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QUANTITATIVE FLUID APPROXIMATION IN TRANSPORT THEORY:

A UNIFIED APPROACH

ÉMERIC BOUIN & CLÉMENT MOUHOT

Abstract. We propose a unified method for the large space-time scaling limit of linear colli-
sional kinetic equations in the whole space. The limit is of fractional diffusion type for heavy
tail equilibria with slow enough decay, and of diffusive type otherwise. The proof is constructive
and the fractional/standard diffusion matrix is obtained. The equilibria satisfy a generalised
weighted mass condition and can have infinite mass. The method combines energy estimates
and quantitative spectral methods to construct a ‘fluid mode’. The method is applied to scat-
tering models (without assuming detailed balance conditions), Fokker-Planck operators and
Lévy-Fokker-Planck operators. It proves a series of new results, including the fractional dif-
fusive limit for Fokker-Planck operators in any dimension, for which the characterization of
the diffusion coefficient was not known, and for Lévy-Fokker-Planck operators with general
equilibria. It also unifies and generalises the results of ten previous papers with a quantitative
method; the estimates on the fluid approximation error seem novel in these cases.

Contents

1. Introduction and main results 1
2. Proof of Theorem 1.4 (convergence) 10
3. Proof of Lemma 1.1 (construction of the fluid mode) 13
4. Proof of Lemma 1.2 (scaling of the eigenvalue) 19
5. Proof of Lemma 1.3 (the diffusion coefficient) 22
6. Proof of the hypothesis for scattering equations 23
7. Proof of the hypothesis for kinetic Fokker-Planck equations 25
8. Proof of the hypothesis for kinetic Lévy-Fokker-Planck equations 30
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1. Introduction and main results

The study of transport processes, i.e. linear collisional kinetic equations, has its theoretical
roots in the mean-free path argument of Maxwell [26] and the kinetic theory of gases of Maxwell
and Boltzmann [27, 7]. A linear version of the Maxwell-Boltzmann equation can be written for
the movement of a tagged particle within a rarefied gas, but the study of such transport processes
was given a crucial new impetus in the twentieth century with:

(1) the radiative transfer theory [31], where the kinetic distribution models the flux of
photons that are transported in the plasma making up the internal layers of the sun,

(2) the nuclear reactor theory (see [33], the collection [5] and in particular its fifth chap-
ter [34]) where the kinetic distribution models the neutrons transported and scattered
inside the reactor, whose flux is used to initiate and maintain the chain reaction,

(3) the semi-conductor theory [25] where the kinetic distribution models the flow of charge
carriers in semiconductors, i.e. the evolution of the position-momentum distribution
of negatively charged conduction electrons or of positively charged holes, which are
responsible for the current flow in semiconductor crystals.

Date: December 3, 2020.

1



The main mathematical object of study in transport theory is the linear equation

(1.1) ∂tf + v · ∇xf = Lf

on the time-dependent density of particles f = f(t, x, v) ≥ 0 over (x, v) ∈ Rd × Rd, for t ≥ 0.
The left hand side accounts for free motion and the right hand side accounts for the interaction
with a background, for instance scatterers, with an operator L that acts only on the kinetic
variable v. Several forms are possible. In nuclear reactor, radiative transfer and semi-conductor
theories it is common to consider scattering operators, sometimes also called linear Boltzmann
operators, which are written

Lf(v) =

(∫
Rd
b(v, v′)f(v′) dv′

)
M(v)− ν(v)f(v)(1.2)

with the collision frequency ν(v) :=

∫
Rd
b(v, v′)M(v′) dv′,

for some collisional kernel b = b(v, v′) and an equilibrium distribution M(v). In astrophysics
and sometimes in semi-conductor theory, one also considers Fokker-Planck operators:

(1.3) Lf := ∇v ·
(
M∇v

(
f

M

))
.

Finally, as a simplified model of long-range collisional interactions in a gas of charged particles,
we consider Lévy-Fokker-Planck operators for s ∈ (1

2 , 1) and α > s:

(1.4)

{
L(f) = ∆s

vf +∇v · (U f) with U(v) = U(|v|) radially symmetric so that

∆s
vM+∇v · (UM) = 0.

Denoting F the Fourier transform, the fractional Laplacian is defined, when s ∈ (0, 1), as

∆s
vf(v) := −F−1

[
|ι|2sFf(ι)

]
(v).(1.5)

These three operators are discussed respectively in Sections 6-7-8. Extensions, such as Fokker-
Planck operators with non-gradient force, are discussed in Section 9.

The equation (1.1) is too intricate for many applications. When the relevant time and space
scales of observation are much larger than the mean free time and mean free path, it is thus
natural to search for a simplified regime. The so-called diffusion theory was born out of this
endeavour, and in the words of Wigner [34], ‘this [diffusion] theory gives the spatial variation of
the [neutron transport] flux quite accurately in regions well removed from interfaces’. We also
refer to [33, Chap. IX] for the diffusion theory of monoenergetic neutrons, to [31, Chap. III.2]
for the so-called Eddington approximation in radiative transfer theory, and to [9, Chap. 2] for a
modern mathematical review.

We rewrite the equation (1.1) by changing the unknown to h := f
M :

∂th+ v · ∇vh = Lh where Lh :=M−1L (Mh) .(1.6)

This common change of unknown is convenient since asymptotic estimates are related to com-
paring f with the equilibriumM. Consider the complex Hilbert spaces L2(Rd;Mdv) =: L2

v(M)

and L2(Rd×Rd;Mdx dv) =: L2
x,v(M) and denote ‖h‖k := ‖(1+ | · |2)

k
2 h‖L2(M) (the integration

variable(s) will be emphasized when ambiguous). We omit the index when k = 0. The scalar
product 〈·, ·〉 refers to L2

v(M) or L2
x,v(M) depending on context.

We assume, for some α, β ∈ R with α+ β > 0 and λ ∈ R∗+:

Hypothesis 1 (Equilibria). The equilibrium M takes one of the following two forms.

(i) Either it is given by

(1.7) M(v) = cα,βbve−(d+α) with cα,β :=

(∫
Rd
bve−d−α−β dv

)−1

and bve :=
√

1 + |v|2.

(ii) Or it is a smooth positive radially symmetric function decaying faster than any polyno-
mial. The latter case is denoted by ‘α = +∞’ in the sequel.
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Note that the normalisation implies the following generalised mass condition

(1.8)

∫
Rd
Mβ(v) dv = 1 with Mβ := b·e−βM.

We chose to present our main results assuming that the equilibriumM is given by the exact
formula (1.7) in the case of a polynomial decay because it leads to a neater treatment. However,
as discussed in Section 9, our results remain true with an equilibriumM that is not an explicit
power-law or even symmetric or centered, but only comparable to b·e−(d+α) (see equation (9.1)
and Subsections 9.1-9.2); this requires a few technical changes in the proofs that we present
separately in this last section so as not to clutter the paper.

Hypothesis 2 (Weighted coercivity). The operator L is linear, independent of time t and
space x, commutes with rotations in v, is closed densely defined on Dom(L) ⊂ L2

v(M) and

satisfies L(1) = L∗(1), where L∗ is the L2
v(M)-adjoint. Finally L̃∗ := b·e

β
2L∗(b·e

β
2 ·) generates

a contraction semigroup, with the spectral gap estimate

∀ g ∈ Dom(L̃) = bve−
β
2 Dom(L), g⊥b·e−

β
2 , −Re

〈
L̃g, g

〉
≥ λ ‖g‖2 .

The latter means, translating back to L,

∀h ∈ Dom(L), −Re
〈
Lh, h

〉
≥ λ ‖h− Ph‖2−β with Ph :=

(∫
Rd
h(v′)Mβ(v′) dv′

)
.

The assumption that L commutes with rotation in v is convenient (and satisfied for most
physical models), but in fact only M(v) =M(−v) is really used in the proof. The latter could
in turn be completely relaxed at the price of a few technical changes in the proofs discussed in
Section 9. Lemma 1.1 below constructs quantitatively a unique eigenvalue branching from zero
for L̃∗ + iηbveβ(v · σ) for small η, see Figure 1.

Hypothesis 3 (Amplitude of collisions at large velocities). Given 0 ≤ χ ≤ 1 a smooth function
that is 1 on B(0, 1) and 0 outside B(0, 2), and χR = χ( ·R) for R ≥ 1, one has

‖L (χR)‖β . R
−α+β

2 .

Our first result, on the basis of the three previous hypothesis, is the construction of a branch
of ‘fluid eigenmode’ in the asymptotic of large time and small spatial frequencies.

Lemma 1.1 (Construction of the fluid mode). Given Hypothesis 1–2–3, there are η0 > 0 and
r0 ∈ (0, λ), explicit in terms of the constants in these hypothesis, such that for any η ∈ (0, η0)
there is a unique solution φη = φη(v) ∈ L2

v(b·e−βM) and µ(η) ∈ (0, r0) to

−L∗φη − iη(v · σ)φη = µ(η)bve−βφη with

∫
Rd
φη(v)Mβ(v) dv = 1.

Moreover, the branch (φη, µ(η)) connects to (1, 0) as η → 0, with

(1.9) ‖φη − 1‖−β . µ(η)
1
2 and µ(η) . Θ(η),

where the function Θ is defined by

(1.10) Θ(η) :=


η2 when α > 2 + β,

η2| ln(η)| when α = 2 + β,

η
α+β
1+β when − β < α < 2 + β.

Note that Θ is well-defined since 1 + β > 0 in the case α ∈ (−β, 2 + β) due to α + β > 0.
In this lemma and in the rest of the paper the dependency in σ is kept implicit rather than
explicit in order to lighten notation. In fact, φη also depends on σ, but µ(η) does not if L is
invariant by rotations in v. To identify the macroscopic limit with explicit rates and constants,
it is necessary to estimate the leading order of µ, and this requires estimates on the eigenvector,

which is our last hypothesis. We denote |u|η := (η
2

1+β + |u|2)
1
2 .
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−λ
r0−µ(η)

Figure 1. The blue dashed zone on the left of Rez = −λ corresponds to the
spectral gap estimates on L̃∗ + iηbveβ(v · σ) due to the coercivity Hypothesis 2.
The orange dashed zone is where Lemmas 1.1-1.2 construct a unique real eigen-
value −µ(η) ∼ −µ0Θ(η) of the latter operator, that goes to zero as η → 0.

Hypothesis 4 (Scaling of the fluid mode). We make assumptions depending on α:

(i) Case α > 2 + β: The fluid mode φη constructed in Lemma 1.1 satisfies

∀ ` < α, ‖φη‖` .` 1.

(ii) Case α = 2 + β: The rescaled fluid mode Φη := φη(η
− 1

1+β ·) is converging in L2
loc(Rd\0)

as η → 0 to a limit Φ and satisfies the pointwise controls

∀ η ∈ (0, η1), ∀u ∈ Rd,

 |Φη(u)| . |u|Cµ(η)
η ,

|Im (Φη(u))| . |u|min(α,1)+β−Cµ(η)
η .

(1.11)

for some η1 ∈ (0, η0) and C > 0, and one also has a(η)→ 0 and Ω ∈ L1(Sd−1) such that∣∣∣∣∣
∫

1≥|u|≥η
1

1+β

(u · σ)
[
ImΦη(u)− ImΦ(u)

]
|u|−d−αη du

∣∣∣∣∣ ≤ a(η)| ln(η)|,

∀σ′ ∈ Sn−1,
ImΦ (λσ′)

λ1+β

λ 6=0−−−→
λ→0

Ω(σ′).

(iii) Case α ∈ (β, 2 + β]: The rescaled fluid mode Φη := φη(η
− 1

1+β ·) is converging in L2
loc(Rd\0)

as η → 0 to a limit Φ and satisfies the pointwise controls (1.11).

(iv) Case α ∈ (−β, β]: The rescaled fluid mode Φη := φη(η
− 1

1+β ·) is converging in L2
loc(Rd\0)

as η → 0 to a limit Φ and satisfies the pointwise controls (1.11), and one also has∫
|u|≥1

|Φη(u)|2 |u|−d−α+β
η du . 1.(1.12)

Note that in (1.11), |u|Cµ(η)
η ∼ 1 as η → 0 in the region |u| . η

1
1+β . The second part of

hypothesis (ii) is subtle and made necessary by the fact that the case α = 2 + β is borderline
between two different regimes (standard diffusion vs. fractional diffusion) as well as borderline
between two different scalings for obtaining the diffusion coefficient (fluid mode in variable v

vs. fluid mode in the rescaled variable u = η
− 1

1+β v).
With these four hypothesis we can now characterise the precise scaling of the fluid eigenvalue:
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Lemma 1.2 (Scaling of the fluid eigenvalue). Assume Hypothesis 1–2–3–4. The eigenvalue
µ(η) constructed in Lemma 1.1 satisfies (with convergence rate explicit in terms of the constants,
error terms and convergence rates in the hypothesis)

(1.13) µ(η) ∼η→0 µ0Θ(η),

where the constant µ0 > 0 is determined as follows:

µ0 :=

∫
Rd

(v · σ)F (v)M(v) dv when α > 2 + β,

where F = lim
η→0

Imφη
η

is solution to LF = −(v · σ) and

∫
Rd
F (v)Mβ(v) dv = 0,

µ0 :=
c2+β,β

1 + β

∫
Sd−1

(σ · σ′)Ω(σ′) dσ′ when α = 2 + β,

where Ω(u) = lim
λ→0, λ6=0

ImΦ (λu)

λ1+β
and Φ = lim

η→0
Φη = lim

η→0
φη

(
η
− 1

1+β ·
)
,

µ0 := cα,β

∫
Rd

(u · σ)ImΦ(u)|u|−d−α du when α ∈ (−β, 2 + β).

Note how in the previous statement, when α > 2 + β, the function F used in the previous
works on standard diffusive limit is recovered here as a limit of our fluid mode; this allows our
proof to track the convergence rate. Define the diffusion exponent

(1.14) ζ = ζ(α, β) :=


2 when α ∈ [2 + β,+∞]

α+ + β

1 + β
when α ∈ (−β, 2 + β),

with α+ := max(α, 0), and the scaling function

(1.15) θ(ε) :=

 εζ when α ∈ (−β,+∞] \ {0, 2 + β},

εζ | ln ε| when α = 0 or α = 2 + β.

Note that the threshold α = 2 + β between standard and fractional diffusion corresponds to
whether or not Mβ has finite variance. We finally derive the diffusion coefficient :

Lemma 1.3 (Diffusion coefficient). Assume Hypothesis 1–2–3–4. Then the following limit holds
(with convergence rate explicit in terms of the constants, error terms and convergence rates in
the hypothesis)

κ := lim
η→0

µ(η)|ξ|−ζ

θ(ε) 〈1, φη〉
= µ0 ×



‖M‖−1
L1(Rd)

when α > 0,

1 + β

|Sd−1|
when α = 0,[

cα,β

∫
Rd

Φ(u)|u|−d−α du

]−1

when α ∈ (−β, 0).

