact discontinuity. This is due to the fact that we have selected the right state and the left state with the same entropy.

Case where we have air on the left and saturated water on the right.

For air we choose a perfect gas equation of state.

In such a case we use ߱ሺ, ߬ሻ = For the pressure we compare with the previous case

We also compare with the Lagrangian solution (same as in §6 but at time t=10 ms) we see that we get similar results at least in the right side.

On the left side we see that, in the Lagrangian case, even though we impose given pressure (0.1MPa) on the left boundary, the rarefaction wave on the right is quite similar to the exact solution of the Riemann problem. Of course, the shock wave in the air is not reproduced with such boundary conditions. Annex 2 : linear stability analysis for the acoustic solver We shall take ܵ = 1. We start from

డ డ௧  + ߙ ଶ డ డ ݑ = 0 డ డ௧ ݑ + డ డ  = 0 With  = -ߙ ଶ ߬. We have. డ డ௧ ሺ -ߙݑሻ -ߙ డ డ ሺ -ߙݑሻ = 0 డ డ௧ ሺ + ߙݑሻ + ߙ డ డ ሺ + ߙݑሻ = 0
Then the Riemann invariant  ± ݑߙ is transported at speed ±ߙ in the ሼ݉, ݐሽ space. Using the same notations as in §3, we shall ask that

 * + ݑߙ * =  + ݑߙ  * -ݑߙ * =  ோ -ݑߙ ோ 2 * =  +  ோ + ߙሺݑ -ݑ ோ ሻ ݑߙ2 * = ሺ - ோ ሻ + ߙሺݑ + ݑ ோ ሻ And then ݑ ା భ మ = ଵ ଶఈ ൫ ିଵ/ଶ - ାଵ/ଶ ൯ + ଵ ଶ ൫ݑ ିଵ/ଶ + ݑ ାଵ/ଶ ൯  ା భ మ = ଵ ଶ ൫ ିଵ/ଶ +  ାଵ/ଶ ൯ + ఈ ଶ ൫ݑ ିଵ/ଶ -ݑ ାଵ/ଶ ൯ and also (3) శభ/మ శభ ି శభ/మ ∆௧ + ߙ ଶ ௨ శభ శ భ మ ି௨ శ భ మ = 0 (4) 
௨ శభ/మ శభ ି௨ శభ/మ ∆௧ + శభ శ భ మ ି శ భ మ = 0
We now replace i par j and assume (we let ℎ = ∆݉ and assume a uniform mesh) : 

ݑ ାଵ/ଶ = ܷ

Fig 2

 2 Fig 2 Sound speed evaluated either with (2) or (3) as a function of the steam mass fraction x (there are 2 superposed curves)

  Which proves (7) since ݏ݀ܶ = ݀ߝ +  ݀߬ from the second law of thermodynamics ∎ Remark 1 :

  There are two Riemann invariants : let ߙ = ߩ ܿ : ܨ =  ଵ -ߙ ݑ ଵ which satisfies ܩ =  ଵ + ߙ ݑ ଵ which satisfies డ డ௧ ܩ + ߙ ܵ డ డ ܩ = 0 Let ݔ = ݉/ሺߩ ܵሻ we also have డ డ௧ ܨ -ܿ డ డ௫ ܨ = 0 so that ,ݔ‪ሺܨ ݐሻ = ݔ‪ሺܪ + ܿ ݐሻ In the same way ,ݔ‪ሺܩ ݐሻ = ݔ‪ሺܬ -ܿ ݐሻ The solution is the sum of two parts : the first one propagates at speed -ܿ ; the other one at speed + ܿ .

Fig 4 .

