
A. Supplementary material

A.1. Gradient derivation w.r.t the HRF dilation parameter

In this subsection, we detail the gradient derivation of our cost-function from
Eq. (6) – denoted J hereafter – w.r.t δ. Let us define Ã = (ãj)

P
j=1 ∈ RP×T̃ such as

Ã =
∑K

k=1 u
>
k zk. Moreover, we introduce θm the set of indices of voxels belonging

to the mth region of the brain parcellation.

J(δ) =
M∑
m=1

∑
j∈θm

1

2
‖vδm ∗ aj − yj‖22 + CU ,Z

with CU ,Z a constant that does not depend on δ. We aim to compute the gradient
of J relative to the value of the parameters δ:

∇δJ(δ) =

[
∂J(δ)

∂δ1
, ...,

∂J(δ)

∂δM

]>
∈ RM (A.1)

To this end, we proceed componentwise:

∂J(δ)

∂δm
=

1

2

∑
j∈θm

∂ ‖vδm ∗ aj − yj‖22
∂δm

=
∑
j∈θm

(
∂(vδm ∗ aj)

∂δm

)>
(vδm ∗ aj − yj)

=

(
∂vδm
∂δm

)>(∑
j∈θm

a>j ∗ (vδm ∗ aj − yj)
)

=

(
∂vδm
∂δm

)>(
vδm ∗

∑
j∈θm

a>j ∗ aj −
∑
j∈θm

a>j ∗ yj
)

︸ ︷︷ ︸
∇vδm

J

. (A.2)

Note that
∑

j∈θm a
>
j ∗aj and

∑
j∈θm a

>
j ∗yj do not depend on δm, thus they can be

pre-computed beforehand. The remaining step is to compute
∂vδm
∂δm

. We remind here
that vδm is the discretization of the continuous function ∀t ∈ R+, vδm(t) = v(δmt).
Thus:

∀t ∈ R+,
∂

∂δ
v(δt) = tv′(δt)

with v′ the first-order derivative of function v. Now, taking the definition of v(·)
from (Friston et al., 1998), we get:

∀t ∈ R+, v(t) =
ta−1e−t

Γ(a)
− ct

b−1e−t

Γ(b)

1



where a, b and c are constants which are given in (Friston et al., 1998). A straight-
forward computation gives us for t ∈ R+:

v′(t) =

(
a− 1

t
− 1

)
ta−1e−δt

Γ(a)
− c

(
b− 1

t
− 1

)
tb−1e−δt

Γ(b)
(A.3)

∂

∂δ
v(δt) = tv′(δt) =

(
a− 1

δ
− t
)

(δt)a−1e−δt

Γ(a)
− c

(
b− 1

δ
− t
)

(δt)b−1e−δt

Γ(b)
(A.4)

The value of
∂vδm
∂δm

can thus be computed by taking the discrete time points
corresponding to the sampling rate of the BOLD signal and the length of the
considered HRF. By replacing its value in the computation of ∂J(δ)

∂δm
from Eq. (A.2),

we obtain a closed form expression for the gradient of J w.r.t the HRF dilation
parameter δ i.e. ∇δJ(δ).

A.2. Derivation of λmax

In this subsection, we derive the computation of λmax which is the minimal
value of λ for which a constant Z∗ is solution of Eq. (6) given in the main text.

In Eq. (A.5), we re-formulate the cost-function J in Eq. (6) in a formulation
where unrelated terms are compressed:

J(Z) =
1

2

∥∥∥∥∥Y −
K∑
k=1

Dk ∗̇ zk
∥∥∥∥∥
2

F

+ λ
K∑
k=1

‖∇zk‖1 + CU ,δ (A.5)

where Dk =
(∑M

m=1 Θ>mvδm

)
� u>k and CU ,δ a constant that does not depend on

zk for any k.
Then, we compute the optimal solution for which each zk is constant, i.e.

zk = ck1. We will denote by c the vector of (ck)
K
k=1. For this set of solution, the

regularization ‖∇zk‖1 is always 0 and this problem reduces to

min
c

1

2
‖Y −

K∑
k=1

ck(Dk∗̇1)‖2F (A.6)

If we denote by y the flatten vector of all values of Y and by D the matrix
composed of lines Dk, which correspond to the flatten vectors Dk∗̇1, then the
above formulation amounts to solving a simple linear system whose solution is
given by c = D†y, where D† denotes the pseudo-inverse of matrix D.

