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We perform a direct comparison between Kramers’ method in many dimensions, i.e., Langer’s theory, adapted
to magnetic spin systems, and a path sampling method in the form of forward flux sampling, as a means to
compute the collapse rates of metastable magnetic skyrmions. We show that a good agreement is obtained
between the two methods. We report variations of the attempt frequency associated with skyrmion collapse
by three to four orders of magnitude when varying the applied magnetic field by 5% of the exchange strength,
which confirms the existence of a strong entropic contribution to the lifetime of skyrmions. This demonstrates
that in complex systems, the knowledge of the rate prefactor, in addition to the internal energy barrier, is essential
in order to properly estimate a lifetime.
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The rate of decay of metastable states is a ubiquitous prob-
lem in physics. Thermal activation processes across an energy
barrier are found within fields as diverse as solid state physics
(Josephson junctions), chemical reactions, electrical circuit
theory (phase-locked loops), laser physics, and magnetization
switching in ferromagnets [1,2]. In the context of magnetic
data storage, information is stored in the form of 0 and 1 bits,
corresponding to uniformly magnetized grains pointing along
opposite directions. New challenges arise in the necessity
to design small magnetic structures capable of retaining a
given state against fluctuations for an average lifetime of 10
years at room temperature [3]. The ability to precisely predict
that lifetime is therefore crucial. The rate of such thermally
activated processes can be described by an Arrhenius law [4],

k = τ−1 = f0e−β�E , (1)

in which β = (kBT )−1, �E is the internal energy barrier,
and the prefactor f0, commonly referred to as the attempt
frequency, corresponds to a fundamental fluctuation rate. Es-
timating the stability of magnetic structures is often synony-
mous with accessing internal energy barriers, while assuming
a typical value of the prefactor in the GHz range [5–8]. Hence,
it is generally accepted that β�E ∼ 50 at room temperature
is a sufficient and necessary condition in order to achieve the
desired stability.

In recent years, magnetic skyrmions [9,10] have emerged
as potential candidates for spintronics applications in data
storage and logic devices [11–15]. Magnetic skyrmions are
particlelike spin textures carrying an integer topological
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charge. They are stabilized by the introduction of a char-
acteristic length scale in a system via competing interac-
tions. In particular, the existence of chiral skyrmions in
noncentrosymmetric bulk magnets and thin magnetic films
with broken inversion symmetry is made possible by the
Dzyaloshinskii-Moriya interaction (DMI) [16–19]. Isolated
skyrmions typically live on the ferromagnetic (FM) back-
ground as metastable excitations, but, under the effect of
thermal fluctuations, will eventually collapse back to the
uniformly magnetized state. The problem of their thermal
stability has so far yielded vastly different theoretical predic-
tions depending on the system of interest [20–22], particularly
concerning the order of magnitude of the attempt frequency.
Experimentally, extreme variations of f0 were observed for
small variations of the applied magnetic field in the case
of the decay of the skyrmion lattice [3]. The apparent lack
of consensus between the results is in part due to the dif-
ficulty in calculating the rate constants of rare events. For
structures with lifetimes well above the nanosecond range,
direct Langevin simulations [23], where one integrates the
stochastic dynamics of the spin system at each time step,
becomes unrealistic. In that case, a possible approach is the
use of a form of reaction rate theory [1,4], which allows a
direct calculation of the rate prefactor by considering details
of the fluctuations about the metastable state A and the saddle
point (SP) S along the reaction coordinate. Numerical im-
plementations of this method [24,25] combined with a path
finding scheme [26,27] have previously been used to obtain
lifetimes of magnetic skyrmions [21,22,28,29]. While this is
a computationally optimal solution, reaction rate theory is
based on many assumptions concerning the damping regime,
the energy landscape, and the density of states of the system.
Additionally, whenever we are faced with several mechanisms
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FIG. 1. Spin maps (zoomed) of the metastable state A and saddle
points S1 and S2 of the skyrmion collapse for (a) bz = 0, and (b) bz =
0.05. S1 corresponds to the skyrmion core centered on a lattice site,
while S2 corresponds to the core located at an interstitial point.