(1.16)
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The diffusion coefficient thus emerges from the ratio between integral quantities that reveal
the comparison between physical scales:

κ :=



∫
Rd

(v · σ)F (v)M(v) dv

‖M‖L1(Rd)

when α > 2 + β

1

1 + β

∫
Sd−1

(σ · σ′)Ω(σ′) dσ′∫
Rd
bve−d−α dv

when α = 2 + β

∫
Rd

(u · σ)ImΦ(u)|u|−d−α du∫
Rd
bve−d−α dv

when α ∈ (0, 2 + β)

1 + β

|Sd−1|

∫
Rd

(u · σ)ImΦ(u)|u|−d−α du∫
Rd
bve−d−α−β dv

when α = 0

∫
Rd

(u · σ)ImΦ(u)|u|−d−α du∫
Rd

Φ(u)|u|−d−α du

when α ∈ (−β, 0)

(1.17)

where we recall, for the legibility of this catalogue of formula:

F = lim
η→0

Imφη
η

, Φ = lim
η→0

Φη = lim
η→0

φη

(
η
− 1

1+β ·
)
, Ω(u) = lim

λ→0, λ 6=0

ImΦ (λu)

λ1+β
,

and (note that α > 2 + β in this case) F is also the unique solution to LF = −(v · σ) with∫
Rd F (v) bve−d−α−β dv = 0. For legibility again, we wrote, in the cases α ∈ (−β, 2 + β], the

formula for κ with M given by (1.7), and we refer to Section 9 for more general M.
The proof of Lemma 1.3 is done in Section 5; it requires the estimation of 〈1, φη〉, which is

done in Lemma 5.1. The limit rescaled fluid mode Φ can also be defined as the solution to

L∗Φ = i(u · σ)|u|βΦ with Φ(0) = 1,

when the rescaling of the operator L∗ in the new variable u = vη
1

1+β has a limit L∗.
Consider a solution f in L∞t ([0,+∞);L2

x,v(M−1)) to equation (1.1) and denote

fε(t, x, v) := f

(
t

θ(ε)
,
x

ε
, v

)
∈ L∞t

(
[0,+∞);L2

x,v(M−1)
)

and rε(t, x) :=

∫
Rd
fε(t, x, v)bve−β dv,

where ε > 0, and θ(ε) is defined in (1.15). The equation satisfied by fε is

(1.18) θ(ε)∂tfε + εv · ∇xfε = Lfε.

Theorem 1.4 (Unified second fluid approximation, see Figure 2). Assume Hypothesis 1–2–3–4,
and consider f ∈ L∞t ([0,+∞);L2

x,v(M−1)) solving (1.1) in the weak sense with initially

(1.19)

∥∥∥∥ fεM(0, ·, ·)− rε(0, ·)
∥∥∥∥
−β
. θ(ε) and lim

ε→0
rε(0, ·) := r(0, ·) in H−ζ(Rd).

Then for any T > 0, ∥∥∥∥ fεM − r
∥∥∥∥
L2
t ([0,T ];H−ζx L2

v(Mβ))

−−−→
ε→0

0
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when α > β and ∥∥∥∥∣∣∣∣ln 2|∇x|
1 + |∇x|

∣∣∣∣ ( fεM − r
)∥∥∥∥

L2
t ([0,T ];H−ζx L2

v(Mβ))

−−−→
ε→0

0

when α = β and ∥∥∥∥|∇x| β−|α|2(1+β) b∇xe−
β−|α|
2(1+β)

(
fε
M
− r
)∥∥∥∥

L2
t ([0,T ];H−ζx L2

v(Mβ))

−−−→
ε→0

0

when α ∈ (−β, β), where r = r(t, x) solves

∂tr = κ∆
ζ
2
x r, t > 0, with initial data r(0, ·) defined in (1.19).

The rate of convergence obtained is constructive in terms of T , on the constants, error terms
and convergence rates in Hypothesis 1–2–3–4, and on the initial convergence (1.19). Apart
from the error in the initial convergence (that depends on the initial data), the rate we obtain
is polynomial for α ∈ (−β,+∞) \ {0, 2 + β} and logarithmic for α ∈ {0, 2 + β}.

Note that in (1.19) the first estimate holds at any small time τ > 0 thanks to the energy
estimate, and the second estimate is always satisfied by a subsequence for such time τ > 0 by
compactness. Therefore the assumption (1.19) could be relaxed if one is only interested in the
convergence in t ∈ [τ, T ] for some τ > 0. We however chose to keep this assumption since we
are interested in tracking precisely the rate of convergence.

This theorem is the core contribution of the paper, and is used to obtain new results on
concrete models (see the corollaries below). Together with Lemmas 1.1–1.2–1.3, it reveals the
relevant macroscopic scales for a large class of operators in any dimension and provides a unified
theoretical framework to answer questions of the last decades on the topic. The diffusive limit
is reduced to a spectral problem –the construction of the fluid mode– that we solve in a general
setting. The proof is constructive and the key constants governing the macroscopic behaviours
are derived. The fractional Laplacian is defined, when ζ ∈ (0, 2), as

∆
ζ
2
x r := −F−1

[
|ξ|ζFr(ξ)

]
(x)

and r(t, x) is the limit (in the topology of the above theorem) of the weighted velocity average

rε(t, x) =

∫
Rd
f

(
t

θ(ε)
,
x

ε
, v

)
bve−β dv.

When α > 0, the density ρε(t, x) :=
∫
Rd f

(
t

θ(ε) ,
x
ε , v
)

dv exists and also converges to r(t, x).

We now apply the previous abstract theorem to particular models:

Corollary 1.5 (Scattering equation). Assume that L is the scattering operator (1.2) with b ∈ C1

and M satisfying Hypothesis 1 and that, for some constant ν0 > 0 and β > −α

(1.20)


∀ v ∈ Rd, bve−β . ν(v) . bve−β

∀ v ∈ Rd \ {0}, λβν(λv) ∼λ→∞ ν0|v|−β

∀ v ∈ Rd, ‖b(v, ·)‖β + ‖b(·, v)‖β . bve−β.

This includes b(v, v′) = bve−βbv′e−β for any α + β > 0, and b(v, v′) = bv − v′e−β when β < 0
and α + β > 0 or when β ≥ 0 and α > 3β. Then Theorem 1.4 applies with α, β given in
Hypothesis 1 and (1.20). This proves the diffusive limit for solutions to (1.18) with quantitative

rate, diffusion exponent ζ = α++β
1+β , scaling function (1.15) and diffusion coefficient (1.17).
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β

α

α
=

2
+
β

α = 0

α
+
β

=
0

Figure 2. Presentation of the results in the (α, β) plane. Admissible parameters
are in half-plane α + β > 0. The blue hatched area leads to θ(ε) = ε2 and a
standard diffusive limit with symbol κ|ξ|2. The blue line is the set of parameters
yielding the anomalous scaling θ(ε) = ε2| ln(ε)| but still a standard diffusive limit
with symbol κ|ξ|2. The green hatched area results into the fractional scaling

θ(ε) = ε
α+β
1+β and a fractional diffusive limit with symbol κ|ξ|

α+β
1+β . The orange

bold line yields the fractional scaling θ(ε) = ε
β

1+β | ln(ε)| and a fractional diffusive

limit with symbol κ|ξ|
β

1+β . Finally, the orange hatched area yields the fractional

scaling θ(ε) = ε
β

1+β and a fractional diffusive limit with symbol κ|ξ|
β

1+β .

In fact the constants can be computed explicitely since

F (u) = ν(v)−1(v · σ) when α > 2 + β,

Ω(u) = ν−1
0 |u|

β(u · σ) when α = 2 + β,

Φ(u) =
ν0

ν0 − i|u|β(u · σ)
when α ∈ (−β, 2 + β),
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resulting in the diffusion coefficient

κ :=



∫
Rd

(v · σ)2 ν(v)−1bve−d−α dv∫
Rd
bve−d−α dv

when α ∈ (2 + β,+∞)

1

ν0(1 + β)

∫
Sd−1(σ · σ′)2 dσ′∫
Rd
bve−d−α dv

when α = 2 + β

∫
Rd

ν0|u|β(u · σ)2

ν2
0 + |u|2β(u · σ)2

du

|u|d+α∫
Rd
bve−d−α dv

when α ∈ (0, 2 + β)

(1 + β)

|Sd−1|

∫
Rd

ν0|u|β(u · σ)2

ν2
0 + |u|2β(u · σ)2

du

|u|d∫
Rd
bve−d−β dv

when α = 0

∫
Rd

ν0|u|β(u · σ)2

ν2
0 + |u|2β(u · σ)2

du

|u|d+α∫
Rd

ν2
0

ν2
0 + |u|2β(u · σ)2

|u|−d−α du

when α ∈ (−β, 0)

as well as κ := ‖M‖−1
L1(Rd)

∫
Rd(v ·σ)2ν−1M(v) dv is the case α = +∞. This recovers and unifies

all results from [16, 29, 4, 28] and extend them to new cases such as α ∈ (−β, 0) (infinite mass).
The convergence rate is also new.

Corollary 1.6 (Kinetic Fokker-Planck equation). Assume L is the Fokker-Planck operator (1.3)
with M satisfying Hypothesis 1 with α > −2. Then Theorem 1.4 applies with α given in
Hypothesis 1 and β = 2. This proves the diffusive limit for solutions to (1.18) with quantitative

rate, diffusion exponent ζ = α++β
1+β , scaling function (1.15) and diffusion coefficient (1.17).

Note that the constants may be precised using that Φ solves the Schrödinger-type equation

−|u|2∆uΦ + (d+ α)u · ∇uΦ− i(u · σ)|u|2Φ = 0 with the normalisation Φ(0) = 1.

In particular in the case α = 2 + β = 4, the function Ω solves

−|u|2∆uΩ + (d+ α)u · ∇uΩ = (u · σ)|u|2 with Ω(0) = 0 =⇒ Ω(u) :=
|u|2(u · σ)

d+ 8
.

This recovers and unifies all results from [30, 12, 24, 19, 20] and obtains the first derivation of
the diffusion coefficient in dimension higher than 1. The convergence rate is also new.

Corollary 1.7 (Kinetic Lévy-Fokker-Planck equation). Assume L is the Lévy-Fokker-Planck
operator (1.4) with parameter s ∈ (1

2 , 1) and with M satisfying Hypothesis 1 with α > s. Then
Theorem 1.4 applies with β := 2s − α. This proves the diffusive limit for solutions to (1.18)
with quantitative rate and diffusion exponent

ζ =


2 when α ≥ 1 + s

2s

1 + 2s− α
when α ∈ (s, 1 + s),

scaling function (1.15) and diffusion coefficient (1.17).

The formula (1.17) for the diffusion coefficient may be precised with (see Section 8)

Φ(u) := exp

(
i
2scα,0
cα,β

|u|β(u · σ)

1 + β

)
, Ω(u) :=

2scα,0
cα,β

|u|β(u · σ)

1 + β
.
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This gives, in particular,

κ :=



2sc2
α,0

cα,β(1 + β)2

∫
Sd−1

(σ′ · σ)2 dσ′ when α = 1 + s

cα,0
1 + β

(
2scα,0

cα,β(1 + β)

)α−1
1+β

∫
Rd

(w · σ) sin(w · σ)
dw

|w|d+α+β
1+β

when α ∈ (s, 1 + s)

This recovers and extends qualitative results from [1] to general equilibria, with quantitative
error estimates and characterizations of the diffusion coefficient. It raises several interesting
questions: (1) can our approach be extended to s ∈ (0, 1

2)? (this seems to be a technically
difficult but not undoable task), (2) is the fractional diffusive limit possible for infinite mass
equilibria? (i.e. α < 0), (3) can the connexion between the kinetic Lévy-Fokker-Planck equation
with α = 2s (for which the L is the generator of a Lévy process) and the standard kinetic Fokker-
Planck equation with Gaussian equilibrium be clarified as s → 1? (our diffusion constant κ
above diverges as s → 1 so the two limits in ε → 0 and s → 1 do not commute which calls for
further investigation).

Let us summarise our contributions. Theorem 1.4 and Corollaries 1.5–1.6–1.7 recover the
results of [1, 16, 29, 4, 28, 30, 12, 24, 19, 20] with a shorter and unified constructive method and
prove new results for (1) Lévy-Fokker-Planck operators, (2) scattering operators with decaying
collision kernel and infinite mass equilibrium and importantly (3) Fokker-Planck operators in
any dimension (for which the characterization of the diffusion coefficient was not known). The
quantitative error in this fluid approximation seems to also be novel for all equations considered.
Note finally that like the abstract Theorem 1.4, the Corollaries 1.5–1.6–1.7 are stated with the
exact equilibrium of Hypothesis 1, but can be extended to more general equilibria, see Section 9.
Moreover, it would be interesting to try and apply this method in other settings such as [21, 3]
(radiative transfer theory), [8, 22, 17] (rarefied gas in a region between two parallel plates),
[13, 14] (bounded domains), [2] (scattering with external acceleration field) and [23] (additional
local conservation of momentum).

The rest of the paper is structured as follows. Section 2 is devoted to the proof of Theorem 1.4
assuming Lemmas 1.1, 1.2 and 1.3. We then prove Lemma 1.1 (construction of the fluid mode)
in Section 3, Lemma 1.2 (scaling of the fluid mode) in Section 4, and Lemma 1.3 (derivation
of the diffusion coefficient) in Section 5. Sections 6-7-8 prove the abstract hypothesis on the
three concrete models; one argument of independent interest is a tightness estimate for the
Schrödinger-type equation satisfied by the rescaled fluid mode in the cases of Fokker-Planck
operators, see Lemma 7.3. Finally Section 9 briefly discusses extensions of our results to more
general equilibrium distributions and operators.

2. Proof of Theorem 1.4 (convergence)

In this section we assume Lemmas 1.1, 1.2 and 1.3 and prove Theorem 1.4. Consider equa-
tion (1.6) and the rescaling

hε(t, x, v) := h

(
t

θ(ε)
,
x

ε
, v

)
=
fε(t, x, v)

M(v)
=
f
(

t
θ(ε) ,

x
ε , v
)

M(v)
.

It satisfies the equation

(2.1) θ(ε)∂thε + εv · ∇xhε = Lhε.

2.1. The energy estimate. Integrate (2.1) against hεM in t, x, v, and take the real part:

θ(ε)

2
‖hε(t)‖2 =

θ(ε)

2
‖hε(0)‖2 +

∫ t

0
Re
〈
Lhε(τ), hε(τ)

〉
dτ

≤ θ(ε)

2
‖hε(0)‖2 − λ

∫ t

0
‖hε(τ)− rε(τ)‖2−β dτ
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where we have used Hypothesis 2 and

rε(t, x) :=

∫
Rd
hε(t, x, v)Mβ(v) dv.

This proves

∀ t ≥ 0, ‖hε(t)‖2 ≤ ‖hε(0)‖2 and

∫ t

0
‖hε(τ)− rε(τ)‖2−β dτ ≤ θ(ε)

2λ
‖hε(0)‖2.(2.2)

2.2. Framework of the calculations. Denote ξ the Fourier variable of x, and Fourier-
transform equation (2.1) in x to get on ĥε(t, ξ, v)

(2.3) θ(ε)∂tĥε = Lĥε + iε(v · ξ)ĥε.

Note that (2.2) and the Plancherel theorem imply ĥε ∈ L∞t (R+;L2
ξ,v(M)) and

(2.4)
∥∥ĥε − r̂ε∥∥L2

t (R+;L2
ξ,v(Mβ))

. θ(ε)
1
2 .

