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 Abstract- 

Unlike most Neogene basins of the Betic Cordillera where the Salinity Crisis is dated to the Messinian, a contradictory Tortonian dating was proposed for evaporites of the Lorca Basin. As 

a consequence, complex structural models have been proposed in the literature to explain this discrepancy in the timing of evaporites. In order to integrate the Lorca Basin into the 

geological context of the western Mediterranean domain during the Late Miocene, new sedimentological and stratigraphical studies coupled with new dating were performed, which 

allow us to propose a Messinian age for both diatomite-bearing deposits and evaporites of the Lorca Basin. These new ages challenge the idea of a Tortonian salinity crisis in the Lorca 

Basin. Three main events of base-level drop were evidenced during the Messinian. Each event is correlated with successive steps of basin restriction. Shallow salina evaporites were 

deposited after a base-level fall during the Messinian before a final base-level drop, which led to the entire exposure of the basin. This last exposure is interpreted as coeval with the 

deposition of first evaporites and halite in the deep Mediterranean basins. The reflooding which allowed the deposition of brackish deposits and a short-lived marine incursion occurred 

at the end of the Messinian. Base-level drops occurred during eustatic falls amplified by the gradual uplift of the Betic Cordillera. The exhumation of the Tercia ridge along the strike-slip 

Alhama de Murcia fault system during the Messinian probably favoured the gradual restriction of the basin. A discussion on correlations of main unconformities between several 

Neogene basins of the Betics is proposed, suggesting a similar structural evolution at the regional scale. 

 

1. Introduction 

Since the pioneer desiccated deep-basin model of Hsü et al. (1973) and Hsü et al. (1973) the Messinian salinity crisis (MSC) has been the subject of numerous 

publications. Several authors subdivided deep and marginal evaporites in lower and upper units (e.g., Butler et al., 1995; Rouchy and Caruso, 2006; Roveri et al., 

2008, 2014a; Ryan, 2009; Manzi et al., 2013). Nevertheless, the relative timing of evaporite units in marginal basins compared with evaporites of the central 

Mediterranean Sea is intensely debated (e.g., Clauzon et al., 1996; Riding et al., 1998; Martin et al., 1999; Rouchy and Caruso, 2006; Roveri et al., 2008, 2014a; 

Orszag-Sperber et al., 2009; Cornée et al., 2016; 

Karakitsios et al., 2017; Merzeraud et al., 2019). Indeed, some authors consider that marginal evaporites were deposited before the main relative sea-level drop, 

which led to the deposition of central Mediterranean evaporites (Clauzon et al., 1996; Maillard et al., 2006; Lugli et al., 2015). This interpretation argues for a 

synchronous onset of the salinity crisis at the basin scale (Gautier et al., 1994; Krijgsman et al., 1999). Recently, Manzi et al. (2013) and Roveri et al. (2014a, 

2014b) postulated the equivalence of the marginal evaporites with the euxinic shales in the deeper Mediterranean. In this case, marginal evaporites rest 

conformably on diatomite-rich shales (Tripoli Formation or Abad Formation) and are topped by a major surface of incision and subaerial exposure. Other authors 

such as Riding et al. (1998) or Braga et al. (2006) proposed that only few or no evaporites were deposited in marginal basins prior to the major relative sea-level 

drop responsible of deposition of central Mediterranean evaporites. They consider that the evaporites in marginal basins (e.g., gypsum of the Sorbas Basin) are 

younger than deep Mediterranean evaporites and were deposited during the subsequent relative sea-level rise. 

In most Neogene basins of the Betic Cordillera such as Sorbas, Nijar, Bajo-Segura, and Murcia-Cartagena basins, gypsum deposits are considered as Messinian in 

age (e.g., Martin and Braga, 1996; Fortuin and Krijgsman, 2003; Soria et al., 2005, 2008; Braga et al., 2006; Fortuin and Dabrio, 2008). Sedimentary facies similar to 

those known in other basins of the internal Betics (e.g., Sorbas and Nijar basins) are present in the Lorca Basin. They consist of Porites-rich carbonates, 

diatomitebearing marls, and gypsum. However their ages are debated. In the Lorca Basin and the neighbouring Fortuna Basin a Messinian age was initially 

proposed for diatomite-rich marls and gypsum units (Guillen Mondejar et al., 1995; Dinarès-Turell et al., 1997; Rouchy et al., 1998; Wrobel and Michalzik, 1999; 

Playà et al., 2000). This Messinian age for the evaporites and underlying diatomites of the Lorca Basin was again suggessted by Saelen et al. (2016) on the basis of 

strontium isotopes. The Tale Gypsum of the Fortuna Basin was also considered as Early Messinian in age by Lancis et al. (2010). Krijgsman et al. (2000, 2006) and 

Tent-Manclus et al. (2008) challenged this dating and proposed a Tortonian age for evaporites of these two basins. More recently, this Tortonian age for 

evaporites of the Lorca Basin was also considered by Corbi et al. (2012) and Garcia-Veigas et al. (2019). Consequently, the concept of “Tortonian Salinity Crisis” 

has been widely adopted and geodynamic models involving differential uplift and subsidence rates between basins along trans-Alboran strike-slip faults were 

produced to explain diachronous confinements of Neogene basins (Garces et al., 2001; Krijgsman et al., 2006; Rodriguez-Fernandez et al., 2012). 

The Lorca Basin is located in the Alboran domain where numerous marginal basins in Spain, Morocco and Algeria can be used to compare the timing of the 

sedimentary infill. The Lorca Basin constitutes a key area for the reconstruction of the tectonic and stratigraphical history of the salinity crisis in the Betic domain. 

The basin is located between the Guadix Basin in the external Betic zone, which is devoid of evaporites and where the marine-continental transition occurred 

during the Tortonian (Soria et al., 1999; Betzler et al., 2006; Pla-Pueyo et al., 2009; Hüsing et al., 2010) and more external basins where Messinian gypsum is 

present. While the stratigraphical architecture of late Tortonian-Messinian deposits in most the Neogene basins in the Betics has been studied and debated in an 

abundant literature (e.g., contradictory models of Conesa et al., 1999; Braga et al., 2006; Manzi et al., 2013; Clauzon et al., 2015; Do Couto et al., 2015 in the 

Sorbas Basin), this is not the case for the Lorca Basin where halite deposits were described in drillings (Orti et al., 1993; Garcia-Veigas et al., 1994, 2019). In 

addition, new dating approaches are necessary to solve the recurrent problem about the age of the evaporites in the Lorca Basin. Based on new biostratigraphical 

dating, we propose a correlation between the central and marginal successions in the southwestern part of the basin. Thereafter, a study of the stratigraphical 

architecture and erosional surfaces between the margins and the centre of the basin based on field observations is illustrated. Finally, the results obtained in the 

Lorca Basin are compared with neighbouring Neogene basins and discussed within the regional geodynamic and sedimentological framework. 



 

2. Geological framework 

The Betic Cordillera is an orogenic complex located in southeastern Spain and oriented ENE-WSW between Cadiz to the southwest and the Cabo de la Nao to the 

northeast (Fig. 1A). The Betics are part of the Gibraltar arc which includes the Rif Mountains in Morocco and which was formed by the convergence between the 

Iberian and African plates (Dercourt et al., 1986) (Fig. 1B). To the north, the Guadalquivir Basin corresponds to the flexural foreland basin between the External 

Betics and the Iberian platform (Cloetingh et al., 1992; de Galdeano and Vera, 1992; Riaza and Martinez del Olmo, 1996; Iribarren et al., 2007). 

The External Zone comprises folded and thrusted Mesozoic to Neogene sediments (Vera, 1983; Frizon de Lamotte et al., 1989; Blankenship, 1992; Galindo-

Zaldivar et al., 1993). The Internal Betics represent the terrestrial continuation of the Alboran crustal domain (Comas et al., 1992; de Galdeano and Vera, 1992) 

mainly located offshore between Spain and Morrocco and bounded to the west by the Gibraltar Arc (Iribarren et al., 2007; Platt, 2007). They consist of 

metamorphic sierras separated by narrow and complex basins filled by Neogene sediments (de Galdeano, 1990; Montenat, 1996; Meijninger and Vissers, 2006) 

(Fig. 1C). The Lorca Basin displays a rhomboidal shape and is bounded to the southeast by the strike-slip Alhama de Murcia Fault while its northwestern margin 

impinges on the boundary between the Internal-External Zones (e.g., Guillen Mondejar et al., 1995; Booth-Rea et al., 2002; Martinez-Diaz, 2002) (Fig. 1C). The 

study area is located on the southwestern margin of the basin where Late Miocene outcrops are well exposed and where synsedimentary normal faults were 

described in the literature (Guillen Mondejar et al., 1995; Montenat and Ott d'Estevou, 1999; Vennin et al., 2004) (Fig. 2). In the centre of the basin a major NE-

SW fault named FCCL (Falla del centro de la Cuenca de Lorca) was envisioned by several authors to explain the differential subsidence between the eastern and 

western parts of the Lorca Basin during the Late Miocene (Guillen Mondejar et al., 1995; Meijninger and Vissers, 2006). 

Because of the frequent occurrence of strike slip faults on their edges, most Neogene basins were first interpreted as pull-apart or “groove-shaped synclines” 

formed in a transcurrent context active from the Early or Middle Miocene until present (Cloetingh et al., 1992; Montenat and Ott d'Estevou, 1996, 1999; 

Huibregtse et al., 1998). In contrast, some authors consider that most Neogene basins were formed in an extensional context controlled by high angle normal 

faults on top of detachments during the collapse of the Alboran domain and the exhumation of metamorphic complexes (Vissers et al., 1995; Chalouan et al., 

1997; Booth-Rea et al., 2004; Vazquez et al., 2011; Do Couto et al., 2014, 2016). In this scenario the main NE-SW to N-S strike-slip faults (Carboneras, 

Palomares, and Alhama de Murcia faults, Fig. 1B) initially acted as normal or transfer faults (Martinez-Martinez et al., 2006; Meijninger and Vissers, 2006; 

Rodriguez-Fernandez et al., 2012; Giaconia et al., 2014) and were reactivated as strike-slip faults only from the Upper Tortonian or earliest Messinian because 

of a rotation of the regional stress field (Booth-Rea et al., 2003; Augier et al., 2013). 

3. Lithostratigraphical framework 

In the western part of the basin, Tortonian sediments unconformably cover Serravalian glauconitic sandstones, marls, and conglomerates of the Soriana 

Formation (Fm) (Fig. 3). In the souteastern part, slightly metamorphosed Triassic sediments represent the basement. In this area (Castillo de Lorca and Serrata 

areas) the oldest deposits consist of an alternation of red conglomerates, variegated silty shales, and locally evaporites. These deposits are supposed to be 

Early Tortonian in age (Montenat, 1996; Wrobel and Michalzik, 1999). They are overlain by calcarenitic and sandy limestones rich in pectinids and Clypeaster 

sea urchins, which are covered by a thick unit of grey marls corresponding to the Tortonian Marls of Rouchy et al. (1998), or Lower to Upper preevaporitic unit 

of Wrobel and Michalzik, 1999 dated to the late Tortonian on the basis of foraminifera assemblages (Rouchy et al., 1998; Wrobel and Michalzik, 1999; 

Krijgsman et al., 2000). Krijgsman et al. (2000) considered these marls as the lateral equivalent of the carbonates of the Parilla and Hondo Fms. On the western 

margin, the first Tortonian deposits constitute the Parilla Fm that corresponds to the Lower pre-evaporitic unit of Wrobel and Michalzik (1999). The study of 

foraminifera assemblages allowed these authors to propose a Tortonian age for this formation. Its lower part consists of marine sandstones and shales dated to 

the Early Tortonian (Vennin et al., 2004) on the basis of planktonic foraminifera. The upper part of the Parilla Fm is characterised by an alternation of Porites or 

Tarbellastrea- 



 

rich carbonates, red marls rich in large Crassostrea gryphoides (Saelen et al., 2016) with sparse sandstone beds, alluvial conglomerates (Thrana and Talbot, 2006), 

and grey offshore marls. The Hondo Fm, also named middle pre-evaporitic unit by Wrobel and Michalzik 

(1999), consists of Tarbellastrea and Porites-rich carbonates. 