for a single process, we can only assume that the mechanisms
are independent in order for the rates to add up, which may
not hold. We are also faced with the questions of whether
higher-order saddle points should contribute to the rate, and
whether eigenmodes with small eigenvalues should be treated
as Goldstone modes. An alternative method is therefore re-
quired in order to validate previous results. For that purpose,
we turn to forward flux sampling (FFS) [30–34]. FFS is a path
sampling method that was initially developed to simulate rare
switching events in biochemical networks. It has since then
been applied to a wide range of rare event problems [33]. In
particular, it was used to obtain magnetization switching rates
in magnetic microstructures [35,36]. FFS was shown to be
significantly more efficient than brute force direct Langevin
simulations, while enabling an exploration of phase space
free from assumptions. In this Rapid Communication, we
demonstrate the application of the FFS method to the compu-
tation of the collapse rates of metastable magnetic skyrmions
far away from the system’s boundaries, and we compare the
results with predictions from Langer’s theory, as well as with
direct Langevin simulations whenever it can realistically be
achieved.

We simulate N magnetic spins of constant amplitude on a
two-dimensional square lattice. We use the classical Heisen-
berg model Hamiltonian,

E = −Jex

∑

〈i j〉
mi · m j −

∑

〈i j〉
Di j · (mi × m j )

− K
∑

i

m2
z,i − BzMs

∑

i

mz,i, (2)

where Jex is the strength of the isotropic exchange coupling,
Di j is the interfacial Dzyaloshinskii vector, K is the perpendic-
ular uniaxial anisotropy constant, Ms is the saturation magne-
tization, and Bz is the perpendicular applied magnetic field.
Exchange interactions are restricted to first nearest neigh-
bors. We introduce the reduced parameters d = |Di j |/Jex,
k = K/Jex, bz = BzMs/Jex, and we set (d, k) = (0.36, 0.4),
which allows the existence of small Néel skyrmions solutions
at zero field that only span over about seven lattice sites
in diameter [state A in Fig. 1(a)] [37]. At low temperature,

FIG. 2. Contributions to the change in free energy of the
skyrmion upon reaching the saddle points S1 and S2, as a function
of the applied field: (a) internal energy barrier, and (b) change in
configurational entropy at kBT300(=0.26Jex ).

the skyrmions do not exhibit translational invariance on the
lattice, i.e., no Goldstone modes of zero-energy fluctuations,
but instead experience pinning at particular lattice positions.
The applied field is oriented opposite to the skyrmion’s core
and has a destabilizing effect. The rest of the material pa-
rameters correspond to Pt/Co/AlOx samples [38–40] and are
given in the Supplemental Material (SM) [41]. We simulate
an infinite system by setting periodic boundary conditions,
which eliminates cases where the skyrmion escapes at the
edges [8,21,22,42,43].

We first relax the paths of minimum energy that lead to the
skyrmion collapse on the energy landscape, and identify the
saddle point along the path via the geodesic nudged elastic
band method with a climbing image [27,44]. The prefactor in
Eq. (1), f0, is then calculated via an extension of Kramers’
method [4] to many dimensions, namely, Langer’s theory for
the decay of metastable states [45] adapted to magnetic spin
systems [1,21,46]. The theory is set in the intermediate-to-
high damping regime. It yields no temperature dependence of
f0 if there are no Goldstone modes, or the same number of
Goldstone modes at A and S. Equation (1) may be rewritten in
terms of the change in Helmholtz free energy �F ,

k = f ′
0e−β�F , (3)

where f ′
0 is a new prefactor, and �F = �E − T �S. �S cor-

responds to the change in configurational entropy undergone
by the system upon reaching the saddle point. Details on the
calculation of f0 and �S can be found in Refs. [21,41]. Note
that �S is defined for stable modes of fluctuations, whereas f0

takes into account both stable and unstable contributions. We
report two distinct collapse mechanisms. In one case, which
we refer to as mechanism 1, the skyrmion shrinks in size while
its core coincides with a lattice site, and the core spin flips
past the saddle point [21]. Alternatively, if mechanisms 2 is
realized, the skyrmion core may shift to an interstitial posi-
tion before uniformly shrinking [27]. These two mechanisms
involve distinct saddle points, that we respectively refer to as
S1 and S2 (Fig. 1). S2 is found above S1 on the energy surface,
by advancing along the eigenbasis coordinate associated with
a translation mode. If the translational modes at the saddle
points are not Goldstone modes, S1 and S2 should be treated
as distinct states associated with different activation rates,
namely, k1 and k2. When the metastable skyrmion is pinned at
an interstitial position, the realization of mechanism 1 requires
the core to first shift onto a lattice site [Fig. 1(b)]. The way the
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FIG. 3. Illustration of the FFS method, where the order param-
eter defining the interfaces {λi} between A (metastable skyrmion)
and B (FM state) is chosen as the decreasing size of the skyrmion.
(a) First simulation to compute the rate of crossing of λ0. (b) Trial
runs at subsequent interfaces.

