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Abstract

Whole brain estimation of the haemodynamic response function (HRF) in func-
tional magnetic resonance imaging (fMRI) is critical to get insight on the global
status of the neurovascular coupling of an individual in healthy or pathological
condition. Most of existing approaches in the literature works on task-fMRI data
and relies on the experimental paradigm as a surrogate of neural activity, hence
remaining inoperative on resting-stage fMRI (rs-fMRI) data. To cope with this
issue, recent works have performed either a two-step analysis to detect large neu-
ral events and then characterize the HRF shape or a joint estimation of both the
neural and haemodynamic components in an univariate fashion. In this work, we
express the neural activity signals as a combination of piece-wise constant temporal
atoms associated with sparse spatial maps and introduce an haemodynamic parcel-
lation of the brain featuring a temporally dilated version of a given HRF model in
each parcel with unknown dilation parameters. We formulate the joint estimation
of the HRF shapes and spatio-temporal neural representations as a multivariate
semi-blind deconvolution problem in a paradigm-free setting and introduce con-
straints inspired from the dictionary learning literature to ease its identifiability.
An efficient alternating minimization algorithm is proposed and validated on both
synthetic and real rs-fMRI data at the subject level. To demonstrate its signifi-
cance at the population level, we apply this new framework to the UK Biobank
data set, first for the discrimination of haemodynamic territories between bal-
anced groups (n = 24 individuals in each) patients with an history of stroke and
healthy controls and second, for the analysis of normal aging on the neurovascular
coupling. Overall, we statistically demonstrate that a pathology like stroke or a
condition like normal brain aging induce longer haemodynamic delays in certain
brain areas (e.g. Willis polygon, occipital, temporal and frontal cortices) and that
this haemodynamic feature may be predictive with an accuracy of 74 % of the
individual’s age in a supervised classification task performed on n = 459 subjects.
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1. Introduction1

1.1. Context2

Functional magnetic resonance imaging (fMRI) non-invasively records brain ac-3

tivity by dynamically measuring the blood oxygenation level-dependent (BOLD)4

contrast. The latter reflects the local changes in the deoxyhemoglobin concentra-5

tion in the brain (Ogawa et al., 1992) and thus indirectly measures neural activity6

through the neurovascular coupling. This coupling is usually characterized as a7

linear and time-invariant system and thus summarized by its impulse response, the8

so-called haemodynamic response function (HRF) (Bandettini et al., 1993; Boyn-9

ton et al., 1996). The estimation of the response is of a primary interest: a change10

in the haemodynamic response could be linked to the pharmacological mechanism11

of a drug (Do et al., 2020), the effect of healthy aging (West et al., 2019) or the12

consequence of a neuropathological process, for example Alzheimer’s disease (Ase-13

mani et al., 2017). Thus, the HRF could be considered as a precious bio-marker14

to investigate the neurovascular function of the brain in a healthy or pathological15

condition. Moreover, its estimation also links the observed BOLD signal to the un-16

derlying neural activity, which can in turn be used to better understand cognitive17

processes in the healthy brain or to uncover functional alteration in pathological18

condition.19

1.2. Related works20

Several methods have been designed to estimate this haemodynamic response21

in the case of task-related fMRI (tfMRI). In this setup, the participant is engaged22

in an experimental paradigm (EP) during the imaging session, which alternates23

between rest and task periods (Friston et al., 1998; Ciuciu et al., 2003; Lindquist24

and Wager, 2007; Pedregosa et al., 2015). Commonly, supervised HRF estimation25

methods fit a model to explain the observed BOLD signal from the EP (Goutte26

et al., 2000; Ciuciu et al., 2003; Lindquist and Wager, 2007; Vincent et al., 2010;27

Chaari et al., 2012; Pedregosa et al., 2015). A limitation of these approaches is28

that the EP is used as a surrogate for the neural activity. Therefore they do not29

account for possible delays in the subject’s responses compared to the task onsets,30

thus yielding a biased HRF estimate. Moreover, these methods cannot be used on31

resting-state fMRI data (rs-fMRI), where the participant is laying still in the MRI32

scanner and where no EP is available to serve as surrogate for neural activity.33

On the other hand, a long-standing literature on fMRI deconvolution methods34

has emerged since the late 90s to uncover the underlying activity-inducing signal at35
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the fMRI timescale of seconds, see (Glover, 1999) for Wiener filtering and smooth36

estimation of activity-inducing signals and (Gitelman et al., 2003) for its general-37

ization to study psychophysiologic interactions at the neuronal level. Importantly,38

within a temporal fMRI deconvolution framework, most recent works have re-39

lied on sparse regularization to recover a limited number of spike-like activations40

directly in the time domain (Hernandez-Garcia and Ulfarsson, 2011; Caballero-41

Gaudes et al., 2012) or imposing sparsity in the activelet-domain, which is a42

wavelet basis that is tailored to the haemodynamic properties (Khalidov et al.,43

2011). Next, a foundational work (Karahanoğlu et al., 2013) has proposed a44

spatio-temporal model of the underlying activity-inducing signal including both45

temporal and spatial sparsity-based regularization. By doing so, the recovered46

neural activity profiles are used to define functional networks, hence converging to47

the original approach proposed in (Wu et al., 2013) that uncovers functional net-48

works from deconvolved BOLD signals. However, the total activation work (Kara-49

hanoğlu et al., 2013) suffers from two main limitations: first, the HRF shape in50

this modeling was fixed and kept constant throughout the brain, making this ap-51

proach mainly suitable for normal populations; second, for computational reasons,52

spatial regularization was introduced within predefined brain regions in a given53

atlas (Karahanoğlu et al., 2013) instead of impacting whole brain activity.54

Alternatively some recent works have suggested to estimate both the neural55

activity and the HRF profile at the same time (Cherkaoui et al., 2019; Farouj56

et al., 2019). These approaches are often referred to as semi-blind deconvolution57

schemes of the BOLD signal as they do not fully estimate an unknown HRF shape58

from scratch but instead try to uncover a transformation from a pre-existing HRF59

profile such as the canonical shape. Both (Cherkaoui et al., 2019) and (Farouj et al.,60

2019) rely on the hypothesis of a block-type property for the neural activation61

signal as initially proposed in (Karahanoğlu et al., 2013) but are able to infer the62

haemodynamic profile for instance with a limited parameterization to deal with63

the magnitude and delay ambiguities between the neural input the haemodynamic64

filter.65

1.3. Goals and contributions66

This paper extends preliminary contributions (Cherkaoui et al., 2019) and of-67

fers a new algorithm that aims to fit a rich multivariate decomposition of the68

BOLD data using a semi-blind deconvolution and low-rank sparse decomposition.69

The model distinguishes two major parts in the BOLD signal: the neurovascu-70

lar coupling and the neural activity signal. One of its main features is to tackle71

the intra-subject haemodynamic variability by introducing regionwise HRF pro-72

files over a brain parcellation, encoding the spatial variations of the neurovascular73

coupling. Also, in regard to neural activity, we follow ideas developed in the con-74

volutional dictionary learning literature to develop a low-rank approximation of75
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a signal (Grosse et al., 2007; Dupré La Tour et al., 2018). We thus model the76

neural activation signals as a combination of a limited number of piece-wise con-77

stant temporal profiles associated with spatial maps that capture the magnitude of78

functional networks. As such, the neural input signals are represented with their79

own spatial representation that departs from the neurovascular parcellation. We of80

course present a scalable optimization algorithm that is able to fit all parameters81

of interest in the whole brain in a reasonable computing time.82

The rest of the paper is organized as follows. Section 2 introduces our modeling83

of the BOLD data and presents our semi-blind blind deconvolution algorithm.84

Next, our technique is validated on simulated data and on real rs-fMRI data at85

the individual level in Section 3. In Section 4 we illustrate the proposed framework86

at the population level on the large UK Biobank database. Two main applications87

were targeted, namely the neurovascular discrimination of patients with stroke88

episodes as compared to healthy controls and the prediction of brain age. Section 589

discusses the potential impact of our method as well as its limitations. Conclusion90

and outlook are synthesized in Section 6.91

2. Multivariate low-rank decomposition of the BOLD signal92

In this section, we present our modeling of the BOLD signal and derive an93

efficient algorithm to estimate its parameters.94

Notation95

In what follows, yi denotes the ith entry in vector y. Let T̃ = T − L + 1, the96

convolution of two signals a ∈ R1×T̃ and v ∈ R1×L is denoted by v ∗ a ∈ R1×T .97

For A ∈ RP×T̃ , v ∗ A ∈ RP×T is obtained by convolving each line of A with v.98

For V ∈ RP×L, V ∗̇ A ∈ RP×T is obtained by convolving each line of A with the99

corresponding line of V . Let ∇ be the first-order difference operator such that100

∀x ∈ RT̃ , ∇x ∈ RT̃−1 with (∇x)i = xi − xi−1, ∀i ∈ {2, . . . , T̃}.101

2.1. Linear and time-invariant modeling102

2.1.1. Univariate modeling103

A common model for the multivariate (P voxels, T scans) BOLD data Y ∈
RP×T with Y = (yj)

P
j=1 is the linear and time-invariant model (LTI) (Boynton

et al., 1996). This model is illustrated in Fig. 1. For each voxel, the measured
time series, denoted by yj ∈ R1×T , is the convolution of a neural activation signal

ãj ∈ R1×T̃ , with a given HRF, v ∈ R1×L and ej ∈ R1×T refers to an additive white
Gaussian noise, which leads to:

yj = v ∗ ãj + ej . (1)
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Figure 1: Illustration of the voxel-
wise BOLD signal modeling: a is a
time series encoding the neural acti-
vation signal, v being the haemody-
namic response function (HRF) and
e the additive Gaussian noise. The
measured fMRI signal is denoted y
and obtained via a ∗ v + e.