On the western margin, the upper pre-evaporitic unit of Wrobel and Michalzik (1999) also named Serrata Fm by Vennin et al. (2004) and Thrana and Talbot (2006) 

consists of an alternation of marine sandstones, conglomerates and coral-rich limestones. A Messinian age was proposed by Wrobel and Michalzik (1999) for the 

upper preevaporitic unit. A similar age was given by Saelen et al. (2016) on the basis of Sr isotopes. Alternations of red conglomerates and variegated marls 

constitutes the evaporitic unit and El Prado Fm of Thrana and Talbot (2006) and evaporitic and post-evaporitic units of Wrobel and Michalzik (1999). Wrobel and 

Michalzik (1999) envisioned a Messinian age for the lower part of the Post-evaporitic unit on the basis of foraminifera assemblages. 

 

Fig. 1. Location map of the study area. A) Geographical location of the Betic Cordillera; B) Main structural units of the Alboran domain with location of the map in C; C) Geological map of the main 

Neogene basins in the Internal Betics with location of the Lorca Basin and the study area (Fig. 2). 

 



 

In the Serrata area, the evaporites are underlain by the Lower and Upper Tripoli Fms consisting of an alternation of marls, diatomites, dolomites, sandstones, and 

limestone beds (Upper pre-evaporitic unit of Wrobel and Michalzik (1999)). Rouchy et al. (1998) proposed a Tortonian age for the marls and a Messinian age for 

the Tripoli Fm based on foraminifera and nannofossils. They located the TortonianMessinian boundary 25 m below the first diatomite bed. Wrobel and Michalzik 

(1999) established a similar age on the basis of planktonic foraminifera. Corbi et al. (2012) attributed a Tortonian age to the lowermost part of the Lower Tripoli 

Fm on the basis of the dominance of dextral forms of Neogloboquadrina acostaensis, while Rouchy et al. (1998) placed this event in the Messinian. Krijgsman et 

al. (2000) also found biostratigraphical markers of the late Tortonian in the Hondo Fm but no Messininan markers in the Tripoli Fm. For these authors, the 

appearance of Globorotalia miotumida group in the upper part of the Hondo Fm corresponds to one of the short preliminary influxes that occurred in the C4N.2n 

subchorn during the upper Tortonian and for these reasons they assigned a late Tortonian age to the Tripoli Fm. However, it is important to note that the finding 

of the G. miotumida group falls within the C4N.2n subchron with an astronomical age of 7.892 Ma, as also described by Hilgen et al. (1995). According to Lirer et 

al. (2019) this event slightly predates the fist occurrence (FO) of G. suterae which allows to recognise the MMi12b biozone, with an age of 7.80 Ma. The G. 

miotumida group proposed by Hilgen et al. (1995, 2000a), includes various morphotypes (e.g., G. saphoe, G. mediterranea, G. miotumida sensu stricto (s.s.), G. 

conoidea, and G. conomiozea s.s.; see Lirer et al., 2019 for more details). According to Hilgen et al. (2000a) the first regular occurrence (FRO) of G. miotumida 

group allows to recognise the base of the Messinian that falls within the C3Br chron, with an astronomical age of 7.246 Ma (Lourens et al., 2004). On the other 

hand, the species G. conomiozea s.s. described by Kennett and Srinivasan (1983) is slightly different from G. miotumida both in the height of the throcospire and 

in the overture and shape of the chambers. As already described by Lirer et al. (2019) “…the FO of G. conomiozea s.s. that was previously adopted to define the 

Tortonian/Messinian boundary […] occurs 2/3 precessional cycles above the FRO of G. miotumida”. Finally, the bioevent described here as G. conomiozea s.s. 

occurs at the base of the MMi13a biozone into the Messinian within the C3Bn chron (Sprovieri et al., 1996). The dating of Krijgsman et al. (2000) was also based 

on the absence of typical Messinian nannofossils such as Amaurolithus taxa and Reticulofenestra rotaria and on the absence of Reticulofenestra pseudoumbilicus 

nannofossils interpreted as the signature of the R. pseudoumbilicus paracme, which extended from 8.8 to 7.1 Ma during the Late Tortonian. In addition to the 

biostratigraphical dating based on the absence of foraminifera or nannofossils species in diatomites rather than on the occurrence of biostratigraphical markers, 

the age was mainly constrained on the basis of magnetostratigraphy. Corbi et al. (2012) and Garcia-Veigas et al. (2019) also considered a Tortonian age for the 

diatom-bearing deposits and overlying evaporites but did not provide new direct biostratigraphical evidences. 

The Upper Tripoli Fm is covered by evaporite-rich units named Gypsum unit or Evaporitic unit by Rouchy et al. (1998) or Wrobel and Michalzik (1999), 

respectively. All these authors proposed a Messinian age for these evaporites, while Krijgsman et al. (2000) considered a Tortonian age. A Tortonian age was also 

proposed by Garcia-Veigas et al. (2019) on the basis of ages proposed by Corbi et al. (2012) themselves based on ages proposed by Krijgsman et al. (2000). The 

overlying pink marls and sandstones correspond to the Post-evaporitic unit attributed to the Messinian by Wrobel and Michalzik (1999). However, Rouchy et al. 

(1998) and Garcia-Veigas et al. (2019) only found reworked foraminifera and non-marine biostratigraphical markers, which did not allow them to determine the 

age of the formation. 

4. Material and methods 

A detailed geological mapping (Fig. 2) was performed in order to study stratigraphical and geometrical relationships between facies and formations. 

Sedimentological sections were logged by measuring the thickness of each bed and depositional environments were deduced by indexing lithologies, sedimentary 

 

Fig. 2. Geological map of the study area (see location in Fig. 1). 



 

structures, and the palaeontological content of deposits. The nature of surfaces (erosional, subaerial exposure, etc) was also studied in detail and indexed. 

Vertical facies successions and geometries at the outcrop scale were interpreted in terms of progradation, aggradation or backstepping of depositional 

environments reflecting the interplay between accommodation and sedimentary flux (Emery and Myers, 1996; Posamentier and Allen, 1999). Marl samples were 

decarbonated and sieved to determine their micropalaeontological content. Quantitative analysis of calcareous nannofossils was performed on 10 samples in the 

fraction of 2–30 μm, separated by decantation method using 7% solution of H2O2. Smearslides were mounted with Canada balsam and analysed with an Olympus 

transmitting light microscope, with 1200× magnification. Calcareous nannoplankton taxonomic identification follows PerchNielsen (1985) and Young (1998). 

5. Results 

5.1. Biostratigraphy and new lithostratigraphical framework 

On the western margin, our study of nannofossils in the Crassostrearich marls of the upper part of the Parilla Fm (Fig. 3) revealed the occurrence of 

Amaurolithus primus suggesting a Latest Tortonian to Messinian age for this formation. According to field observations we propose a new lithostratigraphical 

scheme for the upper part of the sedimentary infill of the Lorca Basin corresponding to the studied interval (Fig. 3). The new lithostratigraphy fits with 

lithological units that can be mapped on the southern margin of the basin. The Los Cautivos Fm corresponds to the Upper pre-evaporitic unit of Wrobel and 

Michalzik (1999) and Serrata Fm of both Vennin et al. (2004) and Thrana and Talbot (2006). It can be subdivided into several siliciclastic or carbonate members 

(Fig. 3). Marine sandstones and conglomerates of the Lower and Upper Sandstone Members (Mbrs) are separated and topped by the Tarbellastrea-rich Lower 

and Upper Ruzafas Limestones. The upper part of the formation consists of the marine Los Cautivos Conglomerates Member (Mbr) and Porites-rich calcarenites 

of the Terminal Limestones Mbr. In the Los Cautivos area, the Terminal Limestones Mbr interfingers distally with white marls. Samples collected in these marls 

provided diatoms and Messinian nannofossils including Nicklithus amplificus and Amaurolithus spp. The overlying Monteros Fm is subdivided in several 

members corresponding from base to top to the marine conglomerates of the MC Mbr, variegated marls of the MM Mbr, and alluvial sandstone and 

conglomerates of the AC Mbr. They correspond in part to the evaporitic unit of Wrobel and Michalzik (1999) and Thrana and Talbot (2006). Laminated shales 

and sandstone of the Canada Honda Fm and white conglomerates of Los Mignelones Fm constitute the uppermost deposits of the basin. 

In the Serrata area, the Los Aragoneses Marls correspond to the Tortonian Marls of Rouchy et al. (1998) and to the Hondo Fm of Krijgsman et al. (2000). 

Nannofossil assemblages observed in these marls contain Amaurolithus primus that indicates a Late Tortonian to Messinian age. As explained above, the FO of G. 

conomiozea s.s. in the upper part of the Los Aragoneses Marls indicates the TortonianMessinian transition (C3Bn chron) and the Lower Tripoli Fm is Messinian in 

age. Above, three samples of the Lower Tripoli Fm yielded Reticulofenestra pseudoumbilicus and Nicklithus amplificus among others nannofossils, indicating a 

Messinian age (MNN1c Zone, Raffi et al., 2003) (Fig. 3). Samples also provided Amaurolithus primus and Amaurolithus delicatus whose occurrence extends from 

 

Fig. 3. Lithostratigraphy of the western margin and La Serrata area of the Lorca Basin (this study). 



 

the Tortonian/ Messinian transition to the Early Zanclean (Raffi et al., 2006). In particular, the FO of Amaurolithus delicatus was found to be coincident with the 

base of the Messinian at the GSSP (Global Boundary Stratotype Section and Point) for the Messinian Stage formalised at the Oued Akrech, Morocco (Hilgen et al., 

2000b). The overlying Lower Gypsum Fm (Gypsum unit of Rouchy et al. (1998) and Evaporitic unit of Wrobel and Michalzik (1999)) consists of selenitic or nodular 

gypsum beds alternating with stromatolites (see Section 5.2 and Table 1 for a detailed description). The overlying alternation of laminated grey marls and 

evaporites constitutes the Upper Gypsum Fm and grades vertically to pink laminated marls devoid of evaporites of the Cañada Honda Fm. Both formations are the 

equivalent of the Post-evaporitic unit of Rouchy et al. (1998) and Wrobel and Michalzik (1999) and the Laminated Pelite Mbr of Garcia-Veigas et al. (2019). 

5.2. Facies associations and depositional environments 

Sedimentary features of facies are described in the Table 1 and in Supplementary Material (Figs. S2, S3, S4). A brief overview of the facies associations is given 

below. 