Denote ξ =: |ξ|σ and η := ε|ξ|. Test (2.3) against Mφη with φη constructed in Lemma 1.1:

θ(ε)
d

dt

〈
ĥε, φη

〉
=
〈
Lĥε + iε(v · ξ)ĥε, φη

〉
=
〈
ĥε, L

∗ (φη) + iε(v · ξ)φη
〉

(2.5)

= −µ(η)
〈
ĥε, bve−βφη

〉
.

We then split the integrals as follows:〈
ĥε, φη

〉
= r̂ε 〈1, φη〉+

〈
ĥε − r̂ε, φη

〉
=: 〈1, φη〉 [r̂ε − E1]

〈
ĥε, bve−βφη

〉
= r̂ε

〈
1, bve−βφη

〉
+
〈
ĥε − r̂ε, bve−βφη

〉
=: 〈1, φη〉

θ(ε)

µ(η)
[κη r̂ε − E2]

with the definitions (using the normalisation 〈1, bve−βφη〉 = 1)

κη :=
µ(η)

〈
1, bve−βφη

〉
θ(ε) 〈1, φη〉

=
µ(η)

θ(ε) 〈1, φη〉
,

E1 := −

〈
ĥε − r̂ε, φη

〉
〈1, φη〉

and E2 := −
µ(η)

〈
ĥε − r̂ε, bve−βφη

〉
θ(ε) 〈1, φη〉

.

Consequently, equation (2.5) writes

∂tr̂ε + κη r̂ε = ∂tE1 + E2.

We then want to pass to the limit ε→ 0 (hence η → 0 for each frequency ξ).

2.3. Estimating κη, ∂tE1 and E2. Lemma 1.1 yields

lim
ε→0

µ(η)

θ(ε)
= µ0|ξ|ζ with ζ :=

α+ + β

1 + β
,

with constructive rate, for each frequency ξ ∈ Rd (note that in the cases α = 0 or α = 2 + β,
the error in the convergence includes a loss of frequency weight | ln |ξ||). Lemma 1.3 implies

(2.6) lim
η→0

κη = κ|ξ|ζ = µ0|ξ|ζ ×



‖M‖−1
L1(Rd)

when α > 0,

1 + β

|Sd−1|
when α = 0,[

cα,β

∫
Rd

Φ(u)|u|−d−α du

]−1

when α ∈ (−β, 0),

with constructive convergence rate. Observe that the previous estimates also imply

µ(η)

θ(ε)| 〈1, φη〉 |
. |ξ|ζ .
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To estimate E2, write ∣∣∣〈ĥε − r̂ε, b·e−βφη〉∣∣∣ . ∥∥∥ĥε − r̂ε∥∥∥
−β

where we have used ‖φη‖−β = 1. All in all, we get, using again Lemmas 1.3 and 5.1,

|E2| .
µ(η)

θ(ε)| 〈1, φη〉 |

∥∥∥ĥε − r̂ε∥∥∥
−β
.
∥∥∥ĥε − r̂ε∥∥∥

−β
|ξ|ζ .

To estimate E1, compute first∣∣∣〈ĥε − r̂ε, φη〉∣∣∣ ≤ ∥∥∥ĥε − r̂ε∥∥∥
−β
‖φη‖β ,

to get

|E1| .
‖φη‖β
|〈1, φη〉|

∥∥∥ĥε − r̂ε∥∥∥
−β
.

One then estimates ‖φη‖β. When α > β, it is bounded by construction, and when α ≤ β,

‖φη‖2β = η
α−β
1+β

∫
Rd
|Φη(u)|2 |u|−d−α+β

η du.

Using the pointwise bound (1.11) and the moment bound (1.12) from Hypothesis 4, the latter
integral exists and is uniformly bounded in η for α ∈ (−β, β) and is bounded by | ln η| when
α = β. Thus we get, using Lemma 5.1 to estimate 〈1, φη〉 again,

|E1| . θ(ε)−
1
2

∥∥∥ĥε − r̂ε∥∥∥
−β
×



θ(ε)
1
2 , when α > β,

ε
β

1+β |ln (ε|ξ|)| when α = β,

ε
α

1+β |ξ|
α−β

2(1+β) when α ∈ (0, β),

| ln(ε)|−1 (ln |ξ|)−1 |ξ|−
β

2(1+β) when α = 0,

ε
− α

2(1+β) |ξ|−
α+β

2(1+β) when α ∈ (−β, 0).

We then define r := r(t, x) solution to ∂tr+κ|ξ|ζr = 0 with initial data r(0, ·) defined in (1.19)
and deduce that ωε := r̂ε − r̂ satisfies

∂tωε + κ|ξ|ζωε = ∂tE1 + E2 + (κ− κη) r̂ε
which implies

ωε(t, ξ) = e−κ|ξ|
ζtωε(0, ξ) +

∫ t

0
e−κ|ξ|

ζ(t−s) [∂tE1(s, ξ) + E2(s, ξ) + (κ− κη) r̂ε(s, ξ)] ds

= ωε(0, ξ)e
−κ|ξ|ζt + E1(t, ξ)− e−κ|ξ|ζtE1(0, ξ)

+

∫ t

0
e−κ|ξ|

ζ(t−s)
[
κ|ξ|ζE1(s, ξ) + E2(s, ξ) + (κ− κη) r̂ε(s, ξ)

]
ds.

Define then

W (ξ) := bξe−ζ ×


1 when α > β,∣∣∣ln 2|ξ|

1+|ξ|

∣∣∣−1
when α = β,

|ξ|
β−|α|
2(1+β) bξe−

β−|α|
2(1+β) when α ∈ (−β, β).

and integrate in L2
ξ(W ) and then in L2

t ([0, T ]) to get, using again (2.4) as well as (1.19),

‖ωε‖L2
t ([0,T ];L2

ξ(W )) which concludes the proof.
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3. Proof of Lemma 1.1 (construction of the fluid mode)

In this section we prove Lemma 1.1, assuming Hypothesis 1–2–3. Denote

L̃∗ηψ := bve
β
2L∗η

(
b·e

β
2ψ
)

= bve
β
2L∗

(
b·e

β
2ψ
)

+ iηbveβ(v · σ)ψ.

As before, the dependency in σ is omitted from the subscripts for readability.

3.1. Existence of the resolvent. We first prove that when r ∈ (r′0, r0) with 0 < r′0 < r0 < λ

and η small enough and z ∈ S(0, r) (circle with radius r in C), the operator L̃∗η − z has a

bounded inverse in L2
v(M), and the bound is uniform in z ∈ S(0, r).

Given G ∈ L2(b·e−βM) and z ∈ S(0, r), consider a priori a solution F ∈ L2(b·e−βM) to

−L∗F − iη(v · σ)F − zbve−βF = bve−βG.(3.1)

Recall the decomposition

(3.2) F = PF + P⊥F := m[F ] + P⊥F with m[F ] :=

∫
Rd
F (v)Mβ(v) dv,

which is orthogonal for the scalar product associated with ‖ · ‖−β. Integrate (3.1) against F̄M
and take the real part to get, using Hypothesis 2,

λ
∥∥∥P⊥F∥∥∥2

−β
− r‖F‖2−β ≤ ‖G‖−β‖F‖−β

=⇒ (λ− r)
∥∥∥P⊥F∥∥∥2

−β
≤ ‖G‖−β‖F‖−β + r |m(F )|2

=⇒ (λ− r0)
∥∥∥P⊥F∥∥∥2

−β
≤ λ− r0

2
‖F‖2−β +

1

2(λ− r0)
‖G‖2−β + r |m(F )|2

=⇒ λ− r0

2

∥∥∥P⊥F∥∥∥2

−β
≤
(
λ− r0

2
+ r

)
|m(F )|2 +

1

2(λ− r0)
‖G‖2−β

which implies finally∥∥∥P⊥F∥∥∥2

−β
≤ 1

(λ− r0)2
‖G‖2−β +

(
1 +

2r

λ− r0

)
|m(F )|2 .(3.3)

Consider then a function 0 ≤ χ ≤ 1 smooth radially symmetric and such that χ ≡ 1 on B(0, 1)
and χ ≡ 0 outside B(0, 2), and denote χR(v) := χ( vR) for R > 0. Integrate (3.1) against χRM:

−〈L∗F, χR〉 − iη
∫
Rd

(v · σ)F (v)χR(v)M(v) dv − zmR[F ] = mR[G](3.4)

where we denote the truncated average

mR[F ] :=

∫
Rd
F (v)χR(v)Mβ(v) dv.

Using the decomposition (3.2), L∗1 = 0 and Hypothesis 3:

(3.5) |〈L∗F, χR〉| =
∣∣∣〈L∗ (P⊥F) , χR〉∣∣∣ ≤ ‖L (χR)‖β

∥∥∥P⊥F∥∥∥
−β
. R−

α+β
2

∥∥∥P⊥F∥∥∥
−β
.

Observe also that∣∣∣∣∫
Rd

(v · σ)F (v)χR(v)M(v) dv

∣∣∣∣ =

∣∣∣∣∫
Rd

(v · σ)
[
P⊥F (v)

]
χR(v)M(v) dv

∣∣∣∣
≤

(∫
|v|≤2R

(v · σ)2bveβM(v) dv

) 1
2 ∥∥∥P⊥F∥∥∥

−β
. `(R)

∥∥∥P⊥F∥∥∥
−β

(3.6)

with

`(R) =

(∫
|v|≤2R

(v · σ)2Mβ(v) dv

) 1
2

.


1 when α > 2 + β,√

ln(R) when α = 2 + β,

R1−α+β
2 when α < 2 + β.
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Combining (3.4)–(3.5)–(3.6) yields the following estimate on the truncated average:

|mR[F ]| ≤ 1

r

[
η`(R) +R−

α+β
2

] ∥∥∥P⊥F∥∥∥
−β

+
1

r
‖G‖−β .(3.7)

We next estimate the difference between m[F ] and mR[F ]:

|m[F ]−mR[F ]| ≤
∫
Rd
|F | |1− χR|Mβ(v) dv

≤
(∫

Rd
|1− χR|2Mβ dv

) 1
2

‖F‖−β . R−
α+β
2 ‖F‖−β,

which implies for R large enough

(3.8) |m[F ]|2 . |mR[F ]|2 +R−(α+β)
∥∥∥P⊥F∥∥∥2

−β
.

Finally, taking the square of (3.7), and using the last estimate, we deduce

|m[F ]|2 .
(

1

r

[
η`(R) +R−

α+β
2

])2 ∥∥∥P⊥F∥∥∥2

−β
+R−(α+β)

∥∥∥P⊥F∥∥∥2

−β
+

1

r2
‖G‖2−β ,

.
1

r2

(
η2`(R)2 +R−(α+β)

)∥∥∥P⊥F∥∥∥2

−β
+

1

r2
‖G‖2−β .(3.9)

Choosing R = η
− 1

1+β (with η small enough so that R is large enough in the previous calculations)

implies η2`(R)2 ∼ R−(α+β) and (Θ was defined in (1.10))[
η2`(R)2 +R−(α+β)

]
. Θ(η).

Combining (3.3)-(3.9) yields∥∥∥P⊥F∥∥∥2

−β
≤
[

1

(λ− r0)2
+
C

r2
+

2C

r(λ− r0)

]
‖G‖2−β + C

(
1 +

2r

λ− r0

)
Θ(η)

r2

∥∥∥P⊥F∥∥∥2

−β

for C > 0 uniform in r ∈ (0, r0) and η small enough. For η small enough in terms of r0 and r′0

∀ r ∈ (r′0, r0), C

(
1 +

2r

λ− r0

)
Θ(η)

r2
≤ 1

2
,

and we deduce that∥∥∥P⊥F∥∥∥2

−β
≤ 2

[
1

(λ− r0)2
+
C

r2
+

2C

r(λ− r0)

]
‖G‖2−β .r0,r′0 ‖G‖

2
−β.

Plugged into (3.9), it implies |m[F ]| .r0,r′0 ‖G‖−β, and finally

‖F‖−β .r0,r′0 ‖G‖−β .(3.10)

With the latter a priori estimate at hand, we now construct a solution to (3.1). The latter
equation re-writes

−L̃∗F̃ − iη(v · σ)bveβF̃ − zF̃ = bve−
β
2G ∈ L2

v(M),(3.11)

with F̃ := b·e−
β
2 F . Since (Hypothesis 2) L̃∗ generates a contraction semigroup in L2

v(M), it is

a standard result (see [18, Theorem II.3.15]) that L̃∗ is maximal dissipative. Therefore, given

any M ≥ 1, the operator L̃∗η,M := L̃∗+ iη(v · σ)bveβχM (v) is maximal dissipative (perturbation

by a bounded purely imaginary multiplicative operator). Observe that the previous a priori

estimate (3.10) holds for L̃∗η,M by the same calculation, and uniformly asM → +∞. This implies

first that for each M ≥ 1 and z ∈ S(0, r), there is F̃M ∈ L2
v(M) that solves −L̃∗M F̃M − zF̃M =

bve−
β
2G, and second that F̃M is uniformly bounded in L2

v(M) as M →∞. Taking a subsequence

weakly converging to some F̃ ∈ L2
v(M) as M →∞ gives a solution to (3.11) and thus to (3.1).
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3.2. The spectral projections. We can therefore define the spectral projections

Πr,η :=
1

2iπ

∫
S(0,r)

[
L̃∗η − z

]−1
dz

for r ∈ (r′0, r0), the interval of the previous subsection. In the next subsections, we first estimate

the difference of the projections Πr,η and Πr,0 when acting on ψ0 := bve−
β
2 (the kernel of L̃0)

and projected on Span(ψ0), which is enough to show that Πr,η is non-zero for r and η small
enough and thus proves the existence of an eigenvalue. Second, on the basis of this first scalar
estimate, we prove that |||Πr,η − Πr,0||| → 0 as η → 0, which implies that the dimensions of
these two projections are the same for r and η small enough. This implies the uniqueness of
the eigenvalue and quantitative convergence estimates on it as η → 0.

3.3. Preparation for the first scalar estimate. Recall ψ0 = b·e−
β
2 , then

Πr,ηψ0 − Πr,0ψ0 =
1

2iπ

∫
S(0,r)

[
L̃∗η − z

]−1 [
L̃∗0 − L̃η

] [
L̃∗0 − z

]−1
ψ0 dz

= − η

2π

∫
S(0,r)

[
L̃∗η − z

]−1
{

(v · σ)bveβ
[
L̃∗0 − z

]−1
ψ0

}
dz

=
η

2π

∫
S(0,r)

bve−
β
2 F

dz

z

where we have used (
L̃∗0 − z

)−1
ψ0 =

[
b·e

β
2L
(
b·e

β
2 ·
)
− z
]−1

ψ0 = −1

z
ψ0

and we have defined F through[
L̃∗η − z

]−1 [
v′ 7→ (v′ · σ)bv′e

β
2

]
(v) =: bve−

β
2 F (v),

that is

(3.12) − L∗F − iη(v · σ)F − zbve−βF = (v · σ)

(the dependency of F on η, z and σ is omitted for readability).
Note that since Πr,0ψ0 = ψ0 and∫

Rd
Πr,0ψ0(v)bve−

β
2M(v) dv =

∫
Rd
bve−βM(v) dv =

∫
Rd
Mβ(v) dv = 1,

to prove the existence of an eigenvalue, it is enough to prove that for r and η small enough

Ar,η :=

∣∣∣∣∫
Rd

(Πr,ηψ0 − Πr,0ψ0) bve−
β
2M(v) dv

∣∣∣∣ < 1.