Although the noise that contaminates the BOLD effect is serially correlated in104

time (Woolrich et al., 2001), we assume here that the fMRI data has been pre-105

whitened. If not, an auto-regressive (AR) modeling for the noise is possible (Penny106

et al., 2003; Makni et al., 2008) at the expense of an increased computational107

burden, necessary for identifying the AR parameters.108

Typically, the HRF v has a restricted support in time of about 20 s. The109

challenge with HRF modeling is to find a fair trade-off between a flexible model110

that is able to capture the true haemodynamic response in each brain area and a111

reliable one that limits overfitting by reducing the number of degrees of freedom112

(diminishing the variance). Since our approach estimates the neural activity along113

with the HRF, reducing the number of degrees of freedom is critical to avoid the114

aforementioned overfitting. In this paper, we assume M different HRF with vm115

being the HRF corresponding to the mth region Θm. Numerous approaches have116

been proposed to model this haemodynamic response vm. The Finite Impulse Re-117

sponse (FIR) (Dale, 1999; Glover, 1999) model does not assume any particular118

shape for the HRF which make it very flexible but prone to data overfitting in the119

presence of noise. Regularization has thus been introduced to constrain the overall120

HRF shape in FIR models and limit their tendency to overfitting, see for instance121

penalization over the second-order derivative to end up with physiologically plau-122

sible smooth HRF estimates (Ciuciu et al., 2003; Casanova et al., 2008). Alterna-123

tively, the HRF has been modeled as a linear decomposition of predefined atoms124

such as B-splines (Zhang et al., 2007; Vakorin et al., 2007), wavelets (Khalidov125

et al., 2011), a sensitivity-selected set (Woolrich et al., 2004) or more physiologi-126

cally informed patterns such as the canonical HRF and its derivatives in time and127

with respect to the dispersion parameter (Friston et al., 1998). All these methods128

intend to capture fluctuations in haemodynamic delay or shape with the mini-129

mum number of parameters. Last, to constrain even more the parameter values130

and reduce variance estimates, parametric models such as the inverse logit trans-131

form (Lindquist and Wager, 2007) have been proposed and successfully tested132

when benchmarking over multiple fMRI data sets (Lindquist et al., 2009). In this133

work, we propose the time dilation HRF model (Cherkaoui et al., 2019), which cap-134

tures the haemodynamic delay by dilating a reference HRF pattern: v = vref (δt)135
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Figure 2: Illustration of two haemody-
namic response functions (HRF) denoted
h1, h2 with the full-width-at-half-maximum
(FWHM) and the time-to-peak (TTP) (of
h1) depicted. Here we illustrate these
two HRFs with different dilation parame-
ters (δ1, δ2) such as δ2 ≤ δ1, leading to
TTP(h1) < TTP(h2) and FWHM(h1) <
FWHM(h2).

where vref is a reference temporal profile, here the canonical HRF. This approach136

is efficient while simple as it encodes delay fluctuations through a single scalar137

parameter δ (one degree of freedom). One limitation of this choice is that it leads138

to the simultaneously variation of the full width-at-half-maximum (FWHM) of the139

HRF and its time-to-peak (TTP) (see also Fig. 2). Our voxelwise model reads as140

follows:141

yj = vδ ∗ ãj + ej . (2)

2.1.2. Multivariate modeling142

To better account for the spatial structure of the neurovascular system and
the intrinsic organization of functional networks, we extend this model to the
multivariate setting. Our multivariate model reads as follows:

Y = vδ ∗ Ã+E , (3)

where Ã = (ãj)
P
j=1 ∈ RP×T̃ and E = (ej)

P
j=1 ∈ RP×T . One limitation of this

straightforward approach is that it constrains the haemodynamic response to be
the same across the whole brain. As the HRF shape depends on the neurovas-
cular coupling, its features vary in space over different brain areas and between
individuals (Handwerker et al., 2004; Badillo et al., 2013). This suggests that, for
a given subject, the HRF should be modeled locally in the brain. An appropriate
approach for doing so is to rely on existing brain parcellation (Varoquaux and
Craddock, 2013). Ideally to accurately fit the real haemodynamic response func-
tion in a subject, we would favor a large number of regions. However, the larger
this number, the smaller the number of voxels per region, which could impair the
stability of HRF estimation. For that reason, each region should at least consist
of a few hundred voxels. In this work, we rely on the Havard-Oxford probabilistic
brain atlas (Desikan et al., 2006). We threshold the probabilities to obtain a fine
brain parcellation that offers enough flexibility to adapt to the true haemodynamic
system. In what follows, we mathematically introduce a brain parcellation with
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M regions with (Θm)Mm=1 ∈ {0, 1}p 1 if the ith voxel belongs to the mth region and
0 if not. This allows us to extend Eq. (3) as follows:

Y =

(
M∑
m=1

Θ>mvδm

)
∗̇ Ã+E , (4)

The activation signals Ã capture for each voxel the periods of time during which143

any voxel is involved either in task performance or in spontaneous BOLD signal144

fluctuations. This model remains univariate as P independent neural activation145

signals (ãj)
P
j=1 ∈ RP×T̃ are estimated.146

In our work, we rather introduce a low-rank constraint and learn both K temporal147

atoms (with K � P ) and corresponding spatial maps. These maps encode various148

functional networks, each of them being summarized by specific neural activation149

profile. Mathematically, this can be modeled by replacing each vector ãj in Eq. (4)150

with a linear combination of neural activation patterns Z = (zk)
K
k=1 ∈ RK×T̃ , with151

zk ∈ R1×T̃ , modulated in space by the spatial maps U = (uk)
K
k=1 ∈ RK×P , with152

uk ∈ R1×P , such that: Ã =
∑K

k=1 u
>
k zk. In other words, the spatial configuration153

uk encodes which voxels are linked to a given neural activation profile zk ∈ R1×T̃ .154

Note that a voxel may belong to different functional networks. This is coherent155

with the fact that a voxel contains about one hundred thousands neurons for a156

typical spatial resolution (1.5 mm isotropic), and thus the underlying neural acti-157

vation signals are combined with possibly different temporal fingerprints. Finally,158

our forward model for BOLD fMRI data is given by Eq. 5 (see also Fig. 3):159

Y =

(
M∑
m=1

Θ>mvδm

)
∗̇

(
K∑
k=1

u>kzk

)
+E . (5)

2.2. Prior information and regularizing constraints160

The number of unknown parameters Z ∈ RK×T̃ , U ∈ RK×P and δ ∈ R1×M is161

lower than the number of available data Y . Indeed, the observed fMRI data has P162

voxels of T scans while the proposed model has to infer K temporal components of163

T̃ entries, K spatial components of P voxels each, and M HRF dilation parameters.164

Hence, the number of unknown parameters to be set is M + (K × P ) + (K × T̃ ).165

Importantly, if the number of scans T is large enough and if we adequately choose166

M and K, then we get P × T �M + (K × P ) + (K × T̃ ).167

The forward model described in Eq. (5) is trilinear as it depends on both un-168

known spatial (U) and temporal (Z) inputs and unknown convolution filters (vδm).169

This means that any timing variation in neural activation signals Z can be sym-170

metrically compensated by the opposite variation in the haemodynamic filter vδm171
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Figure 3: Illustration of the low-rank multivariate BOLD signal model (the colors are here for
illustrative purposes). Y stands for the observed BOLD data, vm the mth HRF, Θm represents
the predefined brain parcellation, U = (uk)Kk=1 defines the K spatial components and Z =
(zk)Kk=1 the corresponding “neural” activation signals. Last, E represents the additive white
Gaussian noise.

or that any sign or scale variation in U can be compensated by the inverse vari-172

ation in Z or vδm . To overcome these sign, scale and time-shift ambiguities, we173

introduce some regularizing constraints in the computation of the parameter esti-174

mates. First, to avoid any sign ambiguity in the convolution between the neural175

input signals and the haemodynamic filter, the HRF filter has a constant and pos-176

itive maximal amplitude (see Fig. 2). Second, as there is an interplay between177

the spatial and temporal components in the input signals, we also impose a non-178

negativity constraint over the entries of each spatial map uk, i.e. ∀j, kkj ≥ 0.179

By doing this, we only allow the deactivation of a functional network to be en-180

coded in the corresponding zk. Third, to deal with the scale ambiguity, we impose181

‖uk‖1 = η,∀k = 1, . . . , K, where η ∈ R+ is a user-defined parameter that sets182

the magnitude of each spatial map. As our HRF model has a constant maximal183

amplitude, only the neural activity signals Z capture the observed BOLD signal184

fluctuations. Forth, to deal with the time-shift ambiguity, we constrain the dila-185

tion parameter δ in the HRF model to be in [0.5, 2.0]. This should also permit186

the recovery ofphysiologically plausible haemodynamic delays. Complementary187

to these constraints, akin to (Caballero-Gaudes et al., 2012; Karahanoğlu et al.,188

2013; Cherkaoui et al., 2019) we will also assume the neural activation signals Z to189

be temporally piecewise constant or equivalently assume their first-order deriva-190

tive ∇zk,∀k to be sparse. Practically speaking, we add a total variation (TV)191

regularization term to our model.192

2.3. Optimization problem193

In this section, we derive an algorithm for estimating the dilation parameters
δ = (δm)Mm=1, the spatial maps U and the neural activation signals Z from the
model depicted in Eq. (5) and the aforementioned regularizing constraints. The
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estimates for these parameters can be obtained by solving the following constrained
minimization problem:

arg min
(U ,Z,δ)

1

2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mvδm

)
∗̇

(
K∑
k=1

u>k zk

)∥∥∥∥∥
2

F

+ λ

K∑
k=1

‖∇zk‖1 ,

subject to ∀k, ‖uk‖1 = η, ∀j, ukj ≥ 0, ∀m, δm ∈ [0.5, 2.0] .

(6)

The Gaussian noise hypothesis leads to a quadratic data fidelity term, to measure194

how well we reconstruct the observed fMRI signals. Moreover, in alignment with195

with Caballero-Gaudes et al. (2012); Karahanoğlu et al. (2013); Cherkaoui et al.196

(2019), we enforce the first-order derivative of the temporal atoms (∇zk)Kk=1 to197

be sparse in order to constrain each zk to a piecewise constant signal. For that198

purpose, we use a TV regularization term, which corresponds to the `1 norm of the199

gradient in time ∇zk. Importantly, this modeling of the neural activation signals200

allows us to fully adapt to task-fMRI and rs-fMRI experiments and to perform201

paradigm-free fMRI data analyses. In the first case, as the task-related BOLD202

signal is classically modeled as the convolution of an input block signal, repre-203

senting the experimental paradigm (the onsets of the stimulus trials) with a HRF204

filter, we can recover neural activation signals close to the experimental paradigm.205

The neural activation profiles being inferred from the data, we can estimate both206

input signals corresponding to block and event-related designs, the only difference207

between the two being the length of activation blocks, which in the latter case can208

be restricted to a single time point. More interestingly, the proposed framework209

is even more appealing for processing rs-fMRI data and uncover spontaneous and210

time-varying fluctuations of brain activity as the the block duration may change211

from one instance to the next.212

Moving to the technical aspects for solving the constrained optimization prob-213

lem (6), it is worth mentioning that it is not globally convex. However, when U214

and δ are fixed, problem (6) becomes convex in Z and similarly when Z and δ215

are fixed, it becomes convex in U . Our minimization strategy of Eq. (6) thus re-216

lies on a block-coordinate descent algorithm, where we alternate the minimization217

between the two convex problems in U and Z followed by the non-convex one218

involving V . Also, the non-negativity constraints are activated when solving for219

the spatial maps U and the boundary constraints over δ are handled in parallel220

for each m, i.e. each HRF pattern when solving for V . Algorithm 1 details these221

three main steps.222

223
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Algorithm 1: Multivariate deconvolution and low-rank decomposition
of the BOLD signal.

Input: BOLD signal Y , ε
1 initialization: ∀k,z(0)k = 0T̃ , u

(0)
k = u

(init)
k , δ(0) = δ(init), i = 1 ;

2 repeat
3 Estimate the temporal atoms Z(i) with fixed U (i−1) and δ(i−1):

(z
(i)
k )k = arg min

(zk)k

1

2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mv
(i−1)
δm

)
∗̇

(
K∑
k=1

u
(i−1)
k

>
zk

)∥∥∥∥∥
2

F

+λ
K∑
k=1

‖∇zk‖1 .