5.2.1. Evaporite-rich facies associations 

These facies associations consist of shallow hypersaline lagoon, sebkha, and muddy brackish lagoon deposits. Hypersaline lagoon deposits are characterised by an 

alternation of fine-grained laminated mudstones, planar stromatolites, selenitic gypsum, green marls, and sandstones (El facies, Table 1, Fig. S2A, B, 

Supplementary Material). Sebkha facies consist of carbonate beds or yellow sandstones locally enriched in enterolithic or chicken wire anhydrite nodules replaced 

by gypsum, lenticular gypsum crystals locally dissolved and forming a moldic porosity, dissolved pagoda-like halite crystals and desiccation 

Table 1 

Facies associations Lithology Geometries Sedimentary structures and 

diagenetic features 
Biogenic structures Paleontological 

content 
Interpretations 

Evaporite facies 
Hypsesaline shallow 

lagoon: El 

Selenite gypsum 
Lateral continuity over 

several hundreds of meters 
Selenite gypsum locally 

transformed in anhydrite 

nodules 

 ___________ 
Subaqueous hypersaline 

lagoon (Warren, 2006) 

 Dolomite, limestones, 

anhydrite 
Lateral continuity over 

several tens of meters 
Cones of anhydrite (gypsum 

transformation) intercalated 

in stromatolites, lack of 

dessiccation cracks 

Planar stromatolites ___________ Marginal hypersaline lagoon 

(lower intertidal) (Alsharhan 

and Kendall, 
2003; Warren, 2006; 
Bourillot et al., 2009, 2010) 

Sebkha: Es Fine to medium 

grained sandstones, 

anhydrite, gypsum, 

and halite 

Lateral continuity over 

several tens of meters 
Chicken wire and enterolitic 

nodules of anhydrite locally 

replaced by gypsum, 

dissolution vugs of lenticular 

gypsum crystals and of 

pagoda-like halite crystals, 

dessiccation cracks 

__________ ___________ Evaporitic flat (Sebkha) 
(Warren, 2006; Court et al., 
2017) 

Brackish lagoon: Eb Grey to green 

mudstones, silty 

limestones, rare 

grass-like, selenite, 

lenticular or nodular 

gysum 

Lateral continuity over 

several tens of meters 
________ __________ Ostracods, brackish 

foraminifera, 

abundant reworked 
Cretaceous to 

Paleogene 

foraminifera. Scarce 

gastropods in 

limestone beds 

Subaqueous brackish lagoon 

with sporadic hypersaline 

conditions during phases of 

lowering of the water level 

(Rouchy and Caruso, 2006) 

Siliciclastic facies 
Braided stream: Sb Coarse grained 

sandstones and clast 

supported 

conglomerates 

Concave up basal erosional 

surface Trough crossbedding, internal 

erosional surfaces, pebble 

imbrications 

__________ ___________ 
High energy fluvial stream, cut 

and fill dynamic (Gh, Gt facies 

of Miall, 2006) 

Lacustrine mudstones: Sl Carbonated and silty 

mudstones 
Lateral continuity over 

several hundreds of meters 
Alternations of cm-thick 

carbonate and silts layers, 

dessiccation cracks. dm-thick 

gradded sandstone beds with 

a vertical normal grading and 

crude horizontal laminations 

Vertical burrows Ostracods, brackish 

foraminifera, 

abundant reworked 
Cretaceous to 

Paleogene 

foraminifera 

Lacustrine varves with 

oxygenated bottom conditions 

and with subaerial exposure 

periods and flood-related 

deposits (Anderson and Dean, 

1988; 
Chun and Chough, 1995; 
Horton and Schmitt, 1996; 
Buatois and Mangano, 
2004) 

Alluvial fan: Sa Unsorted matrix 

supported 

conglomerates 

Non-channelized and lateral 

continuity over several tens 

of meters 

Slightly erosional basal 

surface 
________ ________ Aerial debris flows 

(proximal to distal alluvial fan) 

(Gmm facies of Miall, 
2006) 



 

Main sedimentological features of Messinian facies associations in the Lorca Basin. 

 Middle to coarse 

grained sandstones, 

conglomerates 

Sheet like geometry, lateral 

continuity over several tens 

or hundreds of meters, lateral 

transition to braided channels 

Planar horizontal laminations 

with disseminated pebbles 
________ ________ Sheet-flood deposits (Middle 

to distal alluvial fan) 

(Fernandez et al., 1993; Kelly 

and Olsen, 
1993; Ridgway and 
Decelles, 1993; Horton and 

Schmitt, 1996; Hampton and 

Horton, 2007) 

 Red or variegated 

silts, mudstones, and 

carbonates 

________ Pedogenetic carbonate 

nodules (paleosoils stage IV to 

V of Retallack, 1988; 
Mack et al., 1993) 

Root traces Plant remains Alluvial plain with 
paleosoils (Fl and P facies of 
Miall, 2006; FA2 facies of 
Hampton and Horton, 2007). 

Changes in redox conditions 

(McPherson, 
1980; Miall, 2006) 

 Fine to middle 

grained sandstones 
Lateral continuity over 

several tens of meters 
Current ripples Root traces ________ Overbank deposits (Sr facies 

of Miall, 2006) 

Meandering fluvial 

stream: Sm 
Conglomerates to 

middle grained 

sandstones 

Concave up basal erosional 

surface and lateral pinchout 
Basal pebble lag, vertical 

grading, epsilon 
cross-bedding (Allen, 1963; 
Miall, 2006) 

Scoyenia 

ichnofacies 
(Melchor et al., 
2012) 

________ Meandering channels (middle 

to distal alluvial fan) 

(Stanistreet and McCarthy, 

1993; Sl, Se facies of Miall, 

2006) 

Gilbert delta: Sg Non marine clast 

supported 

conglomerates 

Flat toped, basal erosional 

surface on top of forests 
Basinward pebble 

imbrications, internal 

erosional surfaces 

________ ________ Fluvial topsets (Corner et al., 

1990; Postma, 1990) 

 Marine clast 

supported 

copnglomerates 

Lateral pinch out. Transition 

to topsets in a landward 

direction and to foresets in a 

basinward direction 

Landward pebble imbrications 

within horizontal pebble 

ribbons. 
m-thick prograding 

conglomeratic bodies 

Gastrochaenolites 

borings 
Ostrea edulis, 

barnacles 
Beach ribbons and small 

conglomeratic mouth bars 
(Massari and Parea, 1990; 

Postma, 1990) 



 

Table 1  

Facies associations Lithology Geometries Sedimentary structures and 

diagenetic features 
Biogenic structures Paleontological 

content 
Interpretations 

Facies associations Lithology Geometries Sedimentary structures and 

diagenetic features 
Biogenic structures Paleontological 

content 
Interpretations 

 Matrix and clast 

supported 

conglomerates, 

middle to coarse 

grained sandstones 

10 m-high prograding 

foresets with dip up to 30°, 

lateral pinchouts. 

Inverse gradings in clast 

supported conglomerates, 

backsets and horizontal 

laminations in sandstones, 

normal vertical gradings from 

conglomerates to sandstones 

with current ripples, lateral 

grading 

Gastrochaenolites 

borings, 

undetermined 

vertical burrows in 

sandstones, 

Ostrea Edulis, 

barnacles, sea-

urchins 

Foresets with cohesive and 

non-cohesive debris flows, 

high density turbidites, 

backsets, inertia-dominated 

homopycnal flow deposits, 

debris fall deposits (Postma et 

al., 1988; Massari and Parea, 

1990; Nemec, 1990; 
Orton and Reading, 1993; 
Breda et al., 2007; Ghinassi, 
2007; McConnico and Bassett, 

2007; Winsemann et al., 2007, 

2009) 

 Fine grained 

sandstones and 

mudstones 

Distal continuation of 

foresets, dip about 5° 
Crude horizontal laminations, 

current ripples 
Undetermined 

vertical burrows 
Undifferentiated 

bivlave clasts, 

foraminifera 

Bottomsets with middle to 

low density turbidites 
(Stow and Shanmugam, 1980; 

Nemec, 1990; Breda et al., 

2007; Backert et al., 
2010) 

Submarine fan delta 
Proximal hyperpycnite: 

Sf 

Fine grained 

calcarenite, clast 

supported 

conglomerates, 

coarse grained 

sandstones 

Sheet like geometry with 

conglomerate ribbons 

laterally continuous over 

several tens of meters 

alternating with fine grained 

carbonates. Locally concave 

up basal and internal 

erosional surfaces with 

Lateral pinchout. 15 m-high 

and 50 m-large lensoidal 

geometry 

Inverse gradings in clast 

supported conglomerates, 

basinward imbrication of 

pebbles, normal gradings and 

current ripples in sandstones 

Gastrochaenolites 

borings 
Oysters, pectinids, 

undetermined 

bivalves 

Hyperpycnites organised in 

sheet like bodies in the 

submarine part of a fan delta 

or filling submarine channels 

crosscutting the upper part of 

forereef slope deposits (Cf 

facies) (Bøe et al., 2003; 

Mulder et al., 2003; Zavala et 

al., 2006; 
B1 facies of Zavala et al., 
2011) 

Fine grained 

hyperpycnite: Sw 
Heterolithic, 
medium grained 

sandstones, unsorted 

conglomerates, 

mudstones 

Lateral continuity over 

several tens of meters 
Horizontal laminations, 

hummocky 

cross-stratifications, wave 

ripples, flaser beding 

________ Pectinids Sandy flood-related deposits, 

dilute 

unidirectional flow at upper 

flow regime (Mulder et al., 

2003; Zavala et al., 2006; 
S2h and S3w facies of 
Zavala et al., 2011; Steel et 

al., 2018) 

Lower shoreface 

sandstones: Ss 
Fine grained 

sandstones 
Several decimeter thick 

bedsets intercalated in pink 

marls 

Oscillation ripples, HCS Skolithos burrows Reworked 
Cretaceous to 

Paleogene 

foraminifera 

Sand reworked by waves and 

storms and exported in 
distal marls 

Carbonate facies 
Uppermost inner 

platform: Cp 

Conglomerates, 

sandy coarse 

calcarenite 

Lateral pinch out of pebble 

ribbons 
Landward pebble 

imbrications, crude horizontal 

laminations 

Gastrochaenolites 

borings 
Ostrea Edulis, 

barnacles, 
Clypeaster, Scarce 
Porites patches 

Conglomeratic beach ribbons 

and shallow coral patchs in an 

inner platform impacted by 

important terrigenous inputs 

(Vennin et al., 2004; Saelen et 

al., 
2016) 

Inner platform and reef 

front: Ce 
Coarse grained 

calcarenite, gravels 
0,5 to 5 m-high 
Tarbellastrea buildups, 

landward transition to 

uppermost inner platform 

environments and basinward 

transition to forereef 

deposits 

________ Undetermined 

vertical burrows 
Tarbellastrea, Porites, 

coralline algae, 

gastropodes, oysters, 

pectinids, 

echinoderms 

Well oxygenated, shallow, and 

agitated environment at the 

top of the slope (Vennin et al., 

2004) 

Forereef: Cf Fine grained 

calcarenite, 

conglomerates 

Several tens of m-high 

prograding foresets 
Slumps, turbidites, 

conglomeratic debris flows 
Undetermined 

vertical burrows 
Undifferentiated 

bioclasts, bentic and 

planktonic 

foraminifera 

Steep slope with gravity 

driven deposits below the 

storm wave base (Nemec and 

Steel, 1984; Franseen and 

Mankiewicz, 1991; 
Nemec and Postma, 1993; 
Johnson et al., 2005) 



 

Basinal marls: Co Marls, dolomite, 

diatomite 
________ ________ ________ Planktonic 

foraminifera, diatoms 
Deep marine environment 

below the storm wave base 

(Rouchy et al., 1998) 

Deep restricted basin: Cr Organic-rich marls, 

green marls, 

dolomite, 

________ Slumped diatomites. 

Horizontal laminations, gutter 

casts, current ripples, 

________ Phosphatized fish 

remains, planktonic 

foraminifera 

Stratified basin with 

turbidites, high salinity 

periods, and oxygen 

(continued on next page) 
Table 1 (continued) 

Facies associations Lithology Geometries Sedimentary structures and 

diagenetic features 
Biogenic structures Paleontological 

content 
Interpretations 

 diatomite, native 

sulphur, coarse 

grained to fine 

grained sandstones, 

selenite gypsum 

 load casts, normal gradings, 

basal erosional surfaces in 

sandstones 

  depleted conditions on the 

sea floor favorable to bacterial 

sulphate reduction (Rouchy et 

al., 1998; 
Orszag-Sperber et al., 2001; 

Bąbel, 2007; Andreetto et al., 

2019) 

cracks (Es facies, Fig. S2C, D, E, Supplementary Material). The presence of gypsum indicates the rehydratation of anhydrite formed during early diagenetic 

growth within fine-grained dolomitic matrix and then a formation during periods of subaerial exposure (Rouchy et al., 1998; Court et al., 2017). Brackish facies 

are mainly represented by grey to green mudstones containing ostracods, rare marine bentic foraminfers and abundant foraminifera reworked from the 

Cretaceous to the Oligocene suggesting important freshwater inputs from the continent. Mudstones contain rare tens of centimetres thick beds of silty 

carbonates, rare stromatolites, selenite gypsum and yellow sandstones disseminated in mudstones (Eb facies). 