Using the decomposition (3.2) one gets

(3.13) Ar,η =

∣∣∣∣∣ η2π
∫
S(0,r)

m[F ]

z
dz

∣∣∣∣∣ .
The next three steps are devoted to estimating m[F ].

3.4. Localised average estimate. Integrate (3.12) against χRM: the right hand side vanishes
since M and χR are even and one gets

−〈L∗F, χR〉 − iη
∫
Rd

(v · σ)F (v)χR(v)M(v) dv − zmR[F ] = 0.

Using the same argument as for (3.5) and (3.6), we get

|mR[F ]| ≤ 1

r

[
η`(R) +R−

α+β
2

] ∥∥∥P⊥F∥∥∥
−β

(3.14)
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and using (3.8) we deduce, for R large enough,

|m[F ]|2 . 1

r2

(
η2`(R)2 +R−(α+β)

)∥∥∥P⊥F∥∥∥2

−β
.

Θ(η)

r2

∥∥∥P⊥F∥∥∥2

−β

with the choice R = η
− 1

1+β .

3.5. L2 estimate. Re-organise (3.12) as

−L∗F − iη(v · σ)

(
F − 1

iη

)
= zbve−βF,

integrate it against (
F − 1

iη

)
M

and take the real part to obtain

−Re

〈
L∗F,

(
F − 1

iη

)〉
= Re

(
z

∫
Rd
bve−βF

(
F − 1

iη

)
Mdv

)
.

The left hand side satisfies (using L1 = 0 and Hypothesis 2)

−Re

〈
L∗F,

(
F − 1

iη

)〉
= −Re 〈L∗F, F 〉 ≥ λ

∥∥∥P⊥F∥∥∥2

−β
,

and the right hand side is bounded by

Re

(
z

∫
Rd
bve−βF

(
F − 1

iη

)
Mdv

)
≤ r‖F‖2−β +

r

η
|m[F ]| .

This results in the estimate (using again the orthogonal decomposition)

λ
∥∥∥P⊥F∥∥∥2

−β
≤ r‖F‖2−β +

r

η
|m[F ]|

≤ r |m[F ]|2 + r
∥∥∥P⊥F∥∥∥2

−β
+
r

η
|m[F ]| ,

and thus since r < r0 < λ stays away from λ (r0 ∈ (0, λ)), we get∥∥∥P⊥F∥∥∥2

−β
. r |m[F ]|2 +

r

η
|m[F ]| .(3.15)

3.6. Synthesis and the first scalar estimate. The two previous steps lead to
|m(F )|2 . Θ(η)

r2

∥∥∥P⊥F∥∥∥2

−β
,∥∥∥P⊥F∥∥∥2

−β
. r |m[F ]|2 +

r

η
|m[F ]| .

Plugging the second estimate into the first one, we obtain

(3.16) |m(F )| . Θ(η)

r
|m[F ]|+ Θ(η)

ηr
.

Given any r ∈ [r0Θ(η), r0) with r0 large enough and η small enough, we have r−1Θ(η) small
enough so that

|m(F )| . Θ(η)

ηr
.(3.17)

Plugging the latter into (3.13) finally yields

Ar,η .
η

2π

∫
S(0,r)

Θ(η)

ηr2
dz .

Θ(η)

r
,

which is as small as wanted for r ∈ (r0Θ(η), r0) with r0 large enough and η small enough. This
concludes the proof of this scalar estimate. Note that so far we have proved the existence of
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the resolvent only for z ∈ S(0, r) with r ∈ (r′0, r0), however it will prove useful to record here
that the a priori estimates are still valid for even smaller r’s.

3.7. Estimating the full norm of the difference of projections at ψ0. Combining (3.15)
and (3.17) yields ∥∥∥P⊥F∥∥∥

−β
.

1

r
1
2 η

Θ(η) +
1

η
Θ(η)

1
2 .

This implies

‖Πr,ηψ0 − Πr,0ψ0‖ .
η

2π

∫
S(0,r)

1

r
‖F‖−β dz

.
η

2π

∫
S(0,r)

1

r

(
|m[F ]|+

∥∥∥P⊥F∥∥∥
−β

)
dz

.
1

r
Θ(η) +

1

r
1
2

Θ(η) + Θ(η)
1
2(3.18)

which is as small as wanted for r ∈ (r0Θ(η), r0) with r0 large enough and η small enough.

3.8. Estimating the full norm of the difference of projections. Take now any ψ ∈
L2(M). Then b·e

β
2ψ ∈ L2(b·e−βM) and the following decomposition holds

ψ = bve−
β
2m
[
b·e

β
2ψ
]

+ bve−
β
2P⊥

(
b·e

β
2ψ
)
.

As a consequence,

‖(Πr,η − Πr,0)ψ‖ ≤
∣∣∣m [b·eβ2ψ]∣∣∣ ‖(Πr,η − Πr,0)ψ0‖+

∥∥∥(Πr,η − Πr,0)
[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]∥∥∥ .

The first term in the right hand side is estimated by (3.18). We estimate the second term in
the right hand side by the triangle inequality:∥∥∥(Πr,η − Πr,0)

[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]∥∥∥

≤
∥∥∥Πr,η

[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]∥∥∥+

∥∥∥Πr,0

[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]∥∥∥

and now consider each term separately. Start with

Πr,η

[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]

=
1

2iπ

∫
S(0,r)

[
L̃η − z

]−1 [
b·e−

β
2P⊥

(
b·e

β
2ψ
)]

dz

=
1

2iπ

∫
S(0,r)

bve−
β
2 F dz(3.19)

where F satisfies this time (as before we omit writing the dependency in η, z, σ)

(3.20) − L∗F − iη(v · σ)F − zbve−βF = b·e−βP⊥
(
b·e

β
2ψ
)
.

First, test (3.20) on GM, take the real part and use m[P⊥(b·e
β
2ψ)] = 0:

λ
∥∥∥P⊥F∥∥∥2

−β
≤ (Re z) ‖F‖2−β + Re

〈
b·e−βP⊥(b·e

β
2ψ), F

〉
= (Re z) ‖F‖2−β + Re

〈
b·e−βP⊥(b·e

β
2ψ),P⊥F

〉
≤ r|m[F ]|2 + r‖P⊥F‖2−β +

∥∥∥P⊥ (b·eβ2ψ)∥∥∥
−β

∥∥∥P⊥F∥∥∥
−β
,

which implies, since r < r0 stays away from λ (r0 ∈ (0, λ)),

(3.21)
∥∥∥P⊥F∥∥∥2

−β
. r |m[F ]|2 +

∥∥∥P⊥ (b·eβ2ψ)∥∥∥2

−β
. r |m[F ]|2 + ‖ψ‖2.
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We now estimate m[F ]. Integrate (3.20) against χRM with R = η
− 1

1+β

−〈L∗F, χR〉 − iη
∫
Rd

(v · σ)F (v)χR(v)M(v) dv − zmR[F ] = mR

[
P⊥

(
b·e

β
2ψ
)]
.

Using the same arguments as in Subsections 3.1 and 3.4 we obtain

|mR[F ]| ≤
√

Θ(η)

r

∥∥∥P⊥F∥∥∥
−β

+
1

r

∣∣∣mR

[
P⊥

(
b·e

β
2ψ
)]∣∣∣ .

Since m[P⊥(b·e
β
2ψ)] = 0, we can estimate |mR[P⊥(b·e

β
2ψ)]| as follows:∣∣∣mR

[
P⊥

(
b·e

β
2ψ
)]∣∣∣ =

∣∣∣m [P⊥ (b·eβ2ψ)]−mR

[
P⊥

(
b·e

β
2ψ
)]∣∣∣

. R−
α+β
2

∥∥∥P⊥ (b·eβ2ψ)∥∥∥
−β
. R−

α+β
2 ‖ψ‖ .

√
Θ(η)‖ψ‖.

From this, we deduce

|mR[F ]| ≤
√

Θ(η)

r

(∥∥∥P⊥F∥∥∥
−β

+ ‖ψ‖
)
,

and using

|m[F ]|2 . |mR[F ]|2 +R−(α+β)
∥∥∥P⊥F∥∥∥2

−β
≤ |mR(F )|2 + Θ(η)

∥∥∥P⊥G∥∥∥2

−β

we finally get

(3.22) |m[F ]|2 . Θ(η)

r2

(∥∥∥P⊥F∥∥∥2

−β
+ ‖ψ‖2

)
+ Θ(η)

∥∥∥P⊥F∥∥∥2

−β
.

Θ(η)

r2

(∥∥∥P⊥F∥∥∥2

−β
+ ‖ψ‖2

)
.

Combining (3.21)–(3.22) implies for r ∈ [r0Θ(η), r0) with r0 large enough and η small enough

|m[F ]|2 . Θ(η)

r2
‖ψ‖2 and thus

∥∥∥P⊥F∥∥∥2

−β
.

Θ(η)

r
‖ψ‖2 + ‖ψ‖2.

Plugging the latter estimates into (3.19) yields∥∥∥Πr,η

[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]∥∥∥ ≤ r‖F‖−β . r|m[F ]|+ r‖P⊥F‖−β . Θ(η)

1
2 ‖ψ‖+ r‖ψ‖.

We now come to the estimate of

Πr,0

[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]

=
1

2iπ

∫
S(0,r)

[
L̃0 − z

]−1 [
b·e−

β
2P⊥

(
b·e

β
2ψ
)]

dz

=
1

2iπ

∫
S(0,r)

bve−
β
2 F dz

where F satisfies this time

(3.23) − L∗F − zbve−βF = bve−βP⊥
(
b·e

β
2ψ
)
.

Integrating this equation againstM shows thatm[F ] = 0 since 〈L∗F, 1〉 = 0 andm[P⊥(b·e
β
2ψ)] =

0 and z 6= 0. Hypothesis 2 then implies since r < r0 < λ is away from λ:

‖F‖−β =
∥∥∥P⊥F∥∥∥

−β
. ‖ψ‖,

and thus ∥∥∥Πr,0

[
b·e−

β
2P⊥

(
b·e

β
2ψ
)]∥∥∥ . r‖ψ‖.

The conclusion is that for any ψ ∈ L2(M),

‖(Πr,η − Πr,0)ψ‖ . Θ(η)
1
2 ‖ψ‖+ r‖ψ‖
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which means that (combining all the previous conditions), for r ∈ (r0Θ(η), r1) with r1 ∈ (0, r0)
small enough (independently of η) and r0 large enough (independently of η) and η small enough,
the operator norm

‖Πr,η − Πr,0‖L2(M)→L2(M) < 1.

It implies that, for any r ∈ (r′0, r1) and η small enough, the projections Πr,η and Πr,0 both
exist thanks to Subsection 3.1 and their dimensions are the same, i.e. 1, which proves uniqueness
of the eigenvalue within B(0, r1). This in turn shows that the eigenvalue is real: if (ψη,−µ(η))

is an eigenpair of L̃η with µ(η) ∈ B(0, r1), then so is (ψη(−·),−µ(η)). Since L̃η ≤ 0 and 0 is
not eigenvalue for η 6= 0, this proves that µ(η) > 0.

3.9. Estimate on the branch as η → 0. Since the projection has dimension one, there are
no other eigenvalues in a disc of radius r1 independent of η → 0. We can therefore vary and
decrease the radius until it touches the eigenvalue, and since our estimates above are uniform
in r ∈ (r0Θ(η), r1) with r1 ∈ (0, r0) small enough (independently of η) and r0 large enough
(independently of η), we deduce that this eigenvalue in fact belongs to the disc with radius

r0Θ(η), i.e. µ(η) . Θ(η). Moreover denoting φη := b·e
β
2ψη and normalizing the eigenvector as∫

Rd
ψη(v)bve−

β
2M(v) dv =

∫
Rd
φη(v)bve−βM(v) dv =

∫
Rd
φη(v)Mβ(v) dv = m [φη] = 1,

then integrating the equation against ψηM, taking the real part and using Hypothesis 2:

λ ‖ψη − ψ0‖2 ≤ µ(η) ‖ψη‖2 . µ(η) ‖ψη − ψ0‖2 + µ(η)

where we have used ‖ψ0‖ = 1. Hence for η small enough we deduce

‖φη − 1‖−β = ‖ψη − ψ0‖ . µ(η)
1
2 .

This concludes the proof of Lemma 1.1.

4. Proof of Lemma 1.2 (scaling of the eigenvalue)

In this section we prove Lemma 1.2, assuming all Hypothesis 1–2–3–4. Consider the unique
eigenpair (φη, µ(η)) that satisfies µ(η) ∈ B(0, r1) and

(4.1) − L∗φη − iη(v · σ)φη = µ(η)bve−βφη and

∫
Rd
φη(v)Mβ(v) dv = 1.

4.1. Proof in the case α > 2 + β. The function Fη :=
Imφη
η satisfies

−L∗Fη − µ(η)bve−βFη = (v · σ)Reφη and

∫
Rd
Fη(v)Mβ dv = 0.

Since (Hypothesis 2) L̃∗ is invertible on the L2
v(M)-orthogonal of b·e−

β
2 , and b·e

β
2M∈ L2

v(M)
when α > 2 + β, we can define then F ∈ L2

v(b·e−βM) solution to

−L∗F = (v · σ) with

∫
Rd
F (v)Mβ dv = 0.

The difference Fη − F satisfies

−L∗ (Fη − F )− µ(η)bve−β (Fη − F ) = (v · σ) [Reφη − 1] + µ(η)bve−βF.
Integrate the latter against (Fη − F )M and use Hypothesis 2:

[λ− µ (η)] ‖Fη − F‖2−β ≤
∫
Rd

(v · σ) (Reφη − 1) (Fη − F )Mdv + µ(η)

∫
Rd
F (Fη − F )Mβ dv

≤ ‖Reφη − 1‖2+β‖Fη − F‖−β + µ(η)‖F‖−β‖Fη − F‖−β.

Write for any ` ∈ (2 + β, α)

‖Reφη − 1‖2+β ≤ ‖Reφη − 1‖ζ−β ‖Reφη − 1‖1−ζ` ≤ µ(η)
ζ
2 ‖Reφη − 1‖1−ζ`
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with z = `−(2+β)
`+β > 0, then Hypothesis 4-(i) implies

‖Reφη − 1‖2+β . µ(η)
z
2 → 0 as η → 0,

and thus, since α > 1 (combining α > 2 + β and α+ β > 0)

‖F‖−β . ‖(v · σ)‖ . 1,

we deduce

‖Fη − F‖−β . µ(η)
z
2 → 0 as η → 0.

Finally, ∣∣∣∣µ(η)

η2
−
∫
Rd

(v · σ)F (v)M(v) dv

∣∣∣∣ ≤ ∣∣∣∣∫
Rd

(v · σ)(Fη(v)− F (v))M(v) dv

∣∣∣∣
. ‖1‖2+β‖Fη − F‖−β . µ(η)

z
2 → 0 as η → 0,

which identifies the limit of µ(η) and the rate.