4 Estimate the spatial maps U (i) with fixed Z(i) and δ(i−1):

(u
(i)
k )k = arg min

(uk)k

1

2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mv
(i−1)
δm

)
∗̇

(
K∑
k=1

u>kz
(i)
k

)∥∥∥∥∥
2

F

,

subject to {∀k, ‖uk‖1 = η and ∀j, ukj ≥ 0} .

Estimate the HRFs δ(i) with fixed U (i) and Z(i):

(v(i)m )m = arg min
(δm)m

1

2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mvδm

)
∗̇

(
K∑
k=1

u
(i−1)
k

>
z
(i)
k

)∥∥∥∥∥
2

F

,

subject to δm ∈ [0.5, 2.0] .

5 until
J((z

(i−1)
k )k,(u

(i−1)
k )k,(v

(i−1)
m )m)−J((z(i)k )k,(u

(i)
k )k,(v

(i)
m )m)

J((z
(i−1)
k )k,(u

(i−1)
k )k,(v

(i−1)
δm

)m)
≤ ε;

224

In regard to the (zk)Kk=1 step, we performed the minimization using an adaptive-225

restart accelerated forward-backward algorithm (O’Donoghue and Candes, 2015).226

In regards to the (uk)Kk=1 step, we first benchmark various algorithms in the dic-227

tionary learning literature and selected the most efficient, namely the one used to228

update the dictionary in Mairal et al. (2009). Last, for the minimization with re-229

spect to (δm)Mm=1 we used the accelerated forward-backward algorithm (Combettes230

and Pesquet, 2009) after checking that it leads to a correct estimation of δ. The231

reader can found all details of the gradient computation w.r.t (zk)Kk=1 and (uk)Kk=1232

in Cherkaoui et al. (2019), for the gradient w.r.t δ the computation is reported233

in the supplementary material Section 7.1. For each step, we implemented the234

corresponding gradient (i.e. forward move) in an efficient manner to limit multiple235

computations over the iterations.236

Critical steps for the efficiency of this algorithm are the computation of proxi-
mal operators for the non-smooth regularizers. In regards to the neural activation
patterns (Z step), as the minimization is sequentially performed over the K com-
ponents, we only need to compute the proximal operator of the TV norm, i.e.
gz(zk) = λ‖∇zk‖1. This remains a challenging issue as this operator is not closed
form. A seminal contribution has been done in the literature for TV minimiza-
tion Chambolle (2004). Here, we rather used the Taut-String algorithm proposed
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by Barbero and Sra (2018) for which we use an efficient Python implementation
available in an open source package1. In regards to the constraints on the spatial
maps (U), we also proceed separately on the K components: the proximity oper-
ator of gu(uk) = 1‖uk‖1=η + 1ukj≥0 where 1 stands for the indicator function2, is
given by:

prox gu(uk) = [(ukj − µ)+]1≤j≤P (7)

where µ is defined as
∑P

j=1 max{0, ukj − µ} = η and an efficient implementation237

has been proposed by Condat (2016). We propose to set λ as a fraction of λmax238

which is the minimal value of λ for which 0 is solution of Eq. (6). For the rest239

of the paper, we will refer to λ as the fraction of λmax, such as λ = λfλmax, with240

λf ∈ [0, 1].241

Algorithm 1 converges to a local minimizer Eq. (6) when each main iteration242

does not decrease sufficiently the cost function. In practice less than 50 itera-243

tions of the main loop are needed to converge. To initialize the spatial maps244

(uk)
K
k=1, we apply an Independent Component Analysis (ICA), implemented in245

scikit-learn (Pedregosa et al., 2011), on the BOLD signals Y and retain the246

produced spatial maps, we initialize the (zk)k=1...K to zero and each entry of247

(δm)m∈{1..M} to 1.248

3. Model Validation249

We first validate the proposed approach on numerical simulations to illustrate250

the gain achieved by jointly estimating the neural activity profile and the HRF251

shape compared to a single deconvolution scheme. Next, we will demonstrate the252

usefulness of the proposed framework on real rs-fMRI data at the individual level.253

In particular, we will highlight the impact of the hyper-parameter selection on the254

decomposition, describe the interpretation of its component and its stability. The255

usefulness of our method in the context of large cohorts will be investigated in256

Section 4.257

3.1. Numerical simulations258

3.1.1. Synthetic data259

We generated two temporal Dirac signals of length T̃ = 500 with a fixed spar-260

sity level. Each generated Dirac signal is composed of randomly drawn signed261

spikes, with location chosen uniformly in time and intensity drawn from a Gaus-262

sian distribution N (0, 1). To produce the corresponding block signals Z – shown263

1https://pypi.org/project/prox tv/
2This function is zero-valued inside the constraint set and equals infinity elsewhere.
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in blue in Fig. 4[right panels] – we integrated over time these signals and con-264

volved them with a predefined HRF vδ to yield two corresponding pure BOLD265

time series. The chosen HRF has length L = 25 and is shown in blue in Fig. 4[left266

panel]. For the sake of simplicity, we considered a single HRF profile (M = 1)267

in this synthetic setting, so the haemodynamic properties were supposed constant268

in space. We then assigned these BOLD signals to spatial locations. Hence, we269

defined K = 2 corresponding 2D maps U = (uk)
2
k=1 (10 × 10, i.e. P = 100).270

Each spatial map has a single activating region consisting of 4 pixels. Each ac-271

tive pixel has a randomly drawn non-negative magnitude, the other ones being272

set to zero. Then, we normalized each map by its `1-norm. Finally we added273

Gaussian random noise to produce observed, i.e. noisy BOLD signals Y of length274

T = T̃ +L−1 = 524 scans (TR = 1s) with a signal-to-noise-ratio (SNR) of −1 dB.275

The mean synthetic BOLD signals are reported in black traces in Fig. 4(a)-(b) for276

both activated regions (in bottom panels) while standard deviation across acti-277

vated voxels is encoded by transparency around these mean curves.278

3.1.2. Numerical results279

In a first step, we only estimated the pair (Z,U) from the synthetic fMRI time280

series Y and kept the HRF profile v constant. The results are reported in Fig. 4(a).281

The HRF shape used in this deconvolution process is shown in green in Fig. 4(a)282

and actually differs from the true shape used for simulating the data. Because283

of this discrepancy in terms of haemodynamic delay and peak magnitude, the284

neural activation signals are not properly recovered (orange traces in Fig. 4(a)).285

The magnitude of the estimates Ẑ is much larger than the true one. This is286

partly due to compensate for the smaller magnitude of the HRF (green trace in287

Fig. 4(a)) used for deconvolving the BOLD signals. Consequently, the residual288

mean square errors (RMSEs) computed on the neural activation signals are pretty289

large. However, we noticed that in both spatial maps, the non-negative magnitudes290

Û are very well estimated. This is a direct consequence of using non-overlapping291

activating regions for the two neural traces.292

In a second step, on the same data set Y we jointly estimated (Z,U) and v293

using our full semi-blind deconvolution scheme. We kept the same initialization for294

the HRF shape for the sake of consistency. The results are reported in Fig. 4(b).295

The HRF estimate v̂ is shown in orange (dashed line) and actually matches the true296

curve. Consequently, the neural activation signals Ẑ are properly estimated both in297

time and in magnitude and the corresponding RMSEs are one order of magnitude298

smaller than those reported in the previous simulated results (see Fig. 4(a)). This299

second synthetic setting did not impact the spatial maps, which are still well300

estimated.301

These results on synthetic data confirmed the good expected behavior of the302

proposed method. From a computational viewpoint, the estimation with constant303

12



HRF ran in 0.5s while the full estimation took 1s approximately on a machine304

with 15 GB of RAM and an Intel processor i7-7600U (2 physical cores, 2.80 GHz).305

3.2. Single-subject analysis on rs-fMRI data306

3.2.1. Data set and parameter setting307

To illustrate the proposed semi-blind deconvolution algorithm, we analyzed308

a single subject extracted from the UKBB resting-state fMRI data set. More309

investigation on a larger cohort of this data set will be presented in Section 4. The310

rs-fMRI data was 6 min10s long with TR = 0.735s. The first ten seconds were311

discarded (dummy scans) so that we end up with T = 490 scans (6min). The data312

was collected on a 3T Skyra Siemens MAGNETOM MR system at an isotropic313

resolution of 2.4 × 2.4 × 2.4 mm3 using the multi-band GRE sequence (mb =314

8).3. Standard pre-statistics processing steps were applied: motion correction315

using MCFLIRT Jenkinson et al. (2002); grand-mean intensity normalisation of316

the entire 4D data set by a single multiplicative factor; high-pass temporal filtering317

(Gaussian-weighted least-squares straight line fitting); EPI unwarping; gradient318

distortion correction unwarping. Finally, structured artefacts are removed by ICA319

processing, see the documentation4 for a full description.320

In this subsection, we manually set the temporal regularization parameter to321

λf = 0.8 (remember λf ∈ [0, 1]). This setting achieves a bias-variance trade-off322

between two extreme situations, namely data overfitting (λf = 0) on one hand323

and entirely sparse neural activation signals (λf = 1 as λ = λmax) on the other324

hand. The question of the unsupervised tuning of λf is critical. It could be driven325

either from a statistical viewpoint (e.g. using the maximum likelihood criterion)326

that characterizes how likely the measured time series may be observed or using an327

external task and its corresponding metric such as classification performance (e.g.328

accuracy in prediction). Because the former approach does not admit a closed329

form solution, we explored in the Supplementary Material (see Section 7) the330

impact of changing the temporal regularization (i.e. amount of sparsity in the331

activation neural signals) on the spatial map of haemodynamic delays. The spa-332

tial consistency we reported across regularization levels gave us confidence on the333

haemodynamic parameter estimates to be further used in subsequent classification334

tasks (see Section 4). In this setting, we implemented a cross-validation step with335

a leave-one-out loop to tune λmax in an unsupervised way.336

In regard to the number of spatio-temporal atoms K, we set it using the ex-337

plained variance (or R2-score) as target metric in a preliminary study. For this set338

3Acquisition details can be found at https://www.fmrib.ox.ac.uk/ukbiobank/protocol/.
4Preprocessing details can be found at https://biobank.ctsu.ox.ac.uk/crystal/

crystal/docs/brain_mri.pdf

13

https://www.fmrib.ox.ac.uk/ukbiobank/protocol/
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf


of parameters, the model estimation took around 1 minute on a machine with 15339

GB of RAM and an Intel processor i7-7600U (2 physical cores, 2.80 GHz).340

3.2.2. Results341

Model selection. The first question we addressed on real rs-fMRI data was to342

optimally set the number of spatio-temporal atoms K and to find the best compro-343

mise between model complexity and model accuracy. For this purpose, we looked344

at two complementary criteria. The first one is standard and corresponds to the345