5.2.2. Siliciclastic facies associations 

Continental facies associations consist of alluvial fan, braided river, lacustrine, and meandering river deposits. Braided river deposits are characterised by non-

marine clast-supported conglomerates with metre scale trough cross-bedding and pebble imbrications (Sb facies, Table 1). Alluvial fan facies (Sa facies, Fig. S2F 

to J, Supplementary Material) contain channelised clast supported conglomerates intercalated or grading laterally to alluvial plain facies with palaeosoils, 

overbank, sheetfloods, and debris flow deposits. Meandering stream facies (Sm facies) consist of point-bar deposits with a pebble lag on their basal surface, a 

vertical grading and large tangential inclined beds interpreted as epsilon cross-bedding (Fig. S2K, Supplementary Material). They crosscut alluvial plain deposits. 

The presence of gravity-driven deposits truncating meandering channels indicates the distal part of an alluvial fan (Fig. S2L, Supplementary Material). 

Lacustrine facies are characterised by laminated varves, desiccation cracks, and graded sandstone beds interpreted as flood-related deposits (Sl facies, Fig. 

S2M, N, O, Supplementary Material). 

Marine deposits correspond to Gilbert deltas, submarine fandeltas, and shoreface sandtones. Gilbert delta facies association (Sg facies) already studied by 

Wrobel and Michalzik (1999) in the Lorca Basin, consist of topsets made of braided river conglomerates, conglomeratic beach ribbons and mouth bars, 

steepened sandy and conglomeratic foresets (dip up to 30°) with gravity-driven deposits, and heterolithic bottomsets (Table 1, Fig. S3A to G, Supplementary 

Material). Submarine fan delta deposits correspond to an alternation of fine-grained reworked calcarenites and hyperpycnites presenting a sheet-like geometry 

and consisting of pebbly sandstones with inverse grading and pebble imbrication (Sf facies, Table 1, Fig. S3H, I, J, Supplementary Material). They locally infill 

submarine channels incised into forereef slope facies and are characterised by a basal concave upward erosional surface formed in a subaqueous environment. 

Distal facies (Sw facies) are heterolithic and consist of thin beds of unsorted and ungraded conglomerates alternating with yellow middle to coarse-grained 

sandstones containing horizontal laminations, hummocky cross-stratifications (HCS), and symmetrical oscillation ripples on top covered by lenticular mudstone 

interbeds (Fig. S3K, Supplementary Material). Shoreface deposits (Ss facies, 



 

 

Fig. 4. Interpreted panorama of the incision at the top of the Honda Fm in the Los Cautivos area. TS = transgression surface. 
Fig. 5. Panorama of the Los Cautivos area with interpreted sedimentary cycles (I to IV). 

Table 1, Fig. S4A, Supplementary Material) consist of medium to fine grained sandstones with Skolithos burrows, HCS and wave ripples alternating with pink to 

grey mudstones. 

5.2.3. Carbonate facies 

Carbonate facies and reefal deposits of the Lorca Basin were described in detail by Vennin et al. (2004). The facies described here are mainly based on this work 

and consist of inner carbonate platform, foreslope, basinal, and deep restricted deposits. Uppermost inner platform carbonates (Cp facies, Table 1, Fig. S4A, B, 

Supplementary Material) are characterised by conglomeratic beach ribbons alternating with coarse-grained calcarenites and scarce Porites patches. Inner 

platform and reef front deposits (Ce facies, Table 1, Fig. S4D, E, Supplementary Material) consist mainly of domed and columnar Tarbellastrea with Porites in 

lower proportions embedded in a coarse-grained calcarenite with coral fragments, coralline algae, gastropods, oysters, pectinids and echinoderms. Forereef slope 

facies (Cf facies, Table 1, Fig. S4F, G, Supplementary Material) are characterised by thick foresets mainly composed of fine-grained silty calcarenites with fine-

grained turbidites, slumps and conglomeratic debris flows. Basinal facies (Co facies, Table 1, Fig. S4H, Supplementary Material) are represented by yellow to grey 

marls rich in planktonic foraminifera. Lastly, deep restricted basin deposits (Cr facies, Table 1, Fig. S4I to N, Supplementary Material) consist of a cyclic alternation 



 

of dm-thick diatomite beds with silty green marls, limestones, dolostones, middle to coarse grained sandy turbidites, organic-rich interbeds, selenite gypsum, 

native sulphur, and phosphatised fish remains. 

5.3. Stratigraphical architecture 

5.3.1. Los Cautivos area 

In the Los Cautivos area (Fig. 2), outcrops occur along the Guadalentine River. The S1 erosional surface separates the inner platform facies (Cp facies) of the 

Hondo Fm and the overlying Los Cautivos Fm (Fig. 4). The S1 surface is characterised by an incision of about 25 m large and 8 m deep at the top of the Hondo Fm; 

palaeosoils occur at its margins. The incision is filled by braided river deposits (Sb facies). Above, as already described by Wrobel and Michalzik (1999), four high 

frequency prograding, aggrading, and backstepping cycles labelled I to IV can be evidenced in the Los Cautivos Fm (Fig. 5). These authors described purely 

prograding units made of Gilbert delta sandstones and conglomerates (Sg facies) with toplap of foresets below nonaggrading fluvial topsets. These purely 

prograding units are covered by Gilbert delta facies with aggrading topsets where small Tarbellastrea patches appear on the surface of conglomeratic mouth bars 

in front of the deltaic system. Prograding and aggrading deposits correspond to the Lower Sandstones, Upper Sandstones, and Los Cautivos Conglomerates Mbrs. 

The marine fauna is diversified and contains barnacles, pectinids, sea-urchins, and Ostrea edulis locally organised in small buildups on the top of debris flow 

deposits. These prograding and aggrading units alternate with backstepping carbonates (Cp and Ce facies) characterised by a gradual landward migration of inner 

ramp facies and reef front facies at the expense of conglomeratic beach facies. They constitute the Lower and Upper Ruzafas Limestones Mbrs. 

The prograding wedges of the two last cycles in the Los Cautivos Conglomerates (III and IV on Fig. 5) consist of 10 m high foresets (Fig. 6A) separated by carbonate 

units. The last prograding unit (FRP in Fig. 6A) pinches out landward on the underlying carbonate unit and its bottomsets contains dissolution features such as 

cavities of Tarbellastrea blocks (Fig. 6B, C). A last prograding and aggrading phase predates the onset of the Terminal Limestones Mbr. This latter is characterised 

by bioherms rich in Porites (Fig. 6D, E) and onlaps the top of the Los Cautivos Conglomerates (Fig. 6A). Basinward they grade laterally into fine-grained 

calcarenites interfingered with offshore marls containing diatoms (Co facies) and dated to the Messinian in this study (Fig. 6A). The Terminal Limestones and the 

upper part of the Los Cautivos Conglomerates are truncated by the erosional surface S3 that is sharply overlain by red alluvial fan deposits (Sa facies) of the 

Monteros Fm. 

5.3.2. Cortijo de los Monteros 

Between Los Cautivos and Las Ruzafas (Fig. 2) several ravines allowed us to observe the geometry of the erosional surface at the top of the Terminal Limestones. 

Limestones are organised in several tens of m high prograding foresets with a dip of about 20° (Fig. 7A), made of fine-grained, laminated, and locally slumped 

calcarenites (Cf facies) of reefal foreslope environment. They show a gradual enrichment in dm to several m thick beds of conglomeratic debris flows. Locally, 

submarine channels are filled by marine conglomerates with internal erosional surfaces and flood-related deposits (Sc facies). They constitute 



 

E) Porites corals constituting the main builders of the Terminal Limestones. 

the MC Mbr preserved in depressions above a first erosional surface (S2) at the top of the Terminal Limestones Mbr and truncated below a second erosional 

surface (S3) at the base of the AC Mbr (Fig. 7B). The S3 surface is characterised by several tens of m wide and about 5 m deep incisions filled by alluvial fan 

deposits (Sa facies) of the AC Mbr (Fig. 7C). The S3 surface lowers basinward in the progradation direction of the Terminal Limestones (Fig. 7A). Indications of 

subaerial exposure exist below the S3 surface and consist of abundant traces of dichotomised roots going down from the incision surface into the Terminal 

Limestones (Fig. 7D). Conglomerates of the AC Mbr onlap landward on the incision surface (Fig. 7E). 

5.3.3. Las Ruzafas and Cañada Honda 

In the Las Ruzafas area (Fig. 2) the Terminal Limestones Mbr consists of fine-grained and slumped calcarenites of foreslope environment (Cf facies, Table 1) (Fig. 

8). They grade distally southeastward to offshore grey marls with diatoms and alternations of fine-grained sandy or calcarenite turbidites (Co facies). They are 

topped by an erosional surface (S2) covered by submarine fan delta deposits (Sf facies) of the MC Mbr (Fig. 8A). Several m large olistoliths composed of fine-

grained calcarenite are embedded in the MC Mbr (Fig. 8B). Locally, the marine deposits of the MC Mbr are covered by non-marine conglomerates, which were 

probably deposited in a braided river system (Sb facies) over an erosional surface (S3) (Fig. 8C). Low angle sliding surfaces locally affect the distal grey marls, the 

Terminal Limestones, and the MC Mbr (Fig. 8D). Theses surfaces are systematically sealed by the basal fluvial conglomerates of the MM Mbr (Fig. 8D). Locally, the 

MC Mbr is either overlain by brackish marls (Eb facies) of the MM. Mbr or by alluvial fan deposits of the AC Mbr (Fig. 8C, E). The MC Mbr is tilted to the east with a 

dip of about 10° to 15° while the overlying marls show a dip of 5° in the same direction (Fig. 8C). The contact between the MM Mbr and the overlying alluvial fan 

deposits of the AC Mbr is sharp and slightly erosional (Fig. 8E). 

The upper part of the Messinian deposits can be observed at Cañada Honda and Cortijo del Pajar (Fig. 2). In this area the Ac Mbr is characterised by 

intermediate alluvial fan facies and is covered by the Cañada Honda Fm consisting of an alternation of intermediate and distal alluvial fan deposits with 

meandering channels (Sa and Sm facies). The upper part of the Cañada Honda Fm consists of distal alluvial fan deposits. 

5.3.4. Southern margin 

The southern margin of the basin is crosscut by a N140° trending normal fault (Fig. 2). The hanging wall consists of Messinian deposits in faulted contact against 

Tortonian carbonates of the footwall. Several valleys perpendicular to the basin margin allowed us to log and correlate ten sections between El Rayo and El 

Consejero (Fig. 9). Along the Barranco El Rayo, distal facies of the Terminal Limestones consist of marls containing fine-grained calcarenite beds and diatoms 

(Co facies). They are truncated by an erosional surface (S2) deepening basinward (Fig. 10A). The surface is onlapped by alluvial fan conglomerates (Sa facies) of 

the Monteros Fm (MC Mbr). Between El Rayo and Los Batanes, alluvial fan facies directly overlying the Terminal Limestones are enriched in sandstones and 

channelised conglomerates become scarce and are replaced by conglomerate ribbons or sheets interpreted as overbank and sheetflood deposits of 

 

Fig. 6. Main geometries and sedimentological features of the Los Cautivos Conglomerates and Terminal Limestones in the Los Cautivos area. A) Interpreted panorama of sedimentary geometries in 

the Los Cautivos Conglomerates showing a gradual decrease in accommodation space and the final FRP formed in a context of forced regression. Note the final onlap of the Terminal Limestones 

and the overlying incision surface S3 covered by conglomerates of the Monteros Fm; B) Dissolution vug in bottomsets of the Los Cautivos Conglomerates; 
C) Close-up view of the dissolution vug showing moulds of Tarbellastrea corals; D) Domed geometry of a coral buildup in the Terminal Limestones (circled hammer for scale); 



 

intermediate alluvial fan environment (Fig. 9). In the Los Batanes area basal conglomerates become marine and are organised in matrix-supported debris flows 

with reworked Tarbellastrea pebbles (Fig. 10B) and coarse-grained deposits of submarine fan delta environment like those observed in the MC Mbr in the Las 

Ruzafas area (Sf facies). They cover grey offshore marls through a sharp erosional contact corresponding to the S2 surface 

version of this article.) 