 4 Fig 4 . Wilkins scheme vs conservative Acoustic solver scheme for the depressurization process

Fig 5 .ఊ

 5 Fig 5. Schock propagation in the "steam" explosion.

Fig 6

 6 Fig 6 Isentrope in a , ߬ diagram. The SG part is shown in red.

Fig 7

 7 Fig 7 Sound speed ܿ along the isentrope ݏ = 2.9935 kJ/kg/K. Applying (18), we shall start our depressurization process from  ଵ = 8.656 .ܽܲܯ As in §2 and 3, we consider a 1.4m long tube initially filled with subsaturated water at  =  ଵ and ߬ = ߬ ଵ . The boundary conditions are  = 0.15 ܽܲܯ on the left side of the tube and a wall ݑ( = 0ሻ on the right side. The boundary conditions are  = 0.15 ܽܲܯ on the left side of the tube and a wall ݑ( = 0ሻ on the right side. Using the acoustic solver described in §3 we find the pressure profiles given on Fig 8.

Fig 7

 7 Fig 7 Pressure profiles at t=0.5ms and t=1ms.

Fig 8 .

 8 Fig 8. Pressure profiles at t=2ms starting either from  ଵ , ߬ ଵ (red) or from  , ߬ .(blue)We conjecture that after this transient phase everything happens as if we started from a saturated liquid at  =  and ߬ = ߬ . To prove this conjecture numerically we show the pressure profiles at t=2ms, i-e after the transient phase. We get almost exactly the same results (see Fig.8).

Fig 9 .

 9 Fig 9. Pressure profiles at t=8ms starting either from  ଵ , ߬ ଵ (red) or from  , ߬ .(blue) If we compare Fig.9 (t=8ms) and Fig.4 (t=10 ms) we can see that depressurization occurs at about the same speed 50m/s to the right in both cases. Starting from subsaturated water at about the same pressure does not change significantly.

  (20) ݑ * -݃ሺ߬ ଶ ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 (21)  * -݂ሺ߬ ଶ ሻ = 0 Now what happens along the 1-shock ? We have the Rankine-Hugoniot relations. Let ߪ denote the speed of the shock, we should have (22)

  ଶ , ܲ * ሽ is on the same isentrope as ሼ߬ ோ , ܲ ோ ሽ b. ݑ = ݃ሺ߬ ଶ ሻ + ൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 c. ሼ߬ ଵ , ܲ * ሽ is on the same Hugoniot curve as ሼ߬ , ܲ ሽ d. ݑ ீ = ݑ -ඥሺ߬ -߬ ଵ ሻሺܲ * -ܲ ሻ 4. We use the dichotomy method to solve ݂ሺ߬ ଶ ሻ = 0 Example : With the above data, we get |݂ሺ߬ ଶ ሻ| < 10 ିଵ in 40 steps. We get : ߬ ଶ = 49.5734 L/kg ߬ ଵ = 54.9847 L/kg ܲ * = 0.80977 MPa ݑ * = ݑ ீ = ݑ = -413.137m/s We give below a plot of the solution of the Riemann problem at t = 2.5ms. (Note that we need first to use (22) to find ߪ = -500.938 m/s)

  §8 Lagrangian solution of the Riemann Problem (saturated case) with the acoustic solver. Coarse mesh ݔ∆( = 1 ܿ݉, 200 )ݏ݈݈݁ܿ Fine mesh ݔ∆( = 0.4 ܿ݉, 600 )ݏ݈݈݁ܿ

ఛ

  ఊିଵ to evaluateߝ ଵ = ߱ሺ * , ߬ ଵ ሻ in (26).Here are the results when we start from ߬ ோ = 1.3083 ݃݇/ܮ ; ܲ ோ = 5.664 ܽܯ ; ݑ ோ = 0 ߬ = 773.395 ݃݇/ܮ ; ܲ = 0.1 ܽܯ ; ݑ = Riemann problem at t=1ms

  We now compute the eigenvalues ߤ of this 2x2 matrix which satisfyተ 1 -2λ ݊݅ݏߙ ଶ ℎ 2 -ߤ -2݅ λ ߙ ଶ ݊݅ݏ get stability, it is necessary (and sufficient) that λ ߙ < 1 i-e ߙ ݐ∆ ℎ ⁄ < 1. Since ߙ = ߩ ܿ and ℎ = ∆݉ = ߩ ݔ∆ we get ܿ ݐ∆ ݔ∆⁄ < 1 which is known as the CFL condition.