R2 score that quantifies the variance explained by model (5) over the total sum346

of squares whereas the second one is given by the determinant of the correlation347

matrix between the neural activation signals.348

The R2-score is defined as follows: R2 = 1− SSres

SStot
where SStot quantifies the vari-349

ance of the data Y and SSres the variance of the residuals after fitting model (5)350

by minimizing the cost function described in Eq. (6). The R2-score may vary from351

−∞ in pathological cases to 1 for a perfectly matching model. A good model is352

normally associated with R2 > 0 and means that the L2 norm of the residual is353

lower than the variance of the data. We therefore ran multiple model fitting for354

K in a range of {2, 3, 4, . . . , 10, 15, 20, . . . , 50}. The results are shown in Fig. 5(a)355

and illcrustrate that the model accuracy first increases as a function of K up to356

reaching a plateau around R2 ' 0.55 for K = 20. So adding more spatio-temporal357

components no longer improves its ability to capture variability in the data while358

it becomes more complex.359

The second information measure we used to help us select K was based on the360

determinant of the correlation matrix ΣK = (E[(zk −mk)(z` −m`)
T/σ2

kσ
2
` ])k,`361

between the temporal atoms (zk)
K
k=1. The quantities σ2

k and σ2
` define the variance362

of the neural activation signals zk and z`. As ΣK is semi-positive definite with363

entries between 0 and 1, its eigenvalues are positive or null and so its determinant364

varies between 0 and 1: det ΣK = 1 when matrix ΣK defines a basis, which means365

that all atoms are orthogonal and decorrelated like in a PCA decomposition. In366

contrast, det ΣK = 0 when matrix ΣK is not of full rank so at least one atom367

could be obtained as a linear combination from the others. Therefore, as before368

we ran multiple model fitting for K in a range of {2, 3, 4, . . . , 10, 15, 20, . . . , 50}369

and we plotted in Fig. 5(b) the evolution of the determinant of ΣK as a function370

of K. The results show us that beyond K ≥ 20, we get a correlation matrix with371

det ΣK ≤ 10−10 which tends to zero. According to this criterion, from the we372

should therefore not exceed 20 temporal atoms. Thus, from the R2-score criterion373

and this det ΣK criterion, in our following experiments we will keep K = 20.374

Analysis of spatial decomposition. Fig. 6 shows the spatial maps of this375

spatio-temporal decomposition for this individual and Tab. 1 summarizes the list376

of main regions and functional networks retrieved in this setting.377
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It is worth mentioning that the sensory networks (visual, auditory and motor)378

are quite well retrieved by a single or multiple components, respectively located379

respectively in the occipital (components 10, 16 and 19), temporal (component380

7) and motor (components 6, 15 and 18) cortices. The maps associated with the381

motor network are split and lateralized (6 and 18 on the right hemisphere while382

15 in the left). The different areas of the visual system are split too between the383

primary visual cortex (component 10) and the extrastriate cortex (components 16,384

19). The language system has also been identified by a single component. Part385

of the well known intrinsic resting-state networks (RSN; Menon 2015) have been386

captured: (i) the right and left-lateralized fronto-parietal resting-state networks387

spatially similar to the bilateral dorsal attention network are captured by com-388

ponent 1 and 4, respectively while the left and right lateral frontoparietal central389

executive networks appear in component 9. The default mode network (DMN),390

which deactivates during demanding cognitive tasks is represented in component 2391

and 20: the angular gyrus (AG) appear in both components while the posterior cin-392

gulate cortex (PCC) is captured only by component 20 and the medial prefrontal393

cortex (mPF) by component 2. However, we found that component 9 actually394

mixes the left AG in the DMN with a left-lateralized fronto-parietal network that395

perfectly matches the CEN (Menon, 2015). In contrast, we did not clearly re-396

trieve neither the salience network – usually anchored in anterior insula and dorsal397

anterior cingulate cortex – nor the right CEN.398

Spatio-temporal decomposition. To fully illustrate our method on real rs-399

fMRI data, we show the whole set of output features (neural activation signals,400

spatial maps, HRF shapes) in Fig. 7. We also depict a voxel-based denoised401

BOLD signal reconstructed a the convolution between the neural input and the402

HRF estimate. Fig. 7(a) represents together a neural activation signal in the403

primary visual cortex and the corresponding spatial map (component 10 in the404

above mentioned decomposition). The proposed axial views allow us to identify the405

primary visual cortex and the calcarine fissure. Fig. 7(b) depicts similar features406

in the DMN (component 2) and the Pearson correlation coefficient with the neural407

time course in the visual cortex. Its negative value confirms a negative correlation408

between the task-positive and the DMN network. Both time courses actually409

present alternating periods of positive and negative activity but they are almost410

uncorrelated. Fig. 7(c)-(d) illustrate the fastest and slowest HRF time courses411

estimated in the regions of interest depicted in red. The fastest haemodynamic412

response (FWHMf = 5.1s) was found in the middle temporal gyrus while the413

slowest (FWHMs = 8.0s) is located in the frontal orbital cortex. Fig. 7(e) finally414

shows how well our approach is able to fit the rs-fMRI time course measured415

in voxel marked by the black cross in Fig. 7(c). The neural activation signal is416

piecewise constant and ahead in time compared to the BOLD time series. Once417
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Table 1: Taxonomy of brain regions and functional networks involved in the spatio-
temporal decomposition (5) with K = 20. We only refer to the main regions in each component.
dAN: dorsal Attention Network; DMN=Default Mode Network; IPS=Intra-Parietal Sulcus; FEF:
Frontal Eye Fields; CEN: Central Executive Network; R and L stand for left and right hemi-
spheres. The region in bold font matches the location of the cross in Fig. 6 and have been
identified from the AAL template.

Network # Comp. Brain areas

Visual
10 R calcarine fissure and surrounding cortex
16 L superior occipital gyrus
19 Inferior occipital gyrus

Auditory 7 R superior temporal gyrus

Motor
6 R post-central
15 L precentral gyrus
18 R precentral gyrus

DMN
2 R superior frontal gyrus, dorsolateral, mPF,

AG
9 L angular gyrus
20 R precuneus

dAN
1 R inferior parietal, L inferior parietal, R FEF,

R inferior frontal gyrus
4 L inferior parietal, L FEF, L inferior frontal

gyrus

Language 14 L middle temporal gyrus, Broca’s area

CEN 9 left fronto-parietal

Unclassified

3 R middle frontal gyrus
5 L inferior frontal gyrus, orbital part
8 L supramarginal gyrus, R supramarginal gyrus
11 L Rolandic Operculum
12 R inferior frontal gyrus, triangular part
13 R middle frontal gyrus
17 R middle frontal gyrus, L middle frontal gyrus
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convolved with the HRF profile, the denoised BOLD signal appears as a smoother418

version of the measured BOLD time course: its magnitude is smaller and its419

fluctuations in time are slower. This is a direct consequence of the temporal420

regularization used to recover sparse input signals.421

Analysis of correlation structure. Next, to go beyond the spatial analysis,422

Fig. 8 depicts the correlation matrix between the corresponding neural activation423

signals. It is then insightful to notice that the correlation between the multiple424

components in a given network are quite strong. For the visual network we ob-425

served a correlation coefficient varying between 0.35 and 0.69, the largest value426

being reached for areas located both in the extrastriate cortex. The same con-427

clusion holds in the motor network with a correlation level varying between 0.5428

and 0.65. In regard to the DMN, component 2 plays the role of a hub as it429

correlates with components 9 and 20 pretty strongly5 between 0.27 and 0.4. How-430

ever, component 9 is almost decorrelated from component 20 as it mixes regions431

in the dAN and the DMN. Overall, this analysis shows that the proposed ap-432

proach does not separate RSN in single components. However, it still achieves a433

meaningful decomposition. For illustrative purposes, the spatial decomposition for434

K ∈ {5, 8, 10, 15, 30, 40, 50} and the corresponding correlation matrices between435

the temporal atoms are reported in the Supplementary Material. Interestingly,436

these results show that some RSNs are either not recovered or mixed together for437

small K ≤ 15 whereas for large values of K ∈ {25, 30, . . . , 50} each RSN is split in438

multiple components. Increasing the number of components extends the range of439

variation of the correlation coefficients in both positive and negative senses. This440

confirms that our approach does not have statistical independence guaranties like441

PCA and ICA do when decomposing the neural activity.442

3.3. haemodynamic estimation stability over time443

The shape of the HRF is controlled by the neurovascular coupling including444

both neural and non neural factors such as glial cell activity, cerebral energy445

metabolism, and the cerebral vasculature. Abnormalities in the local vascular sys-446

tem or cell communication due to pathological state or changes in cerebral blood447

flow upon psychoactive drugs could influence this haemodynamic response. As we448

expect the HRF estimate to be stable if none of those events took place, we propose449

to study the intra-subject stability of HRF estimates over time, namely between450

consecutive time periods. For doing so, we compare the intra-subject variability of451

the HRF whole brain dilation parameter vector δ to the inter-subject variability452

of the same quantity. We thus introduce two reference `2 distances, namely the453

within-subject distance WS(δs1, δ
s
2) = ‖δs1 − δs2‖22 where (δsi )i correspond to the454

5no statistical test performed at the individual level
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vectors of spatially aggregated HRF dilation parameters that were estimated over455

two periods of time T1 and T2 in the same individual s. Similarly, for any pair of456

subjects (s1, s2) and a given period T , we measure the between-subject distance457

between (δsiT )i vectors as follows: BS(δs1T , δ
s2
T ) = ‖δs1T − δ

s2
T ‖22. The goal is then to458

compare the within- and between-subject distances across individuals and show459

that the intra-subject variability is significantly lower than the inter-subject one460

over a sufficiently large population.461

3.3.1. Data set and numerical analysis462

We selected 100 healthy subjects from the Human Connectome Project (HCP)463

data set (Van Essen et al., 2013) at random. We used this data set because464

of the availability of a 12-min long rs-fMRI run with a short time of repeti-465

tion (TR=0.72s), see Glasser et al. (2013) for a full description of the acquisi-466

tion parameters and the pre-statistics processing steps. In this rs-fMRI run for467

each individual, we extracted two segments of 4 minutes each, denoted as T1 and468

T2 hereafter, the first and last parts of the recording. We then applied the pro-469

posed multivariate spatio-temporal decomposition to each segment using K = 8470

spatio-temporal atoms (zk,uk)
K
k=1 and a brain atlas Θ = (Θm)Mm=1 (Desikan et al.,471

2006) composed of M = 96 regions of interest (ROIs). This haemodynamic brain472

parcellation thus yields 96 HRF dilation parameters δ = (δm)Mm=1 for each in-473

dividual. In practice, in the definition of WS(·, ·) and BS(·, ·), the true vectors474

δsiTj (i = 1, . . . , 100, j = 1, 2) have been replaced by their estimates δ̂siTj computed475

by solving Eq. (6) for the two 4-min rs fMRI data sets (T1 and T2). To make sure476

that our conclusions hold for a large scale of temporal regularization parameters,477

we spanned the range λf ∈ [0, 1] and repeated the same procedure over 10 discrete478

values of λf within this interval.479

3.3.2. Results480

In Fig. 9, the box plot in blue shows the within-subject distance WS(δ̂siT1 , δ̂
si
T2