(Fig. 10C). To the southeast, in El Cambron and El Consejero, The MC Mbr is characterised by yellow sandstones consisting of distal hyperpycnites (Sw facies) 

covering the Tripoli Fm through the sharp S2 surface (Fig. 10D). In this area the contact between the Los Aragoneses Marls and the overlying Tripoli Fm is sharp 

and locally erosional (S1 surface) (Figs. 9, 10E). Normal faults cutting through Limestones of the Parilla Fm and diatomites were observed. The surface of the Cejo 

de los Enamorados is notched by valleys perpendicular to the basin margin (Fig. 10F). This surface (S1 surface) is unconformable with respect to the bedding of 

the Tortonian limestones (Fig. 10G). The Hondo Fm pinches out eastward on top of the Parilla Fm and is absent in the area of the Cejo de los Enamorados. 

Diatomites of the Tripoli Fm, which were deposited in a deep restricted basin (Cr facies), onlap the S1 surface and fill incisions at the top of the Cejo de los 

Enamorados (Fig. 10G). 

 

Fig. 7. Stratigraphical architecture of the Cortijo de los Monteros area. A) Prograding foresets in foreslope deposits of the Terminal Limestones incised by a major erosional surface (S3); B) 

Subaqueous canyon characterised by an erosional basal surface (S2, green line) incising in carbonate platform slope deposits. Note the internal erosional surfaces (white lines) with a concave-up 

geometry. The upper surface corresponds to a surface of subaerial exposure covered by alluvial conglomerates of the AC Mbr. Circled geologist for scale; C) Incised valley filled by alluvial 

conglomerate of the AC Mbr. Circled geologist for scale; D) Root trace (blue arrow) below the incision surface S3 at the base of AC Mbr. Note the dichotomisation of rootlets (black arrows); E) 

Onlap geometry of the AC Mbr on the incision surface S3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 



 

Between Los Arcos and El Consejero an evaporitic unit (Lower Gypsum Fm) rich in stromatolites, laminated mudstones, and sandstones covers the yellow 

sandstones of the MC Mbr (Fig. 11A). In the lower part of the unit, gypsum is mainly characterised by sebkha facies (Es facies). Subaqueous salina facies become 

more abundant in the upper part. The thickness of the Lower Gypsum Fm increases gradually in the El Consejero direction (Fig. 9). The Lower Gypsum Fm is 

capped by a palaeosoil (S3 surface) containing red mudstones alternating with sandy carbonates of sebkha environment presenting dissolution vugs of lenticular 

gypsum crystals (Es facies) (Fig. 11B). The uppermost bed shows evidence of 

Mbr. Note the difference in dip between the MC and MM Mbrs. 

subaerial exposure such as vertical cm-sized root traces still containing organic remains (Fig. 11C). Southeast of Los Arcos, beds can be intensively folded and folds 

are generally overturned in a basinward direction. Rouchy et al. (1998) noted that fold axes present a quite constant direction around N210° suggesting that the 

deformation was due to massive sliding of evaporites during a subsequent tilting of the basin. Because of the poor quality of outcrops and the intensive 

deformation of evaporites this surface was not mapped at the top of the Lower Gypsum Fm in this area. In contrast, northwest of Los Arcos the Lower Gypsum Fm 

is incised (S3 surface) and covered by massive unsorted debris flow deposits (Fig. 11D). These deposits pinch out toward Los Batanes and they can be 

differentiated from tabular Quaternary alluviums since they are tilted to the northeast and locally covered by brackish variegated marls of the Upper Gypsum Fm. 

In Los Arcos, the surface of subaerial exposure is covered by brackish lake deposits with evaporite alternations (Eb facies) of the Upper Gypsum Fm (Fig. 9). In the 

upper part of the formation, gastropods and sebkha deposits are locally present in limestones as well as desiccation cracks at the top of some mudstone beds. 

In the Los Batanes area the Lower Gypsum Fm is absent and marls of the Upper Gypsum Fm containing clusters of primary palmate gypsum cover marine 

conglomerates of the MC Mbr through a sharp erosional contact (S3 surface) (Fig. 11E). This surface is onlapped by the Upper Gypsum Fm. Evaporite marls are 

covered by pink marls with wavedominated sandstones of shoreface environment (Ss facies) in the lower part of the Cañada Honda Fm (Fig. 11F). Overlying 

deposits are enriched in sandstones and conglomerates containing small oyster shells and undetermined bivalves (Fig. 11G). In the Los Arcos area the vertical 

 

Fig. 8. Sedimentary features in the Las Ruzafas area. A) Incision surface S2 between distal facies of the Terminal Limestones and coarse grained turbidites of the MC Mbr. Circled geologist for scale; 

B) Calcarenite olistolith (Os) provided by the erosion of the Terminal Limestones and incorporated in marine conglomerates of the MC Mbr; C) Global view of the stratigraphical relationships 

between the Terminal Limestones, the MC Mbr, and the MM Mbr. The incision surface (S2) between the Terminal Limestones (TL) and the MC Mbr is sealed by braided river conglomerates above 

the S3 surface. Note the difference in dip between the MC Mbr and the brackish marls of the MM Mbr; D) Sliding surface between offshore marls (Co) and the Terminal Limestones (T.L.) sealed by 

braided river conglomerates; E) Slight erosional contact between brackish variegated marls of the MM Mbr and alluvial fan deposits of the AC 



 

transition from the Upper Gypsum to the Cañada Honda Fm is gradual and is characterised by the disappearance of gypsum beds. Sandy flood-related deposits 

and then crossbedded sandy fluvial channels appear in the upper part of the section (Figs. 9, 11H). The Upper Gypsum Fm disappears toward El Rayo. In this 

direction, wavedominated deposits grade laterally to distal and then to intermediate alluvial fan deposits, which onlap the top of the MC Mbr (Fig. 11I). 

5.3.5. La Serrata 

The Serrata outcrop consists of a NE-SW oriented ridge (Fig. 2). It exposes the vertical transition from the Aragoneses Marls Fm, to the Messinian Lower and 

Upper Tripoli Fm, and the Lower Gypsum Fm (Fig. 12A). Several sections were logged in detail by Rouchy et al. (1998) and their observations are introduced in this 

study. The Aragoneses Marls Fm is characterised by basinal grey marls with scarce nodular dolostone beds (Co facies). Part of the foraminifera assemblages 

observed in these marls was reworked from the Cretaceous to the Middle Miocene (Rouchy et al., 1998). The transition to the Lower Tripoli Fm is sharp (S1 

surface) (Fig. 12B) and is characterised by a stratigraphical gap of several hundred or thousand years (Rouchy et al., 1998). The deposits of the Lower Tripoli Fm 

are organised in five sequences starting with offshore silty marls (Co facies) and grading vertically to diatomites (Cr facies) with some limestone beds (Figs. 12C, 

13). A gradual increase in the thickness of diatomite beds and an enrichment in sandstones characterise the Lower Tripoli Fm (Fig. 12B). Evaporite-derived 

minerals such as native sulphur are present in diatomite beds. Slumped diatomites showing a westward displacement are sometimes present on top of 

sequences. The amount of sandy turbidites and non-cohesive grain flows increases in the upper 10 m of the Lower Tripoli Fm. Gutter casts on the basal surface of 

grain flows indicate a N310° direction of transport. In contrast, the Upper Tripoli Fm is mainly made of silty marls (Fig. 13). Thin carbonate beds are present in its 

lower part while an increase in dolomite, sandstone, and conglomerate beds occurs in the upper part (Fig. 13). Diatomites beds and evaporitederived minerals are 

absent in the Upper Tripoli Fm. 

The contact between the Upper Tripoli Fm and the Lower Gypsum Fm is sharp (Fig. 12A). Conglomerates were described by Rouchy et al. (1998) just below the 

contact. The deposits of the Lower Gypsum Fm consist of an alternation of evaporites, sandstones and stromatolites of sebkha and shallow salina environment (Es 

and El facies). Halite pseudomorphs and sebkha facies have been observed in the Lower Gypsum Fm. 

 

6. Discussion 

6.1. Basin wide correlations and palaeogeography 

The ages that we have obtained indicate that the Tortonian carbonates of the Parilla and Hondo Fms and the Los Aragoneses Marls Fm are partly coeval as 

envisaged by Krijgsman et al. (2000) (Fig. 3). In the western part of the basin, carbonate facies containing a diversified benthic fauna with Porites and Tarbellastrea 

buildups of the Hondo Fm are typical of a shallow marine tropical platform (Brachert et al., 2001; Braga et al., 2006; Martin et al., 2010). In the eastern part of the 

basin the Tortonian Los Aragoneses Marls were also deposited in a normal marine environment (Rouchy et al., 1998). The abundance of foraminifera reworked 

from the Cretaceous to the Middle Miocene indicates that most terrigenous inputs were provided by the erosion of the External Betics located to the west. The 

 

Fig. 9. Stratigraphical architecture of the southern margin of the Lorca Basin. 



 

palaeogeographical configuration with shallow carbonate systems on the western and southwestern margin grading on a short distance to offshore marls in the 

Serrata area indicates that this latter region was the area with the most pronounced subsidence at the end of the Tortonian (Fig. 14A). 

A first base-level drop was recorded by the S1 surface (Fig. 14B). In the area of the Cejo de Los Enamorados (Fig. 2), this base-level drop and a probable subaerial 

exposure of the southeastern margin prior to the deposition of diatomites are characterised by basinward oriented incisions (S1 surface) onlapped by the Lower 

Tripoli Fm on top of the Parilla Fm. This event is also suggested by the sharp and erosional contact between offshore marls of the Los Aragoneses Fm and the 

Lower Tripoli Fm. According to Rouchy et al. (1998), a stratigraphical gap and a drop in relative sea-level of at least 50 m occurred between these formations. 

However a gravitational collapse of the platform margin prior to the incision cannot be excluded since i) the truncation surface is strongly oblique compared with 

the limestone stratification, ii) the 



 

 

Fig. 10. Mainsedimentary features of the southern margin of the LorcaBasin (part 1). A) Incision surface S2 between distal facies of the Terminal Limestones characterised bydistaldiatombearing 

marls and alluvial fan deposits of the MC Mbr (Barranco El Rayo); B) Rounded Tarbellastrea pebble in the MC Mbr (Los Batanes); C) Sharp contact (S2 surface) between offshore marls and coarse-

grained turbidites of the MC Mbr Circled geologist for scale (Los Batanes); D) Sharp contact (S2 surface) between the Upper Tripoli Fm and yellow shoreface sandstones in El Cambron; E) Erosional 

contact (S1 surface) between offshore marls of the Los Aragoneses Fm and diatomites of the Lower Tripoli Fm; F) Incised valleys (arrows) perpendicular to the basin margin on the upper surface of 

the Cejo de Los Enamorados formed by the Parilla Fm; G) Panorama of the southern face of the Cejo de Los Enamorados allowing to observe the strong obliquity of the erosional surface (S1 

surface) with respect to the beding of the Parilla Fm and the onlap deduced by the difference in dip between the Tripoli Fm, the Lower Gypsum Fm, and the erosional surface. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 



 

 

Fig. 11. Main sedimentary features of the southern margin of the Lorca Basin (part 2); A) Interpreted panorama of the southern margin between Los Batanes and Los Arcos; B) Palaeosoil at the top of 

the Lower Gypsum Fm in Los Arcos (see location in Fig. 10A); C) Calcrete with root traces (arrows) at the top of the palaeosoil; D) Massive continental debris flows (Cdf) intercalated between Lower 

and Upper Gypsum Fms between Los Batanes and Los Arcos. Deposits are tilted to the northeast while the contact with Quaternary alluvium (Qt) is quite horizontal; E) Erosional contact between the 

coarse-grained turbidites of the MC Mbr and evaporitic marls of the Upper Gypsum Fm. The insert shows a cluster of palmate gypsum in the evaporitic marls (see location in Fig. 10A); F) Vertical 

transition from evaporite marls (Upper Gypsum Fm) to marls with wave modeled sandstones and to marine conglomerates (see location in Fig. 10A); G) Abundant oysters shells in the AC Mbr in Los 

Batanes; H) General view of the Cañada Honda Fm in the Los Arcos area (see location in Fig. 10A). Note the vertical enrichment in sandy flood-related deposits in the upper part of the formation (Qt = 

Quaternary alluvium); I) Onlap of middle alluvial fan deposits of the AC Mbr on the roof 
of the MC Mbr (Barranco El Rayo). 

surface shows a very straight appearance in the basinal direction, iii) Rouchy et al. (1998) identified a repeated interval of about 130 m in thickness rich in large 

carbonate blocks in the Tortonian marls of the Serrata area that they interpreted as a collapse of the platform margin. 