4.2. Proof in the case α < 2+β. Take 0 ≤ χ ≤ 1 a smooth test function that is 1 on B(0, R0)

and zero outside B(0, 2R0). Integrate (4.1) against Θ(η)−1χ(·η
1

1+β )M and take the real part:

µ(η)

Θ(η)
+

1

Θ(η)
η
〈

(v · σ)Imφη, χ
(
·η

1
1+β

)〉
(4.2)

= − µ(η)

Θ(η)

(〈
bve−βReφη, χ

(
·η

1
1+β

)〉
− 1
)
− 1

Θ(η)

〈
L∗(Reφη − 1), χ

(
·η

1
1+β

)〉
= − µ(η)

Θ(η)

〈
bve−βReφη, χ

(
·η

1
1+β

)
− 1
〉
− 1

Θ(η)

〈
Reφη − 1, L

(
χ
(
·η

1
1+β

))〉
.

The first term in the right hand side is controlled by∣∣∣∣ µ(η)

Θ(η)

〈
bve−βReφη, χ

(
·η

1
1+β

)
− 1
〉∣∣∣∣ . ∣∣∣〈bve−βReφη, χ

(
·η

1
1+β

)
− 1
〉∣∣∣ . R− α+β

2(1+β)

0 η
α+β

2(1+β)

and the second term is controlled by∣∣∣∣ 1

Θ(η)

〈
Reφη − 1, L

(
χ(·η

1
1+β )

)〉∣∣∣∣ ≤ 1

Θ(η)
‖φη − 1‖−β

∥∥∥L [χ(·η 1
1+β

)]∥∥∥
β

. Θ(η)−
1
2

∥∥∥L [χ(·η 1
1+β

)]∥∥∥
β

. Θ(η)−
1
2 η

α+β
2(1+β)R

− α+β
2(1+β)

0 . R
− α+β

2(1+β)

0 .

The second term in the left hand side satisfies

η

Θ(η)

〈
(v · σ)Imφη, χ(·η

1
1+β )

〉
= cα,β

∫
Rd

(u · σ)ImΦη|u|−d−αη χ(u) du

and we deduce ∣∣∣∣ µ(η)

Θ(η)
+ cα,β

∫
Rd

(u · σ)ImΦη|u|−d−αη χ(u) du

∣∣∣∣ . R−α+β20 .

Then observe that assumption (1.11) in Hypothesis 4 implies the uniform integrability of the
integrand on the support of χ and the convergence of the integral as η → 0 for a given χ.

All in all we have the double limit∫
Rd

(u · σ)ImΦη|u|−d−αη χ(u) du
η→0−−−−→
R0→∞

∫
Rd

(u · σ)ImΦ|u|−d−α du.

This double limit thus proves that µ(η)
Θ(η) converges and

lim
η→0

µ(η)

Θ(η)
= cα,β

∫
Rd

(u · σ)ImΦ|u|−d−α du.
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4.3. Proof in the case α = 2 + β. Take 0 ≤ χ ≤ 1 a smooth test function that is 1 on B(0, 1)
and zero outside B(0, 2). Consider again (4.2) (with now Θ(η) = η2| ln η|) and estimate∣∣∣∣ µ(η)

Θ(η)

〈
bve−βReφη, χ

(
·η

1
1+β

)
− 1
〉∣∣∣∣ . ∣∣∣〈bve−βReφη, χ

(
·η

1
1+β

)
− 1
〉∣∣∣ . η

and ∣∣∣∣ 1

η2| ln η|

〈
Reφη − 1, L

(
χ(·η

1
1+β )

)〉∣∣∣∣ ≤ 1

η2| ln η|
‖φη − 1‖−β

∥∥∥L [χ(·η 1
1+β

)]∥∥∥
β

.
1

η| ln(η)|
1
2

∥∥∥L [χ(·η 1
1+β

)]∥∥∥
β
.

1

| ln(η)|
1
2

.

We have also
1

η| ln η|

〈
(v · σ)Imφη, χ

(
·η−

1
1+β

)〉
=

cα,β
| ln η|

∫
Rd

(u · σ)ImΦη|u|−d−αη χ(u) du

which gives

(4.3)

∣∣∣∣ µ(η)

Θ(η)
+

cα,β
| ln(η)|

∫
Rd

(u · σ)ImΦη|u|−d−αη χ(u) du

∣∣∣∣ . 1

| ln(η)|
1
2

+ η.

Let us decompose

cα,β
| ln η|

∫
Rd

(u · σ)ImΦη|u|−d−αη χ(u) du

=
cα,β
| ln η|

∫
|u|≤η

1
1+β

(u · σ)ImΦη|u|−d−αη χ(u) du+
cα,β
| ln η|

∫
|u|≥η

1
1+β

(u · σ)ImΦη|u|−d−αη χ(u) du.

The first term is bounded by

cα,β
| ln η|

∫
|u|≤η

1
1+β

(u · σ)ImΦη(u)|u|−d−αη χ(u) du =
cα,β
η| ln η|

∫
|v|≤1

(v · σ)Imφη(v)M(v) dv

.
Θ(η)

1
2

η| ln η|
.

1

| ln(η)|
1
2

.

We approximate, using the second part of Hypothesis 4-(ii)

1

| ln(η)|

∣∣∣∣∣
∫
|u|≥η

1
1+β

(u · σ)ImΦη(u)|u|−d−αη χ(u) du−
∫
|u|≥η

1
1+β

(u · σ)ImΦ(u)|u|−d−αη χ(u) du

∣∣∣∣∣ . a(η).

Define,

N(η) :=

∫
|u|≥η

1
1+β

(u · σ)ImΦ(u)|u|−d−αχ(u) du.

Observe that since |ImΦ(u)| . |u|2+β, and α = 2 + β,∣∣∣∣∣N(η)−
∫
|u|≥η

1
1+β

(u · σ)ImΦ(u)|u|−d−αη χ(u) du

∣∣∣∣∣ ≤
∫

2≥|u|≥η
1

1+β

|u|2+β
∣∣∣|u|−d−αη − |u|−d−α

∣∣∣ du

≤
∫

1≤|v|≤2η
− 1

1+β

|v|−d
∣∣∣|v|d+αbve−d−α − 1

∣∣∣ dv

. 1,

since
∣∣|v|d+αbve−d−α − 1

∣∣ ∼v→∞ d+α
2

1
1+|v|2 . We get, using the second part of Hypothesis 4-(iv),

−ηN ′(η) ∼ 1

1 + β

∫
σ′∈Sd−1

(
σ · σ′

) ImΦ
(
η

1
1+β σ′

)
η

dσ′ ∼ 1

1 + β

∫
σ′∈Sd−1

(
σ · σ′

)
Ω(σ′) dσ′.

Apply then L’Hôpital’s rule to deduce

lim
η→0

N(η)

| ln η|
=

1

1 + β

∫
σ′∈Sd−1

(
σ · σ′

)
Ω(σ′)dσ′.
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We conclude by taking η → 0 in (4.3).

5. Proof of Lemma 1.3 (the diffusion coefficient)

Using Lemma 1.2 and the definition (1.15) of θ, Lemma 1.3 follows from:

Lemma 5.1. Assume Hypothesis 1–2–3–4. Then, the following convergence holds

〈1, φη〉 ∼η→0



‖M‖L1(Rd) when α > 0

|Sd−1|
1 + β

| ln(η)| when α = 0

η
α

1+β cα,β

∫
Rd

Φ(u)|u|−d−α du when α ∈ (−β, 0).

with explicit convergence rate.

Proof. When α > 0, the integral

cα,β
cα,0

= 〈1, 1〉 =

∫
Rd
Mdv < +∞

is well defined and, choosing ` ∈ (0, α),

|〈1, φη〉 − 〈1, 1〉| ≤ |〈1, φη − 1〉| ≤ ‖1‖min(`,β) ‖φη − 1‖−min(`,β)

. ‖φη − 1‖a−β ‖φη − 1‖1−a0 . µ(η)
a
2

with a = min( `β , 1) ∈ (0, 1], which shows 〈1, φη〉 ∼ 〈1, 1〉 with explicit rate, and thus

〈1, φη〉
η→0−−−→ 〈1, 1〉 =

cα,β
cα,0

= ‖M‖L1(Rd) when α > 0.

In the case α = 0,∫
Rd
φη(v)M(v) dv =

∫
|v|≤η−

1
1+β

φη(v)M(v) dv +

∫
|v|≥η−

1
1+β

φη(v)M(v) dv.

The second term is estimated by∫
|v|≥η−

1
1+β

φη(v)M(v) dv = c0,β

∫
|u|≥1

Φη(u)|u|−dη du

= c0,β

(∫
|u|≥1

|Φη(u)|2|u|−d+β
η du

) 1
2
(∫
|u|≥1

|u|−d−βη du

) 1
2

. 1,

using the moment bounds (1.12). The first term is decomposed into∫
|v|≤η−

1
1+β

φη(v)M(v) dv =

∫
|v|≤η−

1
1+β

(φη(v)− 1)M(v) dv +

∫
|v|≤η−

1
1+β

M(v) dv.

Since ∣∣∣∣∣
∫
|v|≤η−

1
1+β

(φη(v)− 1)M(v) dv

∣∣∣∣∣ ≤ ‖φη(v)− 1‖−β

∥∥∥∥1|·|≤η− 1
1+β

∥∥∥∥
β

. µ(η)
1
2 η
− β

2(1+β) . 1,

we deduce ∫
Rd
φη(v)M(v) dv ∼

∫
|v|≤η−

1
1+β

M(v) dv ∼ c0,β

∣∣Sd−1
∣∣

1 + β
| ln η|

with explicit error term.
We finally consider, in the case α ∈ (−β, 0), the convergence of the integral

η
− α

1+β

∫
Rd
φη(v)M(v) dv

η→0−−−→ cα,β

∫
Rd

Φ(u)|u|−d−α du.
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Observe that the left hand side is

η
− α

1+β

∫
Rd
φη(v)M(v) dv = cα,β

∫
Rd

Φη(u)|u|−d−αη du.

The bound (1.11) implies that the integrand is uniformly integrable near zero:∫
|u|≤ε

Φη(u)|u|−d−αη
ε→0−−→ 0 du

uniformly as η → 0. On the region |u| ≥ R0 the integral bound (1.12) implies∫
|u|≥R0

|Φη(u)| |u|−d−αη du
R0→∞−−−−→ 0

uniformly as η → 0. We finally use the L2-convergence Φη → Φ on {ε ≤ |u| ≤ R0}. �

6. Proof of the hypothesis for scattering equations

In this section we consider the scattering operator
Lf =

∫
Rd
b(·, v′)

[
f(v′)M(·)− f(·)M(v′)

]
dv′,

Lh =

∫
Rd
b(·, v′)M(v′)

[
h(v′) − h(·)

]
dv′.

We assume that b is C1, that the operator conserves the local mass∫
Rd

(
b(v, v′)− b(v′, v)

)
M(v′) dv′ = 0

and that the collision kernel b and collision frequency

ν(v) :=

∫
Rd
b(v, v′)M(v′) dv′

satisfy, for some constant ν0 > 0,

bve−β . ν(v) . bve−β, λβν(λu) ∼λ→∞ ν0|u|−β and ‖b(v, ·)‖β + ‖b(·, v)‖β . bve−β.

This includes b(v, v′) = bve−βbv′e−β for any α + β > 0, and b(v, v′) = bv − v′e−β when β < 0
and α+ β > 0 or when β ≥ 0 and α > 3β.

6.1. Proof of Hypothesis 2. Hypothesis 2 is standard and proved for instance in [16].

6.2. Proof of Hypothesis 3. We perform the following calculations:

‖L(χR)‖2β =

∫
Rd
bveβ|L(χR)|2M(v) dv

≤
∫
Rd
bveβν(v)

∫
Rd
|χR(v)− χR(v′)|2 b(v, v′)M(v′)M(v) dv′ dv

.
∫∫

Rd×Rd
|χR(v)− χR(v′)|2 b(v, v′)M(v)M(v′) dv dv′

.
∫∫
{|v|<R}×Rd

· · ·+
∫∫
{|v|>R}×Rd

. . .

.
∫∫

Rd×{|v′|>R}
b(v, v′)M(v)M(v′) dv dv′ +

∫∫
{|v|>R}×Rd

b(v, v′)M(v)M(v′) dv′ dv

. ‖χcRM‖−β . R
− (α+β)

2 −−−−→
R→∞

0.
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6.3. Proof of Hypothesis 4. The eigenvalue problem writes(
L∗,+φη

)
(v) :=

∫
Rd
b(v′, v)M(v′)φη(v

′) dv′ =
(
ν(v)− iη(v · σ)− µ(η)bve−β

)
φη(v)∫

Rd
Mβ(v′)φη(v

′) dv′ = 1.

Observe first that Hypothesis 2 implies

‖φη − 1‖2−β ≤ µ(η) ‖φη‖−β
and thus, for η small enough

‖φη‖2−β ≤
1

λ− µ(η)

is uniformly bounded as η → 0. Observe second that∣∣L∗,+(φη)(v)
∣∣ ≤ ‖b(·, v)‖β ‖φη‖−β . bve

−β

which yields, for η small enough,

|φη(v)| . bve−β[
(ν(v)− µ(η)bve−β)

2
+ η2(v · σ)2

] 1
2

.
1

bveβν(v)− µ(η)
. 1,

i.e. φη is uniformly bounded in L∞(Rd) as η → 0, and Hypothesis 4-(i) when α > 2 +β follows.
The rescaled eigenvector Φη satisfies

Φη(u) := φη

(
η
− 1

1+β u
)

=
η

β
1+βL∗,+φη

(
η
− 1

1+β u
)

η
β

1+β ν
(
η
− 1

1+β u
)
− i(u · σ)− µ(η)|u|−βη

.

We turn to the case α ≤ 2 + β. Estimate (1.11) in Hypothesis 4 follows from Φη uniformly

bounded and for η small and |u| ≤ 1 (using |L∗,+(φη)(v)| . bve−β),

|ImΦη(u)| =

∣∣∣∣∣∣∣
(u · σ)

[
η

β
1+βL∗,+φη

(
η
− 1

1+β u
)]

(
η

β
1+β ν

(
η
− 1

1+β u
)
− µ(η)|u|−βη

)2

+ (u · σ)2

∣∣∣∣∣∣∣ .
|u · σ|

η
β

1+β ν
(
η
− 1

1+β u
) . |u|1+β

η .

The integral moment bound (1.12) in Hypothesis 4-(iv) follows from (for small η and large u
and using again |L∗,+(φη)(v)| . bve−β)

|Φη(u)| . 1

1 + |u|β|u · σ|
which implies

‖Φη‖2β .
∫ π

0

∫ +∞

1

r−1−α+β

1 + r2+2β cos θ2
dr dθ < +∞.

To prove the remaining points we use L∗1 = 0 to write

Φη(u)−
η

β
1+β ν

(
η
− 1

1+β u
)

η
β

1+β ν
(
η
− 1

1+β u
)
− i(u · σ)− µ(η)|u|−βη

=
η

β
1+βL∗,+φη

(
η
− 1

1+β u
)
− η

β
1+β ν

(
η
− 1

1+β u
)

η
β

1+β ν
(
η
− 1

1+β u
)
− i(u · σ)− µ(η)|u|−βη

=
η

β
1+βL∗,+ (φη − 1)

(
η
− 1

1+β u
)

η
β

1+β ν
(
η
− 1

1+β u
)
− i(u · σ)− µ(η)|u|−βη

.