)481

between the two 4-min rs-fMRI segments for all individuals and across 5 values482

of λf covering the whole interval [0, 1]. The orange and green box plots in Fig. 9483

depict the between-subject distances computed over the first and second segments484

respectively, namely BS(δ̂siT1 , δ̂
sj
T1

) and BS(δ̂siT2 , δ̂
sj
T2

) with i 6= j. We observed that485

the within-subject (i.e. inter-segment) variability is systematically lower than the486

between-subject variability and that all metrics remain stable across regulariza-487

tion levels. To go further, we performed a statistical analysis (paired t-test) by488

comparing the mean of the WS and BS distributions and we obtained significant p-489

values (p < 10−8) showing that the within-subject haemodynamic variability is sig-490

nificantly lower than the between-subject fluctuations. In contrast, the statistical491

inter-individual comparison between the two segments is not significant (p ' 10−2).492
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These results are valid for all tested regularization levels indicating a minor im-493

pact of the regularization parameter onto the haemodynamic parameter estimate.494

In sum, this analysis demonstrates that the whole brain characterization of the495

vascular system remains stable in a given individual between two periods shortly496

spaced in time, compared to the same analysis between individuals and so that497

the haemodynamic response discriminates each subject from the others.498

4. Clinical validation at the population level499

In the previous section, the numerical experiments were devoted to demonstrate500

the meaningfulness and reliability of the proposed multivariate spatio-temporal501

within-subject decomposition of fMRI data, especially in resting-state experiments.502

In this section, our main objective is to showcase the application of this approach503

to clinical diagnosis. For this purpose, we leverage the functional features (haemo-504

dynamic delays, neural activation signals, etc.) output by our approach to first505

characterize patients with history of stroke compared to healthy controls and then506

to discriminate middle-age vs elderly subjects. In both analyses, we again used507

the 6-min long rs-fMRI data from the UK Biobank database.508

4.1. Characterization of patients with an history of stroke509

Stroke is a medical condition in which the blood supply to is interrupted or510

reduced in a brain area, resulting in ischemic brain tissue and neuronal damage.511

This pathology is considered as a major health issue nowadays (England, 2018).512

In this field, multiple studies (Min et al., 2018) have proposed approaches to better513

estimate the stroke risk for patients. However, in these attempts a major issue is514

the precise estimation of the brain damage that occurs in the neurovascular system515

during and after a stroke episode. To that purpose, we tested our approach to516

characterize the effect of stroke on the haemodynamic response in the brain.517

We considered 24 patients of both genders and various ages who suffered from518

a stroke in the past from the UK Biobank database. For comparison purposes, we519

selected 24 healthy controls matched in age and gender from the same database.520

We applied the same decomposition (K = 20, M = 96, same λf ) to each patient521

and healthy control. Fig. 10(a) and Fig. 10(b) show respectively the corresponding522

normalized maps of haemodynamic dilation parameters (δm)96m=1 in a healthy con-523

trol and stroke patient, respectively. The normalization has been done by dividing524

all dilation parameter values by their within-subject average, namely δ̄HC and δ̄SP525

respectively. We first observed that the dilation parameters were larger in average526

in the healthy condition compared to stroke (δ̄HC > δ̄SP). This corresponds to527

shorter and more homogeneous TTPs in the brain in the healthy condition. The528

shortest TTP found in the healthy control was actually located in the primary529
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visual cortex (axial slice, z=-2, left hemisphere), a result consistent with the liter-530

ature on fastest haemodynamic responses often detected in visual areas (Handw-531

erker et al., 2004; Badillo et al., 2013). In contrast, Fig. 10(b) illustrates that the532

haemodynamic dilation parameters δSP are smaller (so the TTPs longer) in the533

stroke patient Also, we found less variability in the healthy subject since the dif-534

ference between the maximum and minimum TTPs were smaller (∆HC
TTP = 1.25 s)535

compared to the stroke patient (∆SP
TTP = 2.25 s). Importantly, Fig. 10(a) illustrates536

the relative symmetry of haemodynamic territories that exists in normal subjects537

between both hemispheres (Raemaekers et al., 2018).538

On the contrary, Fig. 10(b) reveals a wider asymmetry between the two hemi-539

spheres in the stroke patient. Interestingly, in this patient we noticed the presence540

of larger TTPs in the middle left precentral gyrus and left motor cortex (resp.541

z=44 and z=60), namely the brain regions supposedly impacted by the stroke542

episode.543

To go one step further, we quantified the spatial asymmetry of the haemo-
dynamic structure within each individual. To this end, we computed the inter-
hemispheric haemodynamic `2 distance (IHD) between the HRF dilation parame-
ter vectors estimated over the left and right hemispheres in laterally matched brain
regions, respectively denoted δL and δR. This intra-subject distance is defined as
follows:

IHD(δsR, δ
s
L) = ‖δsL − δsR‖2, ∀s = 1, . . . , 24.

A zero-valued distance thus reflects a perfect symmetry of the estimated haemo-544

dynamic responses. In contrast, we expect to uncover asymmetry between haemo-545

dynamic territories respectively located in the ischemic and normal hemispheres.546

By pulling down the values of IHD across all individuals within each group (HC547

vs SP), we estimated the IHD distributions for the two populations of interest, as548

shown in Fig. 10(c). In the latter graph, we illustrate how different the two cohorts549

are in terms of neurovascular asymmetry. The group of 24 stroke patients exhibit550

larger haemodynamic differences between the ischemic and normal hemispheres.551

We statistically assessed such difference between the two distributions using a two-552

sample Kolmogorov-Smirnov test and found a significant p-value (p = 3.8 10−4).553

This quantification thus confirmed preliminary visual assessment. We report this554

p-value with a temporal regularization defined such as λf = 0.001. However, we555

obtain similar p-value results when using the 5 others levels of temporal regular-556

ization (λf ∈ [0.001, 0.9]).557

In summary, this analysis has shown that the proposed framework is instrumen-558

tal in discriminating healthy subjects from stroke patients, both at the individual559

and group-levels, using haemodynamic features and an neurovascular asymmetry560

index, which allowed us to localize pathological haemodynamic delays.561
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4.2. Middle-age vs elderly subjects classification562

In the previous part, we performed group-level statistical analysis in the clas-563

sical way. In this part, we intend to assess the prediction power of the proposed564

framework in order to classify middle-age vs elderly subjects using standard ma-565

chine learning tools (Pedregosa et al., 2011). The reason for choosing this classi-566

fication task between middle-age and elderly individuals lies first in the fact that567

multiple studies have pointed out the modification of the haemodynamic system568

with healthy aging (Ances et al., 2009; Li et al., 2018; West et al., 2019) and569

second in a regain of interest in the literature for brain age analysis using multi-570

ple neuroimaging techniques (Engemann et al., 2020). We thus intend to assess571

whether our approach is able to capture the effect of aging and if so, whether the572

haemodynamic features reflect more brain aging compared to the neural activity573

signals.574

For that purpose, we still relied on the UK Biobank database as in the previous575

experiments as the short TR (TR=0.735 s) in the rs-fMRI data set (6 min long)576

provides a suitable setting to investigate the HRF evolution with aging. Here, we577

selected 459 healthy subjects of both genders and divided them in two balanced578

groups: the middle-age (MA: 40-44 yo) and elderly (E: 64-70 yo) groups. We579

applied the decomposition (6) to each subject using 5 levels of temporal regular-580

ization (λf ∈ [0.001, 0.9]), K = 20 temporal components and we used the same581

brain parcellation of M = 96 ROIs as before to segregate the HRFs in space.582

First, we analyzed the haemodynamic differences between the two populations583

by computing a two-sample t-test on the distributions of dilation parameters. We584

used the temporal regularization parameter λf = 0.675 which is the one selected585

through cross validation for our classification model in the subsequent paragraph.586

The results were first quantified with t-scores to compare the dilation parame-587

ters in each region. The results are presented in Fig. 11(a) and illustrate large588

differences between the two populations. More specifically, higher dilation param-589

eters or shorter TTP were retrieved in middle-age subjects as the t-scores were590

mostly positive for the comparison δ̄MA
m > δ̄Em. This is notably visible in the Willis591

Polygon, temporal cortices, angular gyri, the medial prefrontal cortices and the su-592

perior frontal cortices. To assess the statistical significance, we also computed the593

log-transformed p-values, i.e. − log10 pval (shown in Fig. 11(b)), after correcting594

for multiple comparisons using the Bonferroni correction across the M = 96 ROIs.595

We noticed first that a large majority of significant brain regions appear bilaterally596

indicating larger haemodynamic dilation parameters or shorter TTPs in younger597

individuals. Second, the negative t-values reported in the cerebellum are not sta-598

tistically significant after correcting for multiple comparisons.599

Then, in an attempt to be exhaustive we constructed three different logistic600

regression (LR) models based either on the individual (i) neural activity signals,601
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(ii) HRF shapes and (iii) haemodynamic dilation parameters. We did not consider602

the spatial activity maps as input features in these models as they do not permit603

to perform dimension reduction. We trained these LR models using the Scikit-604

Learn software (Pedregosa et al., 2011) to predict the age label for each subject605

(1 for the elderly people, 0 for middle-aged people). A `2-norm regularization was606

used in the estimation of the LR model parameters with an hyper-parameter β >607

0. We grid-searched the temporal regularization parameter λf and the classifier608

hyper-parameter β (see Fig. S3 in Supplementary Materials for the stability of the609

setting). We chose the accuracy as the classification metric and cross-validated the610

score to provide an estimation of the generalization error with a 10 times repeated611

stratified 4-fold split.612

Fig. 12(a) shows that the haemodynamic properties have an improved predic-613

tion power to discriminate the age compared to the neural activation signals (i.e.614

temporal components). The latter actually reaches an average accuracy score of615

0.557, whereas the mean accuracy associated with the HRF shape and haemo-616

dynamic dilation parameter estimates respectively goes up to 0.741 and 0.743.617

Also, the distribution of accuracy scores across trials is more concentrated for the618

HRF dilation parameters compared to the whole HRF shape. This is likely due619

to the dimension reduction operated to extract this parameter which fluctuates620

less than the complete profile of the haemodynamic response. This analysis thus621

demonstrates that our decomposition is able to capture the brain age based on622

neurovascular information. However, due to the large between-subject variability623

even within each class of age the neural activation signals do not define a good624

feature for the brain age prediction. Complementary to that, Fig. 12(b) illustrates625

the progression of the mean accuracy score with the number of individuals in-626

volved in the LR model and clearly depicts that a plateau is reached around 459627

subjects (the total size of the sampled cohort) both for the haemodynamic dila-628

tion parameter. Also, one can see the rapid progression of the mean accuracy with629

the number of individuals for the LR model based on haemodynamic properties630

compared to the one constructed from the neural activation signals.631

Overall, this experiment has permitted to demonstrate that haemodynamic632

features are a good biomarker of the normal aging, as already reported in the lit-633

erature (Grady and Garrett, 2014; West et al., 2019). Moreover, it highlighted that634

the inter-hemispheric asymmetry in neurovascular coupling brings key information635

to discriminate middle-age from elderly people.636

5. Discussion637

Separating vascular and neuronal components on fMRI BOLD signals. Both neu-638

ral and non neural factors such as glial cell activity, cerebral energy metabolism and639

the cerebral vasculature contribute independently and synergistically to the fMRI640
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BOLD signal. A mis-estimation of individual and regional HRFs may lead to an in-641

terpretation that haemodynamic changes as neural variations could have consider-642

able implications for the interpretability and reliability of findings in fMRI studies.643