 

This first base-level drop was also recorded on the western margin of the basin where it consists of the incision at the top of the Hondo Fm in the Los Cautivos 

area (Fig. 14B). Here, palaeosoils preserved on channel margins and overlying braided river deposits of the Los Cautivos Fm, 

version of this article.) 

formed during a phase of creation of accommodation space. During the deposition of aggrading deltaic conglomerates and carbonate facies of the Los Cautivos 

Fm the occurrence of diversified eurihaline fauna suggests that normal marine conditions prevailed in the basin, at least in shallow areas. The growth of 

Tarbellastrea patches on mouth bar deposits during aggradation phases predated the generalised development of Tarbellastrea bioherms onlapping on deltaic 

sandstones and conglomerates and grading landward to inner ramp conglomeratic carbonates during the backstepping phases (Vennin et al., 2004). The 

proliferation of the carbonate production was favoured by a decrease in siliciclastic inputs caused by an increase in the accommodation space or only linked to a 

decrease in continental erosion during climatic variations. This question will be addressed in the Section 6.2. In the Los Cautivos Fm, the gradual disappearance of 

aggrading deposits from cycles I to IV and the reduced thickness of transgressive carbonate deposits during the high frequency cycle IV (Los Cautivos 

Conglomerates Mbr) (Fig. 6) indicate that the long-term accommodation space decreased gradually with time. This trend led to the formation of the last 

prograding wedge (FRP in Fig. 7A) pinching out landward on older carbonate deposits. This geometry is considered as an indication of forced regression during a 

period of relative sea-level drop (Hunt and Tucker, 1992; Plint and Nummedal, 2000; Catuneanu et al., 2009). This phase led to the erosion of underlying 

carbonates as evidenced by the occurrence of reworked Tarbellastrea blocks embedded in bottomset deposits. 

In the Serrata area, the five cycles observed in the Lower Tripoli Fm are interpreted as cycles of opening and restriction of the basin (Benali et al., 1995; Rouchy et 

al., 1998; Jurkschat et al., 2000) (Fig. 13). Silty marls devoid of diatomites and evaporites correspond to periods of unrestricted basin conditions. In contrast, 

transitions to diatomites, organic shales, evaporite-derived minerals, and sandstone beds occurred when the basin became confined. Rouchy et al. (1998) 

observed sebkha facies in the northeastern part of the Serrata outcrop suggesting that during restricted periods the water-level lowered and margins were 

temporarily exposed. The overall increase in siliciclastic inputs at the top of the Lower Tripoli suggests an overall shallowing-upward trend. The occurrence of 

slumps at the top of some sequences indicates that failures of basin margins predated the reopening of depositional environments and the deposition of silty 

marls. 

No direct observations in the field allowed us to observe the lateral transition between the Gilbert delta deposits and Terminal Limestones of the Los Cautivos 

Fm and the diatomites of the Lower Tripoli Fm. However, several arguments allow to support such a correlation: i) these formations overlie the incision surface 

S1 at the top of the Parilla and Hondo Fms at the Cejo de Los Enamorados and Los Cautivos; ii) the Messinian dating in the Tripoli Fm is in accordance with ages 

proposed by Rouchy et al. (1998) and Wrobel and Michalzik (1999) and only the lower part of the Serrata section is Late Tortonian. The Lower Tripoli Fm. is 

dated to the Messinian and a similar age was proposed by Wrobel and Michalzik (1999) and Saelen et al. (2016) for the Los Cautivos Fm; iii) five high frequency 

cycles of progradation-aggradation-backstepping or opening-restriction exist in the Los Cautivos and Lower Tripoli Fm, respectively (Fig. 14C). The overall 

progradation during the deposition of conglomerates on the western margin is also recorded by the overall increase in siliciclastics in the Lower Tripoli Fm (Fig. 

14D). The proliferation of diatoms in the Lower Tripoli Fm was favoured by continental inputs providing silica and nutrient-rich waters (Playà et al., 2000; 

Pellegrino et al., 2018). Such conditions were certainly encountered when Gilbert delta systems formed on the western margin of the basin (Rouchy et al., 

1998) (Fig. 14C, D). In the Lower Tripoli Fm, abundant foraminifera reworked from the External Betics also indicate that the majority of sediments was supplied 

by the western margin (Rouchy et al., 1998). Aggradation and backstepping periods that led to the development of Tarbellastrea-rich carbonates in the Los 

 

Fig. 12. Main sedimentary features in the Serrata. A) Panoramic view of the Serrata ridge; B) Stacking of restriction cycles characterised by the gradual transition between offshore silty marls (Sm) 

and diatomites (D) in the Lower Tripoli Fm. Cycles are separated by a flooding surface (blue line) located at the transition between diatomites and offshore marls. Note the sharp contact between 

Los Aragoneses marls and the Lower Tripoli Fm (S1 surface); C) Close-up view of the transition between basinal marls (Sm) and diatomite beds (D). The top of cycles are sometimes capped by 

slumped diatomites or limestones beds (Cb). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 



 

Cautivos Fm were accompanied by a rise in relative sea-level. These events periodically led to the reentering of marine waters into the basin and the 

attenuation of restricted conditions in the Tripoli Fm with the deposition of offshore marls. In contrast, at the end of progradation periods, accommodation 

was null or negative, as indicated by purely prograding wedges or forced regressions in the Los Cautivos Fm, and favoured 



 

 



 

Fig. 13. Sedimentological log of the Serrata section with possible magnetozones, high frequency (I to V) and long-term opening-restriction cycles. 

basin restrictions. This is also suggested by the occurrence of evaporites in subaqueous or sebkha environments on the eastern margin. In front of the Gilbert 

delta, during restricted periods, the mixing of marine and freshwaters was not favorable to the precipitation of evaporites but a salinity gradient certainly 

existed further east. In addition, oxygen-depleted bottom conditions developed during the deposition of the Lower Tripoli Fm in hypersaline conditions as 

indicated by the lack of bioturbations, the high organic content, the precipitation of gypsum, the intense activity of the bacterial sulphate reduction, and the 

significance of the organic markers (Russell et al., 1997; Rouchy et al., 1998). Recently Andreetto et al. (2019) interpreted these data as being indicative of a 

stratification of the water column. Nevertheless, marine conditions persisted during the deposition of the entire Lower Tripoli Fm (Rouchy et al., 1998). 

The Messinian age of the Terminal Limestones grading basinward to diatom-bearing marls suggests that they are partly coeval with the Lower Tripoli Fm of the 

Serrata area. The Terminal Limestones Mbr was deposited during the onset of the fifth high frequency cycle described by Wrobel and Michalzik (1999) and 

during a rise in baselevel as attested by the onlap geometry on the Los Cautivos Fm 

(Fig. 14E). This flooding induced an attenuation of restricted conditions in the whole basin. We interpret the thick marl interval at the base of the fifth cycle in 

the Lower Tripoli Fm as an indication of a more important reopening compared with the previous cycles I to IV. This last restoration of open marine conditions 

is inferred to be coeval with the marine reflooding recorded by the onlap of Terminal Limestones in the Los Cautivos area. 

A second major drop in base-level is recorded by the S2 surface and a rapid basinward shift of depositional environments. In the Los Monteros area, the sharp 

transition from carbonate slope environment to conglomeratic submarine channel infill on both sides of S2 suggests a forced regression during a base-level 

drop. In this area, the lack of indications of subaerial exposure below S2 suggests that the surface formed in a subaqueous environment. Incisions on the upper 

carbonate slope fed the coarse-grained submarine fan delta deposits observed in the Las Ruzafas area. These deposits show a limited lateral distribution 

because of their transport as traction carpet in the inertia-flow layer (Postma et al., 1988; Prior and Bornhold, 1989, 1990). In this area, erosion and collapse of 

the western margin during the relative base-level fall are recorded by the occurrence of olistoliths embedded in the MC Mbr and by slump scars sealed by 

conglomerates or marls of the overlying members (Fig. 14F). On the southeastern margin, this base-level drop was also recorded by the S2 surface between the 

Terminal Limestones and overlying alluvial fan deposits of the MC Mbr in the Barranco El Rayo area, between offshore marls and coarse-grained fan delta 

deposits in the Los Batanes area and between diatom-bearing marls of the Tripoli Fm and wave-modified sandstones in the El Consejero area. The occurrence 

of reworked Tarbellastrea pebbles in Los Batanes indicates that older carbonate platforms on the basin margins were eroded and probably exposed during the 

deposition of the MC Mbr. On this margin, conglomeratic fans delta deposits grade basinward over short distances to fine or medium grained sandstones 

transported further away than pebbles in turbulent suspension clouds. The presence of feeding channels and coarse-grained submarine fan delta deposits in 

the western part of the basin and only sandy facies devoid of basement pebbles between Los Arcos and El Consejero indicates that the siliciclastic material was 

mainly provided by the western margin. This unit is correlated in the Serrata with sandy turbidites and conglomeratic beds at the top of the Lower Tripoli Fm. 

The base-level drop continued with the deposition of the Upper Tripoli Fm pinching out southwestward and characterised by the disappearance of 

autochtonous marine fauna, the disappearance of marine diatoms, an increase in siliciclastics, and a drastic increase in freshwater inputs (Benali et al., 1995; 

Rouchy et al., 1998). This evolution indicates an increasing continentalisation of the basin and the transition toward endorheic conditions (Benali et al., 1995; 

Jurkschat et al., 2000; Garcia-Veigas et al., 2019). The pinch-out of the Upper Tripoli Fm toward the southwest over a short distance suggests that a tectonic 

event generated a compartmentalisation of the basin during the second base-level drop and an activity of the FCCL fault cannot be excluded in this context. 

Salina and sebkha facies of the Lower Gypsum Fm pinch out and onlap westward on the roof of the MC Mbr in the Los Batanes area (Fig. 14F). In the Serrata 

area, the sharp contact between the Upper Tripoli Fm and the Lower Gypsum Mbr is in accordance with a rapid and drastic confinement of the basin. However 

regular incursions of marine waters occurred over or through the sill that was probably formed by the Tercia ridge (see Section 6.2) to allow the precipitation of 

the consistent volume of evaporites of the Lower Gypsum (Ayora et al., 1994). The evaporites are not Tortonian as they postdate the Tripoli Fm that has been 

dated to the Messinian on the basis of nannofossils and foraminifera. Thus, they are Messinian in age since no Pliocene deposits were identified in the basin. 

The occurrence of a subaerial exposure surface (S3 surface) materialised by a palaeosoil at the top of the Lower Gypsum in the Los Arcos area and by an 

incision filled by continental debris flow deposits between Los Arcos and Los Batanes indicates that another drop in base-level occurred after the deposition of 

this first evaporitic unit (Fig. 14F). 