Since then∣∣∣η β
1+βL∗,+ (φη − 1)

(
η
− 1

1+β u
)∣∣∣ . η β

1+β

⌊
η
− 1

1+β u
⌉−β
‖φη − 1‖−β .

√
µ(η)η

β
1+β ν

(
η
− 1

1+β u
)
,

24



we deduce ∥∥∥∥ Φη

Φη,0
− 1

∥∥∥∥
L∞(Rd)

.
√
µ(η) −−−→

η→0
0

with the simpler function

Φη,0(u) :=
η

β
1+β ν

(
η
− 1

1+β u
)

η
β

1+β ν
(
η
− 1

1+β u
)
− i(u · σ)− µ(η)|u|−βη

.

To prove the convergence of Φη it is thus enough to check the convergence of Φη,0:

lim
η→0

Φη(u) = lim
η→0

Φη,0(u) =
ν0

ν0 − i|u|β(u · σ)
:= Φ(u)

Ω(u) = lim
λ→0, λ 6=0

λ−(1+β) ν0|λu|β(λu · σ)

ν2
0 + |λu|2β(λu · σ)2

= ν−1
0 |u|

β(u · σ),

and the corresponding diffusion coefficients are given in the statement of Corollary 1.5.
Moreover, since

ImΦη,0(u) :=
|u|βηνη(u)|u|βη (u · σ)(

|u|βηνη(u)− µ(η)
)2

+ |u|2βη (u · σ)2

,

and

ImΦ(u) :=
ν0|u|β(u · σ)

ν2
0 + |u|2β(u · σ)2

,

we deduce

ImΦ(u)

ImΦη,0(u)
=

ν0

|u|βηνη(u)

|u|β

|u|βη

(
|u|βηνη(u)− µ(η)

)2
+ |u|2βη (u · σ)2

ν2
0 + |u|2β(u · σ)2

= (1 + o(1))
|u|β

|u|βη
.

Since |ImΦη − ImΦη,0| ≤
√
µ(η) |ImΦη,0|,

ImΦ(u)

ImΦη(u)
=

ImΦ(u)

ImΦη,0(u)

ImΦη,0(u)

ImΦ(u)
= (1 + o(1))

|u|β

|u|βη
.

and this gives the second part of Hypothesis 4-(ii).

7. Proof of the hypothesis for kinetic Fokker-Planck equations

In this section we consider the operator

L(f) := ∇v ·
(
M∇v

(
f

M

))
where M is given as in Hypothesis 1. In this section the constant β = 2, and the operator L
and L are self-adjoint respectively in L2

v(M−1) and L2
v(M).

7.1. Proof of Hypothesis 2. This hypothesis reads in the case of Fokker-Planck operators:∫
Rd
|∇vh|2M(v) dv ≥ λ ‖h− Ph‖−2 with Ph :=

∫
Rd
h(v′)〈v′〉−2M(v′) dv′.

(Recall that
∫
〈·〉−2M = 1 as per Hypothesis 1.) It is satisfied thanks to the Hardy-Poincaré

inequality, for instance in the form proved in [6, equation (1)]. Note that the exponent excluded
in [6] corresponds to α = −2 which is also excluded by our assumptions.
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7.2. Proof of Hypothesis 3. It is proved via the following computation

‖L(χR)‖22 =

∫
Rd
|∇ · (M∇vχR)|2 bve2 dv

M

=

∫
Rd

∣∣∣∣∆χR(v) +
∇vM(v)

M(v)
· ∇χR(v)

∣∣∣∣2 bve2M(v) dv

=

∫
B2R\BR

∣∣∣∣∆χR +
∇vM
M

·∇χR
∣∣∣∣2 bve2Mdv

=

∫
B2R\BR

bve−2Mdv .χ R
−(2+α) = R−(β+α).

7.3. Proof of Hypothesis 4. The equation satisfied by Φη is

−|u|2η∆uΦη + (d+ α)u · ∇uΦη − i(u · σ)|u|2ηΦη = µ(η)Φη.(7.1)

We first prove the pointwise bounds, i.e. (1.11) in Hypothesis 4. We start with pointwise
estimates of the non-rescaled eigenfunction.

Lemma 7.1. The unique solution to

−Lφη − iη(v · σ)φη = µ(η)bve−2φη with

∫
Rd
φη(v) bve−2M(v) dv = 1

satisfies for any R ≥ 1

‖φη‖L∞(B(0,R)) .R 1 and ‖Imφη‖L∞(B(0,R)) .R max(η, µ(η))

with constants depending only on R but uniform in η → 0.

Proof of Lemma 7.1. As for the scattering equation, Hypothesis 2 implies, for η small enough

‖φη − 1‖2−2 ≤ µ(η) ‖φη‖−2 ⇒ ‖φη‖2−2 ≤
1

λ− µ(η)
. 1.

The elliptic regularity of the operator L = ∆ − (d + α)〈v〉−2v · ∇v, with uniform ellipticity
constant, then classically implies that

‖φη‖L∞(B(0,R)) .R 1.

Since Pφη = 1 in the decomposition φη = Pφη + φ⊥η , one deduces

‖Imφη‖−2 ≤
∥∥φ⊥η ∥∥−2

. µ(η)

and the imaginary part satisfies the equation

−L(Imφη)− µ(η)bve−2Imφη = η(v · σ)Reφη.

Therefore the elliptic regularity combined with the integral bound on Imφη and the bound
‖η(v · σ)Reφη‖L2(B(0,2) . η on the right hand side implies that

‖Imφη‖L∞(B(0,R)) .R max(η, µ(η))

which concludes the proof. �

The following lemma proves (1.11).

Lemma 7.2. There is η1 ∈ (0, η0) small enough and A and C large enough so that

∀ η ∈ (0, η1), ∀u ∈ Rd, |Φη(u)| . |u|Cµ(η)
η , |ImΦη(u)| .δ |u|min(2+α,3)−Cµ(η)

η .

Proof of Lemma 7.2. Multiply (7.1) by
Φη
|Φη | and take the real part,

−|u|2ηRe

(
Φη

|Φη|
∆uΦη

)
+ (d+ α)u · Re

(
Φη

|Φη|
∇uΦη

)
= µ(η)|Φη|.

Since

∇u|Φη| = Re

(
Φη

|Φη|
∇uΦη

)
, ∆u|Φη| ≥ Re

(
Φη

|Φη|
∆uΦη

)
,

26



one gets

−|u|2η∆u|Φη|+ (d+ α)u · ∇u|Φη| − µ(η)|Φη| ≤ 0.

Then observe that the real function F (u) = |u|Cµ(η)
η satisfies for |u| ≥ Aη

1
3 with A large:

− |u|2η∆uF + (d+ α)u · ∇uF − µ(η)F

≥ µ(η)F

[
−Cd

|u|2η
|u|2
− C(Cµ(η)− 2)

|u|2η
|u|2

+ C(d+ α)− 1

]
≥ µ(η)F [−Cd(1 + ε)− C(Cµ(η)− 2)(1 + ε) + C(d+ α)− 1]

≥ µ(η)F
[
C(2 + α)− 1− εC(d− 2)− C2µ(η)(1 + ε)

]
where we have used that

|u|2η
|u|2 ≤ 1 + ε with ε small for |u| ≥ Aη

1
3 when A large enough. The

right hand side is thus positive for C large enough and ε and η small enough, since 2 + α > 0:

∀ |u| ≥ Aη
1
3 , −|u|2η∆uF + (d+ α)u · ∇uF − µ(η)F ≥ 0

i.e. F is a super-solution in this region. Moreover the previous lemma shows that

sup

|u|≤Aη
1
3

|Φη(u)| ≤ ‖φη‖L∞(B(0,A)) .A 1

and we can therefore compare Φη and F on the ball |u| ≤ Aη
1
3 with a bound uniform in η. The

maximum principle thus implies that |Φη| . |u|Cµ(η)
η for all |u| ≥ Aη

1
3 with a bound uniform in

η. Finally, since ηCµ(η) ∼ 1 as η → 0, this bound extends to any u ∈ Rd up to enlarging the
comparison constant (independently of η → 0).

Take then the imaginary part of equation (7.1)

−|u|2η∆uImΦη + (d+ α)u · ∇uImΦη − µ(η)ImΦη = (u · σ)|u|2ηReΦη,

multiply by
ImΦη
|ImΦη | and use the previous estimate to get for |u| ≥ Aη

1
3

−|u|2η∆u|Im(Φη)|+ (d+ α)u · ∇u|Im(Φη)| − µ(η)|Im(Φη)| ≤ |u|3+Cµ(η)
η .

Define G(u) := |u|ζ
′
η with ζ ′ := min(2 + α, 3)− Cµ(η) and compute for |u| ∈ [Aη

1
3 , 1]:

−|u|2η∆uG+ (d+ α)u · ∇uG− µ(η)G ≥ G
[
ζ ′
(
2 + α− ζ ′

)
− µ(η)−O

(
A−2

)]
&a |u|3+Cµ(η)

η

for C large enough and η small enough. The maximum principle then shows again that |ImΦη| .
|u|ζ

′
η on |u| ∈ [Aη

1
3 , 1] by comparing ImΦη and G on |u| = Aη

1
3 thanks to the second inequality

in the previous lemma. Again the bound extends to any |u| ≤ Aη
1
3 using the second inequality

in the previous lemma, since max(η, µ(η)) . η
ζ′
3 uniformly as η → 0 (examining separately the

cases α ∈ (−2, 1] and α ∈ (1, 4)). �

The next lemma allows to prove the integral moment estimate (1.12) in Hypothesis 4-(iv).

Lemma 7.3. There is ζ > 0 such that for any q ≥ −2 and G,Φ ∈ L2(bueq−d−α) such that

−|u|2η∆uΦ + (d+ α)u · ∇uΦη − i(u · σ)|u|2ηΦ = G,(7.2)

the following gain of decay at infinity holds∫
Rd
|Φ(u)|2bueq+ζ−d−α du .q,ζ

∫
Rd
|G(u)|2bueq−d−α du+

∫
Rd
|Φ(u)|2bueq−d−α du.
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Proof of Lemma 7.3. Consider a real-valued smooth function χ0(u) that is zero on |u| ≤ 1
2 and

equal to 1 on |u| ≥ 1, and integrate (7.2) against Φχ2
0|u|

q−d−α
η and take the real part to get∫

|u|≥1
|u|2η |∇Φη(u)|2 |u|q−d−αη du .

∫
Rd

(
χ2

0 |Φη|2 +
∣∣∆ (χ2

0

)∣∣ |u|2η |Φη|2 + χ2
0 |G|

2
)
|u|q−d−αη du

.
∫
|u|≥1

(
|Φη|2 + |G|2

)
|u|q−d−αη du.

Integrate then (7.2) against Φ(u ·σ)χ2
1|u|

q−d−α−1
η where χ1 is a real-valued smooth function that

is zero on |u| ≤ 1 and equal to 1 on |u| ≥ 1, and take the imaginary part to get∫
Rd

(u · σ)2χ1(u)2 |Φη(u)|2 |u|1+q−d−α
η du .

∫
|u|≥1

|u|2η |∇Φη(u)|2 |u|q−d−αη du

+

∫
|u|≥1

(
|Φη|2 + |G|2

)
|u|q−d−αη du

.
∫
|u|≥1

(
|Φη|2 + |G|2

)
|u|q−d−αη du

where we have used the previous real part estimate in the last line. This yields∫
Rd

(u · σ)2|u| |Φη(u)|2 bueq−d−α du .
∫
Rd

(
|Φη|2 + |G|2

)
bueq−d−α du.

This first estimate improves the decay at infinity outside a cone around u⊥σ. We now use the
ellipticity of the equation to control this latter region. The operator writes Lη = −|u|d+α

η ∇u ·
[|u|−d−αη ∇u] and we deduce by simple commutator estimates that∫

|u|≥2

∣∣∣∇u (Φη(u)|u|
q−d−α+2

2

)∣∣∣2 du .
∫
|u|≥1

(
|Φη|2 + |G|2

)
|u|q−d−αη du.

Consider first the case d > 2. The Caffarelli-Kohn-Nirenberg inequality yields∥∥∥Φη(u)|u|
q−d−α+2

2 1|u|≥2

∥∥∥2

L
2d
d−2
.
∫
|u|≥1

(
|Φη|2 + |G|2

)
|u|q−d−αη du.

Consider now the cone C := {| u|u| · σ| ≤ bue
− δ

2 , |u| ≥ 2} for some δ > 0, and a gain of weight

bueζ for some ζ > 0 to be precised later. The Hölder inequality then yields∫
C
|Φη(u)|2 |u|q−d−α+ζ du ≤

∥∥∥Φη(u)|u|
q−d−α+2

2 1|u|≥2

∥∥∥2

L
2d
d−2 (Rd)

(∫
C
|u|

d(ζ−2)
2 du

) 2
d

.

The extra volume integral may be estimated as follows using spherical coordinates,∫
C
|u|

d(ζ−2)
2 du .

∫ +∞

1
rd−1 〈r〉

d(ζ−2)
2 〈r〉−

δ
2 dr .

∫ +∞

1
r−1+ dζ

2
− δ

2 dr

which is finite as soon as ζ < δ
d (which defines and restricts δ). Outside the cone we use the

first estimate:∫
Cc∩{|u|≥2}

|Φη|2 |u|q−d−α+ζ du .
∫
Rd
|Φη|2 (u · σ)2|u|−2+δ+q−d−α+ζ du

which is controlled as soon as ζ ≤ 3− δ. The constraints are compatible for ζ ∈ (0, 3
d+1).

In the case d = 1, the gain of decay is immediate from the first estimate alone. In the case
d = 2, we follow a similar argument but replace the Caffarelli-Kohn-Nirenberg inequality with
the Onofri inequality:∥∥∥Φη(u)|u|

q−d−α+2
2 1|u|≥2

∥∥∥2

L2p
.p

∫
|u|≥1

(
|Φη|2 + |G|2

)
|u|q−d−αη du
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for any p <∞. The Hölder inequality then gives∫
C
|Φη(u)|2 |u|q−d−α+ζ du ≤

∥∥∥Φη(u)|u|
q−d−α+2

2 1|u|≥2

∥∥∥2

L2p(Rd)

(∫
C
|u|q(ζ−2) du

) 1
q

where q = 1
1−1/p is the exponent conjugate to p. The conclusion follows as before by taking p

large enough. �

We now apply this latter lemma to obtain the moment bound (1.12). Observe first that the

pointwise bound |Φη(u)| . |u|Cµ(η) proved in the previous lemma implies that∫
|u|≥1

|Φη(u)|2|u|q−d−α du < +∞

for q = −2 and η small enough with bound uniform in η, since α + 2 > 0. On this basis,
we then apply repeatedly the latter lemma with G = µ(η)Φη to obtain that Φη decays faster
than any polynomial at infinity, with constants uniform in η (note that ζ is independent of q in
the lemma). Finally the convergence Φη → Φ in L2

loc(Rd\{0}) follows easily from the bounds
established above and the convergence of the coefficients of the equation satisfied by Φη: one
can prove that η 7→ Φη is Cauchy in L2 on any such compact set as η → 0, and such convergence

has a polynomial rate and is uniform on any compact set in Rd \ {0}.
We now prove the second part of Hypothesis 4-(ii). The equation for Wη := Φη − Φ is

− |u|2η∆uWη + (d+ α)u · ∇u Wη + i(u · σ)|u|2ηWη − µ(η) Wη

= η
2
3 (d+ α)

u

|u|2
· ∇uΦ + µ(η)Φ,

We derive a bound on ∇uΦ. For this, differentiate the limit equation for Φ,

− |u|2∆ (∇Φ) + (d+ α)u · ∇ (∇Φ) + (d+ α)∇Φ + 2(∆Φ)u

= i(u · σ)|u|2∇Φ + i∇
(
(u · σ)|u|2

)
Φ.