Previous literature supports the notion that HRF variability corrupts fMRI data644

analysis (Rangaprakash et al., 2017, 2018; Yan et al., 2018). Deconvolution-based645

approaches such as the one presented here allows discrimination of cerebrovascular646

components from neural activations and minimizes the confound of HRF variabil-647

ity in the exploration of brain physiology, functional connectivity and cognitive648

processes.649

In this work, we developed a new algorithm that proposed the joint estimation650

of the HRF and neural activation signal as a semi-blind deconvolution multivariate651

problem in a paradigm-free setting. Synthetic and real resting-state fMRI data652

allowed us to demonstrate that this approach is able to faithfully capture the653

individual’s haemodynamic response function and intrinsic functional networks654

with low intra-subject variability and relative minimal impact of hyper-parameters655

on the reliability of HRF estimation. Aims of this paper were also to verify that656

these methodological developments have practical impacts as related to detection657

and classification. Further demonstrations using well defined research protocols658

will be required to refine the tool for use in clinical applications.659

Whole brain analysis of haemodynamic properties. Generally, supervised HRF es-660

timation methods explain the observed BOLD signal by focusing on a set of brain661

areas (e.g. visual, auditory and sensorimotor cortices) that are typically involved662

in a specific activation paradigm (Goutte et al., 2000; Marrelec et al., 2003; Handw-663

erker et al., 2004; Lindquist and Wager, 2007; Vincent et al., 2010; Pedregosa et al.,664

2015). To the best of our knowledge, the proposed approach is the first time a665

particular method is proposed to perform whole brain analysis of haemodynamic666

properties using resting-state fMRI data in a paradigm-free manner. It should667

be noted that we used a common brain parcellation – the Havard-Oxford proba-668

bilistic atlas (Desikan et al., 2006) – across all individuals, to ensure group-level669

analysis and facilitate between-group comparisons. As such, the major findings we670

reported on the asymmetries in haemodynamic features between stroke patients671

and healthy controls, on one hand and the differences related to normal aging on672

the other hand, are dependent on this atlas and could slightly differ with another673

parcellation. This question is left for future research.674

Interest for analyzing normal aging. Regional variability in the HRF is partly675

dictated by the size of surrounding blood vessels (Handwerker et al., 2004; Havlicek676

and Uludağ, 2020). Vascular aging is known to cause progressive deterioration in677

the cellular structure of the blood vessel wall, with the development of arteriole678
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tortuosity and reduction in capillary density that undoubtedly impact both resting-679

state cerebral blood flow and the ability to adjust it during neuronal activity. In680

that context, as concordant with various imaging studies on aging (Bangen et al.,681

2009), our algorithm has proven its sensitivity to classify middle-age vs elderly682

subjects on the basis of HRF parameters. Indeed, using recent rs-fMRI data683

findings obtained on the large-scale CamCAN task-fMRI data set (Shafto et al.,684

2014) our study confirmed a clear reductive process of the neurovascular coupling685

in elderly people in multiple brain areas (occipital, temporal and frontal regions).686

Beyond the age-related statistical comparison, we also validated on a large687

cohort (459 subjects) the estimated haemodynamic features as potential predictors688

of brain age in a supervised classification task. Importantly, we demonstrated that689

the HRF features and particularly the dilation parameter achieves better accuracy690

scores (0.74) compared to the neural activation signals (0.56, just above chance691

performance). This confirms that these neural signatures are much more variable692

across individuals and even groups. This kind of study was made possible due693

to the fast convergence of our algorithm and its numerous code optimizations.694

The underlying hemolearn Python package is open source6 and available to the695

neuroimaging community for the sake of reproducible science.696

Interest for monitoring patients after a stroke episode. Our approach, using the697

asymmetry index, has also proven its utility to individually detect, in patients with698

a history of stroke, very slow haemodynamic delays in a restricted brain territory699

probably related to local ischemic tissue consecutive to stroke. This finding is per-700

fectly consistent with the literature (Altamura et al., 2009) showing that the delay701

in peak latency that arises as patients advance from the acute to the subacute702

stroke phase is related to the deterioration of cerebral haemodynamics. Conse-703

quently, remodeling the fMRI haemodynamic response function in stroke patients704

may optimize the detection of BOLD signal changes. MRI is of course one of the705

most powerful diagnostic tools in contemporary clinical medicine. However, in the706

acute episode of stroke, diffusion-weighted MRI and perfusion imaging (e.g. ASL)707

remain the reference imaging modalities to perform the diagnosis in a noninvasive708

way. In the post-acute period, rs-fMRI acquisition equipped with the proposed709

method would be extremely valuable to measure as a prediction of subsequent re-710

covery of function as it does not require patient’s engagement in an experimental711

paradigm.712

Perspectives for applications. Such findings bring new opportunities for the ex-713

ploration of brain plasticity and pathogenesis in humans. In this way, even older714

6code available at https://github.com/hcherkaoui/hemolearn.
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adults in relatively good health may have undetected, clinically silent vascular715

pathology and ischemic brain changes such as silent stroke (D’Esposito et al., 2003)716

. As this could affect neurovascular coupling, it is of critical interest to assess for717

cerebrovascular function and to consider vascular risk factors in the pathogenesis718

or exacerbation of age-related degenerative diseases like Alzheimer. The current719

challenge for diagnostic imaging methods is to find metrics that capture relevant720

information or biomarkers. Such works on haemodynamic deconvolution, which721

are not yet used routinely, might help uncover these biomarkers.722

This present study constitutes a proof of concept in terms of interest and fea-723

sibility of the proposed approach. However, many other applications on clinically724

well-characterized populations could be undertaken to improve and demonstrate725

its robustness. Aside from stroke and neurological vascular diseases, vascular risk726

factors are associated with an increased risk of epilepsy and could represent a siz-727

able proportion of cryptogenic cases of epilepsy (Ogaki et al., 2020). Although728

abnormal neural activities generating interictal epileptiform discharges provoke729

haemodynamic changes and BOLD activation, (Bénar et al., 2006; Zijlmans et al.,730

2007) standard MRI scans fail to visualize epileptic source precisely. Some au-731

thors have shown that standard HRF in the GLM framework can introduce errors732

on the extension and localization of activating brain areas. However, modeling733

haemodynamic response function to permit some flexibility in the HRF shape im-734

proves sensitivity of fMRI data to delineate epileptogenic area (Storti et al., 2013).735

This improvement is particularly valuable in epileptic patients with drug-resistant736

focal seizures, where resection of the epileptogenic brain area remains the best737

therapeutic outcome. In that context, approaches that employ haemodynamic de-738

convolution – as presented in this paper – promise a more faithful investigation of739

the cerebral pathology.740

Limitations and extensions. Some limitations of our tool do exist. First, there741

are free parameters in the proposed modeling (K, λf , M) that need to be set742

in an appropriate manner. We explored two model selection criteria for setting743

K, namely the R2 score and the determinant of the correlation matrix between744

the neural activation signals. Based on these metrics, we found a fair compromise745

between accuracy and model complexity for K = 20. We thus constantly used this746

value hereafter in the individual decomposition. Of course, other model selection747

approaches might be envisaged to optimize K and λf using for instance a (widely)748

Bayesian information criterion (Neath and Cavanaugh, 2012; Watanabe, 2013), or749

the log-likelihood in the standard classical framework. The selected model would750

thus be the one associated with the lowest BIC value or largest log-likelihood. More751

recently, the concept of bi-level optimization (Bennett et al., 2006) has emerged to752

set hyper-parameters. In this case, an upper-level cost function (e.g. a supervised753

training score on the features of the decomposition) has to be minimized with754
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respect to the unknown hyper-parameters while staying intrinsically connected to755

the lower-level problem, namely the multivariate decomposition. Because of the756

extra-computation cost required by these approaches, such aspects are beyond757

the scope of this paper. Second, the proposed regional analysis is conditioned by758

the parcellation atlas (and the value of M). It would be interesting to deepen this759

research by testing the reproducibility of the tool with some atlas variations and the760

creation of an atlas using subject-specific assessment of the cerebral vasculature.761

Third, to recover more structured spatial maps, an advanced regularization762

model based on TV-elastic net (de Pierrefeu et al., 2017) or structured sparsity (Je-763

natton et al., 2012; Baldassarre et al., 2012) could be used in space while keeping764

the same algorithmic structure. Recent progress in solving the TV proximity op-765

erator (Cherkaoui et al., 2020) for instance could also be directly plugged into766

the current algorithm. Fourth, as in standard multivariate data-driven methods,767

the inter-subject comparison of spatial maps is currently difficult in the proposed768

formulation. In the same spirit as group-ICA (Calhoun et al., 2009), canonical769

ICA (Varoquaux et al., 2010) or multi-subject dictionary learning (Varoquaux770

et al., 2011), the current within-subject decomposition could be extended to the771

group-level to become more stable. One possibility would be to impose the same772

spatial maps across all individuals like in Calhoun et al. (2009) while another more773

flexible approach would permit spatial variations around a group-level spatial tem-774

plate Varoquaux et al. (2011). In this context, the neural activation signals could775

remain subject-specific with large fluctuations both in timings and magnitudes.776

This kind of extension will be investigated in the near future.777

Fifth, we experimentally observed both on numerical simulations and real fMRI778

data (ADHD cohort (Milham et al., 2012)) that a TR larger than 1s may be779

detrimental to a precise estimation of the haemodynamic dilation parameter. For780

that reason, all analyses were performed on fMRI acquisitions with short TR. This781

type of data is usually collected using simultaneous multi-slice imaging (Feinberg782

and Setsompop, 2013; Hesamoddin et al., 2019) to keep this parameter below 1s.783

Sixth, because the proposed HRF model relies solely on a time dilation pa-784

rameter, its magnitude is fixed and the fluctuations of the BOLD signal across785

the brain are thus captured through the neural activity atoms (zk)Kk=1 on one786

hand and the spatial maps (uk)Kk=1) on the other hand. However, the norm787

of the spatial maps being constrained, the real BOLD signal amplitude is cap-788

tured by the neural activation signals. A recent work Tsvetanov et al. (2019)789

has shown that the resting-state fluctuation amplitude is crucial to predict brain790

age in healthy subjects. One possible enhancement of the current model would791

be to add a magnitude parameter to each HRF. In that case, we should fix the792

scale ambiguity issue by setting the amplitude of the temporal atoms (zk)Kk=1.793