In the Serrata area, megabreccias interpreted as dissolution/collapse features due to karstification were described at the top of the Lower Gypsum (Rouchy et 

al., 1998). In addition, two boreholes located in the central part of the basin (Fig. 2) crossed a thick halite unit (Orti et al., 1993; Garcia-Veigas et al., 1994). In 

the Lorca-S4 borehole the evaporitic unit is composed of 200 m-thick halite deposits covered by a only 25 m-thick gypsum unit (Garcia-Veigas et al., 1994). As a 

consequence and as envisaged by Rouchy et al. (1998) and Garcia-Veigas et al. (2019), the halite unit is certainly a lateral equivalent of a part of the Lower 

Gypsum Fm. Halite precipitated first from marine waters in the lower part of the unit and from meteoric waters in the upper part after a gradual closing of the 

basin and its desiccation (Ayora et al., 1994; Garcia-Veigas et al., 1995, 2019). This suggests that the surface of subaerial exposure at the top of the Lower 

Gypsum on margins is coeval with the deposition of the younger halite deposits in the deepest parts of the basin when it was disconnected from marine 

waters. The exposure also indicates that the drop in base-level continued after deposition of the first massive evaporites units. Lowstand deposits coeval with 

the exposure certainly exist outside the Lorca Basin. The subaerial exposure of the western margin during this major drop in base-level is marked by the 

presence of root traces below the incision surface S3 that eroded the Terminal Limestones Mbr and the older Los Cautivos Conglomerates. In the Los Cautivos 

area the S2 surface is not preserved below the S3 surface. 

After this last major base-level drop, a new rise in base-level is indicated by the deposition of the Upper Gypsum Fm (Fig. 14G) showing an onlap of evaporitic 

marls on the S3 surface in the southern part of the basin. However, the intercalation of scarce salina and sebkha facies with desiccation cracks within marls 

indicates the occurrence of periods of hypersaline conditions and short-lived subaerial exposures during this period of unstable rise in base-level. Subsequently, 

marine waters reentered the basin and marine conditions prevailed in the lower part of the Cañada Honda Fm marked by the deposition of wavedominated 

sandstones and marine conglomerates. In the Las Ruzafas area slope failures ceased before the development of braided river deposits overlying the S3 surface. 

The vertical transition from braided river conglomerates above the S3 surface to marls of the MM Mbr, which were deposited in a brackish environment 

because of the vicinity of alluvial fans and freshwater inputs, indicates a backstepping of depositional environments after the major lowering of base-level 



 

recorded by the S3 surface. In the Los Cautivos and Los Monteros areas the onlap of alluvial fan deposits of the AC Mbr on the S3 surface attests of a renewal in 

the creation of accommodation space after a major drop in base-level. 



 

 



 

Fig. 14. Sedimentary and stratigraphical evolution of the Lorca Basin during the Late Tortonian and the Messinian. 

During the highstand progradation of alluvial fan systems of the AC Mbr and the deposition of the upper part of the Cañada Honda Fm, the marine waters were 

gradually diluted by freshwater carried from the hinterland and a shallow brackish lake devoid of evaporites formed in the whole basin (Fig. 14H). Such a 

depositional environment is similar to the Lago Mare facies described in many marginal basins all around the Mediterranean basin (Rouchy et al., 2001; Aguirre 

and Sanchez-Almazo, 2004; Clauzon et al., 2005; Cosentino et al., 2005; Orszag-Sperber, 2006). The important terrigenous inputs from the western margin under a 

humid climate compensated and exceeded gradually the accommodation space and prograding alluvial and lacustrine deposits finally covered brackish deposits. 

The gradual enrichment in flood-related deposits and the appearance of fluvial channels in the upper part of the formation are in accordance with a prograding 

trend. 

6.2. Controls on sedimentary cycles 

Several authors tentatively proposed correlations between eccentricity cycles and the onset of the salinity crisis on the basis of magnetostratigraphical dating 

(Krijgsman et al., 1999; Hilgen et al., 2007). They proposed that long-term orbital cycle forcing superimposed onto tectonics controlled the appearance of 

evaporites. The occurrence of a significant base-level fall prior to the deposition of evaporites in marginal basins is discussed as for example in the Sorbas Basin 

(Braga and Martin, 1996; Bourillot et al., 2009, 2010; Manzi et al., 2013). Our field observations show that in the Lorca Basin several base-level drops predated the 

deposition of the Lower Gypsum Fm. These base-level drops are compared with the major changes observed in the Cenozoic sea-level curve from the Late 

Tortonian to the Pliocene (Fig. 15). Haq et al. (1987), Abreu and Anderson (1998) and Miller et al. (2011) all consider two main sea-level falls during the Messinian 

despite their different timing (Fig. 15A). Major sedimentary cycles observed in the Lorca Basin can be tentatively correlated with the accommodation curve 

deduced from the global sea-level curve of Miller et al. (2011) and corrected by local uplift or subsidence (Fig. 15B). The two main base-level drops associated 

with S1 and S2/S3 surfaces can be correlated with eustatic falls at −6.8 or -6.5 Ma and at about −6 Ma respectively. The occurrence of N. amplificus (6.94–5.94 

Ma; Gradstein et al., 2012) in the middle part of the Lower Tripoli Fm indicates that the second base level-drop that predated the deposition of the Upper Tripoli 

and the Lower Gypsum occurred after −6.9 Ma. The first occurrence of N. amplificus is located in the uppermost part of the magnetozone C3Ar (Raffi et al., 2006). 

However, in the Serrata section, N. amplificus occurs in the lower part of an interval of reversed polarity defined by Krijgsman et al. (2000). Consequently, the 

reversed-polarity interval in the Serrata section is probably the younger magnetozone C3An.1r between −6.4 and −6.25 Ma. In this case, an age of about −6 Ma for 

the onset of deposition of the Lower Gypsum cannot be ruled out. The final base-level drop (S3 surface) that resulted in subaerial exposure of the Lorca Basin was 

probably also enhanced by the local lowering of relative sea-level due to evaporation of enclosed Mediterranean marine waters after the closure of the Gibraltar 

strait and the disappearance of perennial connections between Atlantic and Mediterranean domains (Duggen et al., 2003; Jolivet et al., 2006; Garcia-Castellanos 

et al., 2009; Manzi et al., 2013; Roveri et al., 2014a). 

A superimposed tectonic activity certainly controlled the amplitude of eustasy-related variations in accommodation space. In the model of Montenat and Ott 

d'Estevou (1999), the Tercia ridge corresponds to a drag fold formed during the Late Tortonian and a syncline occurred in the Serrata area because of the 

transpressive deformation in the vicinity of the strike-slip Alhama de Murcia fault system. However, during the Late Tortonian, the lack of basin restriction, the 

dominance of terrigenous inputs from the External Betics, and the lack of evidence of 



 

 

Fig. 15. Sedimentary evolution, eustasy, and the structural framework of the Lorca Basin during the Late Tortonian and the Messinian. 

terrigenous inputs from the Tercia ridge actually located less than 2.5 km from the Serrata suggest that this massif was not yet exhumed and therefore did not 

act as a sill. In contrast, a folding or tilting of the southeastern margin may have occurred from the Late Tortonian to Early Messinian as suggested by the 

gradual pinch-out of the Hondo Fm on top of the Parilla Fm in the area of the Cejo de los Enamorados. In addition, the occurrence of slumps showing a 

westward displacement in diatomites indicates that a slope was present in the Serrata area during the Messinian. A shallow water or exposed high in the 

eastern margin is deduced by the slope orientation and the gravitydriven sandstones at the top of the Lower Tripoli Fm showing N310° palaeoflow directions. 

The sliding direction of slumps in diatomites suggests that a possible origin of gravity-driven deposits in this part of the basin is related to a steepening of the 

eastern margin. Such slope modifications probably occurred during the exhumation of the Tercia ridge related to the strike-slip activity of the Alhama de 

Murcia fault system during the uplift of the Betics (Booth-Rea et al., 2002) (Fig. 15B). By considering an exhumation of the Tercia ridge during the Messinian, 

this high probably acted as a sill and favoured basin restrictions during low accommodation space periods. Subsequently, the Tercia ridge continued to act as a 

sill during the deposition of Messinian evaporites. 

In addition, Gilbert delta systems occur generally in tectonically active zones with a stepped margin and an abrupt transition from shallow or subaerial 

environments to a deep basin (Postma, 1990; Garcia-Garcia et al., 2006a, 2006b; Alçiçek, 2007; Breda et al., 2007; Backert et al., 2010). The transition from a 



 

coral-rich carbonate platform of the Hondo Fm to the Gilbert delta of the Los Cautivos Fm suggests that a major structural event and a rejuvenation of reliefs 

coeval with the appearance of a stepped margin occurred at the beginning of the Messinian (Fig. 15B). This timing is in accordance with the scenario of a growth 

of the Tercia ridge during the Messinian as proposed by Martinez-Diaz (2002) and Meijninger and Vissers (2006) and with a major structural reorganisation 

associated with a regional uplift (Jolivet et al., 2006; Pedrera et al., 2006; Iribarren et al., 2007, 2009; Augier et al., 2013). This regional uplift was induced by the 

inversion of the Algero-Balearic Basin (Jolivet et al., 2006; Giaconia et al., 2015; Do Couto et al., 2016) and amplified the eustasy-related decrease in 

accommodation space and limited the amplitude of reflooding as envisioned in numerous marginal basins of the Mediterranean domain (Roveri and Manzi, 2006; 

Roveri et al., 2014b) (Fig. 15B). Finally, during the Late Messinian, the renewal in accommodation and the short-lived marine incursion (base of the Cañada Honda 

Fm) are coeval with an eustatic rise and with a decrease in the intensity of compressional deformation and uplift (Carnevale et al., 2006; Bache, 2012; Roveri et 

al., 2014a) (Fig. 15B). Pliocene deposits have not been identified in the Lorca Basin. This suggests that an important regional uplift either compensated the 

eustatic rise during the Pliocene or generated the erosion of marine deposits after the Pliocene flooding. 

In this context of regional uplift, a local structural control on high frequency sedimentary cycles can be postulated for the Lorca Basin. The reflooding of incised 

valleys by the diatomites of the Tripoli Fm on the toe of the Cejo de los Enamorados is coeval with synsedimentary faulting that locally enhanced the increase in 

accommodation (Fig. 9). In the Los Cautivos Fm, the occurrence of periods of pure progradation and associated forced regression indicates that high frequency 

aggradation/backstepping/progradation cycles (I to IV cycles) were mainly controlled by variations in accommodation rather than by variations in the sedimentary 

flux. A eustatic control on these high frequency cycles was not excluded by Wrobel and Michalzik (1999) who interpreted them as 4th order cycles. In addition, 

Rouchy et al. (1998) argued that restriction/opening cycles in the Lower Tripoli Fm were due to global sea-level fluctuations rather than to tectonic processes 

because of the short duration of cycles. However, several studies show that high frequency cycles sometimes less than 10 Kyr in duration in Gilbert delta systems 

can be directly controlled by the synsedimentary activity on marginal faults (Gupta et al., 1999; Mortimer et al., 2005; GarciaGarcia et al., 2006a, 2006b). A 

synsedimentary activity could have generated a partitioning of the basin with an eastern subsiding and confined area and a less subsiding western part (Guillen 

Mondejar et al., 1995; Meijninger and Vissers, 2006). In this context an activity of the FCCL can be envisioned as proposed by Guillen Mondejar et al. (1995). 

6.3. The Lorca Basin in the western Mediterranean context 

On the basis of the Messinian age of the pre-evaporitic units in the Lorca Basin, a reflection on correlations with other Neogene basins of the Betics can be made, 

even if further biostratigraphical investigations in the Lorca Basin will be necessary for more precise calibrations. The large distribution of diatom-bearing deposits 

in the Mediterranean domain prior to evaporites is interpreted as the first evidence of basin restriction associated to a base-level drop (Blanc-Valleron et al., 

2002; Roveri et al., 2014a; Pellegrino et al., 2018). However, this event is diachronous and occurred between 7.15 Ma and 6 Ma across different basins (Hilgen and 

Krijgsman, 1999; Roger et al., 2000; Blanc-Valleron et al., 2002; Rouchy and Caruso, 2006; Orszag-Sperber et al., 2009; Roveri et al., 2014a; Pellegrino et al., 2018). 