relaxed skyrmion sits on the lattice depends on its equilibrium
size and its commensurability with the underlying lattice, such
that there exists only one type of stable skyrmion state per
field value, although the skyrmion can be indistinguishably
located at either of the N possible sites. S1 is a first-order
saddle point, with a single unstable mode corresponding to the
breathing of the skyrmion [21]. At S2, three unstable modes
are found—the unstable breathing mode, and two unstable
modes of translation—resulting in a third-order SP. As we
increase the field, the stable skyrmion size decreases [47–49],
and so do the internal energy barriers for both mechanisms,
which we plot in Fig. 2(a). In Fig. 2(b), we show the change
in configurational entropy upon reaching the SP, which is
found to become less negative as the field increases. Since
�S < 0 (entropic narrowing [21]), it is a stabilizing effect
which lowers the attempt frequency. Lastly, we assume that
the collapse processes are independent, so that the total rate
of collapse is τ−1

Langer(T ) = k1(T ) + k2(T ).
Our aim is to compare the results of Langer’s theory with

collapse rates obtained from forward flux sampling. The FFS
method generates trajectories between two (meta)stable states
A and B in a ratchetlike manner without imposing any bias
on the microscopic dynamics, which makes it well adapted
for the simulation of rare events. Compared to other path
sampling methods, it does not require prior knowledge of the
density of states, which makes it suitable for nonequilibrium
systems that do not obey detailed balance. It employs a set of
n(+1) nonintersecting interfaces in phase space to sample the
transition path ensemble and compute a transition rate. The
interfaces {λA, λ0, . . . , λn = λB} (Fig. 3) are defined as isosur-
faces of a monotonically varying order parameter, λ(xi ) = λi,
such that xi+1 > xi or xi+1 < xi for all i. Any trajectory going
from A to B must cross all the interfaces at least once. The rate
constant from A to B may be expressed as

kFFS = �A,0

n−1∏

i=0

P(λi+1|λi), (4)

in which �A,0 is the rate at which trajectories starting from
region A cross the first interface λ0, and the conditional
probabilities P(λi+1|λi ) correspond to the probability that a
trajectory coming from A that crossed λi for the first time will
cross λi+1 before returning to A. The protocol is illustrated in
Fig. 3 and is as follows. First, a single Langevin simulation is
started in state A [Fig. 3(a)]. Each time the system successfully
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FIG. 4. (a) Attempt frequency and (b) lifetime of the skyrmion
against collapse as a function of the reduced field calculated via
Langer’s theory with and without translational Goldstone modes
(GM) and FFS. (a) also shows the result of direct Langevin
simulations.

exits region A and crosses λ0, its configuration is stored. The
simulation ends after N0 crossing events have been recorded,
and the flux of trajectories out of A is obtained by �A,0 =
N0/�t , in which �t is the total simulated time. After that,
a configuration stored at λ0 is selected at random and used
as a starting point for a new simulation [Fig. 3(b)]. That new
simulation ends when the trajectory either crosses λ1, in which
case the crossing configuration is stored, or the system returns
to A. This procedure is repeated M0 times. If Ns

0 trajectories
successfully crossed λ1, we obtain P(λ1|λ0) = Ns

0/M0. One
then proceeds analogously at subsequent interfaces. During
the trial runs, Langevin simulations are carried out by in-
tegrating the system of stochastic Landau-Lifshitz-Gilbert
equations at each time step, by means of the stochastic Heun
scheme [23], for which details can be found in the SM [41].
To obtain the rate of collapse of a skyrmion, a natural choice
of order parameter is the skyrmion size, where state A is the
equilibrium skyrmion size, and state B, corresponding to the
FM state, is associated with a zero size (Fig. 3). Arbitrarily,
we consider that magnetic sites mi (i = 1 . . . N) that satisfy
mz,i � 0 are part of the skyrmion, and we define the order pa-
rameter x as the (integer) number of sites inside the skyrmion.
For values of the reduced field in [0, 0.05], we compute a
total collapse rate kFFS. We give the results from FFS and
Langer’s theory for the attempt frequency and the skyrmion
lifetime against collapse in Figs. 4(a) and 4(b). Through each
FFS run, we set the temperature such that β�E1 = 10, so that
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FIG. 5. Examples of (zoomed) spin configurations from FFS
stored at the interface(s) at which the order parameter equates that
of a SP (a) at interface λ(x = 4), for bz = 0.05 and β�E1 = 10,
(b), (c) for bz = 0 and β�E1 = 15, at interfaces (b) λ(x = 5), and
(c) λ(x = 4).