This modification would significantly increase the computational complexity due794
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to the calculation of the proximal operator associated with the new regulariza-795

tion term gz((zk)k) = λ
∑K

k=1

(
‖∇zk‖1 + I‖zk‖∞=α

)
. Last, thus far we have used796

the canonical HRF as the reference shape in vref . This setting could be easily797

updated to perform investigations in specific populations (e.g. newborns) where798

the true haemodynamic response function is known to deviate from the canonical799

shape (Arichi et al., 2012).800

6. Conclusion801

In this paper, we have presented a semi-blind deconvolution approach to jointly802

estimate the haemodynamic response function and the neural activity signals803

across the whole brain. As the proposed methodology is paradigm-free, it en-804

ables the analysis of resting-state fMRI data in an semi-supervised manner as the805

regularization parameters (K,λf ) may be tuned using a trade-off between model806

accuracy and complexity. Beyond the model validation on synthetic and real fMRI807

data, we have demonstrated the interest of the proposed approach in two appli-808

cations in neuroscience. Both aimed at characterizing cerebral haemodynamic809

delays in specific populations, namely stroke patients and elderly people by con-810

trasting them with healthy and younger controls. Most importantly, we proposed811

an haemodynamic asymmetry index to lateralize the stroke episode while con-812

firming the presence of a prolonged haemodynamic delay in these patients. We813

also demonstrated that haemodynamic properties are predictable of brain age. Fi-814

nally, this new framework opens the door to new research avenues for functional815

connectivity analysis based on the neural input signals instead of the BOLD sig-816

nal themselves. In contrast to existing techniques (Wu et al., 2013), our approach817

would be less biased by a constant haemodynamic response shape across the whole818

brain.819
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K. E. Stephan, S. Frässle, Hemodynamic modeling of aspirin effects on bold838

responses at 7t., medRxiv (2020).839

K. L. West, M. D. Zuppichini, M. P. Turner, D. K. Sivakolundu, Y. Zhao, D. Ab-840

delkarim, J. S. Spence, B. Rypma, BOLD hemodynamic response function841

changes significantly with healthy aging., Neuroimage 188 (2019) 198–207.842

D. Asemani, H. Morsheddost, M. A. Shalchy, Effects of ageing and alzheimer843

disease on haemodynamic response function: a challenge for event-related fMRI.,844

Healthcare Technology Letters 4 (2017) 109–114.845

K. J. Friston, P. Fletcher, O. Josephs, A. Holmes, M. D. Rugg, R. Turner, Event-846

related fMRI: characterizing differential responses., Neuroimage 7 (1998) 30–40.847

P. Ciuciu, J.-B. Poline, G. Marrelec, J. Idier, C. Pallier, H. Benali, Unsupervised848

robust nonparametric estimation of the hemodynamic response function for any849

fMRI experiment., IEEE transactions on Medical Imaging 22 (2003) 35–51.850

M. A. Lindquist, T. D. Wager, Validity and power in hemodynamic response851

modeling: a comparison study and a new approach., Humain brain mapping 28852

(2007) 764–784.853

F. Pedregosa, M. Eickenberg, P. Ciuciu, B. Thirion, A. Gramfort, Data-driven854

HRF estimation for encoding and decoding models., NeuroImage (2015) 209–855

220.856

C. Goutte, F. A. Nielsen, L. K. Hansen, Modeling the haemodynamic response857

in fMRI using smooth FIR filters., IEEE transactions on Medical Imaging 19858

(2000) 1188–1201.859

T. Vincent, T. Rissern, P. Ciuciu, Spatially adaptive mixture modeling for analysis860

of fMRI time series, IEEE transactions on Medical Imaging 29 (2010) 59–74.861

L. Chaari, L. Forbes, T. Vincent, P. Ciuciu, Hemodynamic-informed parcellation862

of fMRI data in a joint detection estimation framework, in: proceedings of863

28



International Conference on Medical Image Computing and Computer-Assisted864

Intervention, volume 15, pp. 180–188.865

G. H. Glover, Deconvolution of impulse response in event-related bold fMRI.,866

Neuroimage 9 (1999) 416–429.867

D. R. Gitelman, W. D. Penny, J. Ashburner, K. J. Friston, Modeling regional868

and psychophysiologic interactions in fMRI: the importance of hemodynamic869

deconvolution., Neuroimage 19 (2003) 200–207.870

L. Hernandez-Garcia, M. O. Ulfarsson, Neuronal event detection in fMRI time871

series using iterative deconvolution techniques., Magnetic resonance imaging 29872

(2011) 353–364.873

C. Caballero-Gaudes, F. I. Karahanoglu, F. Lazeyras, D. Van De Ville, Structured874

sparse deconvolution for paradigm free mapping of functional MRI data., in:875

International Symposium on Biomedical Imaging, volume 9, pp. 322–325.876

I. Khalidov, J. Fadili, F. Lazeyras, D. Van De Ville, M. Unser, Activelets: Wavelets877

for sparse representation of hemodynamic responses., Signal processing 91 (2011)878

2810–2821.879

F. I. Karahanoğlu, C. Caballero-gaudes, F. Lazeyras, D. Van De Ville, Total activa-880

tion: fMRI deconvolution through spatio-temporal regularization., NeuroImage881

73 (2013) 121–134.882

G. R. Wu, W. Liao, S. Stramaglia, J. R. Ding, H. Chen, D. Marinazzo, A blind883

deconvolution approach to recover effective connectivity brain networks from884

resting state fMRI data., in: Medical Image Analysis, volume 17, pp. 365–374.885

H. Cherkaoui, T. Moreau, A. Halimi, P. Ciuciu, Sparsity-based Semi-Blind De-886

convolution of Neural Activation Signal in fMRI., in: IEEE International Con-887

ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1323–1327.888
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Figure 4: Top (a): deconvolution with fixed HRF. The top row shows the two true spatial
maps and their accurate estimates. The bottom row shows on the left the true HRF shape
and the filter used for deconvolution. In the middle and on the right hand side, the true and
estimated neural temporal profiles are depicted in blue and orange, respectively for the two
activating regions (first atom for map 1, second atom for map 2). The average BOLD time series
over the four activating pixels is shown in black and the gray shading is used to report on the
variability across activating pixels. Bottom (b): Semi-blind deconvolution with learned
HRF. The top row shows the two true spatial maps and their accurate estimates. The bottom
row shows on the left the true HRF shape, the initial filter used and the final HRF estimate
for semi-blind deconvolution. In the middle and on the right hand side, the true and estimated
neural temporal profiles are depicted in blue and orange, respectively for the two activating
regions (first atom for map 1, second atom for map 2). The average BOLD time series over the
four activating pixels is shown in black and the gray shading is used to report on the variability
of BOLD signals across activating pixels.
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Figure 5: Model selection: compromise between model complexity and accuracy. (a):
Evolution of the R2 score as a function of the number of spatio-temporal atoms K in model (5)
ranging from 2 to 50. (b): Evolution of the determinant of the correlation matrix ΣK between
neural activation signals as a function of K ranging in the same interval as mentioned earlier.
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Figure 6: Spatial decomposition of rs-fMRI data for K = 20. From top to bottom and left
to right, the twenty labeled spatial maps are shown using the three orthogonal views (coronal
on the left, sagittal in the middle and axial on the right). The labeling is arbitrary and the
coordinates are given in the MNI space.
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Figure 7: Single subject results from rs-fMRI semi-blind deconvolution analysis..
Top Row (a): Neural activation signal ẑ10 (left) and corresponding spatial map (axial views)
û10 (right), mostly involving activated voxels in the visual cortex. Second row (b): Neural
activation signal ẑ2 (left) and corresponding spatial map (axial views) û2 (right), mostly in-
volving activated voxels in the default mode network (DMN). Third row, left (c): Fastest
haemodynamic region. Fastest HRF estimate v̂δf (left) located in the middle temporal gyrus
as shown on the parcel mask Θf (right). Third row, right (d): Slowest haemodynamic
region. Slowest HRF estimate v̂δs (left) located in the frontal orbital cortex as shown on the
parcel mask Θs (right). (Bottom row (e): Voxelwise time courses. Estimate of the neural
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39



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

-0.024

0.45 0.38

0.27 0.19 0.59

-0.026 0.64 0.41 0.48

0.39 0.2 0.28 0.28 0.28

-0.31 -0.19 0.0045 0.24 0.1 -0.2

0.14 0.41 0.42 0.27 0.58 0.44 0.041

-0.26 0.4 0.29 0.52 0.45 -0.1 0.28 0.29

0.21 -0.08 -0.15 -0.34 -0.33 0.16 0.054 -0.046 -0.28

-0.040.000650.14 0.22 0.26 0.071 0.44 0.37 0.2 -0.088

-0.071-0.098 -0.15 -0.42 -0.21 -0.083 0.26 0.2 -0.14 0.59 0.25

0.43 0.35 0.59 0.29 0.041 0.19 -0.12 -0.12 0.044 0.096 -0.21 -0.28

-0.081 0.22 0.074 0.13 0.14 0.073 0.33 -0.0033 0.19 0.41 -0.19 0.29 0.21

0.16 0.21 0.39 0.4 0.49 0.65 0.29 0.42 0.14 0.02 0.46 0.064 0.15 0.15

0.54 -0.084 0.07 0.049 -0.31 0.02 0.081 -0.19 -0.12 0.62 0.0025 0.26 0.42 0.27 -0.035

0.27 0.31 0.13 -0.17 0.16 0.42 -0.03 0.21 -0.34 0.41 0.17 0.35 0.24 0.11 0.42 0.21

0.28 0.33 0.44 0.46 0.4 0.52 0.37 0.54 0.32 0.29 0.37 0.14 0.32 0.36 0.6 0.33 0.42

0.61 0.024 0.13 0.15 -0.034 0.14 -0.0066-0.13 -0.091 0.35 0.0037-0.015 0.38 0.12 0.085 0.69 0.38 0.35

0.28 0.27 0.029 -0.13 -0.26 0.21 -0.23 0.22 -0.074 0.51 0.015 0.4 0.19 0.06 -0.063 0.46 0.31 0.28 0.18

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
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Figure 9: Within-subject vs between-subject analysis of the haemodynamic variabil-
ity. The box plots show respectively in blue, orange and green the distribution of WS(δ̂siT1

, δ̂siT2
)

for all subjects (i = 1, . . . , 100), BS(δ̂siT1
, δ̂
sj
T1

) and BS(δ̂siT2
, δ̂
sj
T2

) with i 6= j. These distributions

are assessed for 5 levels of temporal regularization (λf ∈ {10−3, 0.22, 0.45, 0.67, 0.9}) and remain
stable. Statistical analysis (paired t-test) was conducted to assess the significance of the differ-
ence between the mean of the within- and between-subject `22 norm distributions. Significant
differences are marked with a ∗.