Consequently, we need to find the smallest value of λ such that zk = ck1 is
solution of Eq. (A.5). As the sub-gradient of ‖∇zk‖1 is complex, let’s use the
equivalent synthesis formulation of this problem, as described in (Cherkaoui et al.,
2020). Let L be the discrete integration operator and R the identity matrix with
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a 0 in the first diagonal term. Then, we can use the change of variable zk = Lqk,
by noting that L is invertible and ∇zk = Rqk. We end up with the following
problem

1

2
‖Y −

K∑
k=1

Dk ∗̇ Lqk‖2F︸ ︷︷ ︸
f(Q)

+
K∑
k=1

λ‖Rqk‖1︸ ︷︷ ︸
g(Q)

(A.7)

Then, the Karush–Kuhn–Tucker (KKT) conditions for the system (A.7) in the
point Qc read:

−∇f(Qc) ∈ ∂g(Qc) = [−λ, λ] (A.8)

Thus, if λ ≥ λmax = ‖∇f(Qc)‖∞ = maxk0∈{1..K},t∈[2,T̃ ] |(∇f(Qc))k0(t)|, the con-

stant signal Qc is solution of Eq. (A.7). Computing this value gives:

∀k0, (∇f(Qc))k0(t) =

(
(L>Dk0) ∗̇e (Y −

K∑
k=1

ck(Dk∗̇1))

)
(t) (A.9)

with ∗̇e the time-reversed convolution operator applied line by line. Note that once
the optimal constants c have been computed, this value can be easily obtained by
computing the gradient of the `2 norm and applying the linear operator LT which
is a reversed cumulative sum.

A.3. Algorithm details for each estimation step
Each estimation step relies on a proximal gradient descent algorithm that in-

volves a clever gradient computation to reduce the computation cost at each it-
eration. We detail the algorithm for each estimation step: Z-estimation in Algo-
rithm A.1, U -estimation in Algorithm A.2 and δ-estimation in Algorithm A.3.

Algorithm A.1: Estimation of the temporal atoms Z(i) with fixed
U (i−1) and δ(i−1)

Input: BOLD signal Y , ε, U (i−1), δ(i−1) and (Lk)
K
k=1

1 initialization: ∀k,z(0)k = z
(i−1)
k , t = 1 (iteration counter)

2 pre-computation: ∀k,Bk = u
(i−1)
k ∗̇e

(∑M
m=1 Θ>mv

(i−1)
δm

)
Y

3 ∀k,Ck = u
(i−1)
k

(∑M
m=1 Θ>mv

(i−1)
δm

)
∗̇e
(∑M

m=1 Θ>mv
(i−1)
δm

)
∗̇ (u

(i−1)
k )>

4 repeat
5 for k ← 1 to K do

6 z
(t)
k = proxTV

(
z
(t−1)
k − 1

Lk

(
Bk −Ckz

(t−1)
k

))
7 until

J((z
(t−1)
k )k)−J((z

(t)
k )k)

J((z
(t−1)
k )k)

≤ ε;

with proxTV(·) being the proximal operator of the total variation
regularization and ∀k, Lk the Lipschitz being constant of ∇zkJ(zk).
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Algorithm A.2: Estimation of the spatial maps U (i) with fixed Z(i)

and δ(i−1)

Input: BOLD signal Y , ε, Z(i), δ(i−1) and (Lk)
K
k=1

1 initialization: ∀k,u(0)
k = u

(i−1)
k , t = 1 (iteration counter) ;

2 pre-computation: ∀k,Bk = z
(i)
k ∗̇e

(∑M
m=1 Θ>mv

(i−1)
δm

)
Y

3 ∀k,Ck = z
(i)
k

(∑M
m=1 Θ>mv

(i−1)
δm

)
∗̇e
(∑M

m=1 Θ>mv
(i−1)
δm

)
∗̇ (z

(i)
k )>

4 repeat
5 for k ← 1 to K do

6 u
(t)
k = proj

(
u

(t−1)
k − 1

Lk

(
Bk −Cku

(t−1)
k

))
7 until

J((u
(t−1)
k )k)−J((u

(t)
k )k)

J((u
(t−1)
k )k)

≤ ε;

with proj(·) being the projection onto {u | ‖u‖1 = η and ∀j, uj > 0} and
∀k, Lk being the Lipschitz constant of ∇ukJ(uk).

Algorithm A.3: Estimation of the haemodynamic delays δ(i−1) with
fixed Z(i) and U (i)

Input: BOLD signal Y , ε, U (i), Z(i) and L
1 initialization: δ(0) = δ(i−1), t = 1 (iteration counter) ;
2 repeat
3 δ(t) = proj

(
δ(t−1) − 1

L
∇δJ(δ(t−1))

)
4 until J((δ(t−1)))−J((δ(t)))

J((δ(t−1)))
≤ ε;

with proj(·) being the projection onto {δ | ∀m, δm ∈ [0.5, 2.0]} and L the
Lipschitz constant of ∇δJ(δ).