Langer’s theory may hold [1]. FFS runs are also carried out at
β�E1 = 15 in the lower field region and yield very similar
results, which shows that the attempt frequency has no signifi-
cant T dependence here. Since the translation of the skyrmion
costs little energy compared to kBT , we also show Langer’s
result with a treatment of the translational modes as Goldstone
modes [22,46,50]. Details on the method can be found in
the SM [41]. We find that this treatment results in f0 being
overestimated in the low field region, and, in this system, the
best overall agreement between Langer and FFS is obtained
without considering Goldstone modes. In Fig. 5, we show
some examples of stored configurations at interfaces at which
the order parameter equates that of a saddle point. We report
both S1 and S2 types of configurations, as well as some other
configurations that do not clearly pertain to either category.
This occurs because the crossing configurations correspond to
an order parameter which is either equal to or smaller than
that of the SP, which does not imply that the configuration
is in fact a SP. Under the effect of thermal fluctuations, the
system does not usually cross the barrier exactly at the SP,
but deviates from it by a more or less small amount. Lastly, at
higher field values where f0 is found within the GHz range, we
also compute a collapse rate via direct Langevin simulations
at β300�E1 ≈ 2–3. Following a similar procedure to Ref. [51],
we compute an average lifetime out of 400 collapses. The
results are shown in Fig. 4(a) for bz � 0.04 and match the
FFS results.

We have thus validated the use of Langer’s theory to obtain
skyrmion collapse rates by means of forward flux sampling
simulations. In the end, we find that due to a higher activation
entropy, the path involving the third-order saddle point S2 does

not contribute significantly to the total rate. Nonetheless, the
internal energy barriers associated with S2 are almost the same
as the ones associated with S1, and configurations similar to
S2 are observed in FFS, so we could not justify neglecting it a
priori. We should also note that since the difference in internal
energy between S1 and S2 is quite small (around 0.08Jex

at zero field), the mechanisms are probably not completely
decoupled. Since the skyrmions are coupled to the lattice,
we observe lattice effects in the Langer approach, that man-
ifest in nonmonotonic variations of the entropic contribution
[Fig. 2(b)], which are in turn found in the attempt frequency
and the average lifetime (Fig. 4). In FFS simulations, lattice
effects are likely smoothed out by thermal fluctuations. Nev-
ertheless, FFS shows that translational modes should not be
treated as Goldstone modes in this case. FFS is a valuable
tool, as it requires no prior assumptions on the system. With an
appropriate interface design, it could be used to treat problems
that have not yet been successfully solved by reaction rate
theory, such as the problem of skyrmion nucleation rates.
Most notably, FFS and Langer’s theory both yield variations
of the collapse rate prefactor by three to four orders of
magnitude when the applied magnetic field varies by 0.05Jex.
This effect is due to the important entropic contribution, and
implies that reaching the 10-year retention rate necessary
for technological applications may require adequately tuning
the attempt frequency, in addition to the energy barrier. This
result is valid for magnetic skyrmions, but also applies to
any (meta)stable state undergoing a consequent change in
entropy upon reaching the transition state. Here, a decrease in
entropy at the saddle point stabilizes the skyrmion state. This
is directly linked to the skyrmion’s internal modes [21]. Since
the skyrmion size decreases with the applied field, we find that
the bigger the skyrmion, the higher �E , the more negative
�S, the stronger the stabilizing effect (see also Ref. [29]). On
the other hand, for processes with high activation energies, the
Meyer-Neldel compensation rule yields a destabilizing, often
large entropic contribution [52–54] (e.g., biological death
rates, transport in semiconductors, decay of the skyrmion
lattice, etc. [3,55–58]). These considerations underline the fact
that, when estimating transition rates, one should not a priori
assume a characteristic value of f0, and special care needs to
be taken in its evaluation.
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