41



(a)

L R

z=6

L R

z=22

L R

z=38

L R

z=54

L R

z=70 -10%

+10%
L R

z=-10

(b)

L R

z=6

L R

z=22

L R

z=38

L R

z=54

L R

z=70 -10%

+10%L R

z=-10

(c)

0.0 0.2 0.4 0.6 0.8 1.0

IHD

0

2

4

6

8

10

12

N
u
m

b
e
r 

o
f 

su
b
je

ct
s

p=3.8e-04

Healthy

Stroke

Figure 10: Haemodynamic discrimination between stroke patients (SP) and Healthy
Controls (HC). Top (a)- Middle (b): Normalized haemodynamic dilation parameter maps
in a healthy control ans stroke patient (St), respectively. The maps have been respectively

normalized by the within-subject mean value (δ̄s = 1
M

∑96
m=1 δ̂

s
m) computed for each subject

s = HC, St. shortest TTP is reached in the visual cortex. Larger haemodynamic dilation
parameters maps and thus shorter TTPs are retrieved in healthy condition (δ̄HC = 0.87 > δ̄SP =
0.77). Stronger fluctuations around the mean are observed in the pathological condition as we
reported a larger difference between the maximum and the minimum TTP (∆SP

TTP = 2.25 s) for
the stroke patient than for the Healthy Controls (∆HC

TTP = 1.25 s). Bottom (c): Histograms
of the normalized inter-hemispheric haemodynamic distance (IHD) between dilation parameters

computed over the left and right hemispheres (i.e. δ̂L and δ̂R, respectively) in HC (blue) and
SP (red), respectively. The significant reported p-value (p = 3.8 10−4), which is associated with
a two-sample Kolmogorov-Smirnov test between the two distributions, demonstrates that the
neurovascular asymmetry in SP is significantly different and actually more spread compared to
HC.
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Figure 11: Statistical analysis of the haemodynamic differences between middle-age
(MA) and elderly (E) subjects. (a): T-scores associated with the two-sample t-test be-
tween the distributions of haemodynamic dilation parameters in middle-age (MA) and elderly
(E) subjects (null hypothesis H0 : δ̄MA

m = δ̄Em, ∀m = 1, . . . ,M). Note that most of the T-values
are positive meaning that δ̄MA

m > δ̄Em most often. (b): Thresholded statistical map (− log10 pval)
associated with a two-sample t-test performed to assess the mean difference in terms of haemody-
namic dilation parameter between the middle-age and elderly subjects. The p-values were Bon-
feronni corrected for multiple comparisons performed across all ROIs (M = 96). The map (axial
slices) was thresholded at a significance level of α = 0.05 corresponding to pval = 1.65 on the
color bar.
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Figure 12: Accuracy score for classifying middle-age vs. elderly subjects (459 indi-
viduals sampled from the UK Biobank database). (a): The prediction was performed by
pulling individual features either based on (i) the estimated neural activation signals (ẑk)20k=1, (ii)

HRF shape estimates (v̂δm)96m=1 or (iii) the haemodynamic dilation parameters (δ̂)96m=1. From
top to bottom, the distribution of the classification scores is shown from for the predictive
features (i)-(iii), respectively. The best accuracy scores (average 0.74) are reached using the
haemodynamic parameters and the smallest variability in the prediction using specifically the
dilation parameter estimates. (b): Learning curve of accuracy scores as a function of the number
of individuals (middle-age vs elderly subjects) used for the training stage both for the haemo-
dynamic dilation parameter (blue curve) and the temporal components (orange curve). As a
plateau is reached for 459 people, we presented the corresponding performances in panel (a).
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7. Supplementary material1081

7.1. Gradient derivation w.r.t the HRF dilation parameter1082

In this subsection, we detail the gradient derivation of our cost-function from1083

Eq. (6) – denoted J hereafter – w.r.t δ. Let us define Ã = (ãj)
P
j=1 ∈ RP×T̃ such as1084

Ã =
∑K

k=1 u
>
k zk. Moreover, we introduce θm the set of indices of voxels belonging1085

to the mth region of the brain parcellation.1086

J(δ) =
M∑
m=1

∑
j∈θm

1

2
‖vδm ∗ aj − yj‖

2
2 + CU ,Z

with CU ,Z a constant that does not depend on δ. We aim to compute the gradient
of J relative to the value of the parameters δ:

∇δJ(δ) =

[
∂J(δ)

∂δ1
, ...,

∂J(δ)

∂δM

]>
∈ RM (8)

To this end, we proceed componentwise:

∂J(δ)

∂δm
=

1

2

∑
j∈θm

∂ ‖vδm ∗ aj − yj‖
2
2

∂δm

=
∑
j∈θm

(
∂(vδm ∗ aj)

∂δm

)>
(vδm ∗ aj − yj)

=

(
∂vδm
∂δm

)>(∑
j∈θm

a>j ∗ (vδm ∗ aj − yj)

)

=

(
∂vδm
∂δm

)>(
vδm ∗

∑
j∈θm

a>j ∗ aj −
∑
j∈θm

a>j ∗ yj

)
︸ ︷︷ ︸

∇vδm J

. (9)

Note that
∑

j∈θm a
>
j ∗aj and

∑
j∈θm a

>
j ∗yj do not depend on δm, thus they can be

pre-computed beforehand. The remaining step is to compute
∂vδm
∂δm

. We remind here
that vδm is the discretization of the continuous function ∀t ∈ R+, vδm(t) = v(δmt).
Thus:

∀t ∈ R+,
∂

∂δ
v(δt) = tv′(δt)

with v′ the first-order derivative of function v. Now, taking the definition of v(·)
from (Friston et al., 1998), we get:

∀t ∈ R+, v(t) =
ta−1e−t

Γ(a)
− ct

b−1e−t

Γ(b)

1



where a, b and c are constants which are given in (Friston et al., 1998). A straight-
forward computation gives us for t ∈ R+:

v′(t) =

(
a− 1

t
− 1

)
ta−1e−δt

Γ(a)
− c

(
b− 1

t
− 1

)
tb−1e−δt

Γ(b)
(10)

∂

∂δ
v(δt) = tv′(δt) =

(
a− 1

δ
− t
)

(δt)a−1e−δt

Γ(a)
− c

(
b− 1

δ
− t
)

(δt)b−1e−δt

Γ(b)
(11)

The value of
∂vδm
∂δm

can thus be computed by taking the discrete time points1087

corresponding to the sampling rate of the BOLD signal and the length of the1088

considered HRF. By replacing its value in the computation of ∂J(δ)
∂δm

from Eq. (9),1089

we obtain a closed form expression for the gradient of J w.r.t the HRF dilation1090

parameter δ i.e. ∇δJ(δ).1091

7.2. Haemodynamic parameter estimate stability across various levels of temporal1092

regularization1093

A well known limitation of regularization methods based on the l1-norm such1094

as TV is that large coefficients – here in (zk)Kk=1 – are shrunken toward zero (Tib-1095

shirani, 1996). Thus, the magnitude of the estimated neural activation signals1096

(zk)Kk=1 is biased. Moreover, this bias is tightly linked to the choice of the reg-1097

ularization parameter λf . Indeed, the larger this parameter is, the more (zk)Kk=11098

are shrunken toward zero. To quantify this effect on our model, we applied the1099

spatio-temporal decomposition with M = 96 ROI and K = 20 and various tem-1100

poral regularization level λf on the cohort of S = 459 subjects sampled from the1101

UK Biobank resting-stage fMRI dataset used in Section 4.2. Fig. S1 reports the1102

grand average of the dilatation parameters1103

δ̄ =
1

MS

S∑
s=1

M∑
m=1

δ̂sm

and its variance with respect to the regularization parameter λf . We observed1104

that the HRF dilation parameters decrease with the temporal regularization level1105

– and thus the corresponding time-to-peaks increase with λf . This results from the1106

fact that the model with large regularization parameters only accounts for sharp1107

transition in the BOLD signal mean value, which are well approximated with fast1108

HRF.1109

This previous result entails that the haemodynamic delay estimated by our1110

model (6) may be biased. However, because there is a single temporal regular-1111

ization parameter, we expect that this bias impacts the whole brain uniformly.1112

To assess this shared effect on the estimated parameter, we observe the relative1113

variations of δm. Fig. S2 displays the value of δ̄m(λf ) relative to δ̄(λf ) for S = 4591114
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Figure S1: Evolution of the group-level grand average haemodynamic dilation param-
eter δ̄ as a function of the temporal regularization level λf ∈ [0, 1]. The solid blue line
reflects the decreasing evolution of δ̄ when λf → 1, where the value of δ̄ was spatially averaged
over the M = 96 parcels and across S = 459 subjects from the UK Biobank database. The
transparent blue shadow represents the standard deviation around the mean parameter δ̄. In
short, the larger λf , the smaller δ̄ and thus the larger the mean TTP.

subjects with three temporal regularization values λf ∈ {0.001, 0.5, 0.9} on the1115

MNI template. Precisely, for each regularization parameter and for each ROI m,1116

we compute δ̄m/δ̄ where δ̄m = 1
S

∑S
s=1 δ̂

s
m is the average value of the dilation pa-1117

rameter across subjects. While the magnitudes change when the regularization1118

changes, as seen in Fig. S1, the spatial structure of dilatation parameters in the1119

brain is globally preserved. Indeed, the normalized maps look very similar for any1120

choice of regularization parameter, showing that the relative variation between1121

each area of the brain are preserve while changing the hyper-parameter. Thus,1122

we can state that the haemodynamic response from the middle temporal gyrus is1123

faster than the response from the frontal orbital cortex, as described in Fig. 7. This1124

means that while the numerical value of the time-to-peak for a given area may not1125

be reflect the actual haemodynamic delay in the brain, the estimated coefficients1126

reflect the spatial variations of the delay between the different areas of the brain.1127

Moreover, these variations are stable with the choice of temporal regularization.1128

Hence, choosing a potentially suboptimal value for λf is of limited impact when1129

the primary interest is investigating abnormalities in the neuro-vascular coupling.1130

Finally, we assess the impact of the choice of λf on the prediction results from1131

Section 4.2. Fig. S3 reports the accuracy score for the logistic regression relatively1132

to the choice of regularization parameter β for the classification model and the1133

temporal regularization parameter λf for our deconvolution model. The accuracy1134

is almost not impacted by the choice of parameter λf , for any value of β. This1135

observation confirms that the choice of λf is not critical when studying the relative1136
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Figure S2: Group-level mean of haemodynamic dilation parameter maps normalized
by the grand average δ̄ = 1

MS

∑S
s=1

∑M
m=1 δ̂

s
m as a function of temporal regulariza-

tion (λf ∈ [0, 1]). From top to bottom, axial slices showing the group-level values of the ratio

between δ̄m = 1
S

∑S
s=1 δ̂

s
m and δ̄ in each parcel m for increasing values of λf ∈ {0.001, 0.45, 0.9}.

The spatial structure of the maps of haemodynamic dilation parameter remain remarkably stable
for various λf .

spatial structure of the haemodynamic delay and that our model can be used in1137

practical cases to evaluate abnormalities in the haemodynamic response.1138
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Figure S3: Evolution of the accuracy score w.r.t the logistic regression regularization parameter
β and the temporal regularization parameter λf . The accuracy score is not impacted by the
hyper-parameter λf , as moving this parameter mainly impact the magnitude of the estimated
delays and not its spatial structure.
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