A.4. Investigation of Initialization strategies

As the cost function described in Eq. (5) is not convex, the final solution reached
during its minimization depends on the initialization, hence we investigate here
different strategies to set up the spatial maps U . We consider three approaches:
[•] Gaussian initialization. First, the spatial maps U ∈ RK×P were initialized
with K random zero-mean and unitary Gaussian vectors of length P . Then these
maps were further projected onto the admissible set of non-negative and sparsity
constraints.
[•] Patch-based initialization. Second, we extracted from the BOLD data Y
a sub-matrix Ỹ of dimensions P × L (P voxels, L time points) starting at a
random initial onset t0 and computed the matrix-vector product Ỹ v(0) with the
initialization of the HRF v(0) to get a first spatial patch u(0). By repeating this
random selection of a given onset K times, we ended up with a full patch-based
initialization of K spatial maps in U (0). Of course, these initial maps are then
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projected onto the admissible set of constraints. To some extent, these K maps
quantify the presence of the HRF shape (i.e. matched filter approach) in different
temporal segments of the BOLD data.
[•] ICA-based initialization. Third, we initialized the K spatial maps using
the ICA decomposition of the observed data Y = W (0)U (0) and then projected
U (0) onto the admissible set of constraints.

To determine the impact of each initialization strategy, we used the same sim-
ulated experiment as before with two extreme SNR associated with very high and
very low levels of white Gaussian noise that were added to the signals of inter-
est (SNR ranging from −20 dB to 40 dB to cover both realistic and noise-free
cases). For each noise level, we randomly generated 100 synthetic data sets Y and
estimated the different parameters using these three initialization strategies.

SNR = −20 dB
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E
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SNR = 40 dB

U Z δ
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E
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Figure A: Bar chart comparing the estimation errors in U , Z and δ as a function of
the initialization strategy. As variability across the 100 realizations was only introduced on
the initialization of U , the standard deviation of errors is solely reported for U in gray vertical
line. In blue, we display the estimation errors associated with the random Gaussian initialization
of U . In orange, we depict the estimation errors corresponding to the patch-based initialization.
In green, we report the estimation errors that result from using the ICA decomposition to set
up the K spatial maps in U . Two SNR levels were used (SNR=−20 dB and SNR=40 dB) in
the same simulated framework as the one used in the core paper.

In Fig. A, for each set up we report the mean estimation errors that were aver-
aged over the 100 realizations. The errors were computed as follows: For the spatial
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maps U we used the following metric: Error(U) = 1
K

∑K
k=1

(
1− corr(ûk,u

True
k )

)
.

For the temporal components Z and the HRF dilation parameters δ, we con-

sidered the normalized residual `2-norms: Error(Z) = 1
K

∑K
k=1

(
‖ẑk−zTrue

k ‖2
‖zTrue
k ‖2

)
and

Error(δ) = ‖δ̂−δTrue‖2
‖δTrue‖2 .

As expected we first observed significantly lower errors in the high SNR regime
(SNR=40 dB) for all parameters of interest but more importantly for Z and δ.
Additionally, in the low SNR mode we noticed a similar behavior for all three ini-
tialization strategies. In contrast, in the high SNR regime, the ICA initialization
provides us with better parameter estimates, especially for U . The patch-based
approach achieves a good trade-off between the purely random Gaussian initializa-
tion, which performs the worse as it does not take the observed data into account,
and the ICA.

A.5. Single-subject analysis on rs-fMRI data

In Fig. B, we complete the estimated spatial maps reported in Fig. 6 with the
associated temporal components that capture the activation profiles of the given
spatial maps.

A.6. Haemodynamic parameter estimate stability across various levels of temporal
regularization

A well known limitation of regularization methods based on the `1-norm such
as TV is that large coefficients – here in (zk)Kk=1 – are shrunken toward zero (Tib-
shirani, 1996). Thus, the magnitude of the estimated neural activation signals
(zk)Kk=1 is biased. Moreover, this bias is tightly linked to the choice of the reg-
ularization parameter λf . Indeed, the larger this parameter is, the more (zk)Kk=1

are shrunken toward zero. To quantify this effect on our model, we applied the
spatio-temporal decomposition with M = 96 ROI and K = 20 and various tem-
poral regularization level λf to the cohort of S = 459 subjects sampled from the
UK Biobank resting-stage fMRI dataset used in Section 4.2. Fig. C reports the
grand average of the dilation parameters

