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ABSTRACT
Educational traces are distinctive compared to the usual
data a recurrent neural network encounters: there is a differ-
ence between two consecutive educational traces generated
by a same learner if they are separated by 2 minutes or 2
months. Indeed, in the latter case, the learner who gener-
ated the trace may have forgotten the associated skill, which
is less likely in the former case. Recurrent Neural Networks
have seen a surge of popularity in the recent few years thanks
to Deep Knowledge Tracing. While the focus has mostly
been on the network architecture, we propose here a novel
framework where traces are enriched with information rel-
ative to the temporality before they are used to train the
network, and assess the performance on two datasets (Lalilo
and ASSISTments 2012), which is not improved by this ap-
proach.
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1. INTRODUCTION
1.1 Modelling student learning
As reminded by Choffin et al. [3], there are two main ap-
proaches to model students’ learning: knowledge tracing and
factor analysis.
On the one hand, knowledge tracing approaches model stu-
dents’ learning over time by nature by taking into account
the sequential order of traces. Historically, these approaches
started with Hidden Markov Models (HMMs) which were
particularly used for Bayesian Knowledge Tracing (BKT)
[4]. More recently, Deep Knowledge Tracing (DKT) ap-
peared and spread partly thanks to increases in computing
power [13]. The key idea is to model skills mastered by the
students using Recurrent Neural Networks (RNNs).

On the other hand, Factor Analysis models have been devel-
oped since the 1950s (cf. [15] for a recent synthesis). They

rely on the idea of making explicit the factors that can have
an impact on students’ success on a given exercise. Training
the model then consists in computing the weight of those
various factors in success.

1.2 How Recurrent Neural Networks are usu-
ally used

Thanks to massive increase in GPUs computing power, re-
search in artificial neural networks and deep learning has
developed at a fast pace over the past decade [10]. In the
EDM community, its first use came with DKT in 2014, which
uses RNNs in order to continuously model students’ learn-
ing over time. Since then, several variations of RNNs have
been created to better model students learning, such as Dy-
namic Key-Value Memory Networks for Knowledge Trac-
ing (DKVMN) [17] and more recently Deep Hierarchical
Knowledge Tracing (DHKT) [16] and Knowledge Query Net-
work [11]. However all those alternative models only work
on trying to adapt the structure itself of the RNN.

Outside of the EDM community, today some of the main
uses of RNNs include natural language translation, speech
recognition and time series forecasting. Those three uses
have one common point: the distance between two succes-
sive data is always the same (a single space between two
words of a text, 25ms between two audio samples in speech
recognition or a same time difference between two points
in time series). Nonetheless, this property is usually not
true on problems datasets generated by students using vari-
ous learning platforms or intelligent tutoring systems (ITSs)
which are commonly considered in the EDM community. In-
deed, in this context two consecutive log entries could be
separated by two minutes (for two exercises done during the
same learning session) or two months (if the student stops
using the learning platform for a while). And when this time
is long, it is likely that the student has either significantly
progressed on that skill (through work outside of the system,
e.g. class work) or on the contrary they may have forgotten
some previously mastered skills.

1.3 Beyond sequentiality: temporality
But there are reasons to think that taking into account time
data can significantly improve success prediction for an exer-
cise. The importance of modeling temporal aspects in ana-
lyses of learning has been well-established in the EDM and
LAK communities [9]. In sequence mining approaches for
instance, authors tend to take it into account by allowing
gaps between actions [8] and/or with feature engineering



Figure 1: DKT structure. Adapted from [13]

by integrating this aspect in the actions themselves (short
vs. long actions) [2]. The DAS3H model [3], which does
not use RNNs, uses time windows of various durations to
try to characterize the slopes of the forgetting curves for
each skill. In deep learning approaches, Nagatani et al. [12]
slightly modify the RNN structure to use exercise counts
and time gaps between two similar exercises as additional
inputs and are able to increase the AUC (Area Under ROC
Curve) of predictions. In the medical field, a similar study to
predict patient follow-ups benefited from a modification in
the LSTM cell making it time-aware [1]. So likewise here we
want to investigate ways to use the traces temporality and
whether this could improve the quality of the predictions.