These variations can be interpreted in terms of local changes of the local hydrology that controls the availability of nutrients and the physico-chemical parameters 

of the water column. However, tectonic activity probably also played an important role as it can control the local onset of basin restriction in areas of important 

tectonic activity such as the Betics. Because of their more internal location, the Guadix and Granada basins recorded a marine to continental transition at the end 

of the Tortonian (RodríguezFernández and de Galdeano, 2006; Pla-Pueyo et al., 2009). In the neighbouring Fortuna Basin, the first occurrence of evaporites is 

dated as Tortonian (Lancis et al., 2010) (Fig. 16A). It corresponds to the Lower Gypsum overlain by the marine Sanel Marls. The TortonianMessinian boundary was 

placed by Lancis et al. (2010) at the top of these marls and just below the overlying Tale Gypsum. This discrepancy in age of gypsum deposits between the Lorca 

and Fortuna basins suggests that the first restriction phase coeval with the deposition of the Lower Gypsum in the Fortuna Basin during the Tortonian predated 

the first restriction in the Lower Tripoli of the Lorca Basin. The Tale Gypsum is overlain by the Chicamo Cycles characterised by diatombearing marls with 

intercalated evaporites. However the first occurrence of N. amplificus at −6.9 Ma is located at the topmost of the Chicamo Cycles below the Wichmann 

Conglomerates in the Fortuna Basin, while N. amplificus is present below the Lower Gypsum Fm in the Lorca Basin (Fig. 16A). A subaerial exposure occurred at the 

top of the Wichmann Conglomerates (Santisteban and Taberner, 1983) and this erosional event can be correlated with the first erosional surface S1 in the Lorca 

Basin. However a precise dating of the base of the Lower Tripoli Fm should be performed to validate such a correlation. The magnetozone C3An.1r probably 

located in the marine Lower Tripoli Fm in the Lorca Basin was placed in the lacustrine deposits of the Rambla Salada Gypsum above the marine-continental 

transition located at the top of the Wichmann Conglomerates (Lancis et al., 2010) (Fig. 16A). The short marine event at the base of the Cañada Honda Fm in the 

Lorca Basin was not recorded in the Fortuna Basin where deposits are continental from the Wichmann Conglomerates to the Messinian-Pliocene boundary. All 

these features suggest that the Fortuna Basin became restricted and recorded the transition to continental environments before the Lorca Basin. Local tectonic 

control linked to the transalboran strike-slip faults is probably responsible for the diachronous evolution of these two basins. 

In the Nijar and Sorbas basins, the onset of diatom-rich sedimentation occurred during the Messinian after a major uplift along strikeslip faults near the Tortonian-

Messinian boundary (Pedrera et al., 2006; Bourillot et al., 2010; Do Couto et al., 2014). In these basins, transgressive uppermost Tortonian carbonates of the 

Azagador Mbr onlap basement rocks or tilted Tortonian turbidites (Fig. 16B). In the Sorbas Basin a second angular unconformity due to the uplift of the southern 

basin margin exists between these Tortonian carbonates and the overlying Messinian Bioherm Unit (Martin and Braga, 1996). This Messinian event marks the 

onset of the diatom-rich sedimentation of the Abad Fm (Braga and Martin, 1996; Bourillot et al., 2010). This unconformity is not recorded in northern and eastern 

Mediterranean basins. However, an erosional surface (S1) was also observed in the Lorca Basin at the base of the diatom-bearing deposits of the Lower Tripoli 

Fm. This suggests that local tectonics probably controlled this first erosional event and the uplift of the Betics coeval with the appearance of structural highs 

during the Messinian favoured the first basin restriction observed in the Lorca Basin. 



 

A reopening prior to the salinity crisis is documented by carbonates of the Terminal Limestones in the Lorca Basin (Fig. 16). Similar Poritesrich carbonates of the 

Reef Unit occur in the Sorbas Basin (Brachert et al., 1996; Braga and Aguirre, 2001; Martin et al., 2010). In this basin the developpement of the Reef Unit started 

at the base of the magnetozone 3An.1n (Bourillot et al., 2010). In the Lorca Basin, the age of the Terminal Limestones cannot be determined with precision. 

However if, as discussed above, the reversed-polarity magnetozone in the Lower Tripoli Fm is consistent with the magnetozone C3An.1r, the upper part of the 

 

Fig. 16. Correlations of the main Messinian surfaces between the Sorbas Basin, the Lorca Basin, and the Fortuna Basin. 



 

Lower Tripoli and the Terminal Limestones were deposited during the magnetozone 3An.1n at the same time than the Reef Unit in Sorbas. The transgression 

allowed the carbonates to cover uplifted Sierra Alhamilla separating the Sorbas and the Nijar basins (Sánchez-Almazo et al., 2001). The coeval installation of 

Porites-rich carbonates in several basins of southern Spain and all around the Mediterranean basin (Cornée et al., 2004) reinforces the idea that the flooding was 

linked to a global base-level rise that restored connections between subbasins. The monogeneric signature of Messinian reefs is explained by a general cooling of 

surface sea-waters during the northward migration of the African plate (Bosellini and Perrin, 2008; Perrin and Bosellini, 2013). 

The second base-level drop is illustrated by the erosional surface S2 (Fig. 16B). In the Sorbas and Nijar basins, forced regression geometries in carbonates are 

documented (Martin and Braga, 1996; Warrlich et al., 2005; Sánchez-Almazo et al., 2007). As a consequence in these basins, as in the Lorca Basin, the last 

Messinian Porites-rich carbonates recorded a base-level drop prior to the onset of the salinity crisis. If as proposed, the magnetozones of the Lower Tripoli Fm and 

the diatombearing Abad Fm in Sorbas are similar, relative sea-level falls in the Nijar, Sorbas and Lorca basins can be coeval and an equivalent of the S2 surface is 

present within Porites carbonates (Fig. 16B). In the Lorca Basin, the development of coarse-grained fan delta deposits after the base-level drop was probably due 

to the more internal location of the basin compared with the Nijar and Sorbas basins where the carbonate production continued during the forced regression. In 

the Lorca Basin no evidence of an incision surface or prolonged subaerial exposure exists at the base of the Lower Gypsum but a subaerial exposure (S3 surface) 

exists on top of the formation and on basin margins. This indicates that evaporites in the Lorca Basin were deposited during a gradual drying and before an 

exposure of the basin as proposed by Rouchy and Caruso (2006) rather than during a reflooding after an exposure of the basin as envisioned by Riding et al. 

(1998) and Braga et al. (2006) in the Sorbas Basin. It is worth noting that in the latter basin no time gap was identified between diatomites and overlying gypsum 

(Manzi et al., 2013). 

A surface of subaerial exposure was described in the Sorbas Basin at the top of evaporites (Bourillot et al., 2010; Clauzon et al., 2015; Do Couto et al., 2015) (Fig. 

16B), the Nijar Basin (Fortuin and Krijgsman, 2003; Omodeo-Salé et al., 2012) and in Morocco (Cornée et al., 2016). Even if the model of Roveri et al. (2008, 2014b) 

is mainly based on the stratigraphy of Apennine and Sicilian domains and its generalisation to the wide deep Mediterranean domain can be questioned, we 

interpret the entire exposure of the Lorca Basin as coeval with the deposition of lower evaporites and halite in the deep Mediterranean basin. Such a scenario was 

already proposed for several circum-Mediterranean margins (Clauzon et al., 2005; Roveri et al., 2008, 2014b; Ryan, 2009; Lugli et al., 2015). Maillard et al. (2006) 

and Maillard and Mauffret (2006) consider that this event led to the entire exposure of the Central Valencia Basin while evaporites accumulated in the Provençal 

Basin. Roveri et al. (2008) and Manzi et al. (2013) proposed that marginal evaporites were reworked during the exposure and resedimented in the deep 

Mediterranean domain prior to the deposition of a massive halite unit. However, the configuration of the Mediterranean Basin and the amplitude of the final 

drawdown is still debated as some authors consider a limited amplitude of the base-level drop (Hardie and Lowenstein, 2004; Lugli et al., 2015; Cornée et al., 

2016) and sporadic to permanent connections with the Atlantic domain (Krijgsman and Meijer, 2008; Stefano et al., 2010; Merzeraud et al., 2019) while other 

propose a sea-level drop of several hundred to more than one thousand m (Hsü, 1973; Lofi et al., 2005; Urgeles et al., 2011; Madof et al., 2019). The lack of deep 

incisions in the Lorca Basin is more in accordance with a limited drawdown. The surface of subaerial exposure at the top of the Terminal Limestones in the 

western part of the Lorca Basin records an important time gap of probably more than 0.5 Ma from the beginning of the base-level drop at the base of the MC 

Mbr, to the deposition of brackish marls of the MM Mbr. 

In the Lorca Basin, as in some other peri-Mediterranean basins and in many large evaporitic systems, the end of the evaporitic episodes is marked by the last 

evaporitic sequences and the post evaporitic deposits such as the Lago-Mare displaying an onlapping geometry. This onlap is commonly associated to the 

deposition of “Lago Mare type” facies of shallow brackish lake environment (Upper Gypsum Fm) (Fig. 16B). A similar onlap geometry of Upper evaporites was 

observed in the Valencia Basin and in the whole Mediterranean Basin. For several authors, the Lago Mare facies are related to a generalised reflooding at the 

Mediterranean scale and correspond to the restoration of connections with the Paratethys (Do Couto et al., 2014; Popescu et al., 2015; Marzocchi et al., 2016; 

Stoica et al., 2016). Conversely, a considerable number of studies provide evidence of an abrupt restoration of open marine conditions at the onset of the 

Zanclean putting an end to the restricted, brackish to lacustrine conditions of the late Messinian (Pierre et al., 2006; Caruso et al., 2020; Garcia-Castellanos et al., 

2020; and references therein). This does not preclude that marine influences may have been only temporarily restored in some basins. From a study of the 

ostracod content, De Decker et al. (1988) concluded to the undisputable continental aspect of the Lago-Mare, with only one exception marked by some marine 

affinity just above the uppermost gypsum layer. This may explain the short-lived marine incursion that occurred in the lower part of the Cañada Honda Fm in the 

Lorca Basin. The transition to lacustrine environments occurred in the upper part of the Cañada Honda Fm as a result of high terrigenous and freshwater inputs. In 

the Sorbas Basin the spatiotemporal relationship between the marine deposits of the TCC on basin margins and the subaerial exposure at the top of the Yesares 

gypsum is still debated (Cornée et al., 2004; Bourillot et al., 2010; Roveri et al., 2019). Nevertheless, in the central part of the basin shallow marine conditions 

could have been restored during the Late Messinian leading to the deposition of the Sorbas Mbr (Bourillot et al., 2010, Roveri et al., 2019). Marine deposits were 

also gradually replaced by the terrestrial Zorreras Mbr (Roep et al., 1998). 

7. Conclusions 

A consistent geological framework is proposed for the Lorca Basin with respect to neighbouring Neogene basins and the western Mediterranean domain during 

the Late Miocene. The proposed scenario is strongly rooted on updated micropalaeontological dating. The Messinian age of evaporites of the Lorca Basin is 

consistent with ages of gypsum deposits in the Sorbas or Nijar basins. This age indicates that, apart the more proximal Granada, Guadix, and Fortuna basins that 

experienced a marinecontinental transition during the Late Tortonian or the Early Messinian, the salinity crisis was probably synchronous in most Neogene basins 

of southern Spain. No Tortonian salinity crisis occurred in the Lorca Basin even if the first evaporites associated with diatom-bearing deposits precipitated 

probably earlier during the Messinian in the Lorca Basin than in some other basins of the Betic Cordillera. Several stages of base-level fall associated with basin 

restriction and reflooding are correlated with eustatic lowering of base-level and were amplified by regional uplift during the onset of the transpressive motion 

along trans-Alboran fault systems. Sedimentary features suggest that the exhumation the Tercia ridge occurred during the Early Messinian. This high acted as a sill 

during the successive restriction phases. Evaporites of the Lorca Basin were deposited during the Messinian during a gradual lowering of base-level while the 

Lower evaporites in the deep Mediterranean domain formed during the entire draining of the marginal basins. The Upper evaporites and the brackish Lago Mare 

facies extended in the Lorca Basin during the Late Messininan and a short-lived marine incursion occurred just above the last gypsum layers. 
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