δ̄ =
1

MS

S∑
s=1

M∑
m=1

δ̂sm

and its variance with respect to the regularization parameter λf . We observed
that the HRF dilation parameters decrease with the temporal regularization level
– and thus the corresponding time-to-peaks increase with λf . This results from the
fact that the model with large regularization parameters only accounts for sharp
transition in the BOLD signal mean value, which are well approximated with fast
HRF.
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Figure B: Temporal decomposition of rs-fMRI data for K = 20. From top to bottom and
left to right, the twenty labeled temporal components are shown with adapted vertical axis to
better observe the temporal pattern of each component. The labeling is arbitrary but matches
the order of spatial maps shown in Fig. 6.
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Figure C: Evolution of the group-level grand average haemodynamic dilation param-
eter δ̄ as a function of the temporal regularization level λf ∈ [0, 1]. The solid blue line
reflects the decreasing evolution of δ̄ when λf → 1, where the value of δ̄ was spatially averaged
over the M = 96 parcels and across S = 459 subjects from the UK Biobank database. The
transparent blue shadow represents the standard deviation around the mean parameter δ̄. In
short, the larger λf , the smaller δ̄ and thus the larger the mean TTP.

This previous result entails that the haemodynamic delay estimated by our
model (6) may be biased. However, because there is a single temporal regular-
ization parameter, we expect that this bias impacts the whole brain uniformly.
To assess this shared effect on the estimated parameter, we observe the relative
variations of δm. Fig. D displays the value of δ̄m(λf ) relative to δ̄(λf ) for S = 459
subjects with three temporal regularization values λf ∈ {0.001, 0.5, 0.9} on the
MNI template. Precisely, for each regularization parameter and for each ROI m,
we compute δ̄m/δ̄ where δ̄m = 1

S

∑S
s=1 δ̂

s
m is the average value of the dilation pa-

rameter across subjects. While the magnitudes change when the regularization
changes, as seen in Fig. C, the spatial structure of dilatation parameters in the
brain is globally preserved. Indeed, the normalized maps look very similar for any
choice of regularization parameter, showing that the relative variation between
each area of the brain are preserve while changing the hyper-parameter. Thus,
we can state that the haemodynamic response from the middle temporal gyrus is
faster than the response from the frontal orbital cortex, as described in Fig. 7. This
means that while the numerical value of the time-to-peak for a given area may not
be reflect the actual haemodynamic delay in the brain, the estimated coefficients
reflect the spatial variations of the delay between the different areas of the brain.
Moreover, these variations are stable with the choice of temporal regularization.
Hence, choosing a potentially suboptimal value for λf is of limited impact when
the primary interest is investigating abnormalities in the neuro-vascular coupling.
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Figure D: Group-level mean of haemodynamic dilation parameter maps normalized
by the grand average δ̄ = 1

MS

∑S
s=1

∑M
m=1 δ̂

s
m as a function of temporal regulariza-

tion (λf ∈ [0, 1]). From top to bottom, axial slices showing the group-level values of the ratio

between δ̄m = 1
S

∑S
s=1 δ̂

s
m and δ̄ in each parcel m for increasing values of λf ∈ {0.001, 0.5, 0.9}.

The spatial structure of the maps of haemodynamic dilation parameter remain remarkably stable
for various λf .

A.7. Middle-age vs elderly subjects classification

Finally, we assess the impact of the choice of λf on the prediction results from
Section 4.2. Fig. E reports the accuracy score for the logistic regression relatively
to the choice of regularization parameter β for the classification model and the
temporal regularization parameter λf for our deconvolution model. The accuracy
is almost not impacted by the choice of parameter λf , for any value of β. This
observation confirms that the choice of λf is not critical when studying the relative
spatial structure of the haemodynamic delay and that our model can be used in
practical cases to evaluate abnormalities in the haemodynamic response.

A.8. Impact of serially correlated Gaussian noise on parameter estimation

Although the noise that contaminates the BOLD effect on fMRI data is se-
rially correlated in time (Woolrich et al., 2001), the proposed approach in the
core manuscript neglects this property as we consider a white Gaussian process in
Eq. (2). In this section we investigate on simulations the impact of data contam-
inated by a serially-correlated Gaussian noise on the estimation quality of neural
activity and more globally on the parameter estimation in terms of reconstruction
error (R2-score). Here, we used a first-order autoregressive noise model (AR(1)),
i.e. ej(tn) = ρej(tn−1)+εj(tn) where εj is an innovation, to corrupt synthetic fMRI
time series.