2. METHOD
2.1 Deep Knowledge Tracing in a nutshell
As mentioned before, the principle of DKT and its variants
relies on an RNN whose weights characterize how a students’
skills mastery evolves after an interaction with a learning
system, such as an ITS. An interaction with the system is
represented as a couple {exercise, answer}. So if there are
K exercises with a boolean answer, 2K interactions are pos-
sible. In order to facilitate calculations in RNNs, they are
usually one-hot-encoded using a binary vector of 2K values.
For a sequence of N values, each interaction gets sequen-
tially through the RNN. At a time t, the t-th interaction
goes through the cell of the RNN thus providing the new
vector representing the estimated knowledge of the student
at that time. This vector can then be used to predict success
on a given exercise at time t + 1 (cf. Figure 1). Training a
RNN thus corresponds to learning the transitions between
a given student’s knowledge vectors. We can notice that
nowhere the temporal distance (or time gap) between two
inputs is considered (cf. Figure 2 top), and as far as the au-
thors know, no knowledge tracing algorithms are currently
considering it.

2.2 Our proposal
Usually, enriching the traces consists in feature engineer-
ing and tends to be presented as an alternative to Recurrent
Neural Networks [6]. [12] and [1] added temporality by mod-
ifying the structure of the neural network to include tempo-
ral information. Here we try a different approach by insert-
ing new traces in the dataset, doing meta feature-engineering
to be used by a Recurring Neural Network. Our idea con-
sists in considering all traces from students as a sequence
with missing values when there are no new trace for a given
period of time. In cases like this, one can usually infer the

% of traces spaced by

Dataset > 7 days > 30 days

ASSISTments12 3.1 0.6
ASSISTments17 1.1 0.4
Algebra I 2005-2006 0.3 0.02
Bridge to Algebra 2006-2007 0.02 0.003
Lalilo 2.0 0.4

Table 1: Dataset traces spread

missing values [7] by (1) adding data whose values are equal
to the average of previous data or (2) adding again the same
data that was last added. However, neither of these two ap-
proaches can be applied here. First, they are typically used
for time series where only some variables are missing at time
t but not all of them, whereas here it is equivalent to having
all variables missing at time t. Moreover, averaging previ-
ous interactions does not make sense mathematically speak-
ing. Finally, adding again the same interaction that was last
added would not take into account the fact the student may
have been progressing or forgetting during the time in which
they were not using the learning platform.

Our proposal thus consists in adding traces (further on re-
ferred to as ”artificial traces”) at a regular predefined static
time interval when students are not using the learning plat-
form. The underlying hypothesis is that the RNN will be
able to interpret those as time passing by. Those artificial
traces are added as exercise K + 1 (knowing there are only
K exercises initially). Thus if we add traces every month
without any exercise done, after 3 months without use, 2
artificial traces will have been added (cf. Figure 2 middle).
In a similar scenario, if traces are added every week without
any exercise done, 11 artificial traces will have been added
(cf. Figure 2 bottom).

Adding those traces results in modifying the student’s knowl-
edge vector after each exercise K + 1. After a given time
without any new exercise done, the predictions correspond-
ing to the probability of success will therefore differ from
the ones without any artificial trace. When the RNN learns
the meaning of that K + 1-th exercise, it could lead to an
improvement of the predictions.

In order to keep the initial tuple structure, we also add an
arbitrary correctness of 0, which is not used practically to
train the network.

3. EXPERIMENTS
3.1 Experimental setting
We computed the number of traces spaced by more than
7 and 30 days in a number of classical datasets : ASSIST-
ments12 [5], ASSISTments17, Algebra I 2005-2006 and Bridge
to Algebra 2006-2007. The two latter datasets stem from the
KDD Cup 2010 EDM Challenge [14]. We were also able to
get a dataset from Lalilo which is a web-app fostering liter-
acy for K-2 (Table 1). In order to evaluate the performance
of the traces enrichment, we have trained DKT and DHKT
algorithms on the two datasets that had the highest spread
in traces: ASSISTments12 (assist12) and Lalilo. Their main
characteristics are summarized in Table 2.