Test against ∇Φ
|∇Φ| , use

∇u |∇Φ| = Re

(
Φ

|Φ|
∇uΦ

)
, Re

(
∇Φ

|∇Φ|
∆u (∇Φ)

)
≤ ∆u (|∇Φ|) ,

u · Re

(
∆Φ
∇Φ

|∇Φ|

)
= u · ∇ (|∇Φ|) , |∇

(
(u · σ)|u|2

)
| ≤ 3|u|2,

and take the real part to get

−|u|2∆ (|∇Φ|) + (d+ α− 2)u · ∇ (|∇Φ|) + (d+ α) |∇Φ| ≤ 3|u|2‖Φ‖∞.

The maximum principle then yields that |∇Φ| . |u|2. As a consequence,

−|u|2η∆u|Wη|+ (d+ α)u · ∇u|Wη| − µ(η)|Wη| . η
2
3 |u|+ µ(η) . η

2
3 |u|η,

since Φ is bounded uniformly. From this, one deduces |Wη| . η
2
3 |u|η. Since,

− |u|2η∆uImWη + (d+ α)u · ∇uImWη − µ(η)ImWη

= η
2
3 ∆uImΦ + µ(η)ImΦ + (u · σ)

(
|u|2ηReΦη − |u|2ReΦ

)
,

= η
2
3 ∆uImΦ + µ(η)ImΦ + (u · σ)

(
|u|2ηReWη + η

2
3 ReΦ

)
,

= η
2
3 (d+ α)

u

|u|2
· ∇uImΦ + µ(η)ImΦ + (u · σ)|u|2ηReWη,

we bootstrap the bound on ∇uΦ to a bound on ∇uImΦ, the imaginary part of ∇Φ. Since

−|u|2∆ (|Im∇Φ|) + (d+ α− 2)u · ∇ (|Im∇Φ|) + (d+ α) |Im∇Φ| . |u|4 + |u|5,
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we obtain |Im∇Φ(u)| . |u|4 on B(0, 1). From this, we get

− |u|2η∆u |ImWη|+ (d+ α)u · ∇u |ImWη| − µ(η) |ImWη|

. η
2
3 |u|3 + µ(η)|u|3 + |u · σ||u|2ηη

2
3 |u|η . η

2
3 |u|3η + |u · σ||u|2ηη

2
3 |u|η

and thus
|ImWη(u)|
|u|3−Cµ(η)

η

η→0−−−→ 0

on B(0, 1), which implies the hypothesis since then

1

| ln(η)|

∣∣∣∣∣
∫

1≥|u|≥η
1

1+β

(u · σ)
[
ImΦη(u)− ImΦ(u)

]
|u|−d−αη du

∣∣∣∣∣
≤ oη(1)

| ln(η)|

∣∣∣∣∣
∫

1≥|u|≥η
1

1+β

(u · σ)|u|3−Cµ(η)
η |u|−d−αη du

∣∣∣∣∣
≤ oη(1)

| ln(η)|

∣∣∣∣∣
∫

1≥|u|≥η
1

1+β

|u|−d−Cµ(η)
η du

∣∣∣∣∣ η→0−−−→ 0.

8. Proof of the hypothesis for kinetic Lévy-Fokker-Planck equations

In this section, we consider, given s ∈ (1
2 , 1) and M is given by Hypothesis 1, the operator

L(f) = ∆s
vf +∇v · (U f) .

The fractional Laplacian is defined as in (1.5) but we use the equivalent definition

∆s
vf(v) := −Cd,s

∫
Rd

f(v)− f(v′)

|v − v′|d+2s
dv′ with Cd,s :=

4sΓ
(
d
2 + s

)
π
d
2 |Γ(−s)|

.

The drift force U solves

∆s
vM+∇v · (UM) = 0.

We restrict ourselves to α > s. It is proved in [10] that a radial solution U to the previous
equation satisfies U(v) = U(v)bve−βv with β := 2s − α and U a uniformly positive function
bounded from above. The operator L is

Lh =M−1∆s
v (Mh) +M−1∇v · (UMh) =M−1

[
∆s
v (Mh)− (∆s

vM)h
]

+ U · ∇vh.

8.1. Proof of Hypothesis 2. This hypothesis is implied by the fractional Hardy-Poincaré
inequalities proved in [10] and earlier in [32]:

Proposition 8.1 ([10, 32]). Let d ≥ 1, s ∈ (0, 1), α > s and β := 2s− α. Then there is λ > 0
(depending on s) such that

−Re
〈
Lh, h

〉
≥ λ‖h− Ph‖2−β.

Proof. Compute

−Re
〈
Lh, h

〉
= −Re

∫
Rd

[
∆s
v(Mh) +∇v · (UMh)

]
hdv′

= −Re

∫
Rd

(
∆s
vh
)
hMdv + Re

∫
Rd

1

2
U · ∇v

(
|h|2
)
Mdv

= −Re

∫
Rd

(
∆s
vh
)
hMdv − Re

∫
Rd

1

2
∇v · (UM) |h|2 dv

= −Re

∫
Rd

(
∆s
vh
)
hMdv + Re

∫
Rd

1

2
(∆s

vM) |h|2 dv

=
Cd,s

2

∫
Rd×Rd

|h− h′|2

|v − v′|d+2s
Mdv dv′
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and thus

−Re
〈
Lh, h

〉
=
Cd,s

4

∫
Rd

|h− h′|2

|v − v′|d+2s
(M+M′) dv dv′.

Note that there is κ > 0 such that

∀ (v, v′) ∈ Rd × Rd, bve−β bv′e−βMM′ ≤ κ M+M′

|v − v′|d+2s
,

by matching the asymptotics at large v and v′. Hence we get that

−Re
〈
Lh, h

〉
&
∫
Rd
|h− h′|2bve−β bv′e−βMM′ dv dv′ & ‖h− Ph‖2−β,

where we used in the last line the classical coercivity for scattering operator discussed above. �

Note that in the previous coercivity inequality λ(s) → 0 as s → 1 since Cd,s → 0 as s → 1.
This explains why the coercivity weight β = 2 of the Fokker-Planck operator differs from
the coercivity weight β = 2 − α of the Lévy-Fokker-Planck operator when s → 1. In fact
when α = 2s and s → 1 the correct formal limit is the Fokker-Planck operator with Gaussian
equilibrium, in view of the general theory of Lévy processes, for which β = 0 is indeed the limit
of β = 2− α = 2− 2s as s→ 1.

8.2. Proof of Hypothesis 3. We estimate

‖L(χR)‖β =
∥∥∥M−1

[
∆s
v (MχR)− (∆s

vM)χR

]
+ U · ∇vχR

∥∥∥
β

in several steps. Write first

‖U · ∇vχR‖2β =

∫
Rd
|U · ∇vχR|2 bveβM(v) dv =

∫
Rd

∣∣∣U(v)bve−βv · ∇vχR
∣∣∣2 bveβM(v) dv

≤ ‖U‖∞
∫
Rd
|v · ∇vχR|2Mβ(v) dv . R−α−β.

Then split the other term into∥∥∥M−1
[
∆s
v (MχR)− (∆s

vM)χR

]∥∥∥2

β

=
∥∥∥M−1

[
∆s
v (MχR)− (∆s

vM)χR

]
1|v|≤R

∥∥∥2

β
+
∥∥∥M−1

[
∆s
v (MχR)− (∆s

vM)χR

]
1|v|≥R

∥∥∥2

β
.

When |v| ≤ R, write v = Rw with |w| ≤ 1 and observe that χ(w) = χ(w′) when |w′| ≤ 1 to get,

|[∆s
v (MχR)− (∆s

vM)χR] (Rw)| = Cd,s

∣∣∣∣∣
∫
|w′|≥1

χ(w)− χ(w′)

Rd+a |w − w′|d+2s
M(Rw′)Rd dw′

∣∣∣∣∣
.
∫
|w′|≥1

|χ(w)− χ(w′)|
Rd+a+α |w − w′|d+2s

dw′

|w′|d+α
. R−(d+2s+α),

which yields (using β = 2s− α and α > 0)∥∥∥M−1
[
∆s
v (MχR)− (∆s

vM)χR

]
1|v|≤R

∥∥∥2

β
. R−4s+β−α . R−α−β.

When |v| ≥ R, we write[
∆s
v (MχR)− (∆s

vM)χR

]
(v) =

∫
Rd

χR(v)− χR(v′)

|v − v′|d+2s
M(v′) dv′ =

∫
|v−v′|≤ |v|

2

· · ·+
∫
|v−v′|≥ |v|

2

. . .

Start with the first integral in the right hand side:∣∣∣∣∣
∫
|v−v′|≤ |v|

2

χR(v)− χR(v′)

|v − v′|d+2s
M(v′) dv′

∣∣∣∣∣ .
∫
|v−v′|≤ |v|

2

sup
B
(
v,
|v|
2

) ∣∣∇2
v′ [(χR(v)− χR(v′))M(v′)]

∣∣
|v − v′|d+2s−2

dv′

. |v|2−2s sup
B
(
v,
|v|
2

) ∣∣∇2
v′
[(
χR(v)− χR(v′)

)
M(v′)

]∣∣ .
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One has

sup
B
(
v,
|v|
2

) ∣∣D2
v′
(
(χR(v)− χR(v′))M(v′)

)∣∣
. R−2|v|−d−α sup

v′∈B(v,
|v|
2

)

∣∣∣∣χ′′(v′R
)∣∣∣∣+R−1|v|−d−α−1 sup

v′∈B(v,
|v|
2

)

∣∣∣∣χ′(v′R
)∣∣∣∣+ |v|−d−α−2.

Consequently,∣∣∣∣∣
∫
|v−v′|≤ |v|

2

χR(v)− χR(v′)

|v − v′|d+2s
M(v′) dv′

∣∣∣∣∣
. |v|2−2s

R−2|v|−d−α sup
v′∈B(v,

|v|
2

)

∣∣∣∣χ′′(v′R
)∣∣∣∣+R−1|v|−d−α−1 sup

v′∈B(v,
|v|
2

)

∣∣∣∣χ′(v′R
)∣∣∣∣+ |v|−d−α−2


. |v|−d−α−2s

 |v|2
R2

sup
v′∈B(v,

|v|
2

)

∣∣∣∣χ′′(v′R
)∣∣∣∣+

|v|
R

sup
v′∈B(v,

|v|
2

)

∣∣∣∣χ′(v′R
)∣∣∣∣+ 1

 . |v|−d−α−2s,

where we have used that χ′ ans χ′′ have compact support and |v| ≤ 2|v′| in this region.
Focus now on the second integral (using α > 0)∣∣∣∣∣
∫
|v−v′|≥ |v|

2

χR(v)− χR(v′)

|v − v′|d+2s
M(v′) dv′

∣∣∣∣∣ ≤
∫
|v−v′|≥ |v|

2

|χR(v)− χR(v′)|
|v − v′|d+2s

M(v′) dv′ . |v|−d−2s.

As a conclusion,∥∥∥M−1
[
∆s
v (MχR)− (∆s

vM)χR

]
1|v|≥R

∥∥∥2

β
.
∫
|v′|>R

|v′|2α−4sbv′eβ−d−α dv′ . R−α−β,

since β = 2s− α. This concludes the proof.

8.3. Proof of Hypothesis 4. The adjoint of L is L∗ = ∆s
v −U · ∇v and following exactly the

same arguments as in the proof of Lemma 7.1 for the Fokker-Planck operator yields

Lemma 8.2. The unique solution to the eigenvalue equation

−L∗φη − iη(v · σ)φη = µ(η)bve−βφη with

∫
Rd
φη(v) bve−βM(v) dv = 1

satisfies for any R ≥ 1,

‖φη‖L∞(B(0,R)) .R 1 and ‖Imφη‖L∞(B(0,R)) .R max(η, µ(η)),

with constants depending only on R and uniform in η → 0.

We now come to the pointwise estimates on the rescaled eigenvector. This is when α ≤ 2+β,
that is α ≤ 1 + s. Observe indeed that when α > 1 + s, the scaling is diffusive, and the diffusion
coefficient is obtained by solving

∆s
v(MF ) +∇v · (UMF ) = −(v · σ)M(v),

with
∫
Rd F (v)Mβ(v) dv = 0.

Lemma 8.3. Assume that s ∈ (1
2 , 1). There is η1 ∈ (0, η0) small enough and A and C large

enough so that

∀ η ∈ (0, η1), ∀u ∈ Rd, |Φη(u)| . |u|Cµ(η)
η and |ImΦη(u)| . |u|min(1,α)+β−Cµ(η)

η .
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Proof. The rescaled equation for Φη is, using Uη(u) := η
1−β
1+βU(uη

− 1
1+β ) and since 2s− β = α,

−η
α

1+β ∆s
uΦη + Uη(u) · ∇uΦη − i(u · σ)Φη = µ(η)|u|−βη Φη.

Multiply the latter equation by
Φη
|Φη | and take the real part:

−η
α

1+β Re

(
Φη

|Φη|
∆s
uΦη

)
+ Uη(u) · Re

(
Φη

|Φη|
∇uΦη

)
= µ(η)|u|−βη |Φη|.

Using the classical Kato inequality ∆s
u|Φη| ≥ Re

(
Φη
|Φη |∆

s
uΦη

)
(see [11] for the Laplacian and [15]

for the fractional Laplacian), one gets

−η
α

1+β |u|βη∆s
u|Φη|+ |u|βηUη(u) · ∇u|Φη| − µ(η)|Φη| ≤ 0.

Then observe that the real function F (u) = |u|Cµ(η)
η satisfies for |u| ≥ Aη

1
3 :

− η
α

1+β |u|βη∆s
uF + |u|βηUη(u) · ∇uF − µ(η)F

= −η
α

1+β |u|βη∆s
uF + Cµ(η)|u|Cµ(η)−2

η Uη(u) |u|2 − µ(η)|u|Cµ(η)
η

where we have used that Uη(u) = |u|−βη Uη(u)u with some Uη positive bounded from below

(independently of η). We now estimate ∆s
u

(
| · |Cµ(η)

η

)
(u). By scaling:

∀u ∈ Rd, ∆s
u

(
| · |Cµ(η)

η

)
(u) = η

Cµ(η)−2s
1+β ∆s

v

(
b·eCµ(η)

)(
uη
− 1

1+β

)
.

We then estimate ∆s
v

(
b·eCµ(η)

)
using

∆s
v

(
b·eCµ(η)

)
(v) = Cd,s

∫
Rd

bv′eCµ(η) − bveCµ(η)

|v′ − v|d+2s
dv′,

= Cd,s

∫
|v−v′|< |v|

2

bv′eCµ(η) − bveCµ(η)

|v′ − v|d+2s
dv′ + Cd,s

∫
|v−v′|> |v|

2

bv′eCµ(η) − bveCµ(η)

|v′ − v|d+2s
dv′.