In a first simulation, we stick to the synthetic scenario investigated in Sec-
tion 3.1 except that here the Gaussian noise is auto-correlated in time with an
auto-regressive parameter value of ρ = 0.3. Note that this value is compatible
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Figure E: Evolution of the accuracy score w.r.t. the logistic regression regularization parameter
β and the temporal regularization parameter λf . The accuracy score is not impacted by the
hyper-parameter λf , as moving this parameter mainly impact the magnitude of the estimated
delays and not its spatial structure.

with actual autocorrelation estimates on real fMRI data in the white and gray
matter (Penny et al., 2003, Fig. 11). In both cases the signal-to-noise-ratio (SNR)
was maintained to −10 dB, a relevant scenario met on real fMRI data.

Fig. F displays the parameter estimates (and the values of residual mean square
error, i.e. RMSE, for each atom) along with the true signals that were used for
generating the synthetic data. We notice the accurate recovery of the temporal
profiles, the spatial maps and the HRF shape (panels (a), (b) and (c), respectively)
in both noise case scenarios with a slightly higher RMSE in the situation where
the data was corrupted by an AR(1) Gaussian noise.

Next, to deeper investigate the impact of the autocorrelation noise structure on
the model mismatch and the results over a wide range of simulations, we analyzed
the evolution of the R2-score for multiple SNR levels when injecting an auto-
regressive Gaussian noise, still with the same AR parameter value (ρ = 0.3). To be
quite exhaustive, the SNR level was varied between−15 dB and−5 dB and 30 noise
realizations were simulated for each SNR level. The motivation for quantifying the

performances through the R2-score (R2 = 1− ‖Y −Ŷ ‖22‖Y ‖22
) instead of using solely the

RMSE on the temporal atoms was to summarize the overall reconstruction error
and the residual in `2-norm between the predicted data Ŷ , computed from the
parameter estimates (Û , Ẑ, δ̂), and the multivariate measurements Y . In Fig. F,
we got R2 = 0.502 for the white Gaussian noise (more than 50 % of explained
variance by our model) and R2 = −0.804 for the AR(1) Gaussian noise, indicating
a loss in explanatory power of our model.

In Fig. G we plot the reconstruction error (i.e. R2-score) of our approach as
a function of the SNR level in the white and AR(1) (ρ = 0.3) Gaussian noise
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scenarios. We show that the R2-scores are positive (good model prediction) and
close to each other under the two noise models for SNR values ranging from −5 dB
down to −8 dB. Then the performances of our approach degrade quite fast on the
data corrupted with the AR(1) noise compared to the white noise contamination
in the more noisy scenarios (SNR from −10 dB down to −15 dB).

Additionally, to go one step further, we analyzed the evolution of the R2-score
for a value of ρ that varies between 0.1 and 0.9. The SNR was set to −10 dB
across all these experiments comprising 30 noise realizations for each ρ value.

In Fig. H we plot the reconstruction error (i.e. R2-score) of our approach as a
function of the auto-regressive parameter ρ. We show that the R2-score progres-
sively degrades and systematically becomes negative across all experiments (not
only in average) as ρ tends to 1, a situation that is rarely met on real fMRI
data (Penny et al., 2003; Woolrich et al., 2004).

In conclusion, our model that relies on a white noise assumption seems tenable
for AR(1) parameter values ranging from 0 up to 0.3 and for SNR levels larger
than -8 dB. These constraints remain quite realistic on actual fMRI data.
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Figure F: Top (a) the temporal activation signals: on both sides, the true temporal profiles
are depicted in solid blue line whereas the estimated ones are shown in orange and green dashed
lines for the white and AR(1) Gaussian noise cases, respectively for the two activating regions
(first atom for map 1, second atom for map 2). Center (b) the spatial maps: the true and
estimated spatial maps for the two noise model scenarios displaying the two activating regions.
Bottom (c) the haemodynamic response function shape: the true HRF shape is depicted
in solid blue line while the HRF estimates are plotted in orange and green dashed lines for the
white and AR(1) Gaussian noise cases, respectively. The initialization used in both cases is
shown in red.
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Figure G: Evolution of the R2-score with respect to the SNR ranging from −15 dB to −5 dB.
The average R2-score is depicted in solid blue line for the white Gaussian noise and in solid
orange line for the AR(1) (ρ = 0.3) Gaussian noise. The surrounding shading is used to report
the variability across the different runs (noise realizations) of the experiment.
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Figure H: Evolution of the R2-score with respect to the auto-regressive parameter ρ ranging
from 0.1 to 0.9. The average R2-score is depicted in solid orange line for the AR(1) Gaussian
noise (SNR=-10 dB). The surrounding shading is used to report the variability across the different
runs (noise realizations) of the experiment.
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