Figure 2: Traces fed to the network before enrichment (top), after monthly temporal enrichment (middle),
or after weekly temporal enrichment (bottom)

Dataset Users Items Skills Interactions Median length

lalilo 58,585 3,439 16 4,418,190 46
assist12 29,018 53,086 265 2,711,602 49

Table 2: Datasets characteristics

A key question with our approach relates to the frequency
of use to add artificial traces. Indeed if the frequency is
too high, it is likely that the artificial traces would disturb
the RNN learning. Conversely, if the frequency is too low, it
won’t capture precisely the elapsed time. Therefore we com-
pared the impact of various frequencies of artificial traces
addition.

Our models have been implemented in Python and PyTorch
for the Deep Learning aspects and the corresponding code
is available online on GitHub1. Following Choffin et al. [3],
we removed users for whom the number of interactions was
less than 10 and interactions with NaN skills. We randomly
sample randomly training (80%) and testing (20%) sets and
give results on the testing set. We average on five different
seeds and give standard deviation.

3.2 Results and analysis
A synthesis of the results can be found in the Tables 3 and
4. We use AUC to evaluate the performance of the models.
No significant improvement in the predictions appear, and
even with a high frequency of added artificial traces (daily),
there is no significant degradation either. Several hypothesis
could explain this lack of impact. It is possible that in those
datasets, students are not progressing or regressing signifi-
cantly between two moments when they use ASSISTments.
A lack of differences would also be likely to be observed if
long gaps without usage are unlikely. For example, if most

1https://github.com/thosgt/kt-algos

Model Added trace frequency (# days) AUC (std dev)

DKT None 0.734 (0.004)
DKT 1 0.735 (0.003)
DKT 7 0.734 (0.002)
DKT 14 0.734 (0.002)
DKT 30 0.734 (0.005)

DHKT None 0.771 (0.002)
DHKT 1 0.770 (0.002)
DHKT 7 0.771 (0.005)
DHKT 14 0.771 (0.003)
DHKT 30 0.770 (0.002)

Table 3: Performance comparison on the ASSIST-
ments12 dataset

students do 50 exercises over a few days, then stop using the
system for 2 months, and use it again intensively for a week,
the only exercises impacted would be the ones right after the
gap of two months, i.e. only a small percentage of exercises
overall. It is thus also possible that other datasets would be
more sensitive to measure the impact of this artificial traces
addition.

4. CONCLUSION AND PERSPECTIVES
We proposed here a framework to enrich learning traces to
train recurrent neural networks. This enrichment which con-
sists in adding artificial traces allows to add a temporality
aspect into traces which normally only take into account se-



Model Added trace frequency (# days) AUC (std dev)

DKT None 0.685 (0.001)
DKT 1 0.685 (0.003)
DKT 7 0.685 (0.002)
DKT 14 0.684 (0.003)
DKT 30 0.685 (0.002)

DHKT None 0.701 (0.002)
DHKT 1 0.700 (0.002)
DHKT 7 0.701 (0.001)
DHKT 14 0.702 (0.003)
DHKT 30 0.700 (0.001)

Table 4: Performance comparison on the Lalilo
dataset

quentiality. Unfortunately, ASSISTments 2012 and Lalilo
datasets did not allow us to reveal a significant impact of
our approach, but we have reasons to believe these partic-
ular datasets were not the most appropriate to measure a
significant difference in the performance of prediction. Our
future works thus involve (1) focusing on a population of
students who has a scarce use of a learning platform over a
large period of time (several months or years), (2) focusing
on the impact of this algorithm over prediction specifically
on exercises done right after a large time gap (during which
the student may have learned or forgotten things), and (3)
identifying learning platforms that teaches skills that are
maybe easier to forget over time (e.g. vocabulary in a for-
eign language), or finding already existing datasets coming
from such a platform.
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