To control the first term in the right hand side, use that

bv′eCµ(η) − bveCµ(η) −∇v
(
b·eCµ(η)

)
· (v′ − v) . Cµ(η)bveCµ(η)−2|v′ − v|2

to get ∫
|v−v′|< |v|

2

bv′eCµ(η) − bveCµ(η)

|v′ − v|d+2s
dv′ .

∫
|v−v′|< |v|

2

Cµ(η)bveCµ(η)−2|v′ − v|2

|v′ − v|d+2s
dv′

. Cµ(η)bveCµ(η)−2

∫
|v−v′|< |v|

2

|v′ − v|2−2s

|v′ − v|d
dv′

. Cµ(η)bveCµ(η)−2s.

To control the second term, use that

bv′eCµ(η) − bveCµ(η) . Cµ(η)bveCµ(η)−1|v′ − v|
to get (using here s > 1

2)∫
|v−v′|> |v|

2

bv′eCµ(η) − bveCµ(η)

|v′ − v|d+2s
dv′ .

∫
|v−v′|> |v|

2

Cµ(η)bveCµ(η)−1|v′ − v|
|v′ − v|d+2s

dv′

. Cµ(η)bveCµ(η)−1

∫
|v−v′|> |v|

2

dv′

|v′ − v|d+2s−1

. Cµ(η)bveCµ(η)−2s.

We therefore have (using the scaling)

∆s
v

(
b·eCµ(η)

)
(v) . Cµ(η)bveCµ(η)−2s =⇒ ∆s

u

(
| · |Cµ(η)

η

)
(u) . Cµ(η)|u|Cµ(η)−2s

η .
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This estimate implies, for some absolute constant C0 > 0,

η
α

1+β |u|βη∆s
uF ≤ C0Cµ(η)η

α
1+β |u|Cµ(η)+β−2s

η

≤ C0Cµ(η)|u|Cµ(η)
η η

α
1+β |u|−αη . C0Cµ(η)|u|Cµ(η)

η

(
1 +A2

)−α
2

in the region |u| ≥ Aη
1

1+β . As a consequence

− η
α

1+β |u|βη∆s
uF + Uη(u)u · ∇uF − µ(η)F

= −η
α

1+β |u|βη∆s
uF + Cµ(η)|u|Cµ(η)−2

η Uη(u) |u|2 − µ(η)|u|Cµ(η)
η

≥ −C0Cµ(η)|u|Cµ(η)
η

(
1 +A2

)−α
2 + Cµ(η)|u|Cµ(η)−2

η (inf Uη) |u|2 − µ(η)|u|Cµ(η)
η

≥ Cµ(η)|u|Cµ(η)
η

[
−C0

(
1 +A2

)−α
2 + |u|−2

η (inf Uη) |u|2 − C−1
]

≥ Cµ(η)|u|Cµ(η)
η

[
−C0

(
1 +A2

)−α
2 +

(
1 +A−2

)−1
(inf Uη) − C−1

]
≥ 0

for A and C sufficiently large, and we deduce |Φη| . F on |u| ≥ Aη
1

1+β and, for the same reasons

as for the Fokker-Planck operator, the bound extends to any u ∈ Rd.
Taking now the imaginary part of the equation, one gets

−η
α

1+β |u|βη∆s
u|ImΦη|+ Uη(u)u · ∇u|ImΦη| − µ(η)|ImΦη| . |u|1+β+Cµ(η)

η .

Define then γ := min(α, 1) + β −Cµ(η) ∈ (0, 2s) and the real function G(u) := |u|γη . Note that

γ ∈ (0, 2s) for η small enough, which implies that ∆s
uG makes sense. Write for |u| ≥ Aη

1
3

−η
α

1+β |u|βη∆s
uG+ |u|βηUη(u) · ∇uG− µ(η)G = −η

α
1+β |u|βη∆s

uG+ γ|u|γ−2
η Uη(u) |u|2 − µ(η)G

Let us now estimate ∆s
u (| · |γη) (u). Note that by scaling

∀u ∈ Rd, ∆s
u

(
|u|γη

)
(u) = η

γ−2s
1+β ∆s

v (b·eγ) (uη
− 1

1+β ).

One estimates ∆s
v (b·eγ) using

∆s
v (b·eγ) (v) = Cd,s

∫
Rd

bv′eγ − bveγ

|v′ − v|d+2s
dv′,

= Cd,s

∫
|v−v′|< |v|

2

bv′eγ − bveγ

|v′ − v|d+2s
dv′ + Cd,s

∫
|v−v′|> |v|

2

bv′eγ − bveγ

|v′ − v|d+2s
dv′.

Small v’s are fine since ∆s
v (b·eγ) is locally bounded. Continue with large v. In the first integral,∫

|v−v′|< |v|
2

bv′eγ − bveγ

|v′ − v|d+2s
dv′ =

∫
|v−v′|< |v|

2

bv′eγ − bveγ −∇v (b·eγ) (v)(v′ − v)

|v′ − v|d+2s
dv′

.
∫
|v−v′|< |v|

2

sup
z∈B(v,

|v|
2

)

∣∣∇2 (b·eγ) (z)
∣∣ |v′ − v|2

|v′ − v|d+2s
dv′ . |v|γ−2s.

The second integral may be estimated from above using that |v−v′| > |v|
2 implies |v−v′| > |v′|

3 ,∫
|v−v′|> |v|

2

bv′eγ − bveγ

|v′ − v|d+2s
dv′ .

∫
|v−v′|> |v|

2

bv − v′eγ

|v′ − v|d+2s
dv′ . |v|γ−2s.

From this, we deduce ∆s
u(| · |γη)(u) . η

γ−2s
1+β buη−

1
1+β eγ−2s = |u|γ−2s

η which implies

η
α

1+β |u|βη∆s
uG . η

α
1+β |u|γ+β−2s

η .
(
1 +A2

)−α
2 |u|γη

in the region |u| ≥ Aη
1

1+β . As a consequence, as previously,

−η
α

1+β |u|βη∆s
uG+ |u|βηUη(u) · ∇uG− µ(η)G & |u|γη

for A sufficiently large and we deduce |ImΦη| . G on |u| ≥ Aη
1

1+β and, for the same reasons as

for the Fokker-Planck operator, the bound extends to any u ∈ Rd. �
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8.4. Rescaled drift force and limit equation. We formally discuss the behaviour of the

force Uη when η goes to 0. First write the rescaled equation: setting v = uη
− 1

1+β gives

η
a−β
1+β ∆s

vMη +∇v · (UηMη) = 0.

Observe that when u 6= 0,

η
α

1+β ∆s
vMη(u) = −cα,βCd,sη

α
1+β

∫
Rd

|u|−d−αη − |u′|−d−αη

|u− u′|d+2s
du′

= −cα,βCd,sη
α

1+β

∫
Bε

|u|−d−αη − |u′|−d−αη

|u− u′|d+2s
du′ − cα,βCd,sη

α
1+β

∫
Bcε

|u|−d−αη − |u′|−d−αη

|u− u′|d+2s
du′.

The second term in the right hand side goes to zero as η → 0 since the singularity around zero
has been removed from the integration domain. To deal with the first term, decompose

η
α

1+β

∫
Bε

|u|−d−αη − |u′|−d−αη

|u− u′|d+2s
du′ = η

α
1+β

∫
Bε

|u|−d−αη

|u− u′|d+2s
du′ − η

α
1+β

∫
Bε

|u′|−d−αη

|u− u′|d+2s
du′.

The first part goes to zero if ε < |u|. The second part writes

η
α

1+β

∫
Bε

|u′|−d−αη

|u− u′|d+2s
du′ ∼ε |u|−d−2sη

α
1+β

∫
Bε

|u′|−d−αη du′

= |u|−d−2s

∫
B

(
0,εη

− α
1+β

)(1 + |v|2)−d−α dv.

Taking η small then ε arbitrarily small yields

lim
η→0

(
−cα,βη

α
1+β

∫
Bε

|u|−d−αη − |u′|−d−αη

|u− u′|d+2s
du′

)
=
cα,β
cα,0
· 1

|u|d+2s
.

Since ∇v(|v|−d−2sv) = −2s|v|−d−2s, we deduce that

lim
η→0

η
1−β
1+βU

(
uη
− 1

1+β

)
= U∞(u) =

cα,β
2scα,0

u

|u|d+2s
|u|d+α =

cα,β
2scα,0

|u|−βu.

This proves the scaling limit of the drift force.
From the rescaled equation for Φη, we deduce that Φη goes to Φ, where Φ solves,

cα,β
2ascα,0

u

|u|β
· ∇uΦ− i(u · σ)Φ = 0 with Φ(0) = 1 =⇒ Φ(u) := exp

(
i
2scα,0
cα,β

|u|β(u · σ)

1 + β

)
.

Thus, Ω(u) = limλ→0, λ 6=0
ImΦ(λu)
λ1+β

satisfies,

cα,β
2acα,0

u · ∇uΩ = (u · σ)|u|β =⇒ Ω(u) :=
2scα,0
cα,β

|u|β(u · σ)

1 + β
.

8.5. The particular case α = 2s. Explicit calculations are available when α = 2s. In this
case β = 0, U(v) = c0v for some constant c0 > 0, and the eigenproblem is

−∆s
vφ+ c0v · ∇vφ− iη(v · σ)φ = µ(η)φ.

Taking the Fourier transform (in the dual of the Schwarz space) gives

−|ξ|2sφ̂− c0ξ · ∇ξφ̂+ ησ · ∇ξφ̂ = (µ(η) + c0)φ̂

or equivalently

(ησ − c0ξ) · ∇ξφ̂ =
(
µ(η) + c0 + |ξ|2s

)
φ̂.

The solution to this equation is given by φ̂ = δc−1
0 ησ and µ(η) = −|c−1

0 ησ|2s = c−2s
0 η2s, which

yields by inverse Fourier transform φη(v) := exp
(
ic−1

0 η(v · σ)
)
. This agrees with the expression

of Φ given above, and allows to compute c0 = 1
2s .
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9. Extensions to more general models

In Hypothesis 1, the equilibriumM is an explicit power law, and in particular is centered and
even. We discuss in this section the changes required for our proofs to deal with more general
M that are (i) characterised by asymptotic power-law estimates rather than exact formula, and
(ii) non necessarily centered or even. This means replacing Hypothesis 1 with:

Hypothesis 1’ (Equilibria). The equilibrium distribution satisfies

(9.1) M = b·e−(d+α)S(v),

where S is a slowly varying function, b·e := (1 + | · |2)1/2, with the generalised mass condi-
tion (1.8).

Slowly varying functions are non-vanishing measurable functions that satisfy S(ax) ∼ S(x)
as x goes to infinity, for any a > 0. Examples of slowly varying functions are positive constants,
functions that converge to positive constants, logarithms and iterated logarithms.

9.1. Equilibria characterised only asymptotically. If one considers an even equilibrium
M that satisfies Hypothesis 1’, the proof of Theorem 1.4 in Section 2 and the proof of Lemma
1.1 in Section 3 are essentially unchanged. The formulas for µ0 and κ in Lemmas 1.2 and 1.3

are slightly modified, and rely on the existence of a scaling limit of η
− d+α

1+βM(uη
− 1

1+β ) as η → 0,
which follows from Hypothesis 1’. Everything else remains unchanged and the structures of the
proofs in Sections 4 and 5 are the same. Rates of convergence will depend on the form of S.

9.2. Non-centered equilibria. When the microscopic equilibrium M(v) is not centered, it
results in a drift in the macroscopic equation. Our approach however allows to tackle such a
situation, with the following changes depending on whether this macroscopic drift is of higher,
comparable or smaller order than the resulting (fractional) macroscopic diffusion. In view of
Theorem 1.4 in the centered situation, we expect a macroscopic diffusion of order ζ(α, β) =

min
(

2, α++β
1+β

)
, and therefore the drift to be dominant when α > 1 and dominated when α < 1,

with a borderline case at α = 1. Observe that α = 1 is also the threshold for the absolute
convergence of the integral

∫
Rd(v · σ)M(v) dv defining the macroscopic drift.

Consider a solution f in L∞([0,+∞);L2
x,v(M−1)) to equation (1.1) and denote

fε(t, x, v) := f

(
t

θ(ε)
,
x

ε
+

v̄εt

θ(ε)
, v

)
∈ L∞t ([0,+∞);L2

x,v(M−1))

where ε > 0 and θ(ε) is defined in (1.15), and where the correction velocity v̄ε is defined by

v̄ε :=



∫
Rd
vM(v) dv∫

Rd
M(v) dv

when α > 1,

 lim
R→∞

1

ln(R)

∫
Rd
vχR(v)M(v) dv∫

Rd
χR(v)M(v) dv

 | ln(ε)|
1 + β

when α = 1,

0 when α ∈ (−β, 1).

(9.2)

The equation satisfied by fε is

(9.3) θ(ε)∂tfε + ε(v − v̄ε) · ∇xfε = Lfε.

With this definition of fε, Theorem 1.4 holds. The changes in the proofs are as follows. The
arguments presented in Section 2 are essentially unchanged and the few modifications are located
in the determination of the scaling of the eigenvalue resulting from (9.3). We chose v̄ε in such
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a way that the dominant eigenmode has the scaling obtained in Lemmas 1.2 and 1.3. The new
spectral problem to be considered in the modified Lemma 1.1 is

−L∗φη − iη [(v − v̄ε) · σ]φη = µ(η)bve−βφη with

∫
Rd
φη(v)Mβ(v) dv = 1.

Line-by-line technical modifications are needed in the proof of Lemmas 1.2 and 1.3 due to
the additional drift but the procedure and method are preserved and we do not repeat the
arguments. Let us just explain why we define the correction velocity v̄ε in this way. The
spectral projector estimate follows the same procedure, but (3.12) is replaced with

(9.4) − L∗F − iη [(v − v̄ε) · σ]F − zbve−βF = (v − v̄ε) · σ.
The L2 estimate is unchanged and the crucial estimate (3.17) remains true as long as

q(R) :=

∫
Rd

[v − v̄ε]χR(v)M(v) dv at R := η
− 1

1+β

is small compared with r1η
−1Θ(η), when r1 is large enough. This implies that the influence of

the drift is smaller than the size of the fluid mode, which is of order η−1Θ(η). Recall that

(9.5)
Θ(η)

η
:=


η when α > 2 + β,

η| ln(η)| when α = 2 + β,

η
α−1
1+β when − β < α < 2 + β

One can then prove that for all α > −β, one has q(η
− 1

1+β ) . η
α−1
1+β , which proves that

q(η
− 1

1+β ) is small compared with r1η
−1Θ(η) when r1 is large enough.

9.3. Kinetic Fokker-Planck equation with non gradient confining force. Importantly,
all the results we obtain for the Fokker-Planck equation with gradient force can be extended to
Fokker-Planck operators with non-gradient confining force at little expense. We chose not to
present this more general setting in the core of the paper to stay consistent with the clean and
simple Hypothesis 1 and to help with readability. It is however possible to consider{

L(f) = ∆vf +∇v · (U f) where U satisfies

∆vM+∇v · (UM) = 0,

provided that quantitative bounds are available on U to ensure it is comparable to the drift in
the Fokker-Planck operator. The analysis is